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Math 4242 Fall 2016 (Darij Grinberg): midterm 1 with solutions
Mon, 3 Oct 2016, in class (75 minutes). Proofs are NOT required.

Exercise 1. Let

A =

 1 1 1
0 1 1
0 0 1

 .

Compute the matrices AAT and AT A. [5+5 points]

Solution. From A =

 1 1 1
0 1 1
0 0 1

, we obtain AT =

 1 0 0
1 1 0
1 1 1

. Now that both A

and AT are known, we can find AAT and AT A by matrix multiplication:

AAT =

 1 1 1
0 1 1
0 0 1

 1 0 0
1 1 0
1 1 1

 =

 3 2 1
2 2 1
1 1 1

 ;

AT A =

 1 0 0
1 1 0
1 1 1

 1 1 1
0 1 1
0 0 1

 =

 1 1 1
1 2 2
1 2 3

 .

[Remark: The patterns seen here generalize. If An denotes the n× n-matrix whose
entries on and above the diagonal are 1, and whose entries below the diagonal are 0
(so A3 is our matrix A), then An (An)

T is the n×n-matrix (n + 1−max {i, j})1≤i≤n, 1≤j≤n,

and (An)
T An is the n× n-matrix (min {i, j})1≤i≤n, 1≤j≤n.]

Elementary matrices are square matrices of the following three kinds:

• The n × n-matrix Aλ
u,v (for an n ∈ N, two distinct elements u and v of

{1, 2, . . . , n}, and a number λ). Its (u, v)-th entry is λ; its diagonal entries
are 1; all its other entries are 0.

• The n× n-matrix Sλ
u (for an n ∈N, an element u ∈ {1, 2, . . . , n}, and a number

λ 6= 0). Its (u, u)-th entry is λ; all its other diagonal entries are 1; all its
remaining entries are 0.

• The n × n-matrix Tu,v (for an n ∈ N and two distinct elements u and v of
{1, 2, . . . , n}). It is the identity matrix In with the u-th and v-th rows swapped.

Exercise 2. (a1) Write the matrix C =

(
1 2
−1 3

)
as a product of the form EU,

where E is a product of elementary matrices, and where U is an upper-triangular
matrix.

(Do not multiply E out! Instead, write E as a product of elementary matrices
(possibly of only one factor).)
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(a2) Do the same with the matrix C′ =
(

1 3
−1 2

)
(b1) Do the same with the matrix D =

 3 1 2
3 1 3
0 2 2

.

(b2) Do the same with the matrix D′ =

 3 1 3
3 1 2
0 2 3

.

[10+10 points]

Solution. The solutions given below are probably the shortest, but surely not the
only possible.

(a1) We perform Gaussian elimination on C:(
1 2
−1 3

) A1
2,1−→
←−
A−1

2,1

(
1 2
0 5

)
.

Thus, C = EU for E = A−1
2,1 and U =

(
1 2
0 5

)
.

(a2) We perform Gaussian elimination on C′:(
1 3
−1 2

) A1
2,1−→
←−
A−1

2,1

(
1 3
0 5

)
.

Thus, C′ = EU for E = A−1
2,1 and U =

(
1 3
0 5

)
.

(b1) We perform Gaussian elimination on D: 3 1 2
3 1 3
0 2 2

 A−1
2,1−→
←−
A1

2,1

 3 1 2
0 0 1
0 2 2

 T2,3−→
←−
T2,3

 3 1 2
0 2 2
0 0 1

 .

Thus, D = EU for E = A1
2,1T2,3 and U =

 3 1 2
0 2 2
0 0 1

.

(b2) We perform Gaussian elimination on D′: 3 1 3
3 1 2
0 2 3

 A−1
2,1−→
←−
A1

2,1

 3 1 3
0 0 −1
0 2 3

 T2,3−→
←−
T2,3

 3 1 3
0 2 3
0 0 −1

 .

Thus, D′ = EU for E = A1
2,1T2,3 and U =

 3 1 3
0 2 3
0 0 −1

.
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The next few problems are about determinants. You are allowed to use every-
thing I have told you about determinants, including:

• The row operation Aλ
u,v (adding λ times the v-th row to the u-th row) pre-

serves the determinant (that is, det
(

Aλ
u,vC

)
= det C for any C).

• The row operation Sλ
u (scaling the u-th row by λ) multiplies the determinant

by λ (that is, det
(
Sλ

uC
)
= λ det C for any C).

• The row operation Tu,v (swapping rows u and v) negates the determinant
(that is, det (Tu,vC) = −det C for any C).

• We have det (AB) = det A · det B for any two n× n-matrices A and B.

• The determinant of a lower-triangular or upper-triangular matrix equals the
product of its diagonal entries.

Exercise 3. Compute det

 1 1 1
1 2 2
1 2 3

. [10 points]

Solution. We perform row operations on our matrix: 1 1 1
1 2 2
1 2 3

 A−1
2,1−→

 1 1 1
0 1 1
1 2 3

 A−1
3,1−→

 1 1 1
0 1 1
0 1 2


A−1

3,2−→

 1 1 1
0 1 1
0 0 1

 .

