Math 4242 Fall 2016 (Darij Grinberg): homework set 5 (corrected) due: Wed, 9 Nov 2016, in class

Exercise 1. Let U be the subspace span $((1,1,1)^T, (1,2,3)^T)$ of \mathbb{R}^3 . (Recall that span (u_1, u_2, \ldots, u_k) is our new notation for the span of u_1, u_2, \ldots, u_k , formerly known as $\langle u_1, u_2, \ldots, u_k \rangle$.)

- (a) Find U^{\perp} . ("Finding" a subspace means writing it as a span throughout this exercise.)
 - **(b)** Find $U \cap U^{\perp}$.
 - (c) Find $U + U^{\perp}$.
 - (d) Find an orthogonal basis of *U*.
 - (e) Find an orthogonal basis of U^{\perp} .
 - **(f)** Find a subspace W of \mathbb{R}^3 such that $U = W^{\perp}$.

[30 points]

Exercise 2. (a) Find the least-squares solution to the equation Ax = b, where

Exercise 2. (a) That the least-squares solution to the equation
$$A(x) = b$$
, where $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 2 \end{pmatrix}$ and $b = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$. (That is, find the vector x for which $||Ax - b||$ is minimum.)

(b) Find the least-squares solution to the equation Ax = b, where A =

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 2 \\ 1 & 2 \end{pmatrix}$$
and $b = \begin{pmatrix} 1 \\ 2 \\ 4 \\ 4 \end{pmatrix}$. [20 points]

(The point of the preceding exercise is to show that "duplicating" a row can change the least-squares solution. This is unlike the case of exact solutions, where a duplicate row adds no information and therefore has no effect on the solution. Visually speaking, the more often a row appears, the closer the least-squares solution comes to satisfying it exactly.)

Exercise 3. Consider the equation
$$Ax = b$$
, where $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix}$ and $b = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix}$

$$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$
. Let's say we want to find the least-squares solution, i.e., the vector x

for which ||Ax - b|| is minimum. However, the algorithm in class breaks down, since $K = A^T A$ is not invertible. And indeed, there is no "**the**" least-squares solution, but there are infinitely many – all having the same (minimum) value ||Ax - b||. The purpose of this exercise is to find them.

(a) Compute a basis of Col A. (Its size is the rank of A.)

- **(b)** Let A' be the $4 \times r$ -matrix whose columns are the elements of this basis (where r is the rank of A). Write down A'.
 - (c) What is Col(A')?
 - (d) Find the projection u of b onto Col A.
- (e) Now, the least-squares solutions to Ax = b are precisely the vectors $x \in \mathbb{R}^3$ satisfying Ax = u. Find them.

[Note: This procedure – where we use A' instead of A to compute the projection – can be used as a general method for solving underdetermined least-squares problems like the one in this exercise. However, it is important to keep in mind that the least-square solution to Ax = b is not unique when the problem is underdetermined.]

[**Remark** (added in hindsight): The preceding exercise is bad, and I am really not proud of it. I wrote it to give an algorithm for solving underdetermined least-squares problems; but there is much simpler (and less confusing) method to do so: Namely, the least-squares solutions to Ax = b (for any $n \times m$ -matrix A and any column vector b of size n) are precisely the (exact!) solutions to $A^TAx = A^Tb$. The latter can be computed using Gaussian elimination.]

Exercise 4. Find QR factorizations of the two matrices A from Exercise 2.

[16 points]

Exercise 5. Fill in the blanks in the following proof.

[24 points]

Proposition 0.1. Let $n \in \mathbb{N}$. Let U_1 and U_2 be two subspaces of \mathbb{R}^n . Then,

$$(U_1 + U_2)^{\perp} = U_1^{\perp} \cap U_2^{\perp}.$$

(Recall that $U_1 + U_2$ is defined as the subset $\{u_1 + u_2 \mid u_1 \in U_1 \text{ and } u_2 \in U_2\}$ of \mathbb{R}^n .)

Proof of Proposition 0.1. We shall first show that $(U_1 + U_2)^{\perp} \subseteq U_1^{\perp} \cap U_2^{\perp}$, then show that $U_1^{\perp} \cap U_2^{\perp} \subseteq (U_1 + U_2)^{\perp}$.

Proof of $(U_1 + U_2)^{\perp} \subseteq U_1^{\perp} \cap U_2^{\perp}$:

Let $v \in (U_1 + U_2)^{\perp}$. Thus, $\{v\} \perp U_1 + U_2$. In other words,

$$v \perp x$$
 for each $x \in U_1 + U_2$. (1)

We shall show that $v \in U_1^{\perp}$ and $v \in U_2^{\perp}$:

1. Let $y \in U_1$. We have $\overrightarrow{0} \in U_2$ (since U_2 is a subspace of \mathbb{R}^n , and thus contains the zero vector). From $y \in U_1$ and $\overrightarrow{0} \in U_2$, we obtain $y + \overrightarrow{0} \in U_1 + U_2$ (by the definition of $U_1 + U_2$). In other words, $y \in U_1 + U_2$ (since $y + \overrightarrow{0} = y$). Hence, (1) (applied to x = y) yields $v \perp y$.

