
Math 4242 Fall 2016 homework page 1

Math 4242 Fall 2016 (Darij Grinberg): homework set 7
due: Wed, 7 Dec 2016

Let me repeat some definitions I gave in class:

Definition 0.1. Let V and W be two vector spaces. Let v = (v1, v2, . . . , vm) be a
basis of V. Let w = (w1, w2, . . . , wn) be a basis of W. Let L : V → W be a linear
map.

The matrix representing L with respect to v and w is the n× m-matrix Mv,w,L
defined as follows: For every j ∈ {1, 2, . . . , m}, expand the vector L

(
vj
)

with
respect to the basis w, say, as follows:

L
(
vj
)
= α1,jw1 + α2,jw2 + · · ·+ αn,jwn. (1)

Then, Mv,w,L is the n×m-matrix whose (i, j)-th entry is αi,j.
(I gave some examples for this on homework set 6.)

Definition 0.2. Let V be a vector space. Let v = (v1, v2, . . . , vn) be a list of n
vectors in V. Then, Lv is defined to be the map

Rn → V,


λ1
λ2
...

λn

 7→ λ1v1 + λ2v2 + · · ·+ λnvn.

This map Lv is linear. Moreover, recall that:
(a) The list v is linearly independent if and only if Lv is injective.
(b) The list v spans V if and only if Lv is surjective.
(c) The list v is a basis of V if and only if Lv is bijective.
Let us take a closer look at the case when v is a basis of V. In this case, the

map Lv is bijective, and thus an isomorphism. Hence, in this case, its inverse
map (Lv)

−1 is well-defined. This map is called Mv. Thus, explicitly, Mv sends a

vector u ∈ V to the unique column vector


λ1
λ2
...

λn

 ∈ Rn that satisfies u = λ1v1 +

λ2v2 + · · ·+ λnvn. In other words, Mv sends a vector u ∈ V to the coordinates
of u with respect to the basis v (written as a column vector).

Example 0.3. Recall that P2 is the vector space of all polynomials of degree ≤ 2.
Let a be the list

(
1, x, x + 1, x2 + x + 1

)
. Then,

La




1
0
−2
3


 = 1 · 1 + 0 · x + (−2) · (x + 1) + 3 ·

(
x2 + x + 1

)
= 3x2 + x + 2.

http://www.cip.ifi.lmu.de/~grinberg/t/16f/hw6s.pdf
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The reader can easily check that La



−1
−2
0
3


 = 3x2 + x + 2 as well. Thus,

La sends two distinct column vectors to one and the same polynomial in P2.
Thus, La is not injective. This should not be surprising: after all, a is not linearly
independent.

Conversely, let us compute a vector u ∈ R4 satisfying La (u) = x2 − 2x + 5.
Such a vector should exist, because a spans P2 and therefore the map La is sur-
jective. How do we find it? Well, we are looking for a vector u = (λ1, λ2, λ3, λ4)

T

satisfying La (u) = x2 − 2x + 5. The definition of La shows that

La (u) = λ11 + λ2x + λ3 (x + 1) + λ4

(
x2 + x + 1

)
= λ4x2 + (λ2 + λ3 + λ4) x + (λ1 + λ3 + λ4) 1.

Hence, we want to find λ1, λ2, λ3, λ4 satisfying the polynomial equation

λ4x2 + (λ2 + λ3 + λ4) x + (λ1 + λ3 + λ4) 1 = x2 − 2x + 5 (for all x) .

Comparing coefficients, we translate this polynomial equation into the system
λ4 = 1;

λ2 + λ3 + λ4 = −2;
λ1 + λ3 + λ4 = 5

.

This system can be solved by Gaussian elimination; the solutions are
(λ1, λ2, λ3, λ4)

T = (4− r,−3− r, r, 1)T for r ∈ R. Thus, these are the vectors
u ∈ R4 satisfying La (u) = x2 − 2x + 5. There are infinitely many of them.

Exercise 1. Consider the vector space P2 of polynomials of degree ≤ 2.
Let v be the basis

(
1, x + 1, x2 + 2x

)
of P2.