The matrix obtained is upper-triangular, and thus its determinant is the product
of its diagonal entries, namely 1 · 1 · 1 = 1. Since all our row operations have
preserved the determinant (because each row operation Aλ

u,v preserves the deter-
minant), this yields that 1 is also the determinant of the initial matrix. In other

words, det

 1 1 1
1 2 2
1 2 3

 = 1.

Exercise 4. Compute det


1 2 7 0
4 −1 3 8
3 0 0 0
2 12 0 0

. [10 points]

Solution. We perform row operations on our matrix:
1 2 7 0
4 −1 3 8
3 0 0 0
2 12 0 0

 T1,3−→


3 0 0 0
4 −1 3 8
1 2 7 0
2 12 0 0

 T2,4−→


3 0 0 0
2 12 0 0
1 2 7 0
4 −1 3 8

 .
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The matrix obtained is lower-triangular, and thus its determinant is the product
of its diagonal entries, namely 3 · 12 · 7 · 8 = 2016. But we are looking for the
determinant of the initial matrix, not of the final one. So we need to know what
our row operations did to the determinant.

Each of the two row operations T1,3 and T2,4 has negated the determinant (as each
Tu,v does). Thus, the determinant was negated twice altogether. As a result, its final
value is (−1)2 times its original value. Since (−1)2 = 1, this simply means that its
final value is its original value. Since the final value is 2016, we thus conclude that

the original value is 2016 as well. In other words, det


1 2 7 0
4 −1 3 8
3 0 0 0
2 12 0 0

 = 2016.

For the purposes of the next two exercises, R3 shall denote the vector space R3×1

of all column vectors of size 3.

Exercise 5. Which of the following ten sets is a subspace of R3 ?

A =
{
(x1, x2, x3)

T ∈ R3 | x1 + x2 = 0
}

;

B =
{
(x1, x2, x3)

T ∈ R3 | x1 = x2 + 1 and x2 = x3 + 1
}

;

C = ∅;

D = R3;

E =
{
(x1, x2, x3)

T ∈ R3 | x1 + x2 = −x1 − x2

}
;

F =
{
(x1, x2, x3)

T ∈ R3 | x1x2 = 0
}

;

G =
{
(x1, x2, x3)

T ∈ R3 | x2
1 + 2x1x2 + x2

2 = 0
}

;

H =
{
(1, 1, 1)T

}
;

I =
{
(u, 2u, 3u)T | u ∈ R

}
;

J =
{
(u + 1, u + 2, u + 3)T | u ∈ R

}
.

[3+3+3+3+3+3+3+3+3+3 points]

Solution. Short answer:
A B C D E F G H I J

Y N N Y Y N Y N Y N
.

(a) The set A is a subspace of R3.
[Proof. The zero vector (a.k.a. origin)

−→
0 = 03×1 of R3 does belong to A (because

its entries 0, 0, 0 do satisfy 0 + 0 = 0).
Let us next show that A is closed under addition. Indeed, let v and w be two

elements of A. We must show that v + w ∈ A. Write v as v = (v1, v2, v3)
T. Then,
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(v1, v2, v3)
T = v ∈ A yields v1 + v2 = 0. Write w as w = (w1, w2, w3)

T. Then,
(w1, w2, w3)

T = w ∈ A yields w1 + w2 = 0. We have (v1 + w1, v2 + w2, v3 + w3)
T ∈

A, because

(v1 + w1) + (v2 + w2) = (v1 + v2)︸ ︷︷ ︸
=0

+ (w1 + w2)︸ ︷︷ ︸
=0

= 0 + 0 = 0.

Now,

v + w = (v1, v2, v3)
T + (w1, w2, w3)

T = (v1 + w1, v2 + w2, v3 + w3)
T ∈ A.

Thus, we have proven that A is closed under addition.
It remains to prove that A is closed under scaling. Indeed, let λ be a real

number, and let v be an element of A. We must show that λv ∈ A. Write v
as v = (v1, v2, v3)

T. Then, (v1, v2, v3)
T = v ∈ A yields v1 + v2 = 0. We have

(λv1, λv2, λv3)
T ∈ A, because

λv1 + λv2 = λ (v1 + v2)︸ ︷︷ ︸
=0

= λ0 = 0.

Now,
λv = λ (v1, v2, v3)

T = (λv1, λv2, λv3)
T ∈ A.

Thus, we have proven that A is closed under scaling. We now have completed the
proof of the fact that A is a subspace of R3.

The above argument is straightforward and generalizes to the claim that any
subset of Rn×1 “carved out” by a system of linear equations with no constant
terms is a subspace. In our situation, the subset A is “carved out” by the system
that consists of the single equation x1 + x2 = 0.]

(b) The set B is not a subspace of R3.
[Proof. It does not contain the zero vector

−→
0 , since 0 = 0 + 1 is not satisfied.]

(c) The set C is not a subspace of R3.
[Proof. It does not contain the zero vector

−→
0 . It is empty!]

