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Math 4242 Fall 2016 (Darij Grinberg): homework set 6

Let me first recall a definition.

Definition 0.1. Let V and W be two vector spaces. Let v = (v1, v2, . . . , vm) be a
basis of V. Let w = (w1, w2, . . . , wn) be a basis of W. Let L : V → W be a linear
map.

The matrix representing L with respect to v and w is the n× m-matrix Mv,w,L
defined as follows: For every j ∈ {1, 2, . . . , m}, expand the vector L

(
vj
)

with
respect to the basis w, say, as follows:

L
(
vj
)
= α1,jw1 + α2,jw2 + · · ·+ αn,jwn. (1)

Then, Mv,w,L is the n×m-matrix whose (i, j)-th entry is αi,j.
For example, if n = 3 and m = 2, then

Mv,w,L =

 α1,1 α1,2
α2,1 α2,2
α3,1 α3,2

 ,

where

L (v1) = α1,1w1 + α2,1w2 + α3,1w3;
L (v2) = α1,2w1 + α2,2w2 + α3,2w3.

The purpose of this matrix Mv,w,L is to allow easily expanding L (v) in the
basis (w1, w2, . . . , wn) of W if v is a vector in V whose expansion in the basis
(v1, v2, . . . , vm) of V is known. For instance, if v is one of the basis vectors vj,
then the expansion of L

(
vj
)

can be simply read off from the j-th column of Mv,w,L;
otherwise, it is an appropriate linear combination:

L (λ1v1 + λ2v2 + · · ·+ λmvm) = λ1L (v1) + λ2L (v2) + · · ·+ λmL (vm)

(where the L
(
vj
)

can be computed by (1)).
You can abbreviate Mv,w,L as ML, but it’s your job to ensure that you know what

v and w are (and they aren’t changing midway through your work).

Example 0.2. Let A be the 2× 2-matrix
(

5 7
−2 9

)
. Let L : R2 → R2 be the

linear map LA. (Recall that this is the map R2 → R2 that sends every vector
v ∈ R2 to Av.)

Consider the following basis v = (v1, v2) of the vector space R2:

v1 =

(
1
−1

)
, v2 =

(
2
3

)
.



Math 4242 Fall 2016 homework set #6 with solutions page 2

Consider the following basis w = (w1, w2) of the vector space R2:

w1 =

(
2
1

)
, w2 =

(
1
2

)
.

What is the matrix Mv,w,L representing L with respect to these two bases v and
w ?

First, let me notice that it is not A (or at least it doesn’t have to be A a priori),
because our two bases v and w are not the standard basis of R2. Only if we pick
both v and w to be the standard bases of the respective spaces we can guarantee
that Mv,w,L will be A.

Without having this shortcut, we must resort to the definition of Mv,w,L. It tells
us to expand L (v1) and L (v2) in the basis w of R2, and to place the resulting
coefficients in a 2× 2-matrix. Let’s do this. We begin with L (v1):

L (v1) = LA (v1) = Av1 =

(
5 7
−2 9

)(
1
−1

)
=

(
−2
−11

)
.

How do we expand this in the basis w ? This is a typical exercise in Gaussian
elimination (we just need to solve the equation L (v1) = λ1w1 + λ2w2 in the two
unknowns λ1 and λ2), and the result is

L (v1) =
7
3

w1 +
−20

3
w2.

Similarly, we take care of L (v2), obtaining

L (v2) = 13w1 + 5w2.

Thus, the required matrix is

Mv,w,L =


7
3

13

−20
3

5

 .

Exercise 1. Let A be the 3× 2-matrix
(

1 3 5
2 4 6

)
. Let L : R3 → R2 be the linear

map LA. (Recall that this is the map R3 → R2 that sends every vector v ∈ R3 to
Av.)

Consider the following basis v = (v1, v2, v3) of the vector space R3:

v1 =

 1
1
1

 , v2 =

 0
1
1

 , v3 =

 0
0
1

 .
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Consider the following basis w = (w1, w2) of the vector space R2:

w1 =

(
1
1

)
, w2 =

(
1
0

)
.

