## Math 4242 Fall 2016 (Darij Grinberg): homework set 6 due: Mon, 21 Nov 2016, in class (or earlier by moodle)

Let me first recall a definition.

**Definition 0.1.** Let V and W be two vector spaces. Let  $\mathbf{v} = (v_1, v_2, \dots, v_m)$  be a basis of V. Let  $\mathbf{w} = (w_1, w_2, \dots, w_n)$  be a basis of W. Let  $L: V \to W$  be a linear map.

The *matrix representing L* with respect to **v** and **w** is the  $n \times m$ -matrix  $M_{\mathbf{v},\mathbf{w},L}$  defined as follows: For every  $j \in \{1,2,\ldots,m\}$ , expand the vector  $L(v_j)$  with respect to the basis **w**, say, as follows:

$$L(v_i) = \alpha_{1,i} w_1 + \alpha_{2,i} w_2 + \dots + \alpha_{n,i} w_n. \tag{1}$$

Then,  $M_{\mathbf{v},\mathbf{w},L}$  is the  $n \times m$ -matrix whose (i,j)-th entry is  $\alpha_{i,j}$ . For example, if n=3 and m=2, then

$$M_{\mathbf{v},\mathbf{w},L} = \left( egin{array}{cc} lpha_{1,1} & lpha_{1,2} \ lpha_{2,1} & lpha_{2,2} \ lpha_{3,1} & lpha_{3,2} \end{array} 
ight),$$

where

$$L(v_1) = \alpha_{1,1}w_1 + \alpha_{2,1}w_2 + \alpha_{3,1}w_3;$$
  

$$L(v_2) = \alpha_{1,2}w_1 + \alpha_{2,2}w_2 + \alpha_{3,2}w_3.$$

The purpose of this matrix  $M_{\mathbf{v},\mathbf{w},L}$  is to allow easily expanding L(v) in the basis  $(w_1, w_2, \ldots, w_n)$  of W if v is a vector in V whose expansion in the basis  $(v_1, v_2, \ldots, v_m)$  of V is known. For instance, if v is one of the basis vectors  $v_j$ , then the expansion of  $L(v_j)$  can be simply read off from the j-th column of  $M_{\mathbf{v},\mathbf{w},L}$ ; otherwise, it is an appropriate linear combination:

$$L\left(\lambda_{1}v_{1}+\lambda_{2}v_{2}+\cdots+\lambda_{m}v_{m}\right)=\lambda_{1}L\left(v_{1}\right)+\lambda_{2}L\left(v_{2}\right)+\cdots+\lambda_{m}L\left(v_{m}\right)$$

(where the  $L(v_i)$  can be computed by (1)).

You can abbreviate  $M_{\mathbf{v},\mathbf{w},L}$  as  $M_L$ , but it's your job to ensure that you know what  $\mathbf{v}$  and  $\mathbf{w}$  are (and they aren't changing midway through your work).

**Example 0.2.** Let A be the  $2 \times 2$ -matrix  $\begin{pmatrix} 5 & 7 \\ -2 & 9 \end{pmatrix}$ . Let  $L : \mathbb{R}^2 \to \mathbb{R}^2$  be the linear map  $L_A$ . (Recall that this is the map  $\mathbb{R}^2 \to \mathbb{R}^2$  that sends every vector  $v \in \mathbb{R}^2$  to Av.)

Consider the following basis  $\mathbf{v} = (v_1, v_2)$  of the vector space  $\mathbb{R}^2$ :

$$v_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
,  $v_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ .

Consider the following basis  $\mathbf{w} = (w_1, w_2)$  of the vector space  $\mathbb{R}^2$ :

$$w_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
,  $w_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ .

What is the matrix  $M_{\mathbf{v},\mathbf{w},L}$  representing L with respect to these two bases  $\mathbf{v}$  and  $\mathbf{w}$ ?

First, let me notice that it is not A (or at least it doesn't have to be A a priori), because our two bases  $\mathbf{v}$  and  $\mathbf{w}$  are not the standard basis of  $\mathbb{R}^2$ . Only if we pick both  $\mathbf{v}$  and  $\mathbf{w}$  to be the standard bases of the respective spaces we can guarantee that  $M_{\mathbf{v},\mathbf{w},L}$  will be A.

