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Math 4242 Fall 2016 (Darij Grinberg): homework set 5 (corrected)
due: Wed, 9 Nov 2016, in class

Exercise 1. Let U be the subspace span
(
(1, 1, 1)T , (1, 2, 3)T

)
of R3. (Recall that

span (u1, u2, . . . , uk) is our new notation for the span of u1, u2, . . . , uk, formerly
known as 〈u1, u2, . . . , uk〉.)

(a) Find U⊥. (“Finding” a subspace means writing it as a span throughout this
exercise.)

(b) Find U ∩U⊥.
(c) Find U + U⊥.
(d) Find an orthogonal basis of U.
(e) Find an orthogonal basis of U⊥.
(f) Find a subspace W of R3 such that U = W⊥. [30 points]

Exercise 2. (a) Find the least-squares solution to the equation Ax = b, where

A =

 0 1
1 1
1 2

 and b =

 1
2
4

. (That is, find the vector x for which ||Ax− b||

is minimum.)
(b) Find the least-squares solution to the equation Ax = b, where A =
0 1
1 1
1 2
1 2

 and b =


1
2
4
4

. [20 points]

(The point of the preceding exercise is to show that “duplicating” a row can
change the least-squares solution. This is unlike the case of exact solutions, where
a duplicate row adds no information and therefore has no effect on the solution. Vi-
sually speaking, the more often a row appears, the closer the least-squares solution
comes to satisfying it exactly.)

Exercise 3. Consider the equation Ax = b, where A =


1 0 1
0 1 1
1 1 2
1 2 3

 and b =


1
2
3
4

. Let’s say we want to find the least-squares solution, i.e., the vector x

for which ||Ax− b|| is minimum. However, the algorithm in class breaks down,
since K = AT A is not invertible. And indeed, there is no “the” least-squares
solution, but there are infinitely many – all having the same (minimum) value
||Ax− b||. The purpose of this exercise is to find them.

(a) Compute a basis of Col A. (Its size is the rank of A.)



Math 4242 Fall 2016 homework page 2

(b) Let A′ be the 4× r-matrix whose columns are the elements of this basis
(where r is the rank of A). Write down A′.

(c) What is Col (A′) ?
(d) Find the projection u of b onto Col A.
(e) Now, the least-squares solutions to Ax = b are precisely the vectors x ∈ R3

satisfying Ax = u. Find them.
[Note: This procedure – where we use A′ instead of A to compute the pro-

jection – can be used as a general method for solving underdetermined least-
squares problems like the one in this exercise. However, it is important to keep
in mind that the least-square solution to Ax = b is not unique when the problem
is underdetermined.] [20 points]

[Remark (added in hindsight): The preceding exercise is bad, and I am really
not proud of it. I wrote it to give an algorithm for solving underdetermined least-
squares problems; but there is much simpler (and less confusing) method to do so:
Namely, the least-squares solutions to Ax = b (for any n × m-matrix A and any
column vector b of size n) are precisely the (exact!) solutions to AT Ax = ATb. The
latter can be computed using Gaussian elimination.]

Exercise 4. Find QR factorizations of the two matrices A from Exercise 2.
[16 points]

Exercise 5. Fill in the blanks in the following proof. [24 points]

Proposition 0.1. Let n ∈N. Let U1 and U2 be two subspaces of Rn. Then,

(U1 + U2)
⊥ = U⊥1 ∩U⊥2 .

(Recall that U1 +U2 is defined as the subset {u1 + u2 | u1 ∈ U1 and u2 ∈ U2} of
Rn.)

Proof of Proposition 0.1. We shall first show that (U1 + U2)
⊥ ⊆ U⊥1 ∩U⊥2 , then show

that U⊥1 ∩U⊥2 ⊆ (U1 + U2)
⊥.

Proof of (U1 + U2)
⊥ ⊆ U⊥1 ∩U⊥2 :

Let v ∈ (U1 + U2)
⊥. Thus, {v} ⊥ U1 + U2. In other words,

v ⊥ x for each x ∈ U1 + U2. (1)

We shall show that v ∈ U⊥1 and v ∈ U⊥2 :

1. Let y ∈ U1. We have
−→
0 ∈ U2 (since U2 is a subspace of Rn, and thus contains

the zero vector). From y ∈ U1 and
−→
0 ∈ U2, we obtain y +

−→
0 ∈ U1 + U2 (by

the definition of U1 + U2). In other words, y ∈ U1 + U2 (since y +
−→
0 = y).

