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Math 4242 Fall 2016 (Darij Grinberg): homework set 4
due: Wed, 26 Oct 2016, in class

(or earlier by moodle)

Exercise 1. (a) A square matrix A is said to be symmetric if it satisfies AT =

A. For example, symmetric 3 × 3-matrices have the form

 a b c
b d e
c e f

 with

a, b, c, d, e, f ∈ R.
Find a basis of the vector space of all symmetric 3× 3-matrices.
(b) A square matrix A is said to be skew-symmetric if it satisfies AT = −A. For

example, skew-symmetric 3 × 3-matrices have the form

 0 a b
−a 0 c
−b −c 0

 with

a, b, c ∈ R.
Find a basis of the vector space of all skew-symmetric 3× 3-matrices.
(c) Find the dimension of the vector space of all symmetric 6× 6-matrices.
(d) Find the dimension of the vector space of all skew-symmetric 6 × 6-

matrices. [16
points]

Solution. Recall that Ei,j denotes the n × m-matrix whose (i, j)-th entry is 1 and
whose all other entries are 0. (The choice of n and m depends on the context: e.g.,
when we are working with 3× 3-matrices, then n = 3 and m = 3.)

(a) Let S3 be the vector space of all symmetric 3× 3-matrices. A basis (of course,
not the only basis) of S3 is (E1,1, E2,2, E3,3, E1,2 + E2,1, E1,3 + E3,1, E2,3 + E3,2). Explic-
itly, its entries are:

E1,1 =

 1 0 0
0 0 0
0 0 0

 , E2,2 =

 0 0 0
0 1 0
0 0 0

 , E3,3 =

 0 0 0
0 0 0
0 0 1

 ,

E1,2 + E2,1 =

 0 1 0
1 0 0
0 0 0

 , E1,3 + E3,1 =

 0 0 1
0 0 0
1 0 0

 ,

E2,3 + E3,2 =

 0 0 0
0 0 1
0 1 0

 .

[Proof: We want to prove that the list (E1,1, E2,2, E3,3, E1,2 + E2,1, E1,3 + E3,1, E2,3 + E3,2)
is a basis of S3. In order to do so, we must show that this list spans S3 and is lin-
early independent.

Proof of the fact that our list spans S3: All six entries E1,1, E2,2, E3,3, E1,2 + E2,1, E1,3 +
E3,1, E2,3 + E3,2 of our list are symmetric matrices (this should be clear by a look

https://ay16.moodle.umn.edu/course/view.php?id=7714
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at these matrices, or from the fact that
(
Ei,j
)T

= Ej,i for all i and j). Hence, they
belong to S3. Consequently,

span (E1,1, E2,2, E3,3, E1,2 + E2,1, E1,3 + E3,1, E2,3 + E3,2) ⊆ S3. (1)

We shall now prove that

S3 ⊆ span (E1,1, E2,2, E3,3, E1,2 + E2,1, E1,3 + E3,1, E2,3 + E3,2) . (2)

Indeed, let A ∈ S3. Thus, A is a symmetric 3× 3-matrix. Hence, A1,1 = A1,1,
A1,2 = A2,1, A1,3 = A3,1, A2,1 = A1,2, A2,2 = A2,2, A2,3 = A3,2, A3,1 = A1,3,

A3,2 = A2,3 and A3,3 = A3,3. Therefore, A has the form A =

 a b c
b d e
c e f

 for some

a, b, c, d, e, f ∈ R. Consider these a, b, c, d, e, f . Now,

A =

 a b c
b d e
c e f


= a

 1 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

=E1,1

+d

 0 0 0
0 1 0
0 0 0


︸ ︷︷ ︸

=E2,2

+ f

 0 0 0
0 0 0
0 0 1


︸ ︷︷ ︸

=E3,3

+ b

 0 1 0
1 0 0
0 0 0


︸ ︷︷ ︸

=E1,2+E2,1

+c

 0 0 1
0 0 0
1 0 0


︸ ︷︷ ︸

=E1,3+E3,1

+e

 0 0 0
0 0 1
0 1 0


︸ ︷︷ ︸

=E2,3+E3,2

= aE1,1 + dE2,2 + f E3,3 + b (E1,2 + E2,1) + c (E1,3 + E3,1) + e (E2,3 + E3,2)

(check this equality, if you don’t find it obvious)
∈ span (E1,1, E2,2, E3,3, E1,2 + E2,1, E1,3 + E3,1, E2,3 + E3,2) .

Since we have proven this for every A ∈ S3, we thus have shown that

S3 ⊆ span (E1,1, E2,2, E3,3, E1,2 + E2,1, E1,3 + E3,1, E2,3 + E3,2) .

Thus, (2) is proven.
Combining (1) with (2), we conclude that

S3 = span (E1,1, E2,2, E3,3, E1,2 + E2,1, E1,3 + E3,1, E2,3 + E3,2) .

