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Math 4242 Fall 2016 (Darij Grinberg): midterm 1 pratice problems

Rough list of examineable material (bold = recommended)

lina L/N/S O/S Hefferon

matrix arithmetic 2 A.2 1.2

inverses 3.2 (A.2.3) 1.5

transposes 2.4, 3.3 1.6

triangular matrices 3.4 (1.3)

Aλ
u,v, Sλ

u , Tu,v 3.8, 3.13, 3.17 (A.3.1) 1.3

Gauss example in 3.22? A.3 1.3–1.4 One.I.1

determinants (3.24) 8 1.9 Four

vector spaces 4.1–4.2 2.1 Two.I.1

subspaces 4.3 2.2 Two.I.2

spans 5.1 2.3 Two.I.2

Exercise 1. (a) Let A3 =

 0 1 0
1 0 1
0 1 0

 and B3 =

 1 0 1
0 1 0
1 0 1

. Compute A2
3, B2

3,

A3B3 and B3A3.

(b) Let A4 =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 and B4 =


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

. Compute A2
4, B2

4,

A4B4 and B4A4.

Solution. (a) A2
3 =

 1 0 1
0 2 0
1 0 1

, B2
3 =

 2 0 2
0 1 0
2 0 2

, A3B3 =

 0 1 0
2 0 2
0 1 0

 and

B3A3 =

 0 2 0
1 0 1
0 2 0

.

(b) A2
4 =


2 0 2 0
0 2 0 2
2 0 2 0
0 2 0 2

, B2
4 =


2 0 2 0
0 2 0 2
2 0 2 0
0 2 0 2

, A4B4 =


0 2 0 2
2 0 2 0
0 2 0 2
2 0 2 0

 and

B4A4 =


0 2 0 2
2 0 2 0
0 2 0 2
2 0 2 0

.

http://www.cip.ifi.lmu.de/~grinberg/t/16f/lina.pdf
https://www.math.ucdavis.edu/~anne/linear_algebra/
http://www.math.umn.edu/~olver/ala.html
http://joshua.smcvt.edu/linearalgebra/
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[Computing these products by hand is noticeably simplified by the fact that each
of the matrices has only two different rows and only two different columns. This
leads to the recognizable patterns in the products.]

Exercise 2. Recall that we have seen three types of elementary matrices:

• The n × n-matrix Aλ
u,v (for an n ∈ N, two distinct elements u and v of

{1, 2, . . . , n}, and a number λ). Its (u, v)-th entry is 1; its diagonal entries
are 1; all its other entries are 0.

• The n × n-matrix Sλ
u (for an n ∈ N, an element u ∈ {1, 2, . . . , n}, and a

number λ 6= 0). Its (u, u)-th entry is λ; all its other diagonal entries are 1;
all its remaining entries are 0.

• The n × n-matrix Tu,v (for an n ∈ N and two distinct elements u and v
of {1, 2, . . . , n}). It is the identity matrix In with the u-th and v-th rows
swapped.

Write the matrix C =


0 1 0 1
1 0 1 0
0 1 0 2
1 0 3 0

 as a product of the form EU, where E

is a product of elementary matrices, and where U is an upper-triangular matrix.

Solution. We perform Gaussian elimination on C:
0 1 0 1
1 0 1 0
0 1 0 2
1 0 3 0

 T1,2−→
←−
T1,2


1 0 1 0
0 1 0 1
0 1 0 2
1 0 3 0

 A−1
4,1−→
←−
A1

4,1


1 0 1 0
0 1 0 1
0 1 0 2
0 0 2 0


A−1

3,2−→
←−
A1

3,2


1 0 1 0
0 1 0 1
0 0 0 1
0 0 2 0

 T3,4−→
←−
T3,4


1 0 1 0
0 1 0 1
0 0 2 0
0 0 0 1

 .

Thus, C = EU for E = T1,2A1
4,1A1

3,2T3,4 and U =


1 0 1 0
0 1 0 1
0 0 2 0
0 0 0 1

.

The next few problems are about determinants. You are allowed to use every-
thing I have told you about determinants, including:

• The row operation Aλ
u,v (adding λ times the v-th row to the u-th row) pre-

serves the determinant (that is, det
(

Aλ
u,vC

)
= det C for any C).
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• The row operation Sλ
u (scaling the u-th row by λ) multiplies the determinant

by λ (that is, det
(
Sλ

uC
)
= λ det C for any C).

