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Math 4242 Fall 2016 (Darij Grinberg): homework set 8
due: Wed, 14 Dec 2016

Exercise 1. Recall that we defined the multiplication of complex numbers by the
rule

(a1, b1) (a2, b2) = (a1a2 − b1b2, a1b2 + a2b1) .

(a) Prove that this multiplication is associative: i.e., that z1 (z2z3) = (z1z2) z3
for every three complex numbers z1, z2, z3. (Begin by writing z1 in the form
(a1, b1), etc.) [5 points]

(b) For any complex number z = (a, b) = a + bi, define a real matrix Wz by

Wz =

(
a b
−b a

)
.

Given two complex numbers z1 and z2, prove that Wz1z2 = Wz1Wz2 . [5 points]

Here is the algorithm for diagonalizing a matrix we did in class:

Algorithm 0.1. Let A ∈ Cn×n be an n× n-matrix. We want to diagonalize A; that
is, we want to find an invertible n× n-matrix S and a diagonal n× n-matrix Λ
such that A = SΛS−1. We proceed as follows:

Step 1: We compute the polynomial det (A− xIn) (where x is the indetermi-
nate). (This polynomial, or the closely related polynomial det (xIn − A), is often
called the characteristic polynomial of A.)

Step 2: We find the roots of this polynomial det (A− xIn). Let λ1, λ2, . . . , λk
be these roots without repetitions (e.g., multiple roots are not listed mul-
tiple times), in whatever order you like. For example, if det (A− xIn) =

(x− 1)2 (x− 2), then you can set k = 2, λ1 = 1 and λ2 = 2, or you can set
k = 2, λ1 = 2 and λ2 = 1, but you must not set k = 3.

Step 3: For each j ∈ {1, 2, . . . , k}, we find a basis for Ker
(

A− λj In
)
. (Notice

that Ker
(

A− λj In
)
6=
{−→

0
}

(because λj is a root of det
(

A− λj In
)
, and thus

det
(

A− λj In
)
= 0); hence, the basis should consist of at least one vector.)

Step 4: Concatenate these bases into one big list (s1, s2, . . . , sm) of vectors. If
m < n, then the matrix A cannot be diagonalized, and the algorithm stops here.
Otherwise, m = n, and we proceed further.

Step 5: Thus, for each p ∈ {1, 2, . . . , m}, the vector sp belongs to a basis of
Ker

(
A− λj In

)
for some j ∈ {1, 2, . . . , k}. Denote the corresponding λj by µp (so

that sp ∈ Ker
(

A− µp In
)
). (For example, if sp belongs to a basis of Ker (A− 5In),

then µp = 5.) Thus, we have defined m numbers µ1, µ2, . . . , µm.
Step 6: Let S be the n × n-matrix whose columns are s1, s2, . . . , sn. Let Λ be

the diagonal matrix whose diagonal entries (from top-left to bottom-right) are
µ1, µ2, . . . , µn.
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(I called these Steps differently in class – the first four steps were called Steps 1.1
to 1.4, while the last two steps were called Part 2. But the above is less confusing.)

Here is an example that is probably too messy for a midterm, but illustrates some
things:

Example 0.2. Let A =

 5 −1 5
2 2 −4
1 −1 1

. Let us diagonalize A. We proceed using

Algorithm 0.1:
Step 1: We have n = 3 and thus

det (A− xIn) = det

 5− x −1 5
2 2− x −4
1 −1 1− x


= (5− x) (2− x) (1− x) + (−1) (−4) 1 + 5 · 2 (−1)

− (5− x) (−4) (−1)− 5 (2− x) 1− (−1) 2 (1− x)

= −x3 + 8x2 − 10x− 24.

Step 2: Now we must find the roots of this polynomial det (A− xIn) = −x3 +
8x2 − 10x− 24.