In other words, the list (E1,1, E2,2, E3,3, E1,2 + E2,1, E1,3 + E3,1, E2,3 + E3,2) spans S3.
Proof of the fact that our list is linearly independent: We must now show that our list

(E1,1, E2,2, E3,3, E1,2 + E2,1, E1,3 + E3,1, E2,3 + E3,2) is linearly independent. In other
words, we must show that if a, b, c, d, e, f are six reals satisfying

aE1,1 + bE2,2 + cE3,3 + d (E1,2 + E2,1) + e (E1,3 + E3,1) + f (E2,3 + E3,2) =
−→
0 , (3)
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then all the six reals a, b, c, d, e, f are 0.
So let a, b, c, d, e, f be six reals satisfying (3). Recall that the zero vector

−→
0 of the

vector space S3 is the zero matrix 03×3. Thus,

03×3 =
−→
0 = aE1,1 + bE2,2 + cE3,3 + d (E1,2 + E2,1) + e (E1,3 + E3,1) + f (E2,3 + E3,2)

=

 a b c
b d e
c e f


(by straightforward computation). Hence, a b c

b d e
c e f

 = 03×3.

Therefore, all of the six reals a, b, c, d, e, f are 0 (being entries of the zero matrix
03×3). This completes the proof of the fact that our list is linearly independent.

Altogether, we now know that the list (E1,1, E2,2, E3,3, E1,2 + E2,1, E1,3 + E3,1, E2,3 + E3,2)
spans S3 and is linearly independent. Hence, this list is a basis of S3.]

(b) Let A3 be the vector space of all skew-symmetric 3× 3-matrices. A basis (of
course, not the only basis) of A3 is (E1,2 − E2,1, E1,3 − E3,1, E2,3 − E3,2). Explicitly, its
entries are:

E1,2 − E2,1 =

 0 1 0
−1 0 0
0 0 0

 , E1,3 − E3,1 =

 0 0 1
0 0 0
−1 0 0

 ,

E2,3 − E3,2 =

 0 0 0
0 0 1
0 −1 0

 .

[The proof is similar to the proof for part (a), except that we need to make one
more observation: Namely, if A ∈ A3, then A1,1 = −A1,1, A1,2 = −A2,1, A1,3 =
−A3,1, A2,1 = −A1,2, A2,2 = −A2,2, A2,3 = −A3,2, A3,1 = −A1,3, A3,2 = −A2,3 and
A3,3 = −A3,3. Thus, A1,1 = 0 (since A1,1 = −A1,1) and similarly A2,2 = 0 and
A3,3 = 0.]

(c) The dimension is 6 + 5 + 4 + 3 + 2 + 1 = 21.
In fact, this generalizes: For each n ∈ N, let Sn denote the vector space of all

symmetric n× n-matrices. Then, dim (Sn) = 1 + 2 + · · ·+ n =
n (n + 1)

2
.

[Sketch of a proof: In part (a), we have seen that (E1,1, E2,2, E3,3, E1,2 + E2,1, E1,3 + E3,1, E2,3 + E3,2)
is a basis of S3. Similarly, a list that begins with the n diagonal n × n-matrices
E1,1, E2,2, . . . , En,n and continues with all possible n× n-matrices of the form Ei,j +
Ej,i (with i < j) can be shown to be a basis of Sn. Thus, dim (Sn) is the size of
this list. Now, what is the size of this list? Its first part consists of the n matri-
ces E1,1, E2,2, . . . , En,n. Its second part consists of all matrices of the form Ei,j + Ej,i
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(with i < j). The first part clearly has size n; it thus remains to compute the size
of the second part. This size is clearly the number of all pairs (i, j) of elements
i, j ∈ {1, 2, . . . , n} satisfying i < j. For each j ∈ {1, 2, . . . , n}, there are exactly j− 1
elements i ∈ {1, 2, . . . , n} satisfying i < j. Therefore, the second part has total size
(1− 1) + (2− 1) + · · ·+ (n− 1) = 1+ 2+ · · ·+ (n− 1). The size of the whole basis
is therefore

(size of the first part)︸ ︷︷ ︸
=n

+ (size of the second part)︸ ︷︷ ︸
=1+2+···+(n−1)

= n + (1 + 2 + · · ·+ (n− 1)) = 1 + 2 + · · ·+ n.

Hence, dim (Sn) = 1 + 2 + · · · + n =
n (n + 1)

2
(by the well-known formula for

triangular numbers).]
(d) The dimension is 5 + 4 + 3 + 2 + 1 = 15.
In fact, this generalizes: For each n ∈ N, let An denote the vector space of

all skew-symmetric n × n-matrices. Then, dim (An) = 1 + 2 + · · · + (n− 1) =
(n− 1) n

2
.

