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Math 4242 Fall 2016 (Darij Grinberg): homework set 7
due: Wed, 7 Dec 2016, in class

(or earlier by moodle)

Let me repeat some definitions I gave in class:

Definition 0.1. Let V and W be two vector spaces. Let v = (v1, v2, . . . , vm) be a
basis of V. Let w = (w1, w2, . . . , wn) be a basis of W. Let L : V → W be a linear
map.

The matrix representing L with respect to v and w is the n× m-matrix Mv,w,L
defined as follows: For every j ∈ {1, 2, . . . , m}, expand the vector L

(
vj
)

with
respect to the basis w, say, as follows:

L
(
vj
)
= α1,jw1 + α2,jw2 + · · ·+ αn,jwn. (1)

Then, Mv,w,L is the n×m-matrix whose (i, j)-th entry is αi,j.
(I gave some examples for this on homework set 6.)

Definition 0.2. Let V be a vector space. Let v = (v1, v2, . . . , vn) be a list of n
vectors in V. Then, Lv is defined to be the map

Rn → V,


λ1
λ2
...

λn

 7→ λ1v1 + λ2v2 + · · ·+ λnvn.

This map Lv is linear. Moreover, recall that:
(a) The list v is linearly independent if and only if Lv is injective.
(b) The list v spans V if and only if Lv is surjective.
(c) The list v is a basis of V if and only if Lv is bijective.
Let us take a closer look at the case when v is a basis of V. In this case, the

map Lv is bijective, and thus an isomorphism. Hence, in this case, its inverse
map (Lv)

−1 is well-defined. This map is called Mv. Thus, explicitly, Mv sends a

vector u ∈ V to the unique column vector


λ1
λ2
...

λn

 ∈ Rn that satisfies u = λ1v1 +

λ2v2 + · · ·+ λnvn. In other words, Mv sends a vector u ∈ V to the coordinates
of u with respect to the basis v (written as a column vector).

Example 0.3. Recall that P2 is the vector space of all polynomials of degree ≤ 2.
Let a be the list

(
1, x, x + 1, x2 + x + 1

)
. Then,

La




1
0
−2
3


 = 1 · 1 + 0 · x + (−2) · (x + 1) + 3 ·

(
x2 + x + 1

)
= 3x2 + x + 2.

https://ay16.moodle.umn.edu/course/view.php?id=7714
http://www.cip.ifi.lmu.de/~grinberg/t/16f/hw6s.pdf
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The reader can easily check that La



−1
−2
0
3


 = 3x2 + x + 2 as well. Thus,

La sends two distinct column vectors to one and the same polynomial in P2.
Thus, La is not injective. This should not be surprising: after all, a is not linearly
independent.

Conversely, let us compute a vector u ∈ R4 satisfying La (u) = x2 − 2x + 5.
Such a vector should exist, because a spans P2 and therefore the map La is sur-
jective. How do we find it? Well, we are looking for a vector u = (λ1, λ2, λ3, λ4)

T

satisfying La (u) = x2 − 2x + 5. The definition of La shows that

La (u) = λ11 + λ2x + λ3 (x + 1) + λ4

(
x2 + x + 1

)
= λ4x2 + (λ2 + λ3 + λ4) x + (λ1 + λ3 + λ4) 1.

Hence, we want to find λ1, λ2, λ3, λ4 satisfying the polynomial equation

λ4x2 + (λ2 + λ3 + λ4) x + (λ1 + λ3 + λ4) 1 = x2 − 2x + 5 (for all x) .

Comparing coefficients, we translate this polynomial equation into the system
λ4 = 1;

λ2 + λ3 + λ4 = −2;
λ1 + λ3 + λ4 = 5

.

This system can be solved by Gaussian elimination; the solutions are
(λ1, λ2, λ3, λ4)

T = (4− r,−3− r, r, 1)T for r ∈ R. Thus, these are the vectors
u ∈ R4 satisfying La (u) = x2 − 2x + 5. There are infinitely many of them.

Exercise 1. Consider the vector space P2 of polynomials of degree ≤ 2.
Let v be the basis

(
1, x + 1, x2 + 2x

)
of P2.