This is a cubic polynomial, so if it has no rational roots, then finding its roots
is quite hopeless (in theory, there is Cardano’s formula, but it is so compli-
cated that it is almost useless). Thus, we hope that there is a rational root.
To find it, we use the rational root theorem, which says that any rational root
of a polynomial with integer coefficients must have the form

p
q

where p is

an integer dividing the constant term and q is a positive integer dividing the
leading coefficient. (This is more general than what I quoted in class, and
more correct than what I quoted in Section 070.) In our case, the polynomial
−x3 + 8x2 − 10x − 24 has leading coefficient −1 and constant term −24. Thus,
any rational root must have the form

p
q

where p is an integer dividing −24

and q is a positive integer dividing 1. This leaves 16 possibilities for p (namely,
p ∈ {1, 2, 3, 4, 6, 8, 12, 24,−1,−2,−3,−4,−6,−8,−12,−24}) and 1 possibility for
q (namely, q = 1). Trying out all of these possibilities, we find that p = 4 and

q = 1 works. Thus,
p
q
=

4
1
= 4 is a root.

Hence, we have found one root of our polynomial: namely, x = 4. In order
to find the others, we divide the polynomial by x − 4 (using polynomial long
division). We get

−x3 + 8x2 − 10x− 24
x− 4

= −x2 + 4x + 6.

It thus remains to find the roots of −x2 + 4x + 6. This is a quadratic, so we know
how to do this. The roots are 2 +

√
10 and 2−

√
10.

https://proofwiki.org/wiki/Cardano%27s_Formula
https://en.wikipedia.org/wiki/Rational_root_theorem
https://en.wikipedia.org/wiki/Polynomial_long_division
https://en.wikipedia.org/wiki/Polynomial_long_division
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Thus, altogether, the three roots of det (A− xIn) are 4, 2 +
√

10 and 2−
√

10.
Let me number them λ1 = 4, λ2 = 2+

√
10 and λ3 = 2−

√
10 (although you can

use any numbering you wish).
Step 3: Now, we must find a basis of Ker

(
A− λj In

)
for each j ∈ {1, 2, 3}. This

is a straightforward exercise in Gaussian elimination, and the only complication
is that you have to know how to rationalize a denominator (because λ2 and λ3
involve square roots). Let me only show the computation for j = 2:

Computing Ker (A− λ2 In): We have

Ker (A− λ2 In) = Ker
(

A−
(

2 +
√

10
)

In

)
= Ker

 3−
√

10 −1 5
2 −

√
10 −4

1 −1 −1−
√

10

 .

This is the set of all solutions to the system

(
3−
√

10
)

x + (−1) y + 5z = 0;

2x +
(
−
√

10
)

y + (−4) z = 0;

1x + (−1) y +
(
−1−

√
10
)

z = 0

. (1)

So let us solve this system. We divide the first equation by 3 −
√

10 (in or-
der to have a simpler pivot entry). This is tantamount to multiplying it by

1
3−
√

10
= −3−

√
10 (this was obtained by rationalizing the denominator, and

it is absolutely useful here: you don’t want to carry nested fractions around!).
It then becomes x +

(
3 +
√

10
)

y +
(
−15− 5

√
10
)

z = 0, and the whole system
transforms into 

x +
(

3 +
√

10
)

y +
(
−15− 5

√
10
)

z = 0;

2x +
(
−
√

10
)

y + (−4) z = 0;

1x + (−1) y +
(
−1−

√
10
)

z = 0

.

Now, subtracting appropriate multiples of the first row from the other two rows,
we eliminate x, resulting in the following system:

1x +
(

3 +
√

10
)

y +
(
−15− 5

√
10
)

z = 0;(
−6− 3

√
10
)

y +
(

26 + 10
√

10
)

z = 0;(
−4−

√
10
)

y +
(

14 + 4
√

10
)

z = 0

.
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Next, we divide the second equation by −6 − 3
√

10 (aka, multiply it by
1

−6− 3
√

10
=

1
9
− 1

18

√
10), so that it becomes y +

(
−1

3

√
10− 8

3

)
z = 0. Then,

subtracting an appropriate multiple of it from the third equation turns the third
equation into 0 = 0. Thus, our system takes the form

x +
(

3 +
√

10
)

y +
(
−15− 5

√
10
)

z = 0;

y +

(
−1

3

√
10− 8

3

)
z = 0;

0 = 0

.