(a) Find the matrix Mv,w,L representing L with respect to these two bases v
and w. [15 points]

(b) Let v′ be the basis (v3, v2, v1) of R3. Let w′ be the basis (w2, w1) of R2. Find
the matrix Mv′,w′,L. [5 points]

Solution. (a) We follow Definition 0.1. Thus, we compute the three vectors L (v1) , L (v2) , L (v3),
and expand them in the basis w:

We have

L︸︷︷︸
=LA

(v1) = LA (v1) = Av1 (by the definition of LA)

=

(
1 3 5
2 4 6

) 1
1
1

 =

(
9
12

)
= 12w1 + (−3)w2. (2)

(We found the coefficients 12 and −3 by solving the equation
(

9
12

)
= λ1w1 +

λ2w2 in the unknowns λ1 and λ2. This is a straightforward exercise in Gaussian
elimination.) Thus, we have expanded L (v1) in the basis w. Similarly, we can
expand L (v2) and L (v3) in w; the results are

L (v2) = 10w1 + (−2)w2; (3)
L (v3) = 6w1 + (−1)w2. (4)

The matrix Mv,w,L now can be built from the coefficients of the right hand sides
of (2), (3) and (4): Namely, we get

Mv,w,L =

(
12 10 6
−3 −2 −1

)
. (5)

(b) Let us introduce new names for the vectors v3, v2, v1 and w2, w1. Namely:

• Denote the list (v3, v2, v1) by (v′1, v′2, v′3); thus, v′1 = v3, v′2 = v2 and v′3 = v1.
Thus, v′ = (v3, v2, v1) = (v′1, v′2, v′3).

• Denote the list (w2, w1) by (w′1, w′2); thus, w′1 = w2 and w′2 = w1. Thus,
w′ = (w2, w1) = (w′1, w′2).
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(You do not have to do this; but I am doing this in order not to get confused with
subscripts playing unusual roles. The advantage of writing v′ as (v′1, v′2, v′3) instead
of (v3, v2, v1) is that the 1-st entry has a subscript “1”, etc.)

Now, we have a basis v′ = (v′1, v′2, v′3) of V and a basis w′ = (w′1, w′2) of W (and

we know the entries of these bases explicitly: for example, v′1 = v3 =

 0
0
1

), and

we want to find the matrix Mv′,w′,L. We can do this using the same method as in
part (a) of this exercise; the final result is

Mv′,w′,L =

(
−1 −2 −3
6 10 12

)
.

(Notice that this matrix can be obtained from the matrix Mv,w,L shown in (5) by
reversing the order of the rows and reversing the order of columns. This should
not be a surprise, since the bases v′ and w′ are obtained from the bases v and w
by reversing the order of the vectors. If you make this observation, you can of
course find the matrix Mv′,w′,L right away without computing anything, provided
you have solved part (a).)

For every n ∈ N, we let Pn denote the vector space of all polynomial functions
(with real coefficients) of degree ≤ n in one variable x. This vector space has
dimension n + 1, and its simplest basis is

(
1, x, x2, . . . , xn). We call this basis the

monomial basis of Pn.
If f is a polynomial in one variable x, then I shall use the notation f [y] for

“substitute y for x into f ”. (For example, if f = x3 + 7x + 2, then f [5] = 53 +
7 · 5 + 2 = 162.) This would normally be denoted by f (y), but this is somewhat
ambiguous, since the notation x (x + 1) could then stand for two different things
(namely, “substitute x+ 1 into the polynomial function x” or “multiply x by x+ 1”),
whereas the notation f [y] removes this ambiguity.

Example 0.3. (a) Define a map Sa : P2 → R by Sa ( f ) = f [2] + f [3]. Then, Sa is
linear, because:

1. If f and g are two elements of P2, then

Sa ( f + g) = ( f + g) [2]︸ ︷︷ ︸
= f [2]+g[2]

+ ( f + g) [3]︸ ︷︷ ︸
= f [3]+g[3]

= ( f [2] + g [2]) + ( f [3] + g [3])

= ( f [2] + f [3])︸ ︷︷ ︸
=Sa( f )

+ (g [2] + g [3])︸ ︷︷ ︸
=Sa(g)

= Sa ( f ) + Sa (g) .

