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Math 4242 Fall 2016 (Darij Grinberg): homework set 3
due: Wed, 12 Oct 2016, 23:00 (Minneapolis time) by moodle

or in class on 12 Oct 2016
[Note: This is an updated version of the homework set, where I have switched to

the notation span (u1, u2, . . . , uk) for the span of k vectors u1, u2, . . . , uk. The
original version used the notation 〈u1, u2, . . . , uk〉.]

Exercise 1. Consider the vector space R2×2 of all 2× 2-matrices.
(a) Which of the following subsets of R2×2 are subspaces?

S1 =

{(
a b
c d

)
∈ R2×2 | a + d = b + c

}
;

S2 =

{(
a b
c d

)
∈ R2×2 | a + d = 0

}
;

S3 =
{

A ∈ R2×2 | det A = 0
}

;

S4 =
{

A ∈ R2×2 | A2 = 02×2

}
;

S5 =

{
A ∈ R2×2 | A

(
3
1

)
= 02×1

}
;

S6 =

{
A ∈ R2×2 |

(
1 2

)
A
(

3
1

)
= 01×1

}
.

(b) For at least three of the above subsets that are subspaces, find a list of
2× 2-matrices that spans it.

[Example: The subspace
{(

a b
c d

)
∈ R2×2 | a = b

}
is the span

span (E1,1 + E1,2, E2,1, E2,2), where Ei,j are as defined in §3.6 of the notes.]
[20 points]

Exercise 2. (a) Does the span span

 1
1
0

 ,

 0
1
1

 ,

 1
0
1

 equal the whole

vector space R3 ?

(b) Does the span span




1
1
0
0

 ,


0
1
1
0

 ,


0
0
1
1

 ,


1
0
0
1


 equal the whole

vector space R4 ? [20 points]

The following “fill in the blanks” exercises are an experiment. I would have
preferred to have some more interesting proofs in there, but I didn’t come to the
interesting parts in class... (Each correctly filled blank is worth 3 points.)

https://ay16.moodle.umn.edu/course/view.php?id=7714
http://www.cip.ifi.lmu.de/~grinberg/t/16f/lina.pdf
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Exercise 3. Fill in the blanks in the following proof: [6 points]

Proposition 0.1. Let V be a vector space. Let U be a subspace of V.
(a) If u1, u2, . . . , uk are elements of U, then u1 + u2 + · · ·+ uk ∈ U.
(b) The set U is closed under linear combination. In other words: If

u1, u2, . . . , uk are elements of U, then every linear combination of u1, u2, . . . , uk
also lies in U.

(c) Let u1, u2, . . . , uk be elements of U. Then,

span (u1, u2, . . . , uk) ⊆ U.

Proof. (a) Roughly speaking, this is just a matter of applying the “closed under ad-
dition” axiom several times. But there is a subtlety involved (the sum of 0 elements
of U is not obtained by addition, but rather defined as

−→
0 ), and I want to illustrate

the principle of induction, so I am going for a detailed and boring formal proof.
Let u1, u2, . . . , uk be elements of U. We must show that u1 + u2 + · · ·+ uk ∈ U.
We shall prove that

u1 + u2 + · · ·+ ui ∈ U for every i ∈ {0, 1, . . . , k} . (1)

We will prove (1) by induction over i. (If you have never seen a proof by induction:
this here is an example.) This means that we shall prove the following two claims:

Claim 1: (1) holds for i = 0.

Claim 2: If j ∈ {0, 1, . . . , k− 1} is such that (1) holds for i = j, then (1)
also holds for i = j + 1.

Once these two claims are proven, the principle of mathematical induction will yield
that (1) holds for all i ∈ {0, 1, . . . , k}. In fact:

• Claim 1 shows that (1) holds for i = 0;

• thus, Claim 2 (applied to j = 0) shows that (1) holds for i = 1;

• thus, Claim 2 (applied to j = 1) shows that (1) holds for i = 2;

• thus, Claim 2 (applied to j = 2) shows that (1) holds for i = 3;

• and so on, applying Claim 2 for higher and higher j, until we arrive at i = k.

See Chapter 5 in Lehman/Leighton/Meyer for an introduction to proofs by in-
duction.

Of course, we still have to prove the two claims.

https://courses.csail.mit.edu/6.042/spring16/mcs.pdf
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1. Proof of Claim 1: For i = 0, the statement (1) claims that u1 + u2 + · · ·+ u0 ∈ U.
In order to make sense of this, we must recall that empty sums of vectors are
defined to mean

−→
0 . Thus,

u1 + u2 + · · ·+ u0 = (empty sum of vectors) =
−→
0 .

But U is a subspace of V, and thus contains
−→
0 (this is one of the axioms for

a subspace). Thus,
−→
0 ∈ U, so that u1 + u2 + · · · + u0 =

−→
0 ∈ U. In other

words, (1) holds for i = 0. This proves Claim 1.

2. Proof of Claim 2: Let j ∈ {0, 1, . . . , k− 1} be such that (1) holds for i = j. (The
statement that (1) holds for i = j is called the induction hypothesis.) We must
show that (1) also holds for i = j + 1.

Since (1) holds for i = j, we have u1 + u2 + · · ·+ uj ∈ U. Now,

u1 + u2 + · · ·+ uj+1 = ( )︸ ︷︷ ︸
∈U

+ ︸ ︷︷ ︸
∈U

.

This is a sum of two vectors in U, and thus belongs to U (since U is closed
under addition). In other words, u1 + u2 + · · · + uj+1 ∈ U. Thus, (1) also
holds for i = j + 1. This proves Claim 2.

