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Math 4242 Fall 2016 (Darij Grinberg): homework set 8
due: Wed, 14 Dec 2016

[Thanks to Hannah Brand for parts of the solutions.]

Exercise 1. Recall that we defined the multiplication of complex numbers by the
rule

(a1, b1) (a2, b2) = (a1a2 − b1b2, a1b2 + a2b1) .

(a) Prove that this multiplication is associative: i.e., that z1 (z2z3) = (z1z2) z3
for every three complex numbers z1, z2, z3. (Begin by writing z1 in the form
(a1, b1), etc.) [5 points]

(b) For any complex number z = (a, b) = a + bi, define a real matrix Wz by

Wz =

(
a b
−b a

)
.

Given two complex numbers z1 and z2, prove that Wz1z2 = Wz1Wz2 . [5 points]

Solution to Exercise 1. We begin by proving part (b).
(b) Let z1 and z2 be two complex numbers. Write z1 in the form z1 = (a1, b1).

Write z2 in the form z2 = (a2, b2). Thus,

z1z2 = (a1, b1) (a2, b2) = (a1a2 − b1b2, a1b2 + b1a2)

(by the definition of the product of two complex numbers). Hence, the definition
of Wz1z2 yields

Wz1z2 =

(
a1a2 − b1b2 a1b2 + b1a2
− (a1b2 + b1a2) a1a2 − b1b2

)
=

(
a1a2 − b1b2 a1b2 + b1a2
−a1b2 − b1a2 a1a2 − b1b2

)
. (1)

On the other hand, we have z1 = (a1, b1). Thus, Wz1 =

(
a1 b1
−b1 a1

)
. Similarly,

Wz2 =

(
a2 b2
−b2 a2

)
. Multiplying these two equalities, we obtain

Wz1Wz2 =

(
a1 b1
−b1 a1

)(
a2 b2
−b2 a2

)
=

(
a1a2 + b1 (−b2) a1b2 + b1a2

(−b1) a2 + a1 (−b2) (−b1) b2 + a1a2

)
=

(
a1a2 − b1b2 a1b2 + b1a2
−a1b2 − b1a2 a1a2 − b1b2

)
.

Comparing this with (1), we obtain Wz1z2 = Wz1Wz2 . This solves Exercise 1 (b).
[Remark: Of course, we also have Wz1+z2 = Wz1 +Wz2 and Wz1−z2 = Wz1 −Wz2 for

any two complex numbers z1 and z2. These facts, combined, show that the addition,
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subtraction and multiplication of complex numbers are mirrored by the addition,
subtraction and multiplication of their corresponding “W-matrices” (where the W-
matrix of a complex number z means the 2× 2-matrix Wz). In more abstract terms,
this says that the map C → R2×2 sending each complex number z to its W-matrix
Wz is a ring homomorphism1. This fact is behind our second solution of part (a)
given below.]

(a) First solution of part (a): Here is the straightforward approach:
We defined the multiplication of complex numbers by the rule (a1, b1)(a2, b2) =

(a1a2 − b1b2, a1b2 + a2b1).
Given three complex numbers z1 = (a1, b1), z2 = (a2, b2), and z3 = (a3, b3), we

can see that z1(z2z3) = (z1z2)z3 by explicitly computing both sides of this equation:

z1(z2z3) = (a1, b1)((a2, b2)(a3, b3))

= (a1, b1) · (a2a3 − b2b3, a2b3 + a3b2)

= (a1(a2a3 − b2b3)− b1(a2b3 + a3b2), a1(a2b3 + a3b2) + (a2a3 − b2b3)b1)

= (a1a2a3 − a1b2b3 − a2b1b3 − a3b1b2, a1a2b3 + a1a3b2 + a2a3b1 − b1b2b3)

and

(z1z2)z3 = ((a1, b1)(a2, b2))(a3, b3)

= (a1a2 − b1b2, a1b2 + a2b1) · (a3, b3)

= ((a1a2 − b1b2)a3 − (a1b2 + a2b1)b3, (a1a2 − b1b2)b3 + a3(a1b2 + a2b1))

= (a1a2a3 − a3b1b2 − a1b2b3 − a2b1b3, a1a2b3 − b1b2b3 + a1a3b2 + a2a3b1).