In this form, it can be solved by back-substitution (unsurprisingly, there is a free
variable, because the kernel is nonzero). The solutions have the form

 x
y
z

 =


(

4
3

√
10 +

11
3

)
r(

1
3

√
10 +

8
3

)
r

r

 .

Thus,

Ker (A− λ2 In) = span




4
3

√
10 +

11
3

1
3

√
10 +

8
3

1


 .

Hence,




4
3

√
10 +

11
3

1
3

√
10 +

8
3

1


 is a basis of Ker (A− λ2 In). (Of course, you can

scale the vector by 3 in order to get rid of the denominators.)

Similarly, we can find a basis of Ker (A− λ1 In) (for example,

 1
1
0

), and

a basis of Ker (A− λ3 In) (for example,



−4

3

√
10 +

11
3

−1
3

√
10 +

8
3

1


).

Step 4: Now, we concatenate these three bases into one big list (s1, s2, . . . , sm)



Math 4242 Fall 2016 homework page 5

of vectors. So this big list is

(s1, s2, s3) =



 1
1
0


︸ ︷︷ ︸
a basis of

Ker(A−λ1 In)

,


4
3

√
10 +

11
3

1
3

√
10 +

8
3

1


︸ ︷︷ ︸

a basis of
Ker(A−λ2 In)

,


−4

3

√
10 +

11
3

−1
3

√
10 +

8
3

1


︸ ︷︷ ︸

a basis of
Ker(A−λ3 In)


.

Thus, m = 3, so that m = n, and thus A can be diagonalized.
Step 5: Since s1 belongs to a basis of Ker (A− λ1 In), we have µ1 = λ1 = 4.

Similarly, µ2 = λ2 = 2 +
√

10 and µ3 = λ3 = 2−
√

10.
Step 6: Now, S is the n× n-matrix whose columns are s1, s2, . . . , sn. In other

words,

S =


1

4
3

√
10 +

11
3
−4

3

√
10 +

11
3

1
1
3

√
10 +

8
3
−1

3

√
10 +

8
3

0 1 1

 .

Furthermore, Λ is the diagonal matrix whose diagonal entries (from top-left to
bottom-right) are µ1, µ2, . . . , µn. In other words,

Λ =

 4 0 0
0 2 +

√
10 0

0 0 2−
√

10

 .

These are the S and Λ we were seeking. With some patience, you could check
that A = SΛS−1 (although it’s not necessary to check it).

Remark 0.3. (a) Algorithm 0.1 relies on some nontrivial theorems (for example,
Lemma 8.13 in Olver/Shakiban). See §8.3 of Olver/Shakiban for a complete
treatment. (Chapter 7 of Lankham/Nachtergaele/Schilling comes close, whereas
Chapter Five.IV of Hefferon is probably overkill.)

(b) What can we do if A is not diagonalizable? The next best thing is the Jordan
normal form (or Jordan canonical form); see §8.6 of Olver/Shakiban.

(c) In Step 4 of Algorithm 0.1, we may sometimes notice that A is not diago-
nalizable (since m < n). Is there a way to notice this earlier, thus saving ourself
some useless work?

Yes. For each j ∈ {1, 2, . . . , k}, let αj be the multiplicity of the root λj of the
polynomial det (A− xIn). (For example, if det (A− xIn) = (x− 6)3 (x + 2) and
λ1 = 6, then α1 = 3, because the root λ1 = 6 has multiplicity 3.) In Step 3, when
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computing Ker
(

A− λj In
)
, the dimension dim

(
Ker

(
A− λj In

))
will be either

= αj or < αj. If it is < αj, then the algorithm is doomed to failure (i.e., you will
get m < n in Step 4), and A is not diagonalizable. This can save you some work.