[Sketch of a proof: In part (b), we have seen that (E1,2 − E2,1, E1,3 − E3,1, E2,3 − E3,2)
is a basis of A3. Similarly, a list that consists of all possible n× n-matrices of the
form Ei,j − Ej,i (with i < j) can be shown to be a basis of An. Thus, dim (An) is
the size of this list. This list consists of all matrices of the form Ei,j − Ej,i (with
i < j). Hence, its size is the number of all pairs (i, j) of elements i, j ∈ {1, 2, . . . , n}
satisfying i < j. For each j ∈ {1, 2, . . . , n}, there are exactly j − 1 elements i ∈
{1, 2, . . . , n} satisfying i < j. Therefore, the list has total size (1− 1) + (2− 1) +
· · ·+ (n− 1) = 1 + 2 + · · ·+ (n− 1).

Hence, dim (An) = 1+ 2+ · · ·+(n− 1) =
(n− 1) n

2
(by the well-known formula

for triangular numbers).]

Exercise 2. (a) Find the rank of the matrix A =

(
0 1
1 2

)
.

(b) Find the rank of the matrix B =

(
0 1 2
1 2 3

)
.

(c) Find the rank of the matrix C =

 0 1
1 2
2 3

.

(d) Find the rank of the matrix D =

 0 1 2
1 2 3
2 3 4

. [8 points]

Solution. (a) The rank of A is 2.

https://en.wikipedia.org/wiki/Triangular_number
https://en.wikipedia.org/wiki/Triangular_number
https://en.wikipedia.org/wiki/Triangular_number
https://en.wikipedia.org/wiki/Triangular_number
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[Proof: The two columns of A are linearly independent1. Hence, the column
space of A has dimension 2. In other words, A has rank 2 (because the rank of a
matrix is the dimension of its column space.]

(b) The rank of B is 2.
[Proof: The two rows of B are linearly independent2. Hence, the row space of B

has dimension 2. In other words, B has rank 2 (because the rank of a matrix is the
dimension of its row space.]

(c) The rank of C is 2.
[Proof: The two columns of C are linearly independent3. Hence, the column space

of C has dimension 2. In other words, C has rank 2 (because the rank of a matrix
is the dimension of its column space.]

(d) The rank of D is 2.
[Proof: Let us find a basis of the column space Col D of D.

Clearly, Col D = span (v1, v2, v3), where v1 =

 0
1
2

, v2 =

 1
2
3

 and v3 = 2
3
4

 (since the column space of a matrix is the span of its columns). Thus,

(v1, v2, v3) is a spanning list for Col D.
Now, we are looking for a basis of Col D. As we know, we can find such a basis by

removing redundant vectors from our spanning list (v1, v2, v3). To find redundant
vectors, we search for a linear dependency between v1, v2, v3. In other words, we
search for three reals λ1, λ2, λ3, not all zero, satisfying λ1v1 + λ2v2 + λ3v3 =

−→
0 .

This is an easy exercise in Gaussian elimination: The equation λ1v1 + λ2v2 +

λ3v3 =
−→
0 is equivalent to the system of linear equations


0λ1 + 1λ2 + 2λ3 = 0;
1λ1 + 2λ2 + 3λ3 = 0;
2λ1 + 3λ2 + 4λ3 = 0

,

and solving this system yields

 λ1
λ2
λ3

 =

 r
−2r

r

 with r ∈ R. By taking r =

1, we find the nonzero solution

 λ1
λ2
λ3

 =

 1
−2
1

. This gives us the linear

dependency relation 1v1 + (−2) v2 + 1v3 =
−→
0 . Solving this for v3 (the last vector

to appear in this relation with a nonzero coefficient), we find v3 = 2v2− v1. Hence,
the vector v3 in the spanning list (v1, v2, v3) is redundant.

1This can be checked rather easily: If λ1, λ2 are two reals such that λ1

(
0
1

)
+ λ2

(
1
2

)
=
−→
0 ,

then
−→
0 = λ1

(
0
1

)
+ λ2

(
1
2

)
=

(
λ2

λ1 + 2λ2

)
, so that both λ2 and λ1 + 2λ2 must be 0, and

therefore both λ1 and λ2 must be 0.
2This is straightforward to check once again.
3Again, checking this is left to the reader.
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Thus, removing it yields a smaller spanning list (v1, v2). Is this smaller list al-
ready a basis or does it have further redundant vectors that can be removed? Let us
see. We search for a linear dependency between v1, v2. In other words, we search
for two reals λ1, λ2, not all zero, satisfying λ1v1 + λ2v2 =

−→
0 .

Again, this is an easy exercise in Gaussian elimination: The equation λ1v1 +

λ2v2 =
−→
0 is equivalent to the system of linear equations


0λ1 + 1λ2 = 0;
1λ1 + 2λ2 = 0;
2λ1 + 3λ2 = 0

, and

solving this system yields
(

λ1
λ2

)
=

(
0
0

)
. Thus, the only solution has (λ1, λ2) =

(0, 0). In other words, there exist no two reals λ1, λ2, not all zero, satisfying λ1v1 +

λ2v2 =
−→
0 . In other words, the spanning list (v1, v2) is linearly independent, and

thus is a basis of Col D. Therefore, dim (Col D) = 2 (because this basis has size 2).
But the rank of D is rank D = dim (Col D) = 2.]