• The row operation Tu,v (switching rows u and v) negates the determinant
(that is, det (Tu,vC) = −det C for any C).

• Similarly for column operations.

• We have det (AB) = det A · det B for any two n× n-matrices A and B.

• The determinant of a lower-triangular or upper-triangular matrix equals the
product of its diagonal entries.

Try using these tactics to your advantage! The definition of det A for an n× n-
matrix A is as a sum with n! = 1 · 2 · · · · · n addends; this is too much to compute
by hand already for n = 4.

(Yes, you can use Laplace expansion too, but make sure you get the signs right. In my
experience, it is more error-prone when done by hand than other methods, so it’s better to
avoid it unless nothing simpler works.)

Exercise 3. Compute det


0 0 0 3
0 0 14 4
1 6 −1 3

17 1 2 1

.

Solution. We perform row operations to our matrix:
0 0 0 3
0 0 14 4
1 6 −1 3

17 1 2 1

 T1,4−→


17 1 2 1
0 0 14 4
1 6 −1 3
0 0 0 3

 T2,3−→


17 1 2 1
1 6 −1 3
0 0 14 4
0 0 0 3


A−17

1,2−→


0 −101 19 −50
1 6 −1 3
0 0 14 4
0 0 0 3

 T1,2−→


1 6 −1 3
0 −101 19 −50
0 0 14 4
0 0 0 3

 .

The matrix obtained is upper-triangular, and thus its determinant is the product of
its diagonal entries, namely 1 · (−101) · 14 · 3 = −4242. But we are looking for the
determinant of the initial matrix, not of the final one. So we need to know what
our row operations did to the determinant.

The row operation A−17
1,2 preserved the determinant (as all row operations Aλ

u,v
do). The row operations T1,4, T2,3, T1,2 negated it (as each Tu,v does). Thus, the deter-
minant was preserved once and negated thrice. As a result, its final value is (−1)3

times its original value. So −4242 = (−1)3 d, where d = det


0 0 0 3
0 0 14 4
1 6 −1 3

17 1 2 1


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denotes the determinant of the initial matrix. Solving this for d, we obtain d =
4242.

Exercise 4. Compute det


1 1 0 0
2 1 1 0
0 2 1 1
0 0 2 1

.

Solution. We perform row operations to our matrix:
1 1 0 0
2 1 1 0
0 2 1 1
0 0 2 1

 A−2
2,1−→


1 1 0 0
0 −1 1 0
0 2 1 1
0 0 2 1

 A2
3,2−→


1 1 0 0
0 −1 1 0
0 0 3 1
0 0 2 1


A−2/3

4,3−→


1 1 0 0
0 −1 1 0
0 0 3 1
0 0 0 1/3

 .

The matrix obtained is upper-triangular, and thus its determinant is the product of
its diagonal entries, namely 1 · (−1) · 3 · 1/3 = −1. Since all row operations that
we used have preserved the determinant (because they all were row operations of
type Aλ

u,v), this means that the determinant of the initial matrix also was −1.

For the purposes of the next two exercises, Rn shall denote the vector space Rn×1

of all column vectors of size n.

Exercise 5. Which of the following eight sets is a subspace of R3 ?

A =
{
(x1, x2, x3)

T ∈ R3 | x1 = 2
}

;

B =
{
(x1, x2, x3)

T ∈ R3 | x1 = x2 = −x3

}
;

C =
{
(x1, x2, x3)

T ∈ R3 | x2
1 = 0

}
;

D =

{(
u, u2, u3

)T
| u ∈ R

}
;

E =
{
(1 + u,−1− u, 0)T | u ∈ R

}
;

F =
{
(1, 2, 3)T

}
;

G = span
(
(1, 2, 3)T

)
;

H =
{
(x1, x2, x3)

T ∈ R3 | x1 − x2 = x2 − x3

}
.
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Solution. (a) The set A is not a subspace, since it does not even contain
−→
0 . (Indeed,

−→
0 ∈ A would mean that 0 = 2, which is absurd.)

(b) The set B is a subspace. Indeed, it is easy to check all three axioms.1

(c) The set C is a subspace. Indeed, x2
1 = 0 is equivalent to x1 = 0, and thus C

is simply
{
(x1, x2, x3)

T ∈ R3 | x1 = 0
}

, which is easily seen to be a subspace (the
proof is just like that for part (b), but simpler).