2. If f ∈ P2 and λ ∈ R, then

Sa (λ f ) = (λ f ) [2] + (λ f ) [3] = λ f [2] + λ f [3] = λ ( f [2] + f [3])︸ ︷︷ ︸
=Sa( f )

= λSa ( f ) .



Math 4242 Fall 2016 homework set #6 with solutions page 5

Let v be the monomial basis
(
1, x, x2) of P2, and let w be the one-element basis

(1) of R. What is the matrix Mv,w,Sa ?
Again, follow the definition of Mv,w,Sa . It tells us to expand Sa (1), Sa (x) and

Sa
(
x2) in the basis w of R, and to place the resulting coefficients in a 1 × 3-

matrix. Expanding things in the basis w is particularly simple, since w is a
one-element list; specifically, we obtain the expansions

Sa (1) = 1 [2]︸︷︷︸
=1

+ 1 [3]︸︷︷︸
=1

= 1 + 1 = 2 = 2 · 1;

Sa (x) = x [2]︸︷︷︸
=2

+ x [3]︸︷︷︸
=3

= 2 + 3 = 5 = 5 · 1;

Sa

(
x2
)
= x2 [2]︸ ︷︷ ︸

=22

+ x2 [3]︸ ︷︷ ︸
=32

= 22 + 32 = 13 = 13 · 1.

Thus, the required matrix is

Mv,w,Sa =
(

2 5 13
)

.

(b) Define a map Sb : P2 → P4 by Sb ( f ) = f
[
x2]. (Notice that we chose P4

as the target space, because substituting x2 for x will double the degree of a
polynomial.) The map Sb is linear (for reasons that are similar to the ones that
convinced us that Sa is linear).

Let v be the monomial basis
(
1, x, x2) of P2, and let w be the monomial basis(

1, x, x2, x3, x4) of P4. What is the matrix Mv,w,Sb ?
Again, follow the definition of Mv,w,Sb . It tells us to expand Sb (1), Sb (x) and

Sb
(
x2) in the basis w of P4, and to place the resulting coefficients in a 5× 3-

matrix. The expansions are as follows:

Sb (1) = 1
[

x2
]
= 1 = 1 · 1 + 0 · x + 0 · x2 + 0 · x3 + 0 · x4;

Sb (x) = x
[

x2
]
= x2 = 0 · 1 + 0 · x + 1 · x2 + 0 · x3 + 0 · x4;

Sb

(
x2
)
= x2

[
x2
]
=
(

x2
)2

= x4 = 0 · 1 + 0 · x + 0 · x2 + 0 · x3 + 1 · x4.

Thus, the required matrix is

Mv,w,Sb =


1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

 .
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Exercise 2. Which of the following maps are linear? For every one that is, rep-
resent it as a matrix with respect to the monomial bases of its domain and its
target. [6 points for each part, split into 2+4 if the map is linear]

(a) The map Ta : P2 → P2 given by Ta ( f ) = f [x + 1]. (Thus, Ta is the map that
substitutes x + 1 for x into f . Thus, Ta (xn) = (x + 1)n for every n ∈ {0, 1, 2}.)

(b) The map Tb : P2 → P3 given by Tb ( f ) = x f [x]. (Notice that f [x] is the
same as f , because substituting x for x changes nothing. I am just writing f [x]
to stress that f is a function of x.)

(c) The map Tc : P2 → P4 given by Tc ( f ) = f [1] f [x].
(d) The map Td : P2 → P4 given by Td ( f ) = f

[
x2 + 1

]
.

(e) The map Te : P2 → P2 given by Te ( f ) = x2 f
[

1
x

]
.

(g) The map Tg : P3 → P3 given by Tg ( f ) = x f ′ [x].
[There is no part (f) because I want to avoid calling a map “Tf ” while the letter

f stands for a polynomial.]
[Note: Proofs are not required.]

Solution. (a) The map Ta is linear, because:

1. If f and g are two elements of P2, then

Ta ( f + g) = ( f + g) [x + 1] = f [x + 1]︸ ︷︷ ︸
=Ta( f )

+ g [x + 1]︸ ︷︷ ︸
=Ta(g)

= Ta ( f ) + Ta (g) .