(a) Simplify Lv

 2
3
−1

. [5 points]

(b) Find Mv
(
x2 − 3x− 7

)
. (In other words, find the u ∈ R3 satisfying Lv (u) =

x2 − 3x− 7.) [5 points]

Exercise 2. Let A3 be the vector space of all skew-symmetric 3 × 3-
matrices. Recall (from Exercise 1 (b) on homework set 4) that v =
(E1,2 − E2,1, E1,3 − E3,1, E2,3 − E3,2) is a basis of A3.

(a) Find Lv

 2
1
3

. [5 points]
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(b) Find Mv

 0 1 4
−1 0 −1
−4 1 0

. [5 points]

Change-of-basis matrices are a particular case of matrices representing linear
maps, only that in this case the linear map is the identity map:

Definition 0.4. Let v and w be two bases of a vector space V. Then, the change-
of-basis matrix from v to w is the matrix Mv,w,idV .

Explicitly, it can be computed as follows: Write v as v = (v1, v2, . . . , vn). Write
w as w = (w1, w2, . . . , wn). For every j ∈ {1, 2, . . . , n}, expand the vector vj with
respect to the basis w, say, as follows:

vj = α1,jw1 + α2,jw2 + · · ·+ αn,jwn.

Then, the change-of-basis matrix Mv,w,idV is the n× n-matrix whose (i, j)-th entry
is αi,j.

It is called the change-of-basis matrix because left multiplication by it transforms
coordinates with respect to v into coordinates with respect to w:

Theorem 0.5. Let v and w be two bases of a vector space V. Let u ∈ V. Then,
Mw (u) = Mv,w,idV Mv (u).

Exercise 3. Consider the vector space P3 of polynomials of degree ≤ 3.
Let v be the basis

(
1, x, x2, x3) of P3. Let w be the basis

(1, x, x (x− 1) , x (x− 1) (x− 2)) of P3.
(a) Find the change-of-basis matrix Mv,w,idP3

. [5 points]
(b) Find the change-of-basis matrix Mw,v,idP3

. [5 points]

(c) Find Mw

(
(x + 1)3

)
(that is, the coordinates of (x + 1)3 ∈ P3 with respect

to the basis w). [5 points]
[Hint: The matrix Mw,v,idP3

is the inverse of Mv,w,idP3
, but you might have an

easier time computing it from scratch.]

Exercise 4. A 2× 3-matrix
(

a1 b1 c1
a2 b2 c2

)
is said to be zero-sum if it satisfies the

equalities

a1 + b1 + c1 = 0, a2 + b2 + c2 = 0, (2)
a1 + a2 = 0, b1 + b2 = 0, c1 + c2 = 0 (3)

(in other words: each row sums to 0, and each column sums to 0).
The zero-sum 2× 3-matrices form a subspace Z of R2×3. Here are two bases

of Z :
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• the basis v =

((
1 −1 0
−1 1 0

)
,
(

1 0 −1
−1 0 1

))
;

• the basis w =

((
1 −1 0
−1 1 0

)
,
(

0 1 −1
0 −1 1

))
.

(a) Find the change-of-basis matrix Mv,w,idZ . [5 points]
(b) Find the change-of-basis matrix Mw,v,idZ . [5 points]

Exercise 5. Let A be the 2× 2-matrix
(

3 5
4 2

)
. Our goal is to find an invertible

2× 2-matrix S and a diagonal 2× 2-matrix Λ such that A = SΛS−1.
We first assume that these S and Λ exist, and try to identify them. (We can

afterwards check whether the ones we have found actually work.)
We denote the two columns of S by s1 and s2. We denote the two diagonal

entries of Λ by λ1 and λ2 (so that Λ =

(
λ1 0
0 λ2

)
). Clearly, knowing S and Λ

is tantamount to knowing s1, s2, λ1 and λ2.
Let us first try to find λ1 and λ2. We have Se1 = (the first column of S) = s1

and Λe1 = (the first column of Λ) =

(
λ1
0

)
= λ1e1.

