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Math 4242 Fall 2016 (Darij Grinberg): homework set 4
due: Wed, 26 Oct 2016, in class

(or earlier by moodle)

Exercise 1. (a) A square matrix A is said to be symmetric if it satisfies AT =

A. For example, symmetric 3 × 3-matrices have the form

 a b c
b d e
c e f

 with

a, b, c, d, e, f ∈ R.
Find a basis of the vector space of all symmetric 3× 3-matrices.
(b) A square matrix A is said to be skew-symmetric if it satisfies AT = −A. For

example, skew-symmetric 3 × 3-matrices have the form

 0 a b
−a 0 c
−b −c 0

 with

a, b, c ∈ R.
Find a basis of the vector space of all skew-symmetric 3× 3-matrices.
(c) Find the dimension of the vector space of all symmetric 6× 6-matrices.
(d) Find the dimension of the vector space of all skew-symmetric 6 × 6-

matrices. [16
points]

Exercise 2. (a) Find the rank of the matrix A =

(
0 1
1 2

)
.

(b) Find the rank of the matrix B =

(
0 1 2
1 2 3

)
.

(c) Find the rank of the matrix C =

 0 1
1 2
2 3

.

(d) Find the rank of the matrix D =

 0 1 2
1 2 3
2 3 4

. [8 points]

Exercise 3. Find the four subspaces (kernel, column space, row space, left kernel)
of the four matrices from Exercise 2.

[Keep in mind that the column space and the kernel consist of column vectors,
whereas the row space and the left kernel consist of row vectors.] [16 points]

Now, for the theory part. Here is a fact which I half-proved in class:

Proposition 0.1. Let U be a subspace of a finite-dimensional vector space V.
(a) The vector space U is finite-dimensional.
(b) We have dim U ≤ dim V.
(c) If dim U = dim V, then U = V.

https://ay16.moodle.umn.edu/course/view.php?id=7714
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Proof of Proposition 0.1. Let d = dim V.
Recall that (by one of our many propositions)

every linearly independent list of vectors in V
can be extended to a basis of V.

(1)

1 In particular,

every linearly independent list of vectors in V has size ≤ d (2)

(because (1) shows that this list can be extended to a basis of V; but the latter basis
must have size dim V = d, and therefore the former list must have size ≤ d). In
particular, every linearly independent list of vectors in U has size ≤ d (because
vectors in U are also vectors in V).

Now, fix a linearly independent list (u1, u2, . . . , uk) of vectors in U of longest
possible size. (There is indeed a “longest possible size”, because every linearly
independent list of vectors in U has size ≤ d.)

We have 〈u1, u2, . . . , uk〉 ⊆ U (since u1, u2, . . . , uk are vectors in U). On the other
hand, it is easy to see that U ⊆ 〈u1, u2, . . . , uk〉 2. Combined with 〈u1, u2, . . . , uk〉 ⊆
U, this yields U = 〈u1, u2, . . . , uk〉. Thus, the list (u1, u2, . . . , uk) is a basis of U (since
we already know that this list is linearly independent).

From U = 〈u1, u2, . . . , uk〉, we see that there exists a finite list that spans U
(namely, the list (u1, u2, . . . , uk)). Thus, U is finite-dimensional. This proves Propo-
sition 0.1 (a).

The basis (u1, u2, . . . , uk) of U has size k. Hence, dim U = k. But (u1, u2, . . . , uk)
is a linearly independent list of vectors in V. Thus, this list has size ≤ d (by (2)). In
other words, k ≤ d (since the size of this list is k). Since k = dim U, we now have
dim U = k ≤ d = dim V. This proves Proposition 0.1 (b).

1As usual: To “extend” means to attach further vectors to it.
2Proof. Let u ∈ U.

The list (u1, u2, . . . , uk, u) is a list of vectors in U that is longer than the list (u1, u2, . . . , uk),
and thus must be linearly dependent (because (u1, u2, . . . , uk) was a linearly independent list of
vectors in U of longest possible size). In other words, there exist scalars λ1, λ2, . . . , λk, λ ∈ R,
not all zero, such that

λ1u1 + λ2u2 + · · ·+ λkuk + λu = 0. (3)

Consider these scalars.
If we had λ = 0, then (3) would simplify to λ1u1 + λ2u2 + · · ·+ λkuk = 0; this would yield

that all of λ1, λ2, . . . , λk are zero (since (u1, u2, . . . , uk) is linearly independent), and therefore all
of our scalars λ1, λ2, . . . , λk, λ would be zero (since λ = 0 too); but this would contradict the
assumption that λ1, λ2, . . . , λk, λ are not all zero. Hence, we cannot have λ = 0. Thus, λ 6= 0.
Hence, we can solve (3) for u, obtaining

u =
−1
λ

(λ1u1 + λ2u2 + · · ·+ λkuk) ∈ 〈u1, u2, . . . , uk〉 .