2. If f ∈ P2 and λ ∈ R, then

Ta (λ f ) = (λ f ) [x + 1] = λ f [x + 1]︸ ︷︷ ︸
=Ta( f )

= λTa ( f ) .

Let v be the monomial basis
(
1, x, x2) of P2. Let w be the monomial basis

(
1, x, x2)

of P2.
To find the matrix Mv,w,Ta that represents Ta with respect to the bases v and

w, we proceed as in Example 0.3. Thus, we expand Ta (1), Ta (x) and Ta
(
x2) in

the basis w of P2, and we place the resulting coefficients in a 3× 3-matrix. The
expansions are as follows:

Ta (1) = 1 [x + 1] = 1 = 1 · 1 + 0 · x + 0 · x2;

Ta (x) = x [x + 1] = x + 1 = 1 · 1 + 1 · x + 0 · x2;

Ta

(
x2
)
= x2 [x + 1] = (x + 1)2 = x2 + 2x + 1 = 1 · 1 + 2 · x + 1 · x2.

Thus, the required matrix is

Mv,w,Ta =

 1 1 1
0 1 2
0 0 1

 .

(b) The map Tb is linear, because:
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1. If f and g are two elements of P2, then

Tb ( f + g) = x ( f + g) [x]︸ ︷︷ ︸
= f [x]+g[x]

= x ( f [x] + g [x])

= x f [x]︸ ︷︷ ︸
=Tb( f )

+ xg [x]︸ ︷︷ ︸
=Tb(g)

= Tb ( f ) + Tb (g) .

2. If f ∈ P2 and λ ∈ R, then

Tb (λ f ) = x (λ f ) [x]︸ ︷︷ ︸
=λ f [x]

= λ x f [x]︸ ︷︷ ︸
=Tb( f )

= λTb ( f ) .

Let v be the monomial basis
(
1, x, x2) of P2. Let w be the monomial basis(

1, x, x2, x3) of P3.
To find the matrix Mv,w,Tb that represents Tb with respect to the bases v and

w, we proceed as in Example 0.3. Thus, we expand Tb (1), Tb (x) and Tb
(
x2) in

the basis w of P3, and we place the resulting coefficients in a 4× 3-matrix. The
expansions are as follows:

Tb (1) = x 1 [x]︸︷︷︸
=1

= x = 0 · 1 + 1 · x + 0 · x2 + 0 · x3;

Tb (x) = x x [x]︸︷︷︸
=x

= xx = x2 = 0 · 1 + 0 · x + 1 · x2 + 0 · x3;

Tb

(
x2
)
= x x2 [x]︸ ︷︷ ︸

=x2

= xx2 = x3 = 0 · 1 + 0 · x + 0 · x2 + 1 · x3.

Thus, the required matrix is

Mv,w,Tb =


0 0 0
1 0 0
0 1 0
0 0 1

 .

(c) The map Tc is not linear.1

(d) The map Td is linear, because:

1. If f and g are two elements of P2, then

Td ( f + g) = ( f + g)
[

x2 + 1
]
= f

[
x2 + 1

]
︸ ︷︷ ︸

=Td( f )

+ g
[

x2 + 1
]

︸ ︷︷ ︸
=Td(g)

= Td ( f ) + Td (g) .

1For example, it fails to satisfy the “if f ∈ P2 and λ ∈ R, then Tc (λ f ) = λTc ( f )” condition if we
pick f = 1 and λ = 2, because in this case we have Tc (λ f ) = (λ f )︸︷︷︸

=2

[1] · (λ f )︸︷︷︸
=2

[x] = 2 [1]︸︷︷︸
=2

· 2 [x]︸︷︷︸
=2

=

2 · 2 = 4 and λ︸︷︷︸
=2

Tc ( f )︸ ︷︷ ︸
= f [1] f [x]

= 2 f︸︷︷︸
=1

[1] f︸︷︷︸
=1

[x] = 2 · 1 [1]︸︷︷︸
=1

· 1 [x]︸︷︷︸
=1

= 2.
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2. If f ∈ P2 and λ ∈ R, then

Td (λ f ) = (λ f )
[

x2 + 1
]
= λ f

[
x2 + 1

]
︸ ︷︷ ︸

=Td( f )

= λTd ( f ) .