The right hand sides of these two equations are equal (even though the terms
appear in slightly different orders in them). Thus, the left hand sides are also
equal. In other words, z1 (z2z3) = (z1z2) z3. This solves part (a).

Second solution of part (a): Here is a more elegant proof, using part (b).
Part (b) says that Wz1z2 = Wz1Wz2 for any two complex numbers z1 and z2.

Renaming z1 and z2 as u and v, we can rewrite this as follows:

Wuv = WuWv for any two complex numbers u and v. (2)

Furthermore, any complex number z can be reconstructed from the 2× 2-matrix
Wz

2. Therefore, if u and v are two complex numbers satisfying Wu = Wv, then
u = v.

1Strictly speaking, this statement also includes the facts that W0 = 02×2 and W1 = I2.
2Proof. Let z be a complex number. Write z in the form (a, b). Then, Wz =

(
a b
−b a

)
(by the

definition of Wz). Hence, a and b are the two entries of the first row of the matrix Wz. Therefore,
we can reconstruct a and b from Wz. Therefore, we can reconstruct z from Wz (since z = (a, b)).
Qed.
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Now, let z1, z2 and z3 be three complex numbers. Applying (2) to u = z1 and
v = z2z3, we obtain

Wz1(z2z3) = Wz1 Wz2z3︸ ︷︷ ︸
=Wz2Wz3

(by (2), applied
to u=z2 and v=z3)

= Wz1 (Wz2Wz3) . (3)

But applying (2) to u = z1z2 and v = z3, we obtain

W(z1z2)z3
= Wz1z2︸ ︷︷ ︸

=Wz1Wz2
(by (2), applied

to u=z1 and v=z2)

Wz3 = (Wz1Wz2)Wz3 = Wz1 (Wz2Wz3)

(since we know that multiplication of matrices is associative). Comparing this with
(3), we obtain Wz1(z2z3) = W(z1z2)z3

.
But recall that if u and v are two complex numbers satisfying Wu = Wv, then u =

v. Applying this to u = z1 (z2z3) and v = (z1z2) z3, we obtain z1 (z2z3) = (z1z2) z3
(since Wz1(z2z3) = W(z1z2)z3

). This solves part (a) again.
[Remark: This second solution illustrates an idea frequently used in algebra: We

want to prove that a structure (in our case, the ring C of complex numbers) satisfies
a certain property (in this case, associativity of multiplication). Instead of doing
this directly (as was done in the first solution of part (a)), we embed the structure
in a bigger structure (in our case, the bigger structure is the ring R2×2 of 2× 2-
matrices, and the embedding is the map sending each z ∈ C to the matrix Wz)
which is already known to possess this property (after all, we know that matrix
multiplication is associative); then, we get the property on the smaller structure for
free.]

Here is the algorithm for diagonalizing a matrix we did in class:

Algorithm 0.1. Let A ∈ Cn×n be an n× n-matrix. We want to diagonalize A; that
is, we want to find an invertible n× n-matrix S and a diagonal n× n-matrix Λ
such that A = SΛS−1. We proceed as follows:

Step 1: We compute the polynomial det (A− xIn) (where x is the indetermi-
nate). (This polynomial, or the closely related polynomial det (xIn − A), is often
called the characteristic polynomial of A.)

Step 2: We find the roots of this polynomial det (A− xIn). Let λ1, λ2, . . . , λk
be these roots without repetitions (e.g., multiple roots are not listed mul-
tiple times), in whatever order you like. For example, if det (A− xIn) =

(x− 1)2 (x− 2), then you can set k = 2, λ1 = 1 and λ2 = 2, or you can set
k = 2, λ1 = 2 and λ2 = 1, but you must not set k = 3.