Thus, we have proven that every u ∈ U satisfies u ∈ 〈u1, u2, . . . , uk〉. In other words, U ⊆
〈u1, u2, . . . , uk〉.
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(c) Assume that dim U = dim V. Recall that (u1, u2, . . . , uk) is a linearly indepen-
dent list of vectors in V. Thus, (1) shows that this list can be extended to a basis of
V. In other words, there exists a basis of V having the form (u1, u2, . . . , uk, v1, v2, . . . , vm)
for some additional vectors v1, v2, . . . , vm.

The list (u1, u2, . . . , uk, v1, v2, . . . , vm) has size k + m. But on the other hand,
the same list has size dim V (since it is a basis of V). Thus, k + m = dim V =
dim U (since dim U = dim V). Thus, k + m = dim U = k, and therefore m =
0. Hence, there are no additional vectors v1, v2, . . . , vm. In other words, the list
(u1, u2, . . . , uk, v1, v2, . . . , vm) is just our old list (u1, u2, . . . , uk). Thus, the latter list
is a basis of V (since the former list is a basis of V). Therefore,

V = 〈u1, u2, . . . , uk〉 = U.

This proves Proposition 0.1 (c).

Now, let me recall some more properties of matrices:

• If D is a k× `-matrix, then

Col D = DR` =
{

Dx | x ∈ R`
}

(4)

= 〈col1 D, col2 D, . . . , col` D〉

is the column space of D.

• If D is a k× `-matrix, then

Row D = R1×kD =
{

yD | y ∈ R1×k
}

(5)

= 〈row1 D, row2 D, . . . , rowk D〉

is the row space of D. (It can also be written as
(

DTRk)T
.)

These two facts are completely analogous (since R` is just shorthand for R`×1).

Exercise 4. Prove Proposition 0.2 (a) below. [Hint: Use row spaces instead of
column spaces. Use (5) instead of (4). Do not hesitate to copy my proof of
Proposition 0.2 (a), as long as you make the necessary changes.] [10 points]

Proposition 0.2. Let n ∈N, m ∈N and p ∈N. Let A be an n×m-matrix. Let B
be an m× p-matrix.

(a) We have rank (AB) ≤ rank B.
(b) We have rank (AB) ≤ rank A.

Proof of Proposition 0.2 (b). (b) Recall that the rank of a matrix is the dimension of
its column space. Thus,

rank (AB) = dim (Col (AB)) and (6)
rank A = dim (Col A) . (7)
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But (4) (applied to D = AB, k = n and ` = p) shows that Col (AB) = {ABx | x ∈ Rp}.
On the other hand, (4) (applied to D = A, k = n and ` = m) shows that Col A =
{Ax | x ∈ Rm}.

Now, let us prove that Col (AB) ⊆ Col A. Indeed, let v ∈ Col (AB) be arbitrary.
Thus, v ∈ Col (AB) = {ABx | x ∈ Rp}. In other words, v has the form v = ABx
for some x ∈ Rp. Denote this x by y (because we will have another use for the
letter x later). Thus, y ∈ Rp and v = ABy. Thus, v has the form v = Ax for some
x ∈ Rm (namely, for x = By). In other words, v ∈ {Ax | x ∈ Rm}. In other words,
v ∈ Col A (since Col A = {Ax | x ∈ Rm}).

Thus, we have proven that every v ∈ Col (AB) lies in Col A. In other words,
Col (AB) ⊆ Col A. Furthermore, Col (AB) is a subspace of Rn, and thus con-
tains the zero vector, is closed under addition, and is closed under scaling. Hence,
Col (AB) is also a subspace of Col A (since Col (AB) ⊆ Col A). Thus, Proposi-
tion 0.1 (b) (applied to U = Col (AB) and V = Col A) yields dim (Col (AB)) ≤
dim (Col A). In view of (6) and (7), this rewrites as rank (AB) ≤ rank A. This
proves Proposition 0.2 (b).