Thus, we have shown that $v \perp y$ for each $y \in U_1$. In other words, $\{v\} \perp U_1$. In other words, $v \in U_1^{\perp}$.

2. Let $z \in U_2$. We have $\overrightarrow{0} \in U_1$ (since U_1 is a subspace of \mathbb{R}^n , and thus contains the zero vector). From ______, we obtain ______ (by the definition of $U_1 + U_2$). In other words, ______ (since ______). Hence, (1) (applied to ______) yields _____. Thus, we have shown that $v \perp z$ for each $z \in U_2$. In other words, $\{v\} \perp U_2$.

Combining $v \in U_1^{\perp}$ with $v \in U_2^{\perp}$, we obtain $v \in U_1^{\perp} \cap U_2^{\perp}$.

Now, we have shown that $v \in U_1^{\perp} \cap U_2^{\perp}$ for each $v \in (U_1 + U_2)^{\perp}$. In other words, $(U_1 + U_2)^{\perp} \subseteq U_1^{\perp} \cap U_2^{\perp}$.

Proof of
$$U_1^{\perp} \cap U_2^{\perp} \subseteq (U_1 + U_2)^{\perp}$$
:

In other words, $v \in U_2^{\perp}$.

Let $v \in U_1^{\perp} \cap U_2^{\perp}$. Thus, $v \in U_1^{\perp} \cap U_2^{\perp} \subseteq U_1^{\perp}$. In other words, $\{v\} \perp U_1$. In other words,

$$v \perp x$$
 for each $x \in U_1$. (2)

Similarly,

$$v \perp x$$
 for each $x \in U_2$. (3)

Let now $y \in U_1 + U_2$. Thus,

$$y \in U_1 + U_2 = \{u_1 + u_2 \mid u_1 \in U_1 \text{ and } u_2 \in U_2\}.$$

In other words, $y = u_1 + u_2$ for some $u_1 \in U_1$ and $u_2 \in U_2$. Consider these u_1 and u_2 .

We have $v \perp u_1$ (by ______, applied to ______). In other words, $\langle v, u_1 \rangle = 0$. Similarly, $\langle v, u_2 \rangle = 0$.

Now, $y = u_1 + u_2$, and thus

$$\langle v, y \rangle = \langle v, u_1 + u_2 \rangle = \underbrace{\langle v, u_1 \rangle}_{=0} + \underbrace{\langle v, u_2 \rangle}_{=0}$$
(by the distributive law for inner products)
$$= 0 + 0 = 0.$$

In other words, $v \perp y$.

Thus, we have shown that $v \perp y$ for each $y \in U_1 + U_2$. In other words, $\{v\} \perp U_1 + U_2$. In other words, $v \in (U_1 + U_2)^{\perp}$.

Now, we have shown that $v \in (U_1 + U_2)^{\perp}$ for each $v \in U_1^{\perp} \cap U_2^{\perp}$. In other words, $U_1^{\perp} \cap U_2^{\perp} \subseteq (U_1 + U_2)^{\perp}$.

Combining our two results $(U_1 + U_2)^{\perp} \subseteq U_1^{\perp} \cap U_2^{\perp}$ and $U_1^{\perp} \cap U_2^{\perp} \subseteq (U_1 + U_2)^{\perp}$, we obtain $(U_1 + U_2)^{\perp} = U_1^{\perp} \cap U_2^{\perp}$. Proposition 0.1 is thus proven.

Exercise 6. Define two subspaces P_1 and P_2 of \mathbb{R}^3 as follows:

$$P_1 = \text{span}\left((1,0,1)^T, (1,2,1)^T\right);$$

 $P_2 = \text{span}\left((0,4,5)^T, (-2,1,3)^T\right).$

- (a) Find a vector subspace U_1 of \mathbb{R}^3 such that $P_1 = U_1^{\perp}$.
- **(b)** Find a vector subspace U_2 of \mathbb{R}^3 such that $P_2 = U_2^{\perp}$.
- (c) Write the sum $U_1 + U_2$ as a span.
- (d) Write the intersection $P_1 \cap P_2$ as a span.

[**Hint:** Use Proposition 0.1 for part (d). This is a general method for writing the intersection of two spans as a span.] [24 points]

Exercise 7. Let $v_1 = (a_1, b_1, c_1)^T$ and $v_2 = (a_2, b_2, c_2)^T$ be two linearly independent vectors in \mathbb{R}^3 . Let $U = \operatorname{span}(v_1, v_2)$. Write the 1-dimensional subspace U^\perp of \mathbb{R}^3 as the span of a single vector. [10 points]