(d) The set D is not a subspace. Indeed, it violates axiom (b), because if we
set v = (1, 1, 1)T and w = (1, 1, 1)T, then v ∈ D and w ∈ D (namely, v = w =(
u, u2, u3)T for u = 1), but v + w /∈ D (indeed, v + w = (2, 2, 2)T does not have

the form
(
u, u2, u3)T for any u ∈ R, because any such u ∈ R would have to satisfy

u = 2 and u2 = 2 and u3 = 2 at the same time, which is impossible).
(It also violates axiom (c); but of course, it is enough to find one contradiction.)
(e) The set E is a subspace. It can be rewritten as follows:

E =

(1 + u,−1− u, 0)T︸ ︷︷ ︸
=(1+u)(1,−1,0)T

| u ∈ R


=
{
(1 + u) (1,−1, 0)T | u ∈ R

}
=
{

v (1,−1, 0)T | v ∈ R
}

(here, we have substituted v for 1 + u)

= span
(
(1,−1, 0)T

)
,

which makes it clear that it is a subspace (because all spans are subspaces).
(f) The set F is not a subspace, since it does not contain

−→
0 .

(g) The set G is a subspsace, since it is a span (and since all spans are subspaces).
(h) The set H is a subspace. The proof is similar to the proof for B.

Exercise 6. Define four vectors a, b, c, d in R4 as follows:

a = (4, 3, 2, 1)T , b = (1, 2, 3, 4)T ,

c = (2, 1, 0,−1)T , d = (−1, 0, 1, 2)T .

1For example, in order to check axiom (b), we need to show that every v ∈ B and w ∈ B satisfy
v + w ∈ B. Let us show this.

Let v ∈ B and w ∈ B. Write v as v = (v1, v2, v3)
T , and write w as w = (w1, w2, w3)

T . Since
v ∈ B, we have v1 = v2 = −v3 (because this is what it means for v to belong to B). Similarly,
w1 = w2 = −w3. Adding the equalities v1 = v2 = −v3 and w1 = w2 = −w3 side by side, we
obtain v1 + w1 = v2 + w2 = (−v3) + (−w3). In other words, v1 + w1 = v2 + w2 = − (v3 + w3).
In other words, v + w ∈ B (since v + w = (v1 + w1, v2 + w2, v3 + w3)

T . This completes our proof
of axiom (b) for B.

Checking axioms (a) and (c) is similar.
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Show that span (a, b) = span (c, d) as follows:
(a) Write each of a and b as a linear combination of c and d.
(b) Write λa + µb (for any fixed reals λ and µ) as a linear combination of c

and d. Conclude that λa + µb ∈ span (c, d) for each λ, µ ∈ R, and therefore
span (a, b) ⊆ span (c, d).

(c) Write each of c and d as a linear combination of a and b.
(d) Write λc + µd (for any fixed reals λ and µ) as a linear combination of a

and b. Conclude that λc + µd ∈ span (a, b) for each λ, µ ∈ R, and therefore
span (c, d) ⊆ span (a, b).

The results of (b) and (d) combined yield span (a, b) = span (c, d).

Solution. (a) Let us first write a as a linear combination of c and d. In other words,
we are seeking two real numbers γ and δ such that a = γc + δd. In other words,
we are solving the equation a = γc + δd in two real unknowns γ and δ. Since
a = (4, 3, 2, 1)T, c = (2, 1, 0,−1)T and d = (−1, 0, 1, 2)T, this equation rewrites
as (4, 3, 2, 1)T = γ (2, 1, 0,−1)T + δ (−1, 0, 1, 2)T. This is equivalent to the system

2γ + (−1) δ = 4;
1γ + 0δ = 3;
0γ + 1δ = 2;

(−1) γ + 2δ = 1

of linear equations. Solving this system in any way, we find

γ = 3 and δ = 2. Thus, a = γc + δd becomes a = 3c + 2d.
So we have written a as a linear combination of c and d. Similarly, we can do the

same for b, obtaining b = 2c + 3d.
(b) For any two reals λ and µ, we have

λ a︸︷︷︸
=3c+2d

+µ b︸︷︷︸
=2c+3d

= λ (3c + 2d) + µ (2c + 3d)

= 3λc + 2λd + 2µc + 3µd
= (3λ + 2µ) c + (2λ + 3µ) d.

