
Math 4242, Section 070

Homework 5

Mark Richard

1) a. We have that {(1, 1, 1)T , (1, 2, 3)T } is a basis of U . So set A =


1 1

1 2

1 3

. Then we know that

U⊥ = ker(AT ). Well, ker(AT ) = {x | ATx = 0}. We can then set up the matrix equation(
1 1 1

1 2 3

)
x

y

z

 = 0 =⇒

(
1 1 1

0 1 2

)
x

y

z

 = 0

Setting z = r, we have that y = −2r and x = r. So U⊥ = span
(
(1,−2, 1)T

)
.

b. Since we are in R3, we know that two orthogonal spaces will only meet at 0. Hence we have that

U ∩ U⊥ = {0}. Thus, U ∩ U⊥ is the span of the empty list.

c. Once again we are in R3, so two perpendicular subspaces will create all of R3. Hence U + U⊥ = R3.

Thus, U ∩ U⊥ = span (e1, e2, e3), where e1, e2, e3 are the three standard basis vectors.

d. We will use the Gram-Schmidt process. First we set u1 = w1 = (1, 1, 1)T . Then

u2 = w2 − λ2,1u1 = (1, 2, 3)T − 〈(1, 2, 3)T , (1, 1, 1)T 〉
3

(1, 1, 1)T = (−1, 0, 1)T

Hence an orthogonal basis of U is {(1, 1, 1)T , (−1, 0, 1)T }.
e. Since we already found a basis for U⊥ and it only contains one element, we have that an orthogonal

basis for it is just {(1,−2, 1)T }.
f. We know that

(
U⊥
)⊥

= U , so set W = U⊥. Then U =
(
U⊥
)⊥

= W⊥.

2) a. We know that ||Ax− b|| is minimized when x = Kf = (ATA)−1(AT b).

ATA =

(
2 3

3 6

)
=⇒ K =

(
ATA

)−1
=

1

3

(
6 −3

−3 2

)
=

(
2 −1

−1 2
3

)

f = AT b =

(
6

11

)
Hence we have that

x = Kf =

(
2 −1

−1 2
3

)(
6

11

)
=

(
1
4
3

)
b. We use the same approach, but now we have that

ATA =

(
3 5

5 10

)
=⇒ K =

(
ATA

)−1
=

1

5

(
10 −5

−5 3

)
=

(
2 −1

−1 3
5

)
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f = AT b =

(
10

19

)
Hence we have that

x = Kf =

(
2 −1

−1 5

)(
10

19

)
=

(
1
7
5

)

3) a. Looking at the column vectors of A, we have that the third column is the sum of the first two columns,

while the first two columns are linearly independent. Hence a basis for Col A is {(1, 0, 1, 1)T , (0, 1, 1, 2)T }.

b. We have that A′ =


1 0

0 1

1 1

1 2

.

c. Since A′ has columns which are a basis of the column space of A, it is clear that Col(A′) = Col A.

d. Since Col(A′) = Col(A), this is tantamount to finding the projection u of b on Col(A′). We can do

this using the general projection equation, denoting the two columns of A′ by u1 and u2. The result is

u =
〈b, u1〉
||u1||2

u1 +
〈b, u2〉
||u2||2

u2 =
8

3
(1, 0, 1, 1)T +

13

6
(0, 1, 1, 2)T =

(
8

3
,

13

6
,

29

6
, 7

)T

e. We wish to solve Ax = u. This can be done using Gaussian elimination. For example, we can set up

and reduce the augmented matrix
1 0 1 8/3

0 1 1 13/6

1 1 2 29/6

1 2 3 7

 =⇒


1 0 1 8/3

0 1 1 13/6

0 0 0 0

0 0 0 0


If we have x = (x, y, z)T , then we can set z = r. Then we have that y = 13/6− r and x = 8/3− r. In other

words

x = (8/3− r, 13/6− r, r)T for r ∈ R.

4) Solution omitted.

5) 1st part: From ~0 ∈ U1 and z ∈ U2, we obtain ~0 + z ∈ U1 + U2 (by the definition of U1 +U2). In other

words, z ∈ U1 + U2 (since ~0 + z = z). Hence, (1) (applied to x = z) yields v ⊥ z.
2nd part: By (2), applied to x = u1.

6) a. Essentially we just need to find P⊥1 since
(
P⊥1
)⊥

= P1. So we put the basis vectors of P1 into a

matrix as its columns, then transpose this matrix and find its kernel. Specifically, we want the kernel of:

AT =

(
1 0 1

1 2 1

)
Finding its kernel, we set up the system equal to zero. Doing so we get that x = −z = −r and that y = 0.

Hence U1 = span
(
(1, 0,−1)T

)
.

b. Using a similar approach as in (a), we just want to find P⊥2 . So we are aiming to find the kernel of

the matrix

BT =

(
−2 1 3

0 4 5

)
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Here we see that given z = r, we have y = − 5
4r, and solving through for x we get that x = 7

8r. So our basis

vector can be (7/8,−5/4, 1)T . Scaling by 8 to get integers, we see that U2 = span
(
(7,−10, 8)T

)
.

c. In general: If P andQ are two subspaces of a vector space V , written as spans as P = span (p1, p2, . . . , pk)

and Q = span (q1, q2, . . . , q`), then P +Q can be written as a span as follows:

P +Q = span (p1, p2, . . . , pk, q1, q2, . . . , q`)

(because the elements of P +Q are the sums of linear combinations of p1, p2, . . . , pk with linear combinations

of q1, q2, . . . , q`; but such sums are precisely the linear combinations of p1, p2, . . . , pk, q1, q2, . . . , q`). In other

words, we can obtain a spanning list of P +Q by concatenating a spanning list of P with a spanning list of

Q. (Of course, this spanning list will not necessarily be a basis, even if we started with two bases.)

Thus, we can obtain a spanning list of U1 + U2 by concatenating a spanning list of U1 with a spanning

list of U2. By doing this (using the spanning list ((1, 0,−1)T ) of U1, and the spanning list ((7,−10, 8)T ) for

U2), we obtain U1 + U2 = span
(
(1, 0,−1)T , (7,−10, 8)T

)
.

d. We know that P1∩P2 = U⊥1 ∩U⊥2 = (U1 +U2)⊥ by proposition 0.1. Hence we need to find (U1 +U2)⊥.