Without having this shortcut, we must resort to the definition of  $M_{\mathbf{v},\mathbf{w},L}$ . It tells us to expand  $L(v_1)$  and  $L(v_2)$  in the basis  $\mathbf{w}$  of  $\mathbb{R}^2$ , and to place the resulting coefficients in a  $2 \times 2$ -matrix. Let's do this. We begin with  $L(v_1)$ :

$$L\left(v_{1}\right)=L_{A}\left(v_{1}\right)=Av_{1}=\left(\begin{array}{cc}5&7\\-2&9\end{array}\right)\left(\begin{array}{c}1\\-1\end{array}\right)=\left(\begin{array}{c}-2\\-11\end{array}\right).$$

How do we expand this in the basis **w** ? This is a typical exercise in Gaussian elimination (we just need to solve the equation  $L(v_1) = \lambda_1 w_1 + \lambda_2 w_2$  in the two unknowns  $\lambda_1$  and  $\lambda_2$ ), and the result is

$$L(v_1) = \frac{7}{3}w_1 + \frac{-20}{3}w_2.$$

Similarly, we take care of  $L(v_2)$ , obtaining

$$L(v_2) = 13w_1 + 5w_2.$$

Thus, the required matrix is

$$M_{\mathbf{v},\mathbf{w},L} = \begin{pmatrix} \frac{7}{3} & 13\\ \frac{-20}{3} & 5 \end{pmatrix}.$$

**Exercise 1.** Let A be the  $3 \times 2$ -matrix  $\begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}$ . Let  $L : \mathbb{R}^3 \to \mathbb{R}^2$  be the linear map  $L_A$ . (Recall that this is the map  $\mathbb{R}^3 \to \mathbb{R}^2$  that sends every vector  $v \in \mathbb{R}^3$  to Av.)

Consider the following basis  $\mathbf{v} = (v_1, v_2, v_3)$  of the vector space  $\mathbb{R}^3$ :

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \qquad v_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \qquad v_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Consider the following basis  $\mathbf{w} = (w_1, w_2)$  of the vector space  $\mathbb{R}^2$ :

$$w_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \qquad w_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

- (a) Find the matrix  $M_{\mathbf{v},\mathbf{w},L}$  representing L with respect to these two bases  $\mathbf{v}$  and  $\mathbf{w}$ . [15 points]
- **(b)** Let  $\mathbf{v}'$  be the basis  $(v_3, v_2, v_1)$  of  $\mathbb{R}^3$ . Let  $\mathbf{w}'$  be the basis  $(w_2, w_1)$  of  $\mathbb{R}^2$ . Find the matrix  $M_{\mathbf{v}', \mathbf{w}', L}$ . [5 points]

For every  $n \in \mathbb{N}$ , we let  $P_n$  denote the vector space of all polynomial functions (with real coefficients) of degree  $\leq n$  in one variable x. This vector space has dimension n+1, and its simplest basis is  $(1, x, x^2, \ldots, x^n)$ . We call this basis the *monomial basis* of  $P_n$ .

If f is a polynomial in one variable x, then I shall use the notation f[y] for "substitute y for x into f". (For example, if  $f = x^3 + 7x + 2$ , then  $f[5] = 5^3 + 7 \cdot 5 + 2 = 162$ .) This would normally be denoted by f(y), but this is somewhat ambiguous, since the notation x(x+1) could then stand for two different things (namely, "substitute x+1 into the polynomial function x" or "multiply x by x+1"), whereas the notation f[y] removes this ambiguity.

**Example 0.3.** (a) Define a map  $S_a: P_2 \to \mathbb{R}$  by  $S_a(f) = f[2] + f[3]$ . Then,  $S_a$  is linear, because:

1. If f and g are two elements of  $P_2$ , then

$$S_{a}(f+g) = \underbrace{(f+g)[2]}_{=f[2]+g[2]} + \underbrace{(f+g)[3]}_{=f[3]+g[3]} = (f[2]+g[2]) + (f[3]+g[3])$$

$$= \underbrace{(f[2]+f[3])}_{=S_{a}(f)} + \underbrace{(g[2]+g[3])}_{=S_{a}(g)} = S_{a}(f) + S_{a}(g).$$

2. If  $f \in P_2$  and  $\lambda \in \mathbb{R}$ , then

$$S_a(\lambda f) = (\lambda f)[2] + (\lambda f)[3] = \lambda f[2] + \lambda f[3] = \lambda \underbrace{(f[2] + f[3])}_{=S_a(f)} = \lambda S_a(f).$$

Let **v** be the monomial basis  $(1, x, x^2)$  of  $P_2$ , and let **w** be the one-element basis (1) of  $\mathbb{R}$ . What is the matrix  $M_{\mathbf{v}, \mathbf{w}, S_a}$ ?