Step 3: For each j ∈ {1, 2, . . . , k}, we find a basis for Ker
(

A− λj In
)
. (Notice

that Ker
(

A− λj In
)
6=
{−→

0
}

(because λj is a root of det
(

A− λj In
)
, and thus

det
(

A− λj In
)
= 0); hence, the basis should consist of at least one vector.)
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Step 4: Concatenate these bases into one big list (s1, s2, . . . , sm) of vectors. If
m < n, then the matrix A cannot be diagonalized, and the algorithm stops here.
Otherwise, m = n, and we proceed further.

Step 5: Thus, for each p ∈ {1, 2, . . . , m}, the vector sp belongs to a basis of
Ker

(
A− λj In

)
for some j ∈ {1, 2, . . . , k}. Denote the corresponding λj by µp (so

that sp ∈ Ker
(

A− µp In
)
). (For example, if sp belongs to a basis of Ker (A− 5In),

then µp = 5.) Thus, we have defined m numbers µ1, µ2, . . . , µm.
Step 6: Let S be the n × n-matrix whose columns are s1, s2, . . . , sn. Let Λ be

the diagonal matrix whose diagonal entries (from top-left to bottom-right) are
µ1, µ2, . . . , µn.

(I called these Steps differently in class – the first four steps were called Steps 1.1
to 1.4, while the last two steps were called Part 2. But the above is less confusing.)

Here is an example that is probably too messy for a midterm, but illustrates some
things:

Example 0.2. Let A =

 5 −1 5
2 2 −4
1 −1 1

. Let us diagonalize A. We proceed using

Algorithm 0.1:
Step 1: We have n = 3 and thus

det (A− xIn) = det

 5− x −1 5
2 2− x −4
1 −1 1− x


= (5− x) (2− x) (1− x) + (−1) (−4) 1 + 5 · 2 (−1)

− (5− x) (−4) (−1)− 5 (2− x) 1− (−1) 2 (1− x)

= −x3 + 8x2 − 10x− 24.

Step 2: Now we must find the roots of this polynomial det (A− xIn) = −x3 +
8x2 − 10x− 24.

This is a cubic polynomial, so if it has no rational roots, then finding its roots
is quite hopeless (in theory, there is Cardano’s formula, but it is so compli-
cated that it is almost useless). Thus, we hope that there is a rational root.
To find it, we use the rational root theorem, which says that any rational root
of a polynomial with integer coefficients must have the form

p
q

where p is

an integer dividing the constant term and q is a positive integer dividing the
leading coefficient. (This is more general than what I quoted in class, and
more correct than what I quoted in Section 070.) In our case, the polynomial
−x3 + 8x2 − 10x − 24 has leading coefficient −1 and constant term −24. Thus,
any rational root must have the form

p
q

where p is an integer dividing −24

and q is a positive integer dividing 1. This leaves 16 possibilities for p (namely,

https://proofwiki.org/wiki/Cardano%27s_Formula
https://en.wikipedia.org/wiki/Rational_root_theorem
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p ∈ {1, 2, 3, 4, 6, 8, 12, 24,−1,−2,−3,−4,−6,−8,−12,−24}) and 1 possibility for
q (namely, q = 1). Trying out all of these possibilities, we find that p = 4 and

q = 1 works. Thus,
p
q
=

4
1
= 4 is a root.

Hence, we have found one root of our polynomial: namely, x = 4. In order
to find the others, we divide the polynomial by x − 4 (using polynomial long
division). We get

−x3 + 8x2 − 10x− 24
x− 4

= −x2 + 4x + 6.

It thus remains to find the roots of −x2 + 4x + 6. This is a quadratic, so we know
how to do this. The roots are 2 +

√
10 and 2−

√
10.