Exercise 3. Find the four subspaces (kernel, column space, row space, left kernel)
of the four matrices from Exercise 2.

[Keep in mind that the column space and the kernel consist of column vectors,
whereas the row space and the left kernel consist of row vectors.] [16 points]

Solution. [I have been ambiguous about what “find” means: Does finding a sub-
space mean writing it as a span, or writing it as a non-redundant span (i.e., finding
a basis), or just characterizing it somehow? I shall do all of these further below.

I will only give proofs for the four subspaces of B. The other matrices aren’t
much different.]

(a) We have

Ker A = span () =
{−→

0
}

;

Col A = span
((

0
1

)
,
(

1
2

))
= R2;

Row A = span
((

0 1
)

,
(

1 2
))

= R1×2;(
Ker

(
AT
))T

= span () =
{−→

0
}

.

(b) We have

Ker B = span

 1
−2
1

 ;

Col B = span
((

0
1

)
,
(

1
2

)
,
(

2
3

))
= R2;

Row B = span
((

0 1 2
)

,
(

1 2 3
))

;(
Ker

(
BT
))T

= span () =
{−→

0
}

.
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[Proof sketches: To find Ker B, proceed using the algorithm that is illustrated in Ex-
amples 4.34, 4.35 and 4.36 in the present version of the lecture notes. This involves

solving the equation Bx = 02×1, which rewrites as
(

0 1 2
1 2 3

) x1
x2
x3

 =

(
0
0

)

if we set x =

 x1
x2
x3

; this further rewrites as
{

0x1 + 1x2 + 2x3 = 0;
1x1 + 2x2 + 3x3 = 0 , and this is

a system of linear equations whose solutions can be described as the vectors of the

form

 r
−2r

r

 for r ∈ R. Hence,

Ker B =


 r
−2r

r

 | r ∈ R

 =

r

 1
−2
1

 | r ∈ R


= span

 1
−2
1

 .

Thus, Ker B has been computed.
Similarly, Ker

(
BT) can be computed, and thus

(
Ker

(
BT))T as well (since getting

from Ker
(

BT) to
(
Ker

(
BT))T just requires transposing every vector).

The row space Row B is the span of the rows of B (by definition), which are(
0 1 2

)
and

(
1 2 3

)
. Thus,

Row B = span
((

0 1 2
)

,
(

1 2 3
))

.

Since the vectors
(

0 1 2
)

and
(

1 2 3
)

are linearly independent (this is easy
to check), this list

((
0 1 2

)
,
(

1 2 3
))

is actually a basis of Row B.
The column space Col B is the span of the columns of B (by definition), which

are
(

0
1

)
,
(

1
2

)
and

(
2
3

)
. Hence,

Col B = span
((

0
1

)
,
(

1
2

)
,
(

2
3

))
.

However, the spanning list
((

0
1

)
,
(

1
2

)
,
(

2
3

))
has a redundant vector (namely,(

2
3

)
= 2 ·

(
1
2

)
−
(

0
1

)
), and thus can be shrunk to a spanning list

((
0
1

)
,
(

1
2

))
.

This latter spanning list has no redundant vectors any more, and thus is a basis of
Col B.

http://www.cip.ifi.lmu.de/~grinberg/t/16f/lina.pdf
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Why is Col B = R2 ? Well, we know that dim (Col B) = rank B = 2 (from
Exercise 2), and thus Col B is a 2-dimensional subspace of R2. But R2 is a 2-
dimensional vector space itself, and thus the only 2-dimensional subspace of R2 is
the whole R2 (this follows from Proposition 0.1 (c) below). Hence, Col B = R2.]

(c) We have

Ker C = span () =
{−→

0
}

;

Col C = span

 0
1
2

 ,

 1
2
3

 ;

Row C = span
((

0 1
)

,
(

1 2
)

,
(

2 3
))

= R2;(
Ker

(
CT
))T

= span
((

1 −2 1
))

.

[Remark: We have C = BT. Thus, the four subspaces of C can easily be obtained
from the four subspaces of B. Namely,

Ker C =

((
Ker

(
BT
))T

)T
; Col C = (Row B)T ;

Row C = (Col B)T ;
(

Ker
(

CT
))T

= (Ker B)T .

]
(d) We have

Ker D = span

 1
−2
1

 ;

Col D = span

 0
1
2

 ,

 1
2
3

 ,

 2
3
4


= span

 0
1
2

 ,

 1
2
3

 ;

Row D = span
((

0 1 2
)

,
(

1 2 3
)

,
(

2 3 4
))

= span
((

0 1 2
)

,
(

1 2 3
))

;(
Ker

(
DT
))T

= span
((

1 −2 1
))

.

Now, for the theory part. Here is a fact which I half-proved in class:
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Proposition 0.1. Let U be a subspace of a finite-dimensional vector space V.
(a) The vector space U is finite-dimensional.
(b) We have dim U ≤ dim V.
(c) If dim U = dim V, then U = V.