Recall a few more facts:

• The rank-nullity theorem states that any n×m-matrix A satisfies

rank A + dim (Ker A) = m. (8)

(I did this in class, though I used dim (ARm) instead of rank A because I had
not defined rank A yet.)

• We have
rank (In) = n (9)

for every n ∈ N. (To prove this, argue that InRn =

 Inx︸︷︷︸
=x

| x ∈ Rn

 =

{x | x ∈ Rn} = Rn and thus rank (In) = dim (InRn)︸ ︷︷ ︸
=Rn

= dim (Rn) = n.)

• If A is an n×m-matrix, then

rank A ≤ min {n, m} . (10)

(Recall the reason why this is true: We have rank A = dim (Col A) ≤ m be-
cause the column space of A is spanned by m vectors, and we have rank A =
dim (Row A) ≤ n because the row space of D is spanned by n vectors.)

Now, we can prove some statements that were left unproven in class long ago,
back before we introduced vector spaces:
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Definition 0.3. Let n ∈N and m ∈N. Let A be an n×m-matrix.
(a) A right inverse of A means an m× n-matrix B satisfying AB = In. If a right

inverse of A exists, then A is said to be right-invertible.
(b) A left inverse of A means an m× n-matrix B satisfying BA = Im. If a left

inverse of A exists, then A is said to be left-invertible.
(c) An inverse of A means an m × n-matrix B satisfying both AB = In and

BA = Im. If an inverse of A exists, then A is said to be invertible.

Exercise 5. Fill in the big blank in the following proof.
[Hint: What is the transpose of ATB ?] [10 points]

Proposition 0.4. Let n ∈N and m ∈N. Let A be an n×m-matrix.
(a) The matrix A is left-invertible if and only if the matrix AT is right-invertible.
(b) We have rank A = rank

(
AT).

Proof of Proposition 0.4. (a) =⇒: Assume that A is left-invertible. We must show that
AT is right-invertible.

The matrix A is left-invertible. In other words, it has a left inverse. That is, there
exists an m× n-matrix B satisfying BA = Im. Consider this B.

Now, (BA)T = ATBT (by Proposition 3.18 (e) in the current version of the notes,
applied to m, n, m, B and A instead of n, m, p, A and B), so that ATBT = BA︸︷︷︸

=Im

T

= (Im)
T = Im. Hence, BT is a right inverse of AT. Thus, AT is right-

invertible. This proves the =⇒ direction of Proposition 0.4 (a).
⇐=: Assume that AT is right-invertible. We must show that A is left-invertible.
The matrix AT is right-invertible. In other words, it has a right inverse. That is,

there exists an n×m-matrix B satisfying ATB = In. Consider this B.
Set C = BT.

Hence, C is a left inverse of A. Thus, A is left-invertible. This proves the ⇐=
direction of Proposition 0.4 (a).
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(b) Recall a notation I introduced in class: If V is a set of column vectors, then
VT denotes the set of their transposes (rigorously speaking, this means that VT ={

vT | v ∈ V
}

). I shall call VT the elementwise transpose of V. The sets V and VT are
“essentially the same” except that the former consists of column vectors and the
latter of row vectors. In particular, if V is a subspace of Rn, then VT is a subspace
of R1×n, and their dimensions are the same:

dim
(

VT
)
= dim V. (11)

Now, the rows of AT are the transposes of the columns of A. Hence, the span of
the rows of AT is the elementwise transpose of the span of the columns of A. This
rewrites as follows:

Row
(

AT
)
= (Col A)T

(because the span of the rows of AT is the row space Row
(

AT), and the span of
the columns of A is the column space Col A). Thus,

dim
(

Row
(

AT
))

= dim
(
(Col A)T

)
= dim (Col A)

(by (11), applied to V = Col A). But rank
(

AT) = dim
(
Row

(
AT)) (since the rank

of a matrix is the dimension of its row space) and rank A = dim (Col A) (since the
rank of a matrix is the dimension of its column space). Hence,

rank
(

AT
)
= dim

(
Row

(
AT
))

= dim (Col A) = rank A.

Thus, Proposition 0.4 (b) is proven.

Exercise 6. Fill in the blanks in the following proof. [27 points]

Proposition 0.5. Let n ∈N and m ∈N. Let A be an n×m-matrix.
(a) The matrix A is right-invertible if and only if rank A = n.
(b) The matrix A is left-invertible if and only if rank A = m.
(c) The matrix A is invertible if and only if rank A = n = m. (In particular,

only square matrices can be invertible!)