Thus, altogether, the three roots of det (A− xIn) are 4, 2 +
√

10 and 2−
√

10.
Let me number them λ1 = 4, λ2 = 2+

√
10 and λ3 = 2−

√
10 (although you can

use any numbering you wish).
Step 3: Now, we must find a basis of Ker

(
A− λj In

)
for each j ∈ {1, 2, 3}. This

is a straightforward exercise in Gaussian elimination, and the only complication
is that you have to know how to rationalize a denominator (because λ2 and λ3
involve square roots). Let me only show the computation for j = 2:

Computing Ker (A− λ2 In): We have

Ker (A− λ2 In) = Ker
(

A−
(

2 +
√

10
)

In

)
= Ker

 3−
√

10 −1 5
2 −

√
10 −4

1 −1 −1−
√

10

 .

This is the set of all solutions to the system

(
3−
√

10
)

x + (−1) y + 5z = 0;

2x +
(
−
√

10
)

y + (−4) z = 0;

1x + (−1) y +
(
−1−

√
10
)

z = 0

. (4)

So let us solve this system. We divide the first equation by 3 −
√

10 (in or-
der to have a simpler pivot entry). This is tantamount to multiplying it by

1
3−
√

10
= −3−

√
10 (this was obtained by rationalizing the denominator, and

it is absolutely useful here: you don’t want to carry nested fractions around!).
It then becomes x +

(
3 +
√

10
)

y +
(
−15− 5

√
10
)

z = 0, and the whole system
transforms into 

x +
(

3 +
√

10
)

y +
(
−15− 5

√
10
)

z = 0;

2x +
(
−
√

10
)

y + (−4) z = 0;

1x + (−1) y +
(
−1−

√
10
)

z = 0

.

https://en.wikipedia.org/wiki/Polynomial_long_division
https://en.wikipedia.org/wiki/Polynomial_long_division
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Now, subtracting appropriate multiples of the first row from the other two rows,
we eliminate x, resulting in the following system:

1x +
(

3 +
√

10
)

y +
(
−15− 5

√
10
)

z = 0;(
−6− 3

√
10
)

y +
(

26 + 10
√

10
)

z = 0;(
−4−

√
10
)

y +
(

14 + 4
√

10
)

z = 0

.

Next, we divide the second equation by −6 − 3
√

10 (aka, multiply it by
1

−6− 3
√

10
=

1
9
− 1

18

√
10), so that it becomes y +

(
−1

3

√
10− 8

3

)
z = 0. Then,

subtracting an appropriate multiple of it from the third equation turns the third
equation into 0 = 0. Thus, our system takes the form

x +
(

3 +
√

10
)

y +
(
−15− 5

√
10
)

z = 0;

y +

(
−1

3

√
10− 8

3

)
z = 0;

0 = 0

.

In this form, it can be solved by back-substitution (unsurprisingly, there is a free
variable, because the kernel is nonzero). The solutions have the form

 x
y
z

 =


(

4
3

√
10 +

11
3

)
r(

1
3

√
10 +

8
3

)
r

r

 .

Thus,

Ker (A− λ2 In) = span




4
3

√
10 +

11
3

1
3

√
10 +

8
3

1


 .

Hence,




4
3

√
10 +

11
3

1
3

√
10 +

8
3

1


 is a basis of Ker (A− λ2 In). (Of course, you can

scale the vector by 3 in order to get rid of the denominators.)
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Similarly, we can find a basis of Ker (A− λ1 In) (for example,

 1
1
0

), and

a basis of Ker (A− λ3 In) (for example,



−4

3

√
10 +

11
3

−1
3

√
10 +

8
3

1


).

Step 4: Now, we concatenate these three bases into one big list (s1, s2, . . . , sm)
of vectors. So this big list is

(s1, s2, s3) =



 1
1
0


︸ ︷︷ ︸
a basis of

Ker(A−λ1 In)

,


4
3

√
10 +

11
3

1
3

√
10 +

8
3

1


︸ ︷︷ ︸

a basis of
Ker(A−λ2 In)

,


−4

3

√
10 +

11
3

−1
3

√
10 +

8
3

1


︸ ︷︷ ︸

a basis of
Ker(A−λ3 In)


.