(a) Simplify Lv

 2
3
−1

. [5 points]

(b) Find Mv
(
x2 − 3x− 7

)
. (In other words, find the u ∈ R3 satisfying Lv (u) =

x2 − 3x− 7.) [5 points]

Solution to Exercise 1. (a) The definition of Lv yields

Lv

 2
3
−1

 = 2 · 1 + 3 · (x + 1) + (−1) ·
(

x2 + 2x
)

= −x2 + x + 5.
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(b) The vector Mv
(
x2 − 3x− 7

)
belongs to R3; thus, we can write it in the form

(λ1, λ2, λ3)
T for some reals λ1, λ2, λ3. Consider these λ1, λ2, λ3.

We have (λ1, λ2, λ3)
T = Mv︸︷︷︸

=(Lv)
−1

(
x2 − 3x− 7

)
= (Lv)

−1 (x2 − 3x− 7
)
, and thus

x2 − 3x− 7 = Lv

(
(λ1, λ2, λ3)

T
)
= Lv

 λ1
λ2
λ3


= λ1 · 1 + λ2 · (x + 1) + λ3 ·

(
x2 + 2x

)
(by the definition of Lv)

= λ3x2 + (λ2 + 2λ3) x + (λ1 + λ2) 1.

In other words,

λ3x2 + (λ2 + 2λ3) x + (λ1 + λ2) 1 = x2 − 3x− 7.

This is an equality between two polynomials. Comparing coefficients, we translate
it into the system 

λ3 = 1;
λ2 + 2λ3 = −3;
λ1 + λ2 = −7

.

This system can be solved by Gaussian elimination; there is a unique solution,
namely (λ1, λ2, λ3)

T = (−2,−5, 1)T. Thus,

Mv

(
x2 − 3x− 7

)
= (λ1, λ2, λ3)

T = (−2,−5, 1)T .

Exercise 2. Let A3 be the vector space of all skew-symmetric 3 × 3-
matrices. Recall (from Exercise 1 (b) on homework set 4) that v =
(E1,2 − E2,1, E1,3 − E3,1, E2,3 − E3,2) is a basis of A3.

(a) Find Lv

 2
1
3

. [5 points]

(b) Find Mv

 0 1 4
−1 0 −1
−4 1 0

. [5 points]
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Solution to Exercise 2. (a) The definition of Lv yields

Lv

 2
1
3

 = 2 (E1,2 − E2,1)︸ ︷︷ ︸
=


0 1 0
−1 0 0
0 0 0


+1 (E1,3 − E3,1)︸ ︷︷ ︸

=


0 0 1
0 0 0
−1 0 0


+3 (E2,3 − E3,2)︸ ︷︷ ︸

=


0 0 0
0 0 1
0 −1 0



= 2

 0 1 0
−1 0 0
0 0 0

+ 1

 0 0 1
0 0 0
−1 0 0

+ 3

 0 0 0
0 0 1
0 −1 0


=

 0 2 1
−2 0 3
−1 −3 0

 .

(b) The vector Mv

 0 1 4
−1 0 −1
−4 1 0

 belongs to R3; thus, we can write it in

the form (λ1, λ2, λ3)
T for some reals λ1, λ2, λ3. Consider these λ1, λ2, λ3.

We have (λ1, λ2, λ3)
T = Mv︸︷︷︸

=(Lv)
−1

 0 1 4
−1 0 −1
−4 1 0

 = (Lv)
−1

 0 1 4
−1 0 −1
−4 1 0

,

and thus 0 1 4
−1 0 −1
−4 1 0

 = Lv

(
(λ1, λ2, λ3)

T
)
= Lv

 λ1
λ2
λ3


= λ1 (E1,2 − E2,1)︸ ︷︷ ︸

=


0 1 0
−1 0 0
0 0 0


+λ2 (E1,3 − E3,1)︸ ︷︷ ︸

=


0 0 1
0 0 0
−1 0 0


+λ3 (E2,3 − E3,2)︸ ︷︷ ︸

=


0 0 0
0 0 1
0 −1 0


(by the definition of Lv)

=

 0 λ1 λ2
−λ1 0 λ3
−λ2 −λ3 0

 . (2)

But two matrices are equal if and only if their corresponding entries are equal; thus,
the equality (2) entails 1 = λ1, 4 = λ2 and −1 = λ3 (and further equalities, which
don’t add anything new to our knowledge). Hence, (1, 4,−1)T = (λ1, λ2, λ3)

T.
Thus,

Mv

 0 1 4
−1 0 −1
−4 1 0

 = (λ1, λ2, λ3)
T = (1, 4,−1)T .
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Change-of-basis matrices are a particular case of matrices representing linear
maps, only that in this case the linear map is the identity map:

Definition 0.4. Let v and w be two bases of a vector space V. Then, the change-
of-basis matrix from v to w is the matrix Mv,w,idV .