Let v be the monomial basis
(
1, x, x2) of P2. Let w be the monomial basis(

1, x, x2, x3, x4) of P4.
To find the matrix Mv,w,Td that represents Td with respect to the bases v and

w, we proceed as in Example 0.3. Thus, we expand Td (1), Td (x) and Td
(
x2) in

the basis w of P4, and we place the resulting coefficients in a 5× 3-matrix. The
expansions are as follows:

Td (1) = 1
[

x2 + 1
]
= 1 = 1 · 1 + 0 · x + 0 · x2 + 0 · x3 + 0 · x4;

Td (x) = x
[

x2 + 1
]
= x2 + 1 = 1 · 1 + 0 · x + 1 · x2 + 0 · x3 + 0 · x4;

Td

(
x2
)
= x2

[
x2 + 1

]
=
(

x2 + 1
)2

= x4 + 2x2 + 1 = 1 · 1 + 0 · x + 2 · x2 + 0 · x3 + 1 · x4.

Thus, the required matrix is

Mv,w,Td =


1 1 1
0 0 0
0 1 2
0 0 0
0 0 1

 .

(e) The map Te is linear, because:

1. If f and g are two elements of P2, then

Te ( f + g) = x2 ( f + g)
[

1
x

]
︸ ︷︷ ︸
= f

[1
x

]
+g

[1
x

]
= x2

(
f
[

1
x

]
+ g

[
1
x

])

= x2 f
[

1
x

]
︸ ︷︷ ︸
=Te( f )

+ x2g
[

1
x

]
︸ ︷︷ ︸
=Te(g)

= Te ( f ) + Te (g) .

2. If f ∈ P2 and λ ∈ R, then

Te (λ f ) = x2 (λ f )
[

1
x

]
︸ ︷︷ ︸
=λ f

[1
x

]
= λ x2 f

[
1
x

]
︸ ︷︷ ︸
=Te( f )

= λTe ( f ) .
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Let v be the monomial basis
(
1, x, x2) of P2. Let w be the monomial basis

(
1, x, x2)

of P2.
To find the matrix Mv,w,Te that represents Te with respect to the bases v and

w, we proceed as in Example 0.3. Thus, we expand Te (1), Te (x) and Te
(
x2) in

the basis w of P2, and we place the resulting coefficients in a 3× 3-matrix. The
expansions are as follows:

Te (1) = x2 1
[

1
x

]
︸ ︷︷ ︸
=1

= x2 = 0 · 1 + 0 · x + 1 · x2;

Te (x) = x2 x
[

1
x

]
︸ ︷︷ ︸
=

1
x

= x2 · 1
x
= x = 0 · 1 + 1 · x + 0 · x2;

Te

(
x2
)
= x2 x2

[
1
x

]
︸ ︷︷ ︸
=

(1
x

)2

= x2
(

1
x

)2

= 1 = 1 · 1 + 0 · x + 0 · x2.

Thus, the required matrix is

Mv,w,Te =

 0 0 1
0 1 0
1 0 0

 .

(g) The map Tg is linear, because:

1. If f and g are two elements of P3, then

Tg ( f + g) = x ( f + g)′ [x]︸ ︷︷ ︸
= f ′[x]+g′[x]

= x
(

f ′ [x] + g′ [x]
)

= x f ′ [x]︸ ︷︷ ︸
=Tg( f )

+ xg′ [x]︸ ︷︷ ︸
=Tg(g)

= Tg ( f ) + Tg (g) .

2. If f ∈ P3 and λ ∈ R, then

Tg (λ f ) = x (λ f )′ [x]︸ ︷︷ ︸
=λ f ′[x]

= λ x f ′ [x]︸ ︷︷ ︸
=Tg( f )

= λTg ( f ) .