Thus, m = 3, so that m = n, and thus A can be diagonalized.
Step 5: Since s1 belongs to a basis of Ker (A− λ1 In), we have µ1 = λ1 = 4.

Similarly, µ2 = λ2 = 2 +
√

10 and µ3 = λ3 = 2−
√

10.
Step 6: Now, S is the n× n-matrix whose columns are s1, s2, . . . , sn. In other

words,

S =


1

4
3

√
10 +

11
3
−4

3

√
10 +

11
3

1
1
3

√
10 +

8
3
−1

3

√
10 +

8
3

0 1 1

 .

Furthermore, Λ is the diagonal matrix whose diagonal entries (from top-left to
bottom-right) are µ1, µ2, . . . , µn. In other words,

Λ =

 4 0 0
0 2 +

√
10 0

0 0 2−
√

10

 .

These are the S and Λ we were seeking. With some patience, you could check
that A = SΛS−1 (although it’s not necessary to check it).

Remark 0.3. (a) Algorithm 0.1 relies on some nontrivial theorems (for example,
Lemma 8.13 in Olver/Shakiban). See §8.3 of Olver/Shakiban for a complete
treatment. (Chapter 7 of Lankham/Nachtergaele/Schilling comes close, whereas
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Chapter Five.IV of Hefferon is probably overkill.)
(b) What can we do if A is not diagonalizable? The next best thing is the Jordan

normal form (or Jordan canonical form); see §8.6 of Olver/Shakiban.
(c) In Step 4 of Algorithm 0.1, we may sometimes notice that A is not diago-

nalizable (since m < n). Is there a way to notice this earlier, thus saving ourself
some useless work?

Yes. For each j ∈ {1, 2, . . . , k}, let αj be the multiplicity of the root λj of the
polynomial det (A− xIn). (For example, if det (A− xIn) = (x− 6)3 (x + 2) and
λ1 = 6, then α1 = 3, because the root λ1 = 6 has multiplicity 3.) In Step 3, when
computing Ker

(
A− λj In

)
, the dimension dim

(
Ker

(
A− λj In

))
will be either

= αj or < αj. If it is < αj, then the algorithm is doomed to failure (i.e., you will
get m < n in Step 4), and A is not diagonalizable. This can save you some work.

(d) Algorithm 0.1 is more of a theoretical result than an actual workable algo-
rithm; the difficulty of finding exact roots of polynomials, and the instability of
Gaussian elimination for non-exact matrices, makes it rather useless. However,
for 2 × 2-matrices it works fine (you can solve quadratics), and it also works
nicely for various kinds of “matrices of nice forms” (e.g., you can diagonalize

the n× n-matrix


1 1 · · · 1
2 2 · · · 2
...

... . . . ...
n n · · · n

 for each n; try it). Practical algorithms for

numerical computation are a completely different story. §10.6 of Olver/Shakiban
tells the beginnings of the story (namely, how to find eigenvalues, and get some-
thing close to diagonalization). Similar to Gaussian elimination, it is wrong to
expect diagonalization to work with approximate matrices, because S and Λ can
“jump wildly” when A is changed only a little bit; however, certain things can
be done that come close to diagonalization.

(e) There is a theorem (called the spectral theorem) saying that if A is a symmet-
ric matrix with real entries, then A is always diagonalizable over the reals (i.e.,
we can find S and Λ with real entries), and moreover you can find an S that is
orthogonal (i.e., the columns of S are orthonormal). This is a hugely important
fact in applications (it is related to the SVD, among many other things), but we
will not have the time for it in class. Let me just mention that finding an orthog-
onal S requires only a simple fix to Algorithm 0.1: In Step 3, you have to choose
an orthonormal basis of Ker

(
A− λj In

)
(not just some basis). Then, in Step 4,

the big list (s1, s2, . . . , sm) will automatically be an orthonormal basis of Rn. This
is one of the miracles of symmetric matrices. See §8.4 in Olver/Shakiban for a
proof and more details.