Explicitly, it can be computed as follows: Write v as v = (v1, v2, . . . , vn). Write
w as w = (w1, w2, . . . , wn). For every j ∈ {1, 2, . . . , n}, expand the vector vj with
respect to the basis w, say, as follows:

vj = α1,jw1 + α2,jw2 + · · ·+ αn,jwn.

Then, the change-of-basis matrix Mv,w,idV is the n× n-matrix whose (i, j)-th entry
is αi,j. (This method of computing Mv,w,idV is, of course, just a particular case
of the method for computing Mv,w,L shown in Definition 0.1, specialized to the
case when W = V, m = n and L = idV .)

It is called the change-of-basis matrix because left multiplication by it transforms
coordinates with respect to v into coordinates with respect to w:

Theorem 0.5. Let v and w be two bases of a vector space V. Let u ∈ V. Then,
Mw (u) = Mv,w,idV Mv (u).

Exercise 3. Consider the vector space P3 of polynomials of degree ≤ 3.
Let v be the basis

(
1, x, x2, x3) of P3. Let w be the basis

(1, x, x (x− 1) , x (x− 1) (x− 2)) of P3.
(a) Find the change-of-basis matrix Mv,w,idP3

. [5 points]
(b) Find the change-of-basis matrix Mw,v,idP3

. [5 points]

(c) Find Mw

(
(x + 1)3

)
(that is, the coordinates of (x + 1)3 ∈ P3 with respect

to the basis w). [5 points]
[Hint: The matrix Mw,v,idP3

is the inverse of Mv,w,idP3
, but you might have an

easier time computing it from scratch.]

Solution to Exercise 3. (a) Write the basis v =
(
1, x, x2, x3) as (v1, v2, v3, v4). Thus,

v1 = 1, v2 = x, v3 = x2, v4 = x3.

Write the basis w = (1, x, x (x− 1) , x (x− 1) (x− 2)) as (w1, w2, w3, w4). Thus,

w1 = 1, w2 = x, w3 = x (x− 1) , w4 = x (x− 1) (x− 2) .

We follow the method shown in Definition 0.4. Thus, for every j ∈ {1, 2, 3, 4}, we
have to expand vj with respect to the basis w. Let me just give the results of these
expansions:
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• Expanding the vector v1 with respect to w yields

v1 = 1 · 1 + 0 · x + 0 · x (x− 1) + 0 · x (x− 1) (x− 2)
= 1w1 + 0w2 + 0w3 + 0w4.

• Expanding the vector v2 with respect to w yields

v2 = 0 · 1 + 1 · x + 0 · x (x− 1) + 0 · x (x− 1) (x− 2)
= 0w1 + 1w2 + 0w3 + 0w4.

• Expanding the vector v3 with respect to w yields

v3 = 0 · 1 + 1 · x + 1 · x (x− 1) + 0 · x (x− 1) (x− 2)
= 0w1 + 1w2 + 1w3 + 0w4.

• Expanding the vector v4 with respect to w yields

v4 = 0 · 1 + 1 · x + 3 · x (x− 1) + 1 · x (x− 1) (x− 2)
= 0w1 + 1w2 + 3w3 + 1w4.

(All of these expansions can be obtained by solving systems of linear equations1.
That said, the first three of them can also be found quickly by educated guessing.)

1Here is (as an example) how to obtain the fourth expansion: We want to expand v4 with respect
to w. In other words, we want to find reals λ1, λ2, λ3, λ4 that satisfy the equation

v4 = λ1w1 + λ2w2 + λ3w3 + λ4w4.

Since v4 = x3 and

λ1w1 + λ2w2 + λ3w3 + λ4w4

= λ11 + λ2x + λ3x (x− 1) + λ4x (x− 1) (x− 2)

= λ4x3 + (λ3 − 3λ4) x2 + (λ2 − λ3 + 2λ4) x + λ1,

this equality rewrites as

x3 = λ4x3 + (λ3 − 3λ4) x2 + (λ2 − λ3 + 2λ4) x + λ1.

