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Math 4242 Fall 2016 (Darij Grinberg): homework set 5 (corrected)
due: Wed, 9 Nov 2016, in class

Exercise 1. Let U be the subspace span ((1, 1, 1)T, (1,2,3)T) of R3. (Recall that

span (u1, Uy, ..., ux) is our new notation for the span of uj, uy, ..., u;, formerly
known as (uq,up, ..., ux).)

(a) Find U+. (“Finding” a subspace means writing it as a span throughout this
exercise.)

(b) Find U N U*.

(c) Find U + U*.

(d) Find an orthogonal basis of U.

(e) Find an orthogonal basis of U-.

(f) Find a subspace W of R® such that U = W-+. [30 points]
Exercise 2. (a) Find the least-squares solution to the equation Ax = b, where
01 1
A=111 |andb= | 2 |. (Thatis, find the vector x for which ||Ax — b||
1 2 4
is minimum:.)
(b) Find the least-squares solution to the equation Ax = b, where A =
01 1
11 2 .
1 9 and b = 1 [20 points]
12 4

(The point of the preceding exercise is to show that “duplicating” a row can
change the least-squares solution. This is unlike the case of exact solutions, where
a duplicate row adds no information and therefore has no effect on the solution. Vi-
sually speaking, the more often a row appears, the closer the least-squares solution
comes to satisfying it exactly.)

Exercise 3. Consider the equation Ax = b, where A = and b =

—__ O
N~ — O
WN - -

. Let’s say we want to find the least-squares solution, i.e., the vector x

= WO N =

for which ||Ax — b|| is minimum. However, the algorithm in class breaks down,
since K = AT A is not invertible. And indeed, there is no “the” least-squares
solution, but there are infinitely many — all having the same (minimum) value
||Ax — b||. The purpose of this exercise is to find them.

(a) Compute a basis of Col A. (Its size is the rank of A.)
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(b) Let A’ be the 4 x r-matrix whose columns are the elements of this basis
(where 7 is the rank of A). Write down A’.

(c) What is Col (A") ?

(d) Find the projection u of b onto Col A.

(e) Now, the least-squares solutions to Ax = b are precisely the vectors x € R3
satisfying Ax = u. Find them.

[Note: This procedure — where we use A’ instead of A to compute the pro-
jection — can be used as a general method for solving underdetermined least-
squares problems like the one in this exercise. However, it is important to keep
in mind that the least-square solution to Ax = b is not unique when the problem
is underdetermined.] [20 points]

[Remark (added in hindsight): The preceding exercise is bad, and I am really
not proud of it. I wrote it to give an algorithm for solving underdetermined least-
squares problems; but there is much simpler (and less confusing) method to do so:
Namely, the least-squares solutions to Ax = b (for any n x m-matrix A and any
column vector b of size 1) are precisely the (exact!) solutions to AT Ax = ATb. The
latter can be computed using Gaussian elimination.]

Exercise 4. Find QR factorizations of the two matrices A from Exercise
[16 points]
| Exercise 5. Fill in the blanks in the following proof. [24 points]

Proposition 0.1. Let n € IN. Let U; and U» be two subspaces of IR”. Then,
(U + Up) " = Uit N U

(Recall that U; + U, is defined as the subset {u1 +up | 1y € Uy and up € Up} of
RR™)
Proof of Proposition[0.1, We shall first show that (U; + Up)™ C Uj- N U5-, then show
that U N U5 C (U; + Up) ™.
Proof of (U + Up)™ C Uj- N Us-:
Let v € (U + Up)". Thus, {v} L Uy 4+ Up. In other words,

v 1lx for each x € U; + Uy. (1)

We shall show that v € Uf and v € UZL:

1. Lety € U;. We have 6> € U, (since EI)Z is a subspace of R”, eE}d thus contains
the zero vector). From y € U; and 0 € Uy, we obtainy + 0 € U; + U, (by
the definition of U; + Uy). In other words, y € Uy + U, (since y + 0 = y).
Hence, (1) (applied to x = y) yields v L y.

Thus, we have shown that v L y for each y € U;. In other words, {v} L Uj.
In other words, v € Uf.
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2. Letz € Up. We have 0 € Uy (since Uj is a subspace of R”, and thus contains

the zero vector). From , wWe obtain (by the
definition of Uy + Uy). In other words, (since
Hence, (1) (applied to ) yields

Thus, we have shown that v L z for each z € U,. In other words, {v} L U,.
In other words, v € UZL.

Combining v € Uj- with v € Us-, we obtain v € U;- N Uy

Now, we have shown that v € l,llL N 1,12L for each v € (Up + Uz)L. In other words,
(Uy + Up) " C U NU;-.

Proof of Ui- N Uy~ C (Uy + Up)™*:

Letv € l,llL N 1,12L Thus, v € lllL N UzL C UlL In other words, {v} L Uj. In other
words,

v lx for each x € Uj. )

Similarly,
vlx for each x € Uy. 3)

Let now y € Uy + U,. Thus,
yel+U;={u+u | up el and u; € Up}.

In other words, y = uj + up for some u; € U; and uy € U,. Consider these 17 and
U.
We have v L u; (by , applied to )- In other
words, (v,uy) = 0. Similarly, (v, u) = 0.

Now, y = uj + uy, and thus

(v,y) = (v,u1 +up) = (v, u1) + (v, uy)
(by the distributive law for inner products)

=04+0=0.

In other words, v L y.
Thus, we have shown that v L y for each y € Uj + Up. In other words, {v} L

Uy + Uy. In other words, v € (Uy + UZ)L.

Now, we have shown that v € (U; + le)L foreach v € lllL N Uzl In other words,
UL NUf C (U + Uy)™.

Combining our two results (U + Uy)" C U NU;- and Ui- N Uy C (U; + Up) ™,
we obtain (U 4 Up) " = ui nus-. Proposition is thus proven. O
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Exercise 6. Define two subspaces P; and P, of R? as follows:

P, = span ((1,0,1)T, (1,2,1)T> ;

P, = span ((0,4,5)T, (-2, 1,3)T) .

(a) Find a vector subspace U of R3 such that P; = Uf.

(b) Find a vector subspace U, of R® such that P, = Us-.

(c) Write the sum U; + U, as a span.

(d) Write the intersection P; N P, as a span.

[Hint: Use Proposition (0.1] for part (d). This is a general method for writing
the intersection of two spans as a span.] [24 points]

Exercise 7. Let v; = (ay,by,c1)" and vy = (a3,b2,¢2)" be two linearly indepen-
dent vectors in R®. Let U = span (v1,v,). Write the 1-dimensional subspace U~
of R? as the span of a single vector. [10 points]