Exercise 2. (a) Diagonalize A =

(
1 2
2 4

)
. [5 points]

(b) Diagonalize A =

(
1 0
0 2

)
. [5 points]
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(c) Diagonalize A =

 1 0 1
0 1 0
1 0 1

. [10 points]

Solution to Exercise 2. We proceed by using Algorithm 0.1. You have seen this often
enough that

(a) We have

det (A− xI2) = det
(

1− x 2
2 4− x

)
= (1− x) (4− x)− 2 · 2 = x2 − 5x.

The roots of this polynomial (i.e., the eigenvalues of A) are clearly 0 and 5. We
number them as λ1 = 0 and λ2 = 5.

We now must find bases for Ker (A− λ1 I2) and Ker (A− λ2 I2). We can do
this using the standard Gaussian elimination procedure (you can also see the

result directly if you are sufficiently astute), obtaining the basis
((

2
−1

))
for

Ker (A− λ1 I2) and the basis
((

1
2

))
for Ker (A− λ2 I2). The big list is therefore

(s1, s2) =

((
2
−1

)
,
(

1
2

))
. This has size 2, which is our n; hence, the matrix A can

be diagonalized. We have s1 =

(
2
−1

)
, µ1 = λ1 = 0, s2 =

(
1
2

)
and µ2 = λ2 = 5.

Therefore, S =

(
2 1
−1 2

)
and Λ =

(
0 0
0 5

)
.

(b) We can take S =

(
1 0
0 1

)
and Λ =

(
1 0
0 2

)
.

One way to solve this is by proceeding exactly as in part (a). Another is to
observe that our matrix A is already diagonal, so we can diagonalize it by simply
taking S = I2 and Λ = A.

(c) We can take S =

 1 0 1
0 1 0
−1 0 1

 and Λ =

0 0 0
0 1 0
0 0 2

.

Again, the method is the same as for part (a), but this time we have to solve the
cubic equation x3− 3x2 + 2x = 0. This is done as follows: The root x = 0 is obvious.
Leaving this root aside, we can find the other two roots by solving x2− 3x + 2 = 0;
this can be done using the standard formula for the roots of a quadratic.

Exercise 3. Define a sequence (g0, g1, g2, . . .) of integers by

g0 = 0, g1 = 1, gn+1 = 3gn + gn−1 for all n ≥ 1.

This is similar to the Fibonacci sequence. Here is a partial table of values:

k 0 1 2 3 4 5 6 7 8 9 10

gk 0 1 3 10 33 109 360 1189 3927
.
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(a) What are g9 and g10 ? [2 points]

(b) Define a 2× 2-matrix A by A =

(
3 1
1 0

)
. Find A2 and A3. [2 points]

(c) Prove that

An =

(
gn+1 gn

gn gn−1

)
(5)

for all n ≥ 1. The proof (or at least the easiest proof) is by induction over n: In
the induction base, you should check that (5) holds for n = 1. In the induction
step, you assume that (5) holds for n = m for a given positive integer m, and
then you have to check that (5) also holds for n = m + 1. (Use the fact that

Am+1 = AAm =

(
3 1
1 0

)
Am.) [10 points]

(d) Diagonalize A. [10 points]
(e) Use this to obtain an explicit formula for gn. (The formula will involve

square roots and n-th powers of numbers, but no recursion and no matrices.)
[10 points]

Solution to Exercise 3. (a) We have g9 = 3g8 + g7 = 3 · 3927 + 1189 = 12970 and
g10 = 3g9 + g8 = 3 · 12970 + 3927 = 42837.

(b) We have A2 =

(
10 3
3 1

)
and A3 =

(
33 10
10 3

)
. [This is, of course, a

particular case of (5).]
(c) We mimic the proof of Proposition 2.48 in the lecture notes:
We shall prove (5) by induction over n:

Induction base: We have A1 = A =

(
3 1
1 0

)
. Comparing this with

(
g1+1 g1

g1 g1−1

)
=

(
3 1
1 0

)
(since g1+1 = g2 = 3, g1 = 1 and g1−1 = g0 = 0) ,

we obtain A1 =

(
g1+1 g1

g1 g1−1

)
. In other words, (5) holds for n = 1. This com-

pletes the induction base.
Induction step: Let N be a positive integer. (I am calling it N rather than m here,

in order to stay closer to the proof of Proposition 2.48 in the lecture notes.) Assume
that (5) holds for n = N. We must show that (5) also holds for n = N + 1.