(d) Algorithm 0.1 is more of a theoretical result than an actual workable algo-
rithm; the difficulty of finding exact roots of polynomials, and the instability of
Gaussian elimination for non-exact matrices, makes it rather useless. However,
for 2 × 2-matrices it works fine (you can solve quadratics), and it also works
nicely for various kinds of “matrices of nice forms” (e.g., you can diagonalize

the n× n-matrix


1 1 · · · 1
2 2 · · · 2
...

... . . . ...
n n · · · n

 for each n; try it). Practical algorithms for

numerical computation are a completely different story. §10.6 of Olver/Shakiban
tells the beginnings of the story (namely, how to find eigenvalues, and get some-
thing close to diagonalization). Similar to Gaussian elimination, it is wrong to
expect diagonalization to work with approximate matrices, because S and Λ can
“jump wildly” when A is changed only a little bit; however, certain things can
be done that come close to diagonalization.

(e) There is a theorem (called the spectral theorem) saying that if A is a symmet-
ric matrix with real entries, then A is always diagonalizable over the reals (i.e.,
we can find S and Λ with real entries), and moreover you can find an S that is
orthogonal (i.e., the columns of S are orthonormal). This is a hugely important
fact in applications (it is related to the SVD, among many other things), but we
will not have the time for it in class. Let me just mention that finding an orthog-
onal S requires only a simple fix to Algorithm 0.1: In Step 3, you have to choose
an orthonormal basis of Ker

(
A− λj In

)
(not just some basis). Then, in Step 4,

the big list (s1, s2, . . . , sm) will automatically be an orthonormal basis of Rn. This
is one of the miracles of symmetric matrices. See §8.4 in Olver/Shakiban for a
proof and more details.

Exercise 2. (a) Diagonalize A =

(
1 2
2 4

)
. [5 points]

(b) Diagonalize A =

(
1 0
0 2

)
. [5 points]

(c) Diagonalize A =

 1 0 1
0 1 0
1 0 1

. [10 points]

Exercise 3. Define a sequence (g0, g1, g2, . . .) of integers by

g0 = 0, g1 = 1, gn+1 = 3gn + gn−1 for all n ≥ 1.
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This is similar to the Fibonacci sequence. Here is a partial table of values:

k 0 1 2 3 4 5 6 7 8 9 10

gk 0 1 3 10 33 109 360 1189 3927
.

(a) What are g9 and g10 ? [2 points]

(b) Define a 2× 2-matrix A by A =

(
3 1
1 0

)
. Find A2 and A3. [2 points]

(c) Prove that

An =

(
gn+1 gn

gn gn−1

)
(2)

for all n ≥ 1. The proof (or at least the easiest proof) is by induction over n: In
the induction base, you should check that (2) holds for n = 1. In the induction
step, you assume that (2) holds for n = m for a given positive integer m, and
then you have to check that (2) also holds for n = m + 1. (Use the fact that

Am+1 = AAm =

(
3 1
1 0

)
Am.) [10 points]

(d) Diagonalize A. [10 points]
(e) Use this to obtain an explicit formula for gn. (The formula will involve

square roots and n-th powers of numbers, but no recursion and no matrices.)
[10 points]

Exercise 4. Let A be an n× n-matrix. Assume that A can be diagonalized, with
A = SΛS−1 for an invertible n× n-matrix S and a diagonal n× n-matrix Λ.

(a) Diagonalize A2. [5 points]
(b) Diagonalize A−1, if A is invertible. (You can use the fact that for an invert-

ible A, the diagonal entries of Λ are nonzero, and so Λ−1 is a diagonal matrix
again.) [5 points]

(c) Diagonalize AT (the transpose of A). [10 points]
(The answers should be in terms of S and Λ. For example, A + In can be

diagonalized as follows: A + In = S (Λ + In) S−1. Indeed, S is an invertible
matrix, Λ + In is a diagonal matrix (being the sum of the two diagonal matrices
Λ and In), and we have

S (Λ + In) S−1 = SΛS−1︸ ︷︷ ︸
=A

+ SIn︸︷︷︸
=S

S−1 = A + SS−1︸ ︷︷ ︸
=In

= A + In.

)