Proof of Proposition 0.1. Let d = dim V.
Recall that (by one of our many propositions)

every linearly independent list of vectors in V
can be extended to a basis of V.

(4)

4 In particular,

every linearly independent list of vectors in V has size ≤ d (5)

(because (4) shows that this list can be extended to a basis of V; but the latter basis
must have size dim V = d, and therefore the former list must have size ≤ d). In
particular, every linearly independent list of vectors in U has size ≤ d (because
vectors in U are also vectors in V).

Now, fix a linearly independent list (u1, u2, . . . , uk) of vectors in U of longest
possible size. (There is indeed a “longest possible size”, because every linearly
independent list of vectors in U has size ≤ d.)

We have span (u1, u2, . . . , uk) ⊆ U (since u1, u2, . . . , uk are vectors in U). On
the other hand, it is easy to see that U ⊆ span (u1, u2, . . . , uk)

5. Combined
with span (u1, u2, . . . , uk) ⊆ U, this yields U = span (u1, u2, . . . , uk). Thus, the list
(u1, u2, . . . , uk) is a basis of U (since we already know that this list is linearly inde-
pendent).

From U = span (u1, u2, . . . , uk), we see that there exists a finite list that spans
U (namely, the list (u1, u2, . . . , uk)). Thus, U is finite-dimensional. This proves
Proposition 0.1 (a).

4As usual: To “extend” means to attach further vectors to it.
5Proof. Let u ∈ U.

The list (u1, u2, . . . , uk, u) is a list of vectors in U that is longer than the list (u1, u2, . . . , uk),
and thus must be linearly dependent (because (u1, u2, . . . , uk) was a linearly independent list of
vectors in U of longest possible size). In other words, there exist scalars λ1, λ2, . . . , λk, λ ∈ R,
not all zero, such that

λ1u1 + λ2u2 + · · ·+ λkuk + λu = 0. (6)

Consider these scalars.
If we had λ = 0, then (6) would simplify to λ1u1 + λ2u2 + · · ·+ λkuk = 0; this would yield

that all of λ1, λ2, . . . , λk are zero (since (u1, u2, . . . , uk) is linearly independent), and therefore all
of our scalars λ1, λ2, . . . , λk, λ would be zero (since λ = 0 too); but this would contradict the
assumption that λ1, λ2, . . . , λk, λ are not all zero. Hence, we cannot have λ = 0. Thus, λ 6= 0.
Hence, we can solve (6) for u, obtaining

u =
−1
λ

(λ1u1 + λ2u2 + · · ·+ λkuk) ∈ span (u1, u2, . . . , uk) .

Thus, we have proven that every u ∈ U satisfies u ∈ span (u1, u2, . . . , uk). In other words,
U ⊆ span (u1, u2, . . . , uk).
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The basis (u1, u2, . . . , uk) of U has size k. Hence, dim U = k. But (u1, u2, . . . , uk)
is a linearly independent list of vectors in V. Thus, this list has size ≤ d (by (5)). In
other words, k ≤ d (since the size of this list is k). Since k = dim U, we now have
dim U = k ≤ d = dim V. This proves Proposition 0.1 (b).

(c) Assume that dim U = dim V. Recall that (u1, u2, . . . , uk) is a linearly indepen-
dent list of vectors in V. Thus, (4) shows that this list can be extended to a basis of
V. In other words, there exists a basis of V having the form (u1, u2, . . . , uk, v1, v2, . . . , vm)
for some additional vectors v1, v2, . . . , vm.

The list (u1, u2, . . . , uk, v1, v2, . . . , vm) has size k + m. But on the other hand,
the same list has size dim V (since it is a basis of V). Thus, k + m = dim V =
dim U (since dim U = dim V). Thus, k + m = dim U = k, and therefore m =
0. Hence, there are no additional vectors v1, v2, . . . , vm. In other words, the list
(u1, u2, . . . , uk, v1, v2, . . . , vm) is just our old list (u1, u2, . . . , uk). Thus, the latter list
is a basis of V (since the former list is a basis of V). Therefore,

V = span (u1, u2, . . . , uk) = U.

This proves Proposition 0.1 (c).

Now, let me recall some more properties of matrices:

• If D is a k× `-matrix, then

Col D = DR` =
{

Dx | x ∈ R`
}

(7)

= span (col1 D, col2 D, . . . , col` D)

is the column space of D.

• If D is a k× `-matrix, then

Row D = R1×kD =
{

yD | y ∈ R1×k
}

(8)

= span (row1 D, row2 D, . . . , rowk D)

is the row space of D. (It can also be written as
(

DTRk)T
.)

These two facts are completely analogous (since R` is just shorthand for R`×1).

Exercise 4. Prove Proposition 0.2 (a) below. [Hint: Use row spaces instead of
column spaces. Use (8) instead of (7). Do not hesitate to copy my proof of
Proposition 0.2 (a), as long as you make the necessary changes.] [10 points]

Proposition 0.2. Let n ∈N, m ∈N and p ∈N. Let A be an n×m-matrix. Let B
be an m× p-matrix.