But this latter equality of polynomials is equivalent to the system of linear equations
1 = λ4;

0 = λ3 − 3λ4;
0 = λ2 − λ3 + 2λ4;

0 = λ1

(because two polynomials are equal if and only if their respective co-

efficients are equal). And the latter system has the unique solution (λ1, λ2, λ3, λ4)
T = (0, 1, 3, 1)T

(this can be easily found by back-substitution). Thus, we have found the four reals λ1, λ2, λ3, λ4
that we wanted. The expansion v4 = λ1w1 + λ2w2 + λ3w3 + λ4w4 thus takes the form
v4 = 0w1 + 1w2 + 3w3 + 1w4.
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To build the matrix Mv,w,idP3
out of these expansions, we proceed as in Definition

0.4:

Mv,w,idP3
=


1 0 0 0
0 1 1 1
0 0 1 3
0 0 0 1

 .

(b) Solving part (b) is completely analogous to part (a), except that the roles of v
and w are switched (and that the computations become easier because expanding a
polynomial in the basis v =

(
1, x, x2, x3) is just a matter of combining like powers).

The result is

Mw,v,idP3
=


1 0 0 0
0 1 −1 2
0 0 1 −3
0 0 0 1

 .

(c) This is just asking for the expansion of (x + 1)3 with respect to the basis w.
We have seen how to compute such an expansion already; let me again just give
the result:

(x + 1)3 = 1w0 + 7w1 + 6w2 + 1w3.

Thus,
Mw

(
(x + 1)3

)
= (1, 7, 6, 1)T .

[Remark: There are other solutions to part (c). For example, you can argue that
Mv

(
(x + 1)3

)
= (1, 3, 3, 1)T (since (x + 1)3 = 1 · 1 + 3 · x + 3 · x2 + 1 · x3 = 1v0 +

3v1 + 3v2 + 1v3), and this allows you to compute Mw

(
(x + 1)3

)
using Theorem

0.5. But I find the above easier.]

Exercise 4. A 2× 3-matrix
(

a1 b1 c1
a2 b2 c2

)
is said to be zero-sum if it satisfies the

equalities

a1 + b1 + c1 = 0, a2 + b2 + c2 = 0, (3)
a1 + a2 = 0, b1 + b2 = 0, c1 + c2 = 0 (4)

(in other words: each row sums to 0, and each column sums to 0).
The zero-sum 2× 3-matrices form a subspace Z of R2×3. Here are two bases

of Z :

• the basis v =

((
1 −1 0
−1 1 0

)
,
(

1 0 −1
−1 0 1

))
;

• the basis w =

((
1 −1 0
−1 1 0

)
,
(

0 1 −1
0 −1 1

))
.

(a) Find the change-of-basis matrix Mv,w,idZ . [5 points]
(b) Find the change-of-basis matrix Mw,v,idZ . [5 points]
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Solution to Exercise 4. (a) Write the basis v =

((
1 −1 0
−1 1 0

)
,
(

1 0 −1
−1 0 1

))
as (v1, v2). Thus,

v1 =

(
1 −1 0
−1 1 0

)
, v2 =

(
1 0 −1
−1 0 1

)
.

Write the basis w =

((
1 −1 0
−1 1 0

)
,
(

0 1 −1
0 −1 1

))
as (w1, w2). Thus,

w1 =

(
1 −1 0
−1 1 0

)
, w2 =

(
0 1 −1
0 −1 1

)
.

We follow the method shown in Definition 0.4. Thus, for every j ∈ {1, 2}, we
have to expand vj with respect to the basis w. Let me just give the results of these
expansions:

• Expanding the vector v1 with respect to w yields

v1 = 1 ·
(

1 −1 0
−1 1 0

)
+ 0 ·

(
0 1 −1
0 −1 1

)
= 1w1 + 0w2.

• Expanding the vector v2 with respect to w yields

v2 = 1 ·
(

1 −1 0
−1 1 0

)
+ 1 ·

(
0 1 −1
0 −1 1

)
= 1w1 + 1w2.

(All of these expansions can be obtained by solving systems of linear equations2.
The first one is also obvious because v1 = w1.)