Now, A = SΛS−1, so that AS = SΛ and thus ASe1 = S Λe1︸︷︷︸
=λ1e1

= Sλ1e1 = λ1Se1.

Since Se1 = s1, this rewrites as As1 = λ1s1. Hence, (A− λ1 I2) s1 = As1 − λ1s1 =
−→
0 (since As1 = λ1s1). In other words, s1 ∈ Ker (A− λ1 I2). But s1 is a column

of the invertible matrix S, and thus nonzero. Hence, Ker (A− λ1 I2) 6=
{−→

0
}

, so

that det (A− λ1 I2) = 0 (because a square matrix whose kernel is 6=
{−→

0
}

must
have determinant 0). Similarly, s2 ∈ Ker (A− λ2 I2) and det (A− λ2 I2) = 0.

(a) Compute det (A− xI2) as a polynomial in the variable x. It has two roots
r− and r+, with r− < r+. Find them. [5 points]

From det (A− λ1 I2) = 0, we know that λ1 must be one of these roots. Simi-
larly, λ2 also is one of these roots.

[Hint: Check your answer for (a) before going on! The roots should come out
as integers for this particular A.]

(b) Set λ1 = r− and λ2 = r−, and try to construct S (by setting s1 to be
a nonzero vector in Ker (A− λ1 I2), and setting s2 to be a nonzero vector in
Ker (A− λ2 I2)). Do you get an invertible matrix S ? [5 points]

(c) Same question if you set λ1 = r+ and λ2 = r+. [5 points]
(d) Same question if you set λ1 = r− and λ2 = r+. [5 points]
(e) Same question if you set λ1 = r+ and λ2 = r−. [5 points]
(f) Check that the answers you found actually work! (i.e., that S is invertible

and A = SΛS−1). [5 points]
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0.1. Appendix: some lecture material

Theorem 0.6. Let V and W be two vector spaces. Let v = (v1, v2, . . . , vm) be a
basis of V. Let w = (w1, w2, . . . , wn) be a basis of W. Let F : V → W be a linear
map. Let A be the n×m-matrix Mv,w,F.

(a) The diagram

Rm LA //

Lv
��

Rn

Lw
��

V
F
//W

is commutative; in other words, we have Lw ◦ LA = F ◦ Lv.
(b) The diagram

Rm LA // Rn

V
F
//

Mv

OO

W

Mw

OO

is commutative; in other words, we have LA ◦Mv = Mw ◦ F.

In words, Theorem 0.6 says that “as a vector in V undergoes the map F, the corre-
sponding column vector in Rm gets left-multiplied by A”. The meaning of “corre-
sponding” is formalized by the inverse bijections Lv and Mv (for vectors in V) and
Lw and Mw (for vectors in W).

Proof of Theorem 0.6. We have A = Mv,w,F. Thus, for each j ∈ {1, 2, . . . , m}, the j-th
column of the matrix A consists of the coordinates of F

(
vj
)

with respect to the
basis w (since this is how the matrix Mv,w,F was defined). In other words, for each
j ∈ {1, 2, . . . , m}, we have

F
(
vj
)
= A1,jw1 + A2,jw2 + · · ·+ An,jwn. (4)

Let g ∈ Rm be a column vector. Write g in the form g = (λ1, λ2, . . . , λm)
T. Then,

LA (g) = Ag (since the map LA is just left multiplication by A)

= A (λ1, λ2, . . . , λm)
T

(
since g = (λ1, λ2, . . . , λm)

T
)

=


A1,1λ1 + A1,2λ2 + · · ·+ A1,mλm
A2,1λ1 + A2,2λ2 + · · ·+ A2,mλm

...
An,1λ1 + An,2λ2 + · · ·+ An,mλm


(by the rule for multiplying matrices) ,
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so that