(d) The set D is a subspace of R3.
[Proof. All three axioms for a subspace are clearly satisfied, because D is the

whole R3.]
(e) The set E is a subspace of R3.
[Proof. Analogous to the proof of A. Again, this is a subspace “carved out” by

a system of linear equations (only that this time, this system consists of the single
equation x1 + x2 = −x1 − x2). Note that the equation x1 + x2 = −x1 − x2 can be
rewritten as 2x1 + 2x2 = 0, which can be further rewritten as x1 + x2 = 0. Hence,
E = A.]

(f) The set F is not a subspace of R3.
[Proof. It is not closed under addition: In fact, it contains the two vectors (1, 0, 0)T

and (0, 1, 0)T, but does not contain their sum (1, 1, 0)T.]
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(g) The set G is a subspace of R3.
[Proof. Rewrite G as follows:

G =

(x1, x2, x3)
T ∈ R3 | x2

1 + 2x1x2 + x2
2︸ ︷︷ ︸

=(x1+x2)
2

= 0


=

(x1, x2, x3)
T ∈ R3 | (x1 + x2)

2 = 0︸ ︷︷ ︸
this is equivalent to

(x1+x2=0)


=
{
(x1, x2, x3)

T ∈ R3 | x1 + x2 = 0
}

.

From here on, this proceeds as the proof for A, since x1 + x2 = 0 is clearly a linear
equation with no constant term. (Actually, we see now that G = E = A.)

(h) The set H is not a subspace of R3.
[Proof. It does not contain the zero vector

−→
0 .]

(i) The set I is a subspace of R3.
[Proof. We have

I =

(u, 2u, 3u)T︸ ︷︷ ︸
=u(1,2,3)T

| u ∈ R


=
{

u (1, 2, 3)T | u ∈ R
}

=
(

the set of all linear combinations of the single vector (1, 2, 3)T
)

= span
(
(1, 2, 3)T

)
.

Thus, I is a span, and thus a subspace (since every span is a subspace).
Of course, we could have also proven this without using the word “span”, just

by arguing that (u, 2u, 3u)T + (v, 2v, 3v)T = (u + v, 2 (u + v) , 3 (u + v))T etc.]
(j) The set J is not a subspace of R3.
[Proof. For the umpteenth time, it does not contain the zero vector

−→
0 . I should

have asked some more interesting question :)]

Exercise 6. (a1) Find a vector that spans the subspace

K =
{
(x1, x2)

T ∈ R2 | x1 + 2x2 = 0
}

of R2 (where R2 means R2×1).
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(a2) Find a vector that spans the subspace

K′ =
{
(x1, x2)

T ∈ R2 | 2x1 + x2 = 0
}

of R2 (where R2 means R2×1).
(b) Find a pair of vectors that spans the subspace

L =
{
(u + v, u + 2v, u + 3v)T | u ∈ R and v ∈ R

}
of R3. [10+10 points]

Solution. As usual with problems like this, there are many different correct an-
swers.

(a1) The set K is the set of all solutions of the system of (one) linear equation
{x1 + 2x2 = 0 in the two unknowns x1, x2. Solving this system, we find that its
solutions have the form (

x1
x2

)
=

(
−2s

s

)
with a free variable s. Thus,

K =

{(
−2s

s

)
| s ∈ R

}
=

{
s
(
−2
1

)
| s ∈ R

} (
since

(
−2s

s

)
= s

(
−2
1

))
= span

((
−2
1

))
.

Thus, the vector
(
−2
1

)
spans K.

(a2) The set K′ is the set of all solutions of the system of (one) linear equation
{2x1 + x2 = 0 in the two unknowns x1, x2. Solving this system, we find that its
solutions have the form (

x1
x2

)
=

 −1
2

s

s


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with a free variable s. Thus,

K′ =


 −1

2
s

s

 | s ∈ R


=

s

 −1
2

1

 | s ∈ R


since

 −1
2

s

s

 = s

 −1
2

1


= span

 −1
2

1

 .

Thus, the vector

 −1
2

1

 spans K′.

[Remark: Parts (a1) and (a2) of the problem are clearly identical up to the switch-
ing roles of x1 and x2. (We could make this more formal using the notion of

“isomorphism”, but we will learn that later.) So why are the answers
(
−2
1

)
and −1

2
1

 dissimilar? Because I have been solving the two systems {x1 + 2x2 = 0

and {2x1 + x2 = 0 by back-substitution. Back-substitution significantly depends
on the order of unknown, since it starts with the last unknown and then works
its way forward; thus, it is “biased” towards giving a simple expression for the
last unknown (which, in our situation, is x2). Of course, if we wanted to give two

similar answers, we could give
(
−2
1

)
for K, and

(
1
−2

)
for K′.]

(b) We have

L =

(u + v, u + 2v, u + 3v)T︸ ︷︷ ︸
=u(1,1,1)T+v(1,2,3)T

| u ∈ R and v ∈ R


=
{

u (1, 1, 1)T + v (1, 2, 3)T | u ∈ R and v ∈ R
}

= span
(
(1, 1, 1)T , (1, 2, 3)T

)
.

So
(
(1, 1, 1)T , (1, 2, 3)T

)
is a pair that fits the bill. (Of course, so do many other

pairs, for example
(
(1, 1, 1)T , (0, 1, 2)T

)
.)