2Again, let me show (as an example) how to compute the second one: We want to expand v2 with
respect to w. In other words, we want to find reals λ1, λ2 that satisfy the equation

v2 = λ1w1 + λ2w2.

Since v2 =

(
1 0 −1
−1 0 1

)
and

λ1w1 + λ2w2 = λ1

(
1 −1 0
−1 1 0

)
+ λ2

(
0 1 −1
0 −1 1

)
=

(
λ1 −λ1 + λ2 −λ2
−λ1 λ1 − λ2 λ2

)
this equality rewrites as(

1 0 −1
−1 0 1

)
=

(
λ1 −λ1 + λ2 −λ2
−λ1 λ1 − λ2 λ2

)
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To build the matrix Again, let me show (as an example) how to compute the
second one: We want to expand v2 with respect to w. In other words, we want to
find reals λ1, λ2 that satisfy the equation

v2 = λ1w1 + λ2w2.

Since v2 =

(
1 0 −1
−1 0 1

)
and

λ1w1 + λ2w2 = λ1

(
1 −1 0
−1 1 0

)
+ λ2

(
0 1 −1
0 −1 1

)
=

(
λ1 −λ1 + λ2 −λ2
−λ1 λ1 − λ2 λ2

)
this equality rewrites as(

1 0 −1
−1 0 1

)
=

(
λ1 −λ1 + λ2 −λ2
−λ1 λ1 − λ2 λ2

)
But this latter equality of matrices is equivalent to the system of linear equations

1 = λ1;
−1 = −λ1;

0 = −λ1 + λ2;
0 = λ1 − λ2;
−1 = −λ2;

1 = λ2

(because two matrices are equal if and only if their respective

entries are equal). And the latter system has the unique solution (λ1, λ2)
T = (1, 1)T

(this can be easily found by Gaussian elimination, but should also be clear by in-
spection). Thus, we have found the two reals λ1, λ2 that we wanted. The expansion
v2 = λ1w1 + λ2w2 thus takes the form v2 = 1w1 + 1w2. out of these expansions, we
proceed as in Definition 0.4:

Mv,w,idZ =

(
1 1
0 1

)
.

But this latter equality of matrices is equivalent to the system of linear equations

1 = λ1;
−1 = −λ1;

0 = −λ1 + λ2;
0 = λ1 − λ2;
−1 = −λ2;

1 = λ2

(because two matrices are equal if and only if their respective entries are

equal). And the latter system has the unique solution (λ1, λ2)
T = (1, 1)T (this can be easily

found by Gaussian elimination, but should also be clear by inspection). Thus, we have found
the two reals λ1, λ2 that we wanted. The expansion v2 = λ1w1 + λ2w2 thus takes the form
v2 = 1w1 + 1w2.
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(b) Solving part (b) is completely analogous to part (a), except that the roles of v
and w are switched. The result is

Mw,v,idZ =

(
1 −1
0 1

)
.

Exercise 5. Let A be the 2× 2-matrix
(

3 5
4 2

)
. Our goal is to find an invertible

2× 2-matrix S and a diagonal 2× 2-matrix Λ such that A = SΛS−1.
We first assume that these S and Λ exist, and try to identify them. (We can

afterwards check whether the ones we have found actually work.)
We denote the two columns of S by s1 and s2. We denote the two diagonal

entries of Λ by λ1 and λ2 (so that Λ =

(
λ1 0
0 λ2

)
). Clearly, knowing S and Λ

is tantamount to knowing s1, s2, λ1 and λ2.
Let us first try to find λ1 and λ2. We have Se1 = (the first column of S) = s1

and Λe1 = (the first column of Λ) =

(
λ1
0

)
= λ1e1.

Now, A = SΛS−1, so that AS = SΛ and thus ASe1 = S Λe1︸︷︷︸
=λ1e1

= Sλ1e1 = λ1Se1.

Since Se1 = s1, this rewrites as As1 = λ1s1. Hence, (A− λ1 I2) s1 = As1 − λ1s1 =
−→
0 (since As1 = λ1s1). In other words, s1 ∈ Ker (A− λ1 I2). But s1 is a column

of the invertible matrix S, and thus nonzero. Hence, Ker (A− λ1 I2) 6=
{−→

0
}

, so

that det (A− λ1 I2) = 0 (because a square matrix whose kernel is 6=
{−→

0
}

must
have determinant 0). Similarly, s2 ∈ Ker (A− λ2 I2) and det (A− λ2 I2) = 0.