Lw (LA (g)) = Lw




A1,1λ1 + A1,2λ2 + · · ·+ A1,mλm
A2,1λ1 + A2,2λ2 + · · ·+ A2,mλm

...
An,1λ1 + An,2λ2 + · · ·+ An,mλm




= (A1,1λ1 + A1,2λ2 + · · ·+ A1,mλm)w1

+ (A2,1λ1 + A2,2λ2 + · · ·+ A2,mλm)w2

+ · · ·+ (An,1λ1 + An,2λ2 + · · ·+ An,mλm)wn

= A1,1λ1w1 + A1,2λ2w1 + · · ·+ A1,mλmw1

+ A2,1λ1w2 + A2,2λ2w2 + · · ·+ A2,mλmw2

+ · · ·+ An,1λ1wn + An,2λ2wn + · · ·+ An,mλmwn. (5)

On the other hand, from g = (λ1, λ2, . . . , λm)
T, we obtain

Lv (g) = Lv

(
(λ1, λ2, . . . , λm)

T
)
= λ1v1 + λ2v2 + · · ·+ λmvm

(by the definition of Lv) ,

and thus

F (Lv (g)) = F (λ1v1 + λ2v2 + · · ·+ λmvm)

= λ1 F (v1)︸ ︷︷ ︸
=A1,1w1+A2,1w2+···+An,1wn

(by (4))

+λ2 F (v2)︸ ︷︷ ︸
=A1,2w1+A2,2w2+···+An,2wn

(by (4))

+ · · ·+ λm F (vm)︸ ︷︷ ︸
=A1,mw1+A2,mw2+···+An,mwn

(by (4))

= λ1 (A1,1w1 + A2,1w2 + · · ·+ An,1wn)

+ λ2 (A1,2w1 + A2,2w2 + · · ·+ An,2wn)

+ · · ·+ λm (A1,mw1 + A2,mw2 + · · ·+ An,mwn)

= A1,1λ1w1 + A2,1λ1w2 + · · ·+ An,1λ1wn

+ A1,2λ2w1 + A2,2λ2w2 + · · ·+ An,2λ2wn

+ · · ·+ A1,mλmw1 + A2,mλmw2 + · · ·+ An,mλmwn. (6)

Now, the sum on the right hand side of (5) and the sum on the right hand side of
(6) consist of the same addends, just in a different order. Hence, these two sums are
equal. In other words, the right hand sides of (5) and (6) are equal. Thus, the left
hand sides of (5) and (6) are equal as well. In other words, Lw (LA (g)) = F (Lv (g)).
In other words, (Lw ◦ LA) (g) = (F ◦ Lv) (g).

So we have proven that (Lw ◦ LA) (g) = (F ◦ Lv) (g) for every g ∈ Rm. In other
words, Lw ◦ LA = F ◦ Lv. This proves Theorem 0.6 (a).
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(b) We have

Lw ◦ LA︸ ︷︷ ︸
=F◦Lv

◦Mv = F ◦ Lv ◦Mv︸ ︷︷ ︸
=idV

(since Mv=(Lv)
−1)

= F ◦ idV = F,

so that

Mw ◦ F︸︷︷︸
=Lw◦LA◦Mv

= Mw ◦ Lw︸ ︷︷ ︸
=idRn

(since Mw=(Lw)−1)

◦LA ◦Mv = idRn ◦LA ◦Mv = LA ◦Mv.

This proves Theorem 0.6 (b).

Another fact, whose proof I won’t show (see, e.g., Proposition 6.6.5 in
Lankham/Nachtergaele/Schilling, but keep in mind that their notation for Mv,w,F
is M (F), with the bases v and w being hidden), shows what happens to the matri-
ces representing two linear maps when said maps are composed:

Theorem 0.7. Let U, V and W be three vector spaces with bases u, v and w,
respectively. Let F : U → V and G : V → W be two linear maps. Then, their
composition G ◦ F : U →W is again a linear map, and we have

Mu,w,G◦F = Mv,w,G Mu,v,F. (7)

In other words, the matrix representing the composition G ◦ F is the product of
the matrix representing G with the matrix representing F. (Fine print: the bases
have to “match”, i.e., the basis for the domain for G ◦ F has to be the basis for the
domain for F, and so on. In case of doubt, look at (7).)

https://www.math.ucdavis.edu/~anne/linear_algebra/
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