Using a similar approach as before, we find the kernel of:

DT =

(
1 0 −1

7 −10 8

)

We can see that x = z = r, and hence y = 3
2r. Hence:

(U1 + U2)⊥ = P1 ∩ P2 = span

((
1,

3

2
, 1

)T
)

7) We aim to find the kernel of the matrix AT =

(
a1 b1 c1

a2 b2 c2

)
. We use Gaussian elimination first, assuming

(for the time being!) that all expressions we encounter can be divided by unless they expand to 0. Thus,

Gaussian elimination tells us to subtract a2/a1 times the first row from the second. This yields, adding in

the system for the kernel: (
a1 b1 c1

0 b2 − a2b1
a1

c2 − a2c1
a1

)
x

y

z

 =

(
0

0

)

Now we can solve this system in general. Letting z = r be our free variable, we can find that

y = r
c1a2 − c2a1
a1b2 − a2b1

.

And after a bit of messy algebra, we get that

x = r

(
− c1
a1

+
b1(c2a1 − a2c1)

a1(a1b2 − a2b1)

)
= r

b1c2 − b2c1
a1b2 − a2b1

.

Thus,

U⊥ = span

((
b1c2 − b2c1
a1b2 − a2b1

,
c1a2 − c2a1
a1b2 − a2b1

, 1

)T
)
.

We can simplify this expression by multiplying through by a1b2 − a2b1. Thus, we obtain

U⊥ = span
(

(b1c2 − b2c1, c1a2 − c2a1, a1b2 − a2b1)
T
)
. (1)
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We have obtained the equality (1) using the assumption that some numbers (namely, a1 and a1b2−a2b1)

are nonzero. Does it still hold without this assumption? The answer is “yes”. One way to prove this is by

painstakingly checking each possible case that can appear in the Gaussian elimination algorithm. This is

not much harder than what we have done already, but it is laborious. Another (better) way is to argue from

general principles:

By assumption, the two vectors v1 and v2 are linearly independent. Thus, they form a basis of their

span U . Hence, the span U is 2-dimensional (since it has a basis consisting of two vectors). In other words,

dimU = 2. But recall that dim
(
U⊥
)

+ dimU = 3 (since U is a subspace of R3). Thus, dim
(
U⊥
)

=

3− dimU︸ ︷︷ ︸
=2

= 3− 2 = 1. Hence, any nonzero vector in U⊥ already spans U⊥ (because any nonzero vector in

U⊥ spans a 1-dimensional subspace of U⊥, and because of dim
(
U⊥
)

= 1 this 1-dimensional subspace must

already be the whole U⊥). Therefore, in order to prove (1), it suffices to show that the vector

(b1c2 − b2c1, c1a2 − c2a1, a1b2 − a2b1)
T

is a nonzero vector in U⊥. Denote this vector by g. We thus must show that g is a nonzero vector in U⊥.

Proving that g ∈ U⊥ is straightforward: We have

〈g, v1〉 =
〈

(b1c2 − b2c1, c1a2 − c2a1, a1b2 − a2b1)
T
, (a1, b1, c1)

T
〉

= (b1c2 − b2c1) a1 + (c1a2 − c2a1) b1 + (a1b2 − a2b1) c1

= b1c2a1 − b2c1a1 + c1a2b1 − c2a1b1 + a1b2c1 − a2b1c1

= a1b1c2 − a1b2c1 + a2b1c1 − a1b1c2 + a1b2c1 − a2b1c1 = 0

and thus g ⊥ v1. Similarly, g ⊥ v2. Thus, g is orthogonal to both vectors v1 and v2, and thus also to each

of their linear combinations; in other words, g ∈ U⊥. It remains to prove that g is nonzero.

Well, assume the contrary. Thus, g is zero, so that each of its three coordinates b1c2 − b2c1, c1a2 −
c2a1, a1b2− a2b1 is zero. In other words, b1c2 = b2c1, c1a2 = c2a1 and a1b2 = a2b1. The vector v1 is nonzero

(since v1 and v2 are linearly independent), and thus has at least one nonzero coordinate. We can WLOG

assume that a1 6= 0 (since otherwise, we can cyclically rotate the coordinates of the two vectors v1 and v2

until a nonzero coordinate of v1 hits the first position). Thus, the equalities c1a2 = c2a1 and a1b2 = a2b1 can

be solved for c2 and b2, respectively, yielding c2 =
a2
a1
c1 and b2 =

a2
a1
b1. Combining this with a2 =

a2
a1
a1, we

conclude that each coordinate of v2 equals
a2
a1

times the corresponding coordinate of v1. Hence, v2 =
a2
a1
v1.

In other words,
a2
a1
v1 − v2 = ~0. This contradicts the fact that v1 and v2 are linearly indepdendent. Hence,

our assumption was wrong, and thus we have shown that g is nonzero. This completes our proof that g is a

nonzero vector in U⊥; and as we have said above, this shows that (1) holds (no matter what happens during

Gaussian elimination).

[Remark: The vector g introduced above is known as the cross-product of v1 and v2. If you know it from

geometry, you should not be surprised that it spans U⊥: In fact, it is orthogonal to both v1 and v2, and thus

belongs to U⊥.]
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