(a) We have rank (AB) ≤ rank B.
(b) We have rank (AB) ≤ rank A.
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Proof of Proposition 0.2. (b) Recall that the rank of a matrix is the dimension of its
column space. Thus,

rank (AB) = dim (Col (AB)) and (9)
rank A = dim (Col A) . (10)

But (7) (applied to D = AB, k = n and ` = p) shows that Col (AB) = {ABx | x ∈ Rp}.
On the other hand, (7) (applied to D = A, k = n and ` = m) shows that Col A =
{Ax | x ∈ Rm}.

Now, let us prove that Col (AB) ⊆ Col A. Indeed, let v ∈ Col (AB) be arbitrary.
Thus, v ∈ Col (AB) = {ABx | x ∈ Rp}. In other words, v has the form v = ABx
for some x ∈ Rp. Denote this x by y (because we will have another use for the
letter x later). Thus, y ∈ Rp and v = ABy. Thus, v has the form v = Ax for some
x ∈ Rm (namely, for x = By). In other words, v ∈ {Ax | x ∈ Rm}. In other words,
v ∈ Col A (since Col A = {Ax | x ∈ Rm}).

Thus, we have proven that every v ∈ Col (AB) lies in Col A. In other words,
Col (AB) ⊆ Col A. Furthermore, Col (AB) is a subspace of Rn, and thus con-
tains the zero vector, is closed under addition, and is closed under scaling. Hence,
Col (AB) is also a subspace of Col A (since Col (AB) ⊆ Col A). Thus, Proposi-
tion 0.1 (b) (applied to U = Col (AB) and V = Col A) yields dim (Col (AB)) ≤
dim (Col A). In view of (9) and (10), this rewrites as rank (AB) ≤ rank A. This
proves Proposition 0.2 (b).

(a) Recall that the rank of a matrix is the dimension of its row space. Thus,

rank (AB) = dim (Row (AB)) and (11)
rank B = dim (Row B) . (12)

But (8) (applied to D = AB, k = n and ` = p) shows that Row (AB) ={
yAB | y ∈ R1×n}. On the other hand, (8) (applied to D = B, k = m and ` = p)

shows that Row B =
{

yB | y ∈ R1×m}.
Now, let us prove that Row (AB) ⊆ Row B. Indeed, let v ∈ Row (AB) be arbi-

trary. Thus, v ∈ Row (AB) =
{

yAB | y ∈ R1×n}. In other words, v has the form
v = yAB for some y ∈ R1×n. Denote this y by z (because we will have another use
for the letter y later). Thus, z ∈ R1×n and v = zAB. Thus, v has the form v = yB
for some y ∈ R1×m (namely, for y = zA). In other words, v ∈

{
yB | y ∈ R1×m}.

In other words, v ∈ Row B (since Row B =
{

yB | y ∈ R1×m}).
Thus, we have proven that every v ∈ Row (AB) lies in Row B. In other words,

Row (AB) ⊆ Row B. Furthermore, Row (AB) is a subspace of R1×p, and thus con-
tains the zero vector, is closed under addition, and is closed under scaling. Hence,
Row (AB) is also a subspace of Row B (since Row (AB) ⊆ Row B). Thus, Proposi-
tion 0.1 (b) (applied to U = Row (AB) and V = Row B) yields dim (Row (AB)) ≤
dim (Row B). In view of (11) and (12), this rewrites as rank (AB) ≤ rank B. This
proves Proposition 0.2 (a).

Recall a few more facts:
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• The rank-nullity theorem states that any n×m-matrix A satisfies

rank A + dim (Ker A) = m. (13)

(I did this in class, though I used dim (ARm) instead of rank A because I had
not defined rank A yet.)

• We have
rank (In) = n (14)

for every n ∈ N. (To prove this, argue that InRn =

 Inx︸︷︷︸
=x

| x ∈ Rn

 =

{x | x ∈ Rn} = Rn and thus rank (In) = dim (InRn)︸ ︷︷ ︸
=Rn

= dim (Rn) = n.)

• If A is an n×m-matrix, then

rank A ≤ min {n, m} . (15)

(Recall the reason why this is true: We have rank A = dim (Col A) ≤ m be-
cause the column space of A is spanned by m vectors, and we have rank A =
dim (Row A) ≤ n because the row space of D is spanned by n vectors.)

Now, we can prove some statements that were left unproven in class long ago,
back before we introduced vector spaces:

Definition 0.3. Let n ∈N and m ∈N. Let A be an n×m-matrix.
(a) A right inverse of A means an m× n-matrix B satisfying AB = In. If a right

inverse of A exists, then A is said to be right-invertible.
(b) A left inverse of A means an m× n-matrix B satisfying BA = Im. If a left

inverse of A exists, then A is said to be left-invertible.
(c) An inverse of A means an m × n-matrix B satisfying both AB = In and

BA = Im. If an inverse of A exists, then A is said to be invertible.