(a) Compute det (A− xI2) as a polynomial in the variable x. It has two roots
r− and r+, with r− < r+. Find them. [5 points]

From det (A− λ1 I2) = 0, we know that λ1 must be one of these roots. Simi-
larly, λ2 also is one of these roots.

[Hint: Check your answer for (a) before going on! The roots should come out
as integers for this particular A.]

(b) Set λ1 = r− and λ2 = r−, and try to construct S (by setting s1 to be
a nonzero vector in Ker (A− λ1 I2), and setting s2 to be a nonzero vector in
Ker (A− λ2 I2)). Do you get an invertible matrix S ? [5 points]

(c) Same question if you set λ1 = r+ and λ2 = r+. [5 points]
(d) Same question if you set λ1 = r− and λ2 = r+. [5 points]
(e) Same question if you set λ1 = r+ and λ2 = r−. [5 points]
(f) Check that the answers you found actually work! (i.e., that S is invertible

and A = SΛS−1). [5 points]
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Solution to Exercise 5. (a) From A =

(
3 5
4 2

)
and I2 =

(
1 0
0 1

)
, we obtain

A− xI2 =

(
3 5
4 2

)
− x

(
1 0
0 1

)
=

(
3− x 5

4 2− x

)
and thus

det (A− xI2) = det
(

3− x 5
4 2− x

)
= (3− x) (2− x)− 5 · 4 = x2− 5x− 14 = (x + 2) (x− 7) .

Hence, the roots of the polynomial det (A− xI2) are −2 and 7 (because the roots
of the polynomial (x + 2) (x− 7) are clearly −2 and 7). The smaller of these is −2,
while the larger is 7. Thus, r− = −2 and r+ = 7.

[Remark: A good way to double-check that these roots are correct is to verify that
the matrices A− r− I2 and A− r+ I2 actually have a nonzero kernel. If they do, then
your roots are correct. Besides, finding the kernels of A − r− I2 and A − r+ I2 is
needed in the next parts of the exercises, so it is not labor lost.]

(b) Let us find the kernels of A− r− I2 and A− r+ I2; these will be used several
times in the rest of the problem.

From A =

(
3 5
4 2

)
, r− = −2 and I2 =

(
1 0
0 1

)
, we obtain

A− r− I2 = A =

(
3 5
4 2

)
− (−2)

(
1 0
0 1

)
=

(
5 5
4 4

)
.

Since we know how to compute the kernel of a matrix, we thus can find Ker (A− r− I2).
What we get is

Ker (A− r− I2) = span
((

1
−1

))
.

A similar computation (but using r+) shows that

Ker (A− r+ I2) = span
((

5
4

))
.

Now, let us do what the exercise asks us to do. We set λ1 = r− and λ2 = r+. We
are to construct a matrix S by setting s1 to be a nonzero vector in Ker (A− λ1 I2),
and setting s2 to be a nonzero vector in Ker (A− λ2 I2). What are our options here?

The column s1 has to be a nonzero vector in Ker (A− λ1 I2). Since Ker

A− λ1︸︷︷︸
=r−

I2

 =

Ker (A− r− I2) = span
((

1
−1

))
, this means that s1 has to be a nonzero vector

in span
((

1
−1

))
. In other words, s1 has to be a vector of the form α

(
1
−1

)
for

some nonzero α ∈ R. Consider this α. Thus, s1 = α

(
1
−1

)
=

(
α
−α

)
.
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Similarly, s2 has to be a nonzero vector in span
((

1
−1

))
. In other words, s2

has to be a vector of the form β

(
1
−1

)
for some nonzero β ∈ R. (We cannot

use the letter α here, since it already stands for something fixed.) Consider this β.

Thus, s2 = β

(
1
−1

)
=

(
β
−β

)
.

Now, the two columns s1 and s2 of our matrix S are s1 =

(
α
−α

)
and s2 =(

β
−β

)
. Hence, the whole matrix is S =

(
α β
−α −β

)
. This matrix S has deter-

minant det S = det
(

α β
−α −β

)
= α (−β)− β (−α) = 0, and thus is not invertible

(because a square matrix is invertible if and only if its determinant is nonzero).
This solves part (b).