Hence, (1) (applied to x = y) yields v ⊥ y.

Thus, we have shown that v ⊥ y for each y ∈ U1. In other words, {v} ⊥ U1.
In other words, v ∈ U⊥1 .
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2. Let z ∈ U2. We have
−→
0 ∈ U1 (since U1 is a subspace of Rn, and thus contains

the zero vector). From , we obtain (by the
definition of U1 +U2). In other words, (since ).
Hence, (1) (applied to ) yields .

Thus, we have shown that v ⊥ z for each z ∈ U2. In other words, {v} ⊥ U2.
In other words, v ∈ U⊥2 .

Combining v ∈ U⊥1 with v ∈ U⊥2 , we obtain v ∈ U⊥1 ∩U⊥2 .
Now, we have shown that v ∈ U⊥1 ∩U⊥2 for each v ∈ (U1 + U2)

⊥. In other words,
(U1 + U2)

⊥ ⊆ U⊥1 ∩U⊥2 .
Proof of U⊥1 ∩U⊥2 ⊆ (U1 + U2)

⊥:
Let v ∈ U⊥1 ∩U⊥2 . Thus, v ∈ U⊥1 ∩U⊥2 ⊆ U⊥1 . In other words, {v} ⊥ U1. In other

words,
v ⊥ x for each x ∈ U1. (2)

Similarly,
v ⊥ x for each x ∈ U2. (3)

Let now y ∈ U1 + U2. Thus,

y ∈ U1 + U2 = {u1 + u2 | u1 ∈ U1 and u2 ∈ U2} .

In other words, y = u1 + u2 for some u1 ∈ U1 and u2 ∈ U2. Consider these u1 and
u2.

We have v ⊥ u1 (by , applied to ). In other
words, 〈v, u1〉 = 0. Similarly, 〈v, u2〉 = 0.

Now, y = u1 + u2, and thus

〈v, y〉 = 〈v, u1 + u2〉 = 〈v, u1〉︸ ︷︷ ︸
=0

+ 〈v, u2〉︸ ︷︷ ︸
=0

(by the distributive law for inner products)
= 0 + 0 = 0.

In other words, v ⊥ y.
Thus, we have shown that v ⊥ y for each y ∈ U1 + U2. In other words, {v} ⊥

U1 + U2. In other words, v ∈ (U1 + U2)
⊥.

Now, we have shown that v ∈ (U1 + U2)
⊥ for each v ∈ U⊥1 ∩U⊥2 . In other words,

U⊥1 ∩U⊥2 ⊆ (U1 + U2)
⊥.

Combining our two results (U1 + U2)
⊥ ⊆ U⊥1 ∩U⊥2 and U⊥1 ∩U⊥2 ⊆ (U1 + U2)

⊥,
we obtain (U1 + U2)

⊥ = U⊥1 ∩U⊥2 . Proposition 0.1 is thus proven.
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Exercise 6. Define two subspaces P1 and P2 of R3 as follows:

P1 = span
(
(1, 0, 1)T , (1, 2, 1)T

)
;

P2 = span
(
(0, 4, 5)T , (−2, 1, 3)T

)
.

(a) Find a vector subspace U1 of R3 such that P1 = U⊥1 .
(b) Find a vector subspace U2 of R3 such that P2 = U⊥2 .
(c) Write the sum U1 + U2 as a span.
(d) Write the intersection P1 ∩ P2 as a span.
[Hint: Use Proposition 0.1 for part (d). This is a general method for writing

the intersection of two spans as a span.] [24 points]

Exercise 7. Let v1 = (a1, b1, c1)
T and v2 = (a2, b2, c2)

T be two linearly indepen-
dent vectors in R3. Let U = span (v1, v2). Write the 1-dimensional subspace U⊥

of R3 as the span of a single vector. [10 points]