Again, follow the definition of  $M_{\mathbf{v},\mathbf{w},S_a}$ . It tells us to expand  $S_a(1)$ ,  $S_a(x)$  and  $S_a(x^2)$  in the basis  $\mathbf{w}$  of  $\mathbb{R}$ , and to place the resulting coefficients in a  $1 \times 3$ -matrix. Expanding things in the basis  $\mathbf{w}$  is particularly simple, since  $\mathbf{w}$  is a one-element list; specifically, we obtain the expansions

$$S_a(1) = \underbrace{1[2]}_{=1} + \underbrace{1[3]}_{=1} = 1 + 1 = 2 = 2 \cdot 1;$$

$$S_a(x) = \underbrace{x[2]}_{=2} + \underbrace{x[3]}_{=3} = 2 + 3 = 5 = 5 \cdot 1;$$

$$S_a(x^2) = \underbrace{x^2[2]}_{=2^2} + \underbrace{x^2[3]}_{=3^2} = 2^2 + 3^2 = 13 = 13 \cdot 1.$$

Thus, the required matrix is

$$M_{\mathbf{v},\mathbf{w},S_a} = (2 \ 5 \ 13).$$

**(b)** Define a map  $S_b: P_2 \to P_4$  by  $S_b(f) = f[x^2]$ . (Notice that we chose  $P_4$  as the target space, because substituting  $x^2$  for x will double the degree of a polynomial.) The map  $S_b$  is linear (for reasons that are similar to the ones that convinced us that  $S_a$  is linear).

Let **v** be the monomial basis  $(1, x, x^2)$  of  $P_2$ , and let **w** be the monomial basis  $(1, x, x^2, x^3, x^4)$  of  $P_4$ . What is the matrix  $M_{\mathbf{v}, \mathbf{w}, S_h}$ ?

Again, follow the definition of  $M_{\mathbf{v},\mathbf{w},S_b}$ . It tells us to expand  $S_b(1)$ ,  $S_b(x)$  and  $S_b(x^2)$  in the basis  $\mathbf{w}$  of  $P_4$ , and to place the resulting coefficients in a 5 × 3-matrix. The expansions are as follows:

$$S_{b}(1) = 1 \left[ x^{2} \right] = 1 = 1 \cdot 1 + 0 \cdot x + 0 \cdot x^{2} + 0 \cdot x^{3} + 0 \cdot x^{4};$$

$$S_{b}(x) = x \left[ x^{2} \right] = x^{2} = 0 \cdot 1 + 0 \cdot x + 1 \cdot x^{2} + 0 \cdot x^{3} + 0 \cdot x^{4};$$

$$S_{b}(x^{2}) = x^{2} \left[ x^{2} \right] = (x^{2})^{2} = x^{4} = 0 \cdot 1 + 0 \cdot x + 0 \cdot x^{2} + 0 \cdot x^{3} + 1 \cdot x^{4}.$$

Thus, the required matrix is

$$M_{\mathbf{v},\mathbf{w},S_b} = \left(egin{array}{ccc} 1 & 0 & 0 \ 0 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{array}
ight).$$

**Exercise 2.** Which of the following maps are linear? For every one that is, represent it as a matrix with respect to the monomial bases of its domain and its

target. [6 points for each part, split into 2+4 if the map is linear]

- (a) The map  $T_a: P_2 \to P_2$  given by  $T_a(f) = f[x+1]$ . (Thus,  $T_a$  is the map that substitutes x+1 for x into f. Thus,  $T_a(x^n) = (x+1)^n$  for every  $n \in \{0,1,2\}$ .)
- **(b)** The map  $T_b: P_2 \to P_3$  given by  $T_b(f) = xf[x]$ . (Notice that f[x] is the same as f, because substituting x for x changes nothing. I am just writing f[x] to stress that f is a function of x.)
  - (c) The map  $T_c: P_2 \to P_4$  given by  $T_c(f) = f[1] f[x]$ .
  - (d) The map  $T_d: P_2 \to P_4$  given by  $T_d(f) = f[x^2 + 1]$ .
  - **(e)** The map  $T_e: P_2 \to P_2$  given by  $T_e(f) = x^2 f\left[\frac{1}{x}\right]$ .
  - **(g)** The map  $T_g: P_3 \to P_3$  given by  $T_g(f) = xf'[x]$ .

[There is no part **(f)** because I want to avoid calling a map " $T_f$ " while the letter f stands for a polynomial.]

[Note: Proofs are not required.]

See the beginning of §3.21 of my notes, the Wikipedia, or various other sources, for examples of injective, surjective and bijective maps.

**Exercise 3. (a)** Which of the six maps in Exercise 2 are injective?

[2 points per map]

[2 points per map]

**(b)** Which of them are surjective? [**Note:** Proofs are not required.]