Exercise 5. Fill in the big blank in the following proof.
[Hint: What is the transpose of ATB ?] [10 points]

Proposition 0.4. Let n ∈N and m ∈N. Let A be an n×m-matrix.
(a) The matrix A is left-invertible if and only if the matrix AT is right-invertible.
(b) We have rank A = rank

(
AT).

Proof of Proposition 0.4. (a) =⇒: Assume that A is left-invertible. We must show that
AT is right-invertible.

The matrix A is left-invertible. In other words, it has a left inverse. That is, there
exists an m× n-matrix B satisfying BA = Im. Consider this B.
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Now, (BA)T = ATBT (by Proposition 3.18 (e) in the current version of the notes,
applied to m, n, m, B and A instead of n, m, p, A and B), so that ATBT = BA︸︷︷︸

=Im

T

= (Im)
T = Im. Hence, BT is a right inverse of AT. Thus, AT is right-

invertible. This proves the =⇒ direction of Proposition 0.4 (a).
⇐=: Assume that AT is right-invertible. We must show that A is left-invertible.
The matrix AT is right-invertible. In other words, it has a right inverse. That is,

there exists an n×m-matrix B satisfying ATB = In. Consider this B.
Set C = BT.
Now,

(
ATB

)T
= BT (AT)T (by Proposition 3.18 (e) in the current version of the

notes, applied to m, n, m, AT and B instead of n, m, p, A and B). Comparing this

with

ATB︸︷︷︸
=In

T

= (In)
T = In, we find In = BT︸︷︷︸

=C

(
AT
)T

︸ ︷︷ ︸
=A

= CA. Hence, CA = In.

Hence, C is a left inverse of A. Thus, A is left-invertible. This proves the ⇐=
direction of Proposition 0.4 (a).

(b) Recall a notation I introduced in class: If V is a set of column vectors, then
VT denotes the set of their transposes (rigorously speaking, this means that VT ={

vT | v ∈ V
}

). I shall call VT the elementwise transpose of V. The sets V and VT are
“essentially the same” except that the former consists of column vectors and the
latter of row vectors. In particular, if V is a subspace of Rn, then VT is a subspace
of R1×n, and their dimensions are the same:

dim
(

VT
)
= dim V. (16)

Now, the rows of AT are the transposes of the columns of A. Hence, the span of
the rows of AT is the elementwise transpose of the span of the columns of A. This
rewrites as follows:

Row
(

AT
)
= (Col A)T

(because the span of the rows of AT is the row space Row
(

AT), and the span of
the columns of A is the column space Col A). Thus,

dim
(

Row
(

AT
))

= dim
(
(Col A)T

)
= dim (Col A)

(by (16), applied to V = Col A). But rank
(

AT) = dim
(
Row

(
AT)) (since the rank

of a matrix is the dimension of its row space) and rank A = dim (Col A) (since the
rank of a matrix is the dimension of its column space). Hence,

rank
(

AT
)
= dim

(
Row

(
AT
))

= dim (Col A) = rank A.

Thus, Proposition 0.4 (b) is proven.
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Exercise 6. Fill in the blanks in the following proof. [27 points]

Proposition 0.5. Let n ∈N and m ∈N. Let A be an n×m-matrix.
(a) The matrix A is right-invertible if and only if rank A = n.
(b) The matrix A is left-invertible if and only if rank A = m.
(c) The matrix A is invertible if and only if rank A = n = m. (In particular,

only square matrices can be invertible!)

Proof of Proposition 0.5. (a) =⇒: Let us first show that if A is right-invertible, then
rank A = n.

Indeed, assume that A is right-invertible. In other words, there exists some
m× n-matrix B satisfying AB = In. Consider this B.

Proposition 0.2 (b) yields rank (AB) ≤ rank A, so that rank A ≥ rank

 AB︸︷︷︸
=In

 =

rank (In) = n (by (14)). But (15) yields rank A ≤ min {n, m} ≤ n. Combining
this with rank A ≥ n, we find rank A = n. This completes the proof of the =⇒
direction.
⇐=: Let us now show that if rank A = n, then A is right-invertible.
Indeed, assume that rank A = n. We shall explicitly construct a right inverse B

to A.
Recall that the rank of a matrix is the dimension of its column space. Thus,

rank A = dim (ARm) (since the column space of A is ARm). Hence, dim (ARm) =
rank A = n = dim (Rn).

But ARm is a subspace of Rn. Hence, from dim (ARm) = dim (Rn), we obtain
ARm = Rn (by Proposition 0.1 (c), applied to U = ARm and V = Rn).

For each j ∈ {1, 2, . . . , n}, we have

colj (In) ∈ Rn = ARm = {Ax | x ∈ Rm} .
6 In other words, for each j ∈ {1, 2, . . . , n}, we can write colj (In) in the form
Ax for some x ∈ Rm. Pick such an x, and denote it by xj. Thus, xj (for each
j ∈ {1, 2, . . . , n}) is a column vector in Rm satisfying colj (In) = Axj.