This is a representation of λa + µb as a linear combination of c and d. Thus, λa +
µb ∈ span (c, d) for each λ, µ ∈ R. In other words,

{λa + µb | λ, µ ∈ R} ⊆ span (c, d) .

But the definition of span (a, b) yields span (a, b) = {λa + µb | λ, µ ∈ R}. Hence,

span (a, b) = {λa + µb | λ, µ ∈ R} ⊆ span (c, d) .

This solves part (b).

(c) Similarly to part (a), we find c =
3
5

a +
−2
5

b and d =
−2
5

a +
3
5

b.
(d) Similarly to part (b), we can represent λc + µd as a linear combination of a

and b as follows:

λc + µd =

(
3
5

λ +
−2
5

µ

)
a +

(
−2
5

λ +
3
5

µ

)
b.
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Exercise 7. (a) Find a list of 3 vectors that spans the subspace

K =
{
(a, b, c, d)T ∈ R4 | a + b = c + d

}
of R4.

(b) Find a list of 4 vectors that spans the subspace

L =
{
(a1 + a2, a2 + a3, a3 + a4, a4 + a1)

T | a1, a2, a3, a4 ∈ R
}

of R4.
(c) Find a list of 3 vectors that spans L.

Solution. [Note: Throughout the solution of this problem, you have a lot of freedom
to make choices. Thus, your answers may be completely different from mine and
still correct.]

(a) The set K is the set of all solutions of the system of (one) linear equation
{a + b = c + d in the four unknowns a, b, c, d. Solving this system, we find that its
solutions have the form 

a
b
c
d

 =


s + t− u

u
t
s


with three free variables s, t, u. Thus,

K =




s + t− u
u
t
s

 | s, t, u ∈ R


=

s


1
0
0
1

+ t


1
0
1
0

+ u


−1
1
0
0

 | s, t, u ∈ R

since


s + t− u

u
t
s

 = s


1
0
0
1

+ t


1
0
1
0

+ u


−1
1
0
0




= span




1
0
0
1

 ,


1
0
1
0

 ,


−1
1
0
0


 .

Thus, we have written K as a span of three vectors.
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(b) For every a1, a2, a3, a4 ∈ R, we have

(a1 + a2, a2 + a3, a3 + a4, a4 + a1)
T

=


a1 + a2
a2 + a3
a3 + a4
a4 + a1

 = a1


1
0
0
1

+ a2


1
1
0
0

+ a3


0
1
1
0

+ a4


0
0
1
1

 .

Thus, the definition of L rewrites as follows:

L =

a1


1
0
0
1

+ a2


1
1
0
0

+ a3


0
1
1
0

+ a4


0
0
1
1

 | a1, a2, a3, a4 ∈ R


= span




1
0
0
1

 ,


1
1
0
0

 ,


0
1
1
0

 ,


0
0
1
1


 . (1)

Hence, we have written L as a span of four vectors.

(c) Set α =


1
0
0
1

, β =


1
1
0
0

, γ =


0
1
1
0

, and δ =


0
0
1
1

. Then, (1) rewrites

as
L = span (α, β, γ, δ) . (2)

However, it is easy to observe that α + γ = β + δ. Hence, δ = α + γ − β. In
particular, δ is a linear combination of α, β, γ. Hence, δ ∈ span (α, β, γ).

But in class, I mentioned the following fact:

Proposition 0.1. Let V be a vector space. Let v1, v2, . . . , vk be some vectors in
V. Let W = span (v1, v2, . . . , vk) (this is a subspace of V). Let w ∈ W. Then,
span (v1, v2, . . . , vk, w) = W.

(Roughly speaking, Proposition 0.1 says that the span of a list of vectors does not
change if we append a new vector to the list, as long as this new vector already lies
in the span of the old vectors.)

Now, set V = R4×1; let v1, v2, . . . , vk be the vectors α, β, γ (so k = 3); let W =
span (α, β, γ); and let w = δ. Then, the condition of Proposition 0.1 is satisfied
(because we have δ ∈ span (α, β, γ)). Thus, Proposition 0.1 yields span (α, β, γ, δ) =
span (α, β, γ). Hence, (2) becomes L = span (α, β, γ, δ) = span (α, β, γ). Thus, we
have represented L as a span of three vectors.


