Math 4242 Fall 2016 (Darij Grinberg): midterm 2 pratice problems

Exercise 1. Consider the vector space \mathbb{R}^3 .

- (a) The list $\mathbf{a} = \left((1, 2, -1)^T, (1, 1, 0)^T, (0, 1, -1)^T, (1, 1, 1)^T \right)$ spans \mathbb{R}^3 . Shrink this list to a basis of \mathbb{R}^3 by removing some redundant elements.
- **(b)** The list $\mathbf{b} = ((-1,0,1)^T, (2,3,4)^T)$ is linearly independent. Extend this list to a basis of \mathbb{R}^3 by appending to it some elements from the list **a**.

Exercise 2. (a) Find bases of the four subspaces of the 3×4 -matrix A =

$$\left(\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \end{array}\right).$$

(b) [Too tricky for a midterm, but worth thinking about!] More generally: Let $n \in \mathbb{N}$ and $m \in \mathbb{N}$. Let $A_{n \times m}$ be the $n \times m$ -matrix $(\min\{i,j\})_{1 \le i \le n, 1 \le j \le m}$. (This is the $n \times m$ -matrix whose (i,j)-th entry is min $\{i,j\}$. For example, $A_{3,4}$ is the matrix *A* from part (a) of this exercise.)

Find bases of the four subspaces of $A_{n \times m}$.

If A is an $n \times k$ -matrix whose columns are linearly independent, then a QR decomposition of A means a way to write A in the form A = QR, where:

- Q is an $n \times k$ -matrix with orthonormal columns (this is equivalent to saying that *Q* is an $n \times k$ -matrix satisfying $Q^TQ = I_k$);
- R is an upper-triangular $k \times k$ -matrix with nonzero diagonal entries.

For example, a QR decomposition of $\begin{pmatrix} 2 & 17 \\ 4 & 13 \\ 8 & 5 \end{pmatrix}$ is

$$\begin{pmatrix} 2 & 17 \\ 4 & 13 \\ 8 & 5 \end{pmatrix} = \underbrace{\begin{pmatrix} \frac{1}{\sqrt{21}} & \frac{2}{\sqrt{6}} \\ \frac{2}{\sqrt{21}} & \frac{1}{\sqrt{6}} \\ \frac{4}{\sqrt{21}} & \frac{-1}{\sqrt{6}} \end{pmatrix}}_{\text{this is the } Q} \underbrace{\begin{pmatrix} 2\sqrt{21} & 3\sqrt{21} \\ 0 & 7\sqrt{6} \\ \end{pmatrix}}_{\text{this is the } Q}.$$

Exercise 3. (a) Find a QR decomposition of the matrix $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$. (b) Find a QR decomposition of the matrix $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

(c) Find a QR decomposition of the matrix $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.

[Hint: Two of the three parts are easy and can be done with no computations whatsoever!]

Exercise 4. (a) Apply the Gram-Schmidt process to the two vectors

$$w_1 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$$
, $w_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$

in \mathbb{R}^3 .

(b) Let U be the subspace of \mathbb{R}^3 spanned by w_1, w_2 . Find the projection u of the vector $b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ on the subspace U.

Exercise 5. Find the least-squares solution to the equation Ax = b, where A =

$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \text{ and } b = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}.$$

Exercise 6. Let $p \in \mathbb{N}$. Find the least-squares solution $x \in \mathbb{R}^2$ to the equation

$$Ax = b, \text{ where } A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ \vdots & \vdots \\ 1 & 1 \\ 1 & 2 \\ 1 & 0 \end{pmatrix} \text{ and } b = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ -1 \\ 0 \end{pmatrix}. \text{ (The matrix } A \text{ has } p+2 \text{ rows}$$

and 2 columns, and the column vector b has size p + 2. All entries of A are 1's except for the last two entries of the second column. All entries of b are 1 except for the last two entries.)

(For example, if
$$p = 3$$
, then $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 2 \\ 1 & 0 \end{pmatrix}$ and $b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ -1 \\ 0 \end{pmatrix}$, and the least-

squares solution is
$$\begin{pmatrix} \frac{9}{10} \\ -\frac{1}{2} \end{pmatrix}$$
.)

[Feel free to check your result visually: This exercise is a data-fitting problem,

where you are trying to fit a line $y = \alpha t + \beta$ through the p + 2 points

$$\underbrace{(1,1), (1,1), \ldots, (1,1)}_{p \text{ times}}, (2,-1), (0,0).$$

Thus, the least-squares solution $x = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ should lead to a line $y = \alpha + \beta t$ that comes relatively close to all these points, but gets pulled closer and closer to (1,1) when p grows (because with growing p, the point (1,1) gets repeated more often and thus "pulls more weight").]