Let v be the monomial basis
(
1, x, x2, x3) of P3. Let w be the monomial basis(

1, x, x2, x3) of P3.
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To find the matrix Mv,w,Tg that represents Tg with respect to the bases v and w,
we proceed as in Example 0.3. Thus, we expand Tg (1), Tg (x), Tg

(
x2) and Tg

(
x3)

in the basis w of P3, and we place the resulting coefficients in a 4× 4-matrix. The
expansions are as follows:

Tg (1) = x 1′ [x]︸ ︷︷ ︸
=0

= 0 = 0 · 1 + 0 · x + 0 · x2 + 0 · x3;

Tg (x) = x x′ [x]︸ ︷︷ ︸
=1

= x = 1 · 1 + 0 · x + 0 · x2 + 0 · x3;

Tg

(
x2
)
= x

(
x2
)′

[x]︸ ︷︷ ︸
=2x

= x · 2x = 2x2 = 0 · 1 + 0 · x + 2 · x2 + 0 · x3;

Tg

(
x3
)
= x

(
x3
)′

[x]︸ ︷︷ ︸
=3x2

= x · 3x2 = 3x3 = 0 · 1 + 0 · x + 0 · x2 + 3 · x3.

Thus, the required matrix is

Mv,w,Tg =


0 0 0 0
0 1 0 0
0 0 2 0
0 0 0 3

 .

See the beginning of §3.21 of my notes, the Wikipedia, or various other sources,
for examples of injective, surjective and bijective maps.

Exercise 3. (a) Which of the six maps in Exercise 2 are injective?
[2 points per map]

(b) Which of them are surjective? [2 points per map]
[Note: Proofs are not required.]

Solution. As we have seen in the solution to Exercise 2, five of our six maps (more
precisely, all the maps apart from Tc) are linear. Hence, it will be useful to know
how to determine whether a linear map is injective. There is a method for that; to
find it, we combine two results. First here is a result from homework set 4:

Proposition 0.4. Let n ∈N and m ∈N. Let A be an n×m-matrix.
(a) The matrix A is right-invertible if and only if rank A = n.
(b) The matrix A is left-invertible if and only if rank A = m.
(c) The matrix A is invertible if and only if rank A = n = m. (In particular,

only square matrices can be invertible!)

Next, we recall a result from class:

http://www.cip.ifi.lmu.de/~grinberg/t/16f/lina.pdf
https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection
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Proposition 0.5. Let V and W be two vector spaces with bases v and w, respec-
tively. Let L : V →W be a linear map.

(a) The map L is injective if and only if the matrix Mv,w,L is left-invertible.
(b) The map L is surjective if and only if the matrix Mv,w,L is right-invertible.
(c) The map L is bijective if and only if the matrix Mv,w,L is invertible.

Combining these two propositions, we obtain the following:

Corollary 0.6. Let V and W be two vector spaces with bases v and w, respec-
tively. Let m = dim V and n = dim W. Let L : V →W be a linear map.

(a) The map L is injective if and only if rank (Mv,w,L) = m.
(b) The map L is surjective if and only if rank (Mv,w,L) = n.
(c) The map L is bijective if and only if rank (Mv,w,L) = n = m.

Proof of Corollary 0.6. The basis v of V has size dim V = m, and the basis w of W
has size dim W = n. Thus, Mv,w,L is an n×m-matrix.

(a) Proposition 0.5 (a) shows that the map L is injective if and only if the matrix
Mv,w,L is left-invertible. But Proposition 0.4 (b) (applied to A = Mv,w,L) shows that
the matrix Mv,w,L is left-invertible if and only if rank (Mv,w,L) = m. Combining
these two “if and only if” statements, we conclude that the map L is injective if and
only if rank (Mv,w,L) = m. This proves Corollary 0.6 (a).

We have thus derived Corollary 0.6 (a) from Proposition 0.5 (a) and Proposi-
tion 0.4 (b). Similarly, one can derive Corollary 0.6 (b) from Proposition 0.5 (b)
and Proposition 0.4 (a), and derive Corollary 0.6 (c) from Proposition 0.5 (c) and
Proposition 0.4 (c).