Now we have chosen n vectors x1, x2, . . . , xn in Rm such that

colj (In) = Axj for every j ∈ {1, 2, . . . , n} . (17)

Let B be the m× n-matrix whose columns are x1, x2, . . . , xn. Thus,

colj B = xj for every j ∈ {1, 2, . . . , n} . (18)

Now, every j ∈ {1, 2, . . . , n} satisfies

colj (AB) = A · colj B (by what is currently Proposition 2.19 (d) in the notes)

= Axj (by (18))

= colj (In) (by (17)) .

6By the way, colj (In) is the standard basis vector ej = (0, 0, . . . , 0, 1, 0, 0, . . . 0)T ; but this is unim-
portant for us here.



Math 4242 Fall 2016 homework page 15

In other words, each column of the n × n-matrix AB equals the corresponding
column of In. Hence, these two matrices are equal. In other words, AB = In. Thus,
B is a right inverse of A. Hence, A is right-invertible. This proves the⇐= direction.

Altogether, we have thus proven Proposition 0.5 (a).
(b) Applying Proposition 0.5 (a) to m, n and AT instead of n, m and A, we

conclude the following: The matrix AT is right-invertible if and only if rank
(

AT) =
m. Combined with Proposition 0.4 (a), this shows that the matrix A is left-invertible
if and only if rank

(
AT) = m. Because of Proposition 0.4 (b), we can replace

rank
(

AT) by rank A here, and we obtain precisely the claim of Proposition 0.5 (b).
(c) =⇒: Let us first show that if A is invertible, then rank A = n = m.
Indeed, assume that A is invertible. In other words, there exists some m × n-

matrix B satisfying both AB = In and BA = Im. Consider this B.
We have AB = In; hence, B is a right inverse of A. Thus, A is right-invertible.

Therefore, Proposition 0.5 (a) shows that rank A = n.
We have BA = Im; hence, B is a left inverse of A. Thus, A is left-invertible.

Therefore, Proposition 0.5 (b) shows that rank A = m.
Combining rank A = n with rank A = m, we obtain rank A = n = m. This

proves the =⇒ direction of Proposition 0.5 (c).
⇐=: Let us now show that if rank A = n = m, then A is invertible.
Indeed, assume that rank A = n = m.
From rank A = n, we conclude (using Proposition 0.5 (a)) that A is right-invertible.

In other words, A has a right inverse R. Consider this R.
From rank A = m, we conclude (using Proposition 0.5 (b) that A is left-invertible.

In other words, A has a left inverse L. Consider this L.
Proposition 3.6 (d) from the notes now shows that the matrix L = R is the only

inverse of A. In particular, it is an inverse of A; thus, A is invertible. This proves
the⇐= direction of Proposition 0.5 (c).

Exercise 7. Which of the matrices in Exercise 2 are invertible? [10 points]

Solution. Only the matrix A.
[Proof: (a) We have rank A = 2 (as we know from solving Exercise 2). The matrix

A is a 2× 2-matrix. Hence, Proposition 0.5 (c) (applied to 2 and 2 instead of n and
m) shows that the matrix A is invertible if and only if rank A = 2 = 2. Since we
have rank A = 2 = 2, this shows that A is invertible.

(b) The matrix B is a 2× 3-matrix. Hence, Proposition 0.5 (c) (applied to B, 2
and 3 instead of A, n and m) shows that the matrix B is invertible if and only if
rank B = 2 = 3. Since rank B = 2 = 3 is clearly false, this shows that B is not
invertible.

(c) The matrix C is a 3× 2-matrix. Hence, Proposition 0.5 (c) (applied to C, 3
and 2 instead of A, n and m) shows that the matrix C is invertible if and only if
rank C = 3 = 2. Since rank C = 3 = 2 is clearly false, this shows that C is not
invertible.

(d) We have rank D = 2 (as we know from solving Exercise 2). The matrix D
is a 3× 3-matrix. Hence, Proposition 0.5 (c) (applied to D, 3 and 3 instead of A,
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n and m) shows that the matrix D is invertible if and only if rank D = 3 = 3.
Since rank D = 3 = 3 is false (because rank D = 2 6= 3), this shows that D is not
invertible.]

Exercise 8. Let n ∈ N. Let A be a left-invertible n× n-matrix. Prove that A is
invertible. [10 points]

[Hint: All ingredients of the proof are on this problem set; you have to com-
bine them.]

Solution. Recall that A is an n × n-matrix. Hence, Proposition 0.5 (b) (applied to
m = n) shows that the matrix A is left-invertible if and only if rank A = n. Thus,
rank A = n (since A is left-invertible).

But Proposition 0.5 (c) (applied to m = n) shows that the matrix A is invertible if
and only if rank A = n = n. Thus, A is invertible (since rank A = n = n).