[Remark: This was the straightforward argument. There is a shortcut: Once
you know that both s1 and s2 must lie in Ker (A− r− I2), you can immediately
tell that the vectors s1, s2 are linearly dependent (since they are 2 vectors in the
1-dimensional vector space Ker (A− r− I2), but any 2 vectors in a 1-dimensional
vector space are linearly dependent), and thus the matrix S has linearly dependent
columns; but this means that S is not invertible.]

(c) The solution to part (c) is analogous to the solution to part (b). (This time,

S will be
(

5α 5β
4α 4β

)
instead of

(
α β
−α −β

)
; but this new matrix S is just as

non-invertible as the old one.)
(d) This time we do get an invertible matrix S (and not just one – we get infinitely

many options). Indeed, proceed as before. Then, we find S =

(
α 5β
−α 4β

)
. This

matrix S has determinant det S = det
(

α 5β
−α 4β

)
= α (4β) − 5β (−α) = 9αβ,

which is always nonzero (since α and β are nonzero). To get a specific value of S
(as opposed to a general form), we can (for example) set α = 1 and β = 1; then we

obtain S =

(
1 5
−1 4

)
. But, of course, other choices of values for α and β work

just as well.

(e) Again, we do get an invertible matrix S. The general form is S =

(
5α β
4α −β

)
.

(f) Only the answers for parts (d) and (e) must be checked (because in parts (b)
and (c), we did not find any invertible matrices S). Let me check the answer for

(d) in its general form: We want to prove that A = SΛS−1 where S =

(
α 5β
−α 4β

)
and Λ =

(
−2 0
0 7

)
(since λ1 = r− = −2 and λ2 = r+ = 7). We can, of course,
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can check this directly by computation (it is straightforward to compute S−1). But
we can also make our life easier and check the equivalent equality AS = SΛ (since

we already know that S is invertible). In light of A =

(
3 5
4 2

)
, S =

(
α 5β
−α 4β

)
and Λ =

(
−2 0
0 7

)
, this equality rewrites as

(
3 5
4 2

)(
α 5β
−α 4β

)
=

(
α 5β
−α 4β

)(
−2 0
0 7

)
.

But this is really easy to check (both sides equal
(
−2α 35β
2α 28β

)
).

Checking the answer for (e) is analogous.
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0.1. Appendix: some lecture material

Theorem 0.6. Let V and W be two vector spaces. Let v = (v1, v2, . . . , vm) be a
basis of V. Let w = (w1, w2, . . . , wn) be a basis of W. Let F : V → W be a linear
map. Let A be the n×m-matrix Mv,w,F.

(a) The diagram

Rm LA //

Lv
��

Rn

Lw
��

V
F
//W

is commutative; in other words, we have Lw ◦ LA = F ◦ Lv.
(b) The diagram

Rm LA // Rn

V
F
//

Mv

OO

W

Mw

OO

is commutative; in other words, we have LA ◦Mv = Mw ◦ F.

In words, Theorem 0.6 says that “as a vector in V undergoes the map F, the corre-
sponding column vector in Rm gets left-multiplied by A”. The meaning of “corre-
sponding” is formalized by the inverse bijections Lv and Mv (for vectors in V) and
Lw and Mw (for vectors in W).

Proof of Theorem 0.6. We have A = Mv,w,F. Thus, for each j ∈ {1, 2, . . . , m}, the j-th
column of the matrix A consists of the coordinates of F

(
vj
)

with respect to the
basis w (since this is how the matrix Mv,w,F was defined). In other words, for each
j ∈ {1, 2, . . . , m}, we have

F
(
vj
)
= A1,jw1 + A2,jw2 + · · ·+ An,jwn. (5)

Let g ∈ Rm be a column vector. Write g in the form g = (λ1, λ2, . . . , λm)
T. Then,

LA (g) = Ag (since the map LA is just left multiplication by A)

= A (λ1, λ2, . . . , λm)
T

(
since g = (λ1, λ2, . . . , λm)

T
)

=


A1,1λ1 + A1,2λ2 + · · ·+ A1,mλm
A2,1λ1 + A2,2λ2 + · · ·+ A2,mλm

...
An,1λ1 + An,2λ2 + · · ·+ An,mλm


(by the rule for multiplying matrices) ,
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so that