The definition of the sequence (g0, g1, g2, . . .) shows that gN+2 = 3gN+1 + gN and
gN+1 = 3gN + gN−1.

We have assumed that (5) holds for n = N. In other words,

AN =

(
gN+1 gN

gN gN−1

)
.

http://www.cip.ifi.lmu.de/~grinberg/t/16f/lina.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/16f/lina.pdf
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Now,

AN+1 = AN︸︷︷︸
=

(
gN+1 gN

gN gN−1

) A︸︷︷︸
=

(
3 1
1 0

) =

(
gN+1 gN

gN gN−1

)(
3 1
1 0

)

=

(
gN+1 · 3 + gN · 1 gN+1 · 1 + gN · 0
gN · 3 + gN−1 · 1 gN · 1 + gN−1 · 0

)
(by the definition of a product of two matrices)

=

(
3gN+1 + gN gN+1
3gN + gN−1 gN

)
=

(
gN+2 gN+1
gN+1 gN

)
(since 3gN+1 + gN = gN+2 and 3gN + gN−1 = gN+1). In other words, (5) holds for
n = N + 1. This completes the induction step; hence, (5) is proven.

(d) We have A = SΛS−1, where S =

 1 1

−1
2

√
13− 3

2
1
2

√
13− 3

2

 and Λ = −
1
2

√
13 +

3
2

0

0
1
2

√
13 +

3
2

. (This can be found using Algorithm 0.1 again.)

(e) Fix n ∈N. Let S and Λ be as in the solution to part (d). Then,

Λn =


(
−1

2

√
13 +

3
2

)n
0

0
(

1
2

√
13 +

3
2

)n


(because in order to raise a diagonal matrix to the n-th power, it suffices to raise
each diagonal entry to the n-th power). Now, from A = SΛS−1, we obtain

An = SΛnS−1 (as shown in class)

=

 1 1

−1
2

√
13− 3

2
1
2

√
13− 3

2



(
−1

2

√
13 +

3
2

)n
0

0
(

1
2

√
13 +

3
2

)n


1√
13


1
2

√
13− 3

2
−1

1
2

√
13 +

3
2

1



(since S =

 1 1

−1
2

√
13− 3

2
1
2

√
13− 3

2

, Λn =


(
−1

2

√
13 +

3
2

)n
0

0
(

1
2

√
13 +

3
2

)n


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and S−1 =
1√
13


1
2

√
13− 3

2
−1

1
2

√
13 +

3
2

1

). If we multiply out this product, we obtain

explicit formulas for each of the four entries of An. In particular, we obtain the
following formula for its (2, 1)-th entry:

(An)2,1 =
1√
13

((
1
2

√
13 +

3
2

)n
−
(
−1

2

√
13 +

3
2

)n)
.

But (5) shows that (An)2,1 = gn. Hence,

gn = (An)2,1 =
1√
13

((
1
2

√
13 +

3
2

)n
−
(
−1

2

√
13 +

3
2

)n)
.

This is the formula we are looking for. (It is, of course, similar to the Binet formula
for the Fibonacci numbers.)

Exercise 4. Let A be an n× n-matrix. Assume that A can be diagonalized, with
A = SΛS−1 for an invertible n× n-matrix S and a diagonal n× n-matrix Λ.