Now, let us solve the actual exercise.
(a) Let us find out whether Ta is injective.
Let v be the monomial basis

(
1, x, x2) of P2. Let w be the monomial basis

(
1, x, x2)

of P2.
From our solution of Exercise 2 (a), we remember that the map Ta : P2 → P2 is lin-

ear, and is represented by the matrix Mv,w,Ta =

 1 1 1
0 1 2
0 0 1

. Clearly, dim (P2) = 3

and dim (P2) = 3. Hence, Corollary 0.6 (a) (applied to V = P2, W = P2, m = 3,
n = 3 and L = Ta) shows that the map Ta is injective if and only if rank (Mv,w,Ta) =
3. Since rank (Mv,w,Ta) = 3 holds (indeed, this can be checked straightforwardly,
since we know the matrix Mv,w,Ta), we thus conclude that the map Ta is injective.

By the same method, we can conclude that the maps Tb, Td and Te are injective,
but the map Tg is not. (Each time, we need to apply Corollary 0.6 (a), but of course
the vector spaces V and W and their dimensions m and n change from map to map
– thus, the rank of the matrix isn’t always being compared to 3. For example, to
tell whether Tg is injective, we have to determine whether rank

(
Mv,w,Tg

)
= 4; but

this is not satisfied because rank
(

Mv,w,Tg

)
= 3 6= 4.)
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It remains to check whether the map Tc is injective. The method we have showed
for Ta does not apply to Tc because Tc is not linear. Instead, we use the definition
of the word “injective”. Recall that a map F : X → Y (from a set X to a set Y) is
injective if and only if it satisfies the following statement:

If u1 and u2 are two elements of X satisfying F (u1) = F (u2), then
u1 = u2.

Applying this to the map Tc : P2 → P4, we see that the map Tc : P2 → P4 is
injective if and only if it satisfies the following statement:

If u1 and u2 are two elements of P2 satisfying Tc (u1) = Tc (u2), then
u1 = u2.

But this statement is not true: For example, the two elements u1 = x − 1 and
u2 = 0 of P2 satisfy Tc (u1) = Tc (u2) (because Tc (u1) = u1 [1]︸ ︷︷ ︸

=1−1=0

u1 [x] = 0 and

Tc (u2) = u2 [1]︸ ︷︷ ︸
=0

u2 [x] = 0) but not u1 = u2.

Thus, the map Tc is not injective.
(b) The surjectivity of a linear map can be checked exactly in the same way as

its injectivity, except that we have to use Corollary 0.6 (b) instead of Corollary 0.6
(a). Thus, let me only summarize the results: The maps Ta and Te are surjective,
whereas the maps Tb, Td and Tg are not. Again, the map Tc needs to be treated
separately, since it is not linear. For this, we use the definition of the word “surjec-
tive”. Recall that a map F : X → Y (from a set X to a set Y) is surjective if and only
if it satisfies the following statement:

For each v ∈ Y, there exists some u ∈ X such that v = F (u).

Applying this to the map Tc : P2 → P4, we see that the map Tc : P2 → P4 is
surjective if and only if it satisfies the following statement:

For each v ∈ P4, there exists some u ∈ P2 such that v = Tc (u).

But this statement is not true: For example, for v = x4 ∈ P4, there exists no
u ∈ P2 such that v = Tc (u) (because Tc (u) = u [1]︸︷︷︸

a constant

u [x]︸︷︷︸
a polynomial
of degree ≤2

would have to be

a polynomial of degree ≤ 2, but v = x4 is not such a polynomial).
Hence, the map Tc is not surjective.
[Remark: We might wonder whether the map Tc becomes surjective if we restrict

its target to P2. In other words, is the map Tc2 : P2 → P2 given by Tc ( f ) = f [1] f [x]
surjective? We can no longer rule this out using v = x4, because x4 does not belong
to P2.
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However, this new map Tc2 is still not surjective. Indeed, for v = x − 1 ∈ P2,
there exist no u ∈ P2 such that v = Tc2 (u). In order to prove this, we assume the
contrary. Thus, there exists some u ∈ P2 such that v = Tc2 (u). Consider this u.
We have x − 1 = v = Tc2 [u] = u [1] u [x]. Substituting 1 for x in this equality, we
obtain 1− 1 = u [1] u [1] = u [1]2. In other words, 0 = u [1]2. Hence, u [1] = 0.
Now, v = Tc2 [u] = u [1]︸︷︷︸

=0

u [x] = 0. But this contradicts v = x− 1. This contradiction

shows that our assumption was wrong, qed.]