Lw (LA (g)) = Lw




A1,1λ1 + A1,2λ2 + · · ·+ A1,mλm
A2,1λ1 + A2,2λ2 + · · ·+ A2,mλm

...
An,1λ1 + An,2λ2 + · · ·+ An,mλm




= (A1,1λ1 + A1,2λ2 + · · ·+ A1,mλm)w1

+ (A2,1λ1 + A2,2λ2 + · · ·+ A2,mλm)w2

+ · · ·+ (An,1λ1 + An,2λ2 + · · ·+ An,mλm)wn

= A1,1λ1w1 + A1,2λ2w1 + · · ·+ A1,mλmw1

+ A2,1λ1w2 + A2,2λ2w2 + · · ·+ A2,mλmw2

+ · · ·+ An,1λ1wn + An,2λ2wn + · · ·+ An,mλmwn. (6)

On the other hand, from g = (λ1, λ2, . . . , λm)
T, we obtain

Lv (g) = Lv

(
(λ1, λ2, . . . , λm)

T
)
= λ1v1 + λ2v2 + · · ·+ λmvm

(by the definition of Lv) ,

and thus

F (Lv (g)) = F (λ1v1 + λ2v2 + · · ·+ λmvm)

= λ1 F (v1)︸ ︷︷ ︸
=A1,1w1+A2,1w2+···+An,1wn

(by (5))

+λ2 F (v2)︸ ︷︷ ︸
=A1,2w1+A2,2w2+···+An,2wn

(by (5))

+ · · ·+ λm F (vm)︸ ︷︷ ︸
=A1,mw1+A2,mw2+···+An,mwn

(by (5))

= λ1 (A1,1w1 + A2,1w2 + · · ·+ An,1wn)

+ λ2 (A1,2w1 + A2,2w2 + · · ·+ An,2wn)

+ · · ·+ λm (A1,mw1 + A2,mw2 + · · ·+ An,mwn)

= A1,1λ1w1 + A2,1λ1w2 + · · ·+ An,1λ1wn

+ A1,2λ2w1 + A2,2λ2w2 + · · ·+ An,2λ2wn

+ · · ·+ A1,mλmw1 + A2,mλmw2 + · · ·+ An,mλmwn. (7)

Now, the sum on the right hand side of (6) and the sum on the right hand side of
(7) consist of the same addends, just in a different order. Hence, these two sums are
equal. In other words, the right hand sides of (6) and (7) are equal. Thus, the left
hand sides of (6) and (7) are equal as well. In other words, Lw (LA (g)) = F (Lv (g)).
In other words, (Lw ◦ LA) (g) = (F ◦ Lv) (g).

So we have proven that (Lw ◦ LA) (g) = (F ◦ Lv) (g) for every g ∈ Rm. In other
words, Lw ◦ LA = F ◦ Lv. This proves Theorem 0.6 (a).
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(b) We have

Lw ◦ LA︸ ︷︷ ︸
=F◦Lv

◦Mv = F ◦ Lv ◦Mv︸ ︷︷ ︸
=idV

(since Mv=(Lv)
−1)

= F ◦ idV = F,

so that

Mw ◦ F︸︷︷︸
=Lw◦LA◦Mv

= Mw ◦ Lw︸ ︷︷ ︸
=idRn

(since Mw=(Lw)−1)

◦LA ◦Mv = idRn ◦LA ◦Mv = LA ◦Mv.

This proves Theorem 0.6 (b).

Another fact, whose proof I won’t show (see, e.g., Proposition 6.6.5 in
Lankham/Nachtergaele/Schilling, but keep in mind that their notation for Mv,w,F
is M (F), with the bases v and w being hidden), shows what happens to the matri-
ces representing two linear maps when said maps are composed:

Theorem 0.7. Let U, V and W be three vector spaces with bases u, v and w,
respectively. Let F : U → V and G : V → W be two linear maps. Then, their
composition G ◦ F : U →W is again a linear map, and we have

Mu,w,G◦F = Mv,w,G Mu,v,F. (8)

In other words, the matrix representing the composition G ◦ F is the product of
the matrix representing G with the matrix representing F. (Fine print: the bases
have to “match”, i.e., the basis for the domain for G ◦ F has to be the basis for the
domain for F, and so on. In case of doubt, look at (8).)

https://www.math.ucdavis.edu/~anne/linear_algebra/
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