Proof of Proposition 0.5. (a) =⇒: Let us first show that if A is right-invertible, then
rank A = n.

Indeed, assume that A is right-invertible. In other words, there exists some
m× n-matrix B satisfying AB = In. Consider this B.

Proposition 0.2 (b) yields rank (AB) ≤ rank A, so that rank A ≥ rank

 AB︸︷︷︸
=In

 =

rank (In) = n (by (9)). But (10) yields rank A ≤ min {n, m} ≤ n. Combining
this with rank A ≥ n, we find rank A = n. This completes the proof of the =⇒
direction.
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⇐=: Let us now show that if rank A = n, then A is right-invertible.
Indeed, assume that rank A = n. We shall explicitly construct a right inverse B

to A.
Recall that the rank of a matrix is the dimension of its . Thus,

rank A = dim (ARm) (since the of A is ARm). Hence, dim (ARm) =
rank A = n = dim (Rn).

But ARm is a subspace of Rn. Hence, from dim (ARm) = dim (Rn), we obtain
ARm = Rn (by Proposition , applied to U =
and V = ).

For each j ∈ {1, 2, . . . , n}, we have

colj (In) ∈ Rn = ARm = {Ax | x ∈ Rm} .

3 In other words, for each j ∈ {1, 2, . . . , n}, we can write colj (In) in the form
Ax for some x ∈ Rm. Pick such an x, and denote it by xj. Thus, xj (for each
j ∈ {1, 2, . . . , n}) is a column vector in Rm satisfying colj (In) = Axj.

Now we have chosen n vectors x1, x2, . . . , xn in Rm such that

colj (In) = Axj for every j ∈ {1, 2, . . . , n} . (12)

Let B be the m× n-matrix whose columns are x1, x2, . . . , xn. Thus,

colj B = xj for every j ∈ {1, 2, . . . , n} . (13)

Now, every j ∈ {1, 2, . . . , n} satisfies

colj (AB) = (by what is currently Proposition 2.19 (d) in the notes)

= (by (13))
= (by ) .

In other words, each column of the n × n-matrix AB equals the corresponding
column of In. Hence, these two matrices are equal. In other words, AB = In. Thus,
B is a right inverse of A. Hence, A is right-invertible. This proves the⇐= direction.

Altogether, we have thus proven Proposition 0.5 (a).
(b) Applying Proposition 0.5 (a) to m, n and AT instead of n, m and A, we

conclude the following: The matrix AT is right-invertible if and only if rank
(

AT) =
m. Combined with Proposition 0.4 (a), this shows that the matrix A is left-invertible
if and only if rank

(
AT) = m. Because of Proposition 0.4 (b), we can replace

rank
(

AT) by rank A here, and we obtain precisely the claim of Proposition 0.5 (b).
(c) =⇒: Let us first show that if A is invertible, then rank A = n = m.
Indeed, assume that A is invertible. In other words, there exists some m × n-

matrix B satisfying both AB = In and BA = Im. Consider this B.

3By the way, colj (In) is the standard basis vector ej = (0, 0, . . . , 0, 1, 0, 0, . . . 0)T ; but this is unim-
portant for us here.
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We have AB = In; hence, B is a right inverse of A. Thus, A is right-invertible.
Therefore, Proposition 0.5 (a) shows that rank A = n.

We have BA = Im; hence, B is a left inverse of A. Thus, A is left-invertible.
Therefore, Proposition 0.5 (b) shows that rank A = m.

Combining rank A = n with rank A = m, we obtain rank A = n = m. This
proves the =⇒ direction of Proposition 0.5 (c).
⇐=: Let us now show that if rank A = n = m, then A is invertible.
Indeed, assume that rank A = n = m.
From rank A = n, we conclude (using Proposition 0.5 (a)) that A is right-invertible.

In other words, A has a right inverse R. Consider this R.
From rank A = m, we conclude (using Proposition 0.5 (b) that A is left-invertible.

In other words, A has a left inverse L. Consider this L.
Proposition 3.6 (d) from the notes now shows that the matrix L = R is the only

inverse of A. In particular, it is an inverse of A; thus, A is invertible. This proves
the⇐= direction of Proposition 0.5 (c).

Exercise 7. Which of the matrices in Exercise 2 are invertible? [10 points]

Exercise 8. Let n ∈ N. Let A be a left-invertible n× n-matrix. Prove that A is
invertible. [10 points]

[Hint: All ingredients of the proof are on this problem set; you have to combine
them.]