(a) Diagonalize A2. [5 points]
(b) Diagonalize A−1, if A is invertible. (You can use the fact that for an invert-

ible A, the diagonal entries of Λ are nonzero, and so Λ−1 is a diagonal matrix
again.) [5 points]

(c) Diagonalize AT (the transpose of A). [10 points]
(The answers should be in terms of S and Λ. For example, A + In can be

diagonalized as follows: A + In = S (Λ + In) S−1. Indeed, S is an invertible
matrix, Λ + In is a diagonal matrix (being the sum of the two diagonal matrices
Λ and In), and we have

S (Λ + In) S−1 = SΛS−1︸ ︷︷ ︸
=A

+ SIn︸︷︷︸
=S

S−1 = A + SS−1︸ ︷︷ ︸
=In

= A + In.

)

Solution to Exercise 4. (a) We have A = SΛS−1, and thus

A2 =
(

SΛS−1
)2

= SΛ S−1S︸ ︷︷ ︸
=In

ΛS−1 = S ΛΛ︸︷︷︸
=Λ2

S−1 = SΛ2S−1.

The matrix Λ is diagonal. Thus, any power of Λ is diagonal as well (because
in order to raise a diagonal matrix Λ to some power, we merely need to raise its
diagonal entries to this power). In particular, Λ2 is diagonal. Therefore, the equality
A2 = SΛ2S−1 provides a diagonalization of A2.
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(b) Assume that A is invertible. Then, it is not hard to see that all diagonal
entries of Λ are nonzero3. Therefore, the diagonal matrix Λ is invertible, and its
inverse Λ−1 is obtained by inverting all diagonal entries of Λ. In particular, Λ−1 is
a diagonal matrix as well. (You can use this fact without proof, but it is helpful to
know how it is proven.)

Recall that (UV)−1 = V−1U−1 for any two invertible n × n-matrices U and V.

Applying this to U = SΛ and V = S−1, we find
(
SΛS−1)−1

=
(

S−1
)−1

︸ ︷︷ ︸
=S

(SΛ)−1︸ ︷︷ ︸
=Λ−1S−1

=

SΛ−1S−1.
We have A = SΛS−1, and thus

A−1 =
(

SΛS−1
)−1

= SΛ−1S−1.

This equality provides a diagonalization of A−1 (since the matrix Λ−1 is diagonal).
(c) Proposition 3.18 (f) in the lecture notes (applied to S instead of A) shows that

the matrix ST is invertible, and its inverse is
(
ST)−1

=
(
S−1)T.

Proposition 3.18 (e) in the lecture notes shows that any two matrices U and V
satisfy (UV)T = VTUT (as long as the product UV is well-defined, i.e., the number
of columns of U equals the number of rows of V). Applying this to U = SΛ and

V = S−1, we obtain
(
SΛS−1)T

=
(

S−1
)T

︸ ︷︷ ︸
=(ST)

−1

(SΛ)T︸ ︷︷ ︸
=ΛTST

=
(
ST)−1 ΛTST.

The matrix Λ its diagonal. Hence, ΛT = Λ (because transposing a diagonal
matrix does not change it). Now, from A = SΛS−1, we obtain

AT =
(

SΛS−1
)T

=
(

ST
)−1

ΛT︸︷︷︸
=Λ

ST︸︷︷︸
=
(
(ST)

−1
)−1

=
(

ST
)−1

Λ
((

ST
)−1

)−1

.

This equality provides a diagonalization of AT (since the matrix Λ is diagonal).

3Proof. Assume the contrary. Then, at least one diagonal entry of Λ is zero. But the matrix Λ
is diagonal, and thus upper-triangular. Hence, the determinant of Λ equals the product of its
diagonal entries, and therefore equals 0 (since at least one diagonal entry is 0, and therefore
the whole product must be 0). In other words, det Λ = 0. Now, from A = SΛS−1, we obtain
det A = det

(
SΛS−1) = det S · det Λ︸ ︷︷ ︸

=0

·det
(
S−1) = 0. Hence, A is not invertible (since a square

matrix with determinant 0 is not invertible). This contradicts the fact that A is invertible. This
contradiction shows that our assumption was false, qed.

[This was not the easiest or most elementary proof, but the shortest one.]

http://www.cip.ifi.lmu.de/~grinberg/t/16f/lina.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/16f/lina.pdf