Now, both Claims 1 and 2 are proven, so that the proof of (1) is complete.
(Usually, the proof of Claim 1 is called the “induction base”, and the proof of

Claim 2 is called the “induction step”.)
Now that (1) is proven, we can simply apply (1) to i = k, and conclude that

u1 + u2 + · · ·+ uk ∈ U. This proves Proposition 0.1 (a).
(b) Let u1, u2, . . . , uk be elements of U. Let λ1, λ2, . . . , λk be real numbers.
The set U is a subspace of V, and thus is closed under scaling. Hence, the vectors

λ1u1, λ2u2, . . . , λkuk all belong to U (since the vectors u1, u2, . . . , uk belong to U).
Thus, Proposition 0.1 (a) (applied to λ1u1, λ2u2, . . . , λkuk instead of u1, u2, . . . , uk)
shows that λ1u1 + λ2u2 + · · ·+ λkuk ∈ U.

Now, we have shown that λ1u1 + λ2u2 + · · ·+ λkuk ∈ U whenever λ1, λ2, . . . , λk
are real numbers. In other words: every linear combination of u1, u2, . . . , uk also
lies in U. This proves Proposition 0.1 (b).

(c) Proposition 0.1 (b) shows that every linear combination of u1, u2, . . . , uk lies in
U. But span (u1, u2, . . . , uk) is precisely the set of these linear combinations. Hence,
span (u1, u2, . . . , uk) ⊆ U. This proves Proposition 0.1 (c).

A remark: The “empty span” span () (that is, the span of no vectors) is the sub-
space

{−→
0
}

(not the empty set!). This is because
−→
0 counts as a linear combination

of an empty list of vectors (being the empty sum). This will be important later.
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Exercise 4. Fill in the blanks in the following proof: [21 points]

Proposition 0.2. Let n be a positive integer. Define a subset W of Rn by

W =
{
(x1, x2, . . . , xn)

T ∈ Rn | x1 + x2 + · · ·+ xn = 0
}

.

In other words, W is the set of all column vectors of size n whose entries sum to
0.

For each i ∈ {1, 2, . . . , n}, let ei be the column vector Ei,1 =

(0, 0, . . . , 0, 1, 0, 0, . . . , 0)T (where the 1 is in the i-th position) in Rn.
(a) We have

W = span (e1 − en, e2 − en, . . . , en−1 − en) .

(b) We have
W = span (e1 − e2, e2 − e3, . . . , en−1 − en) .

Proof. (The following proof is more detailed and nicer than the one given in class.)
Step 1: First, let us prove that the subset W is a subspace of Rn. Indeed:

• The zero vector
−→
0 = 0n×1 = (0, 0, . . . , 0)T belongs to W, since it satisfies

0 + 0 + · · ·+ 0 = 0.

• Let x ∈ W and y ∈ W. We want to show that x + y ∈ W. Write x ∈ W as
x = (x1, x2, . . . , xn)

T, and write y ∈ W as y = (y1, y2, . . . , yn)
T. Then, x1 +

x2 + · · ·+ xn = 0 (since (x1, x2, . . . , xn)
T = x ∈ W) and y1 + y2 + · · ·+ yn = 0

(for similar reasons). Now, the vector x + y = (x1 + y1, x2 + y2, . . . , xn + yn)
T

satisfies

(x1 + y1) + (x2 + y2) + · · ·+ (xn + yn)

= (x1 + x2 + · · ·+ xn)︸ ︷︷ ︸
=0

+ (y1 + y2 + · · ·+ yn)︸ ︷︷ ︸
=0

= 0 + 0 = 0,

and therefore also lies in W. We thus have proven that x + y ∈ W for all
x ∈W and y ∈W. In other words, W is closed under addition.

• Let x ∈ W and λ ∈ R. We want to show that λx ∈ W. Write x ∈ W as
x = (x1, x2, . . . , xn)

T. Then, x1 + x2 + · · ·+ xn = 0 (since (x1, x2, . . . , xn)
T =

x ∈W). Now, the vector λx = satisfies

and therefore also lies in W. We thus have proven that λx ∈ W for all x ∈ W
and λ ∈ R. In other words, W is closed under scaling.
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This shows that W is a subspace of Rn.
Step 2: For each i ∈ {1, 2, . . . , n− 1}, the vector ei − en has the form

(0, 0, . . . , 0, 1, 0, 0, . . . , 0,−1)T

(where the 1 stands in position i). Thus, the sum of its entries is 0 + 0 + · · ·+ 0 +
1 + 0 + 0 + · · · + 0 + (−1) = 0, and this means that it lies in W. Thus, we have
shown that ei − en ∈ W for each i ∈ {1, 2, . . . , n− 1}. In other words, the n − 1
vectors e1 − en, e2 − en, . . . , en−1 − en all lie in W.

Step 3: The set W is a subspace of Rn (by Step 1). Also, the n− 1 vectors e1 −
en, e2 − en, . . . , en−1 − en all lie in W (by Step 2). Hence, Proposition 0.1 (c) (applied
to U = W, k = n− 1 and ui = ei − en) shows that

span (e1 − en, e2 − en, . . . , en−1 − en) ⊆W. (2)

Step 4: Now, we are going to prove

W ⊆ span (e1 − en, e2 − en, . . . , en−1 − en) . (3)

Indeed, let w ∈W. Write w as w = (w1, w2, . . . , wn)
T. Then, w1 + w2 + · · ·+ wn = 0

(since (w1, w2, . . . , wn)
T = w ∈W), so that

w1 + w2 + · · ·+ wn−1 = −wn. (4)

But now,

w1 (e1 − en) + w2 (e2 − en) + · · ·+ wn−1 (en−1 − en)

= w1e1 + w2e2 + · · ·+ wn−1en−1 − (w1 + w2 + · · ·+ wn−1)︸ ︷︷ ︸
=−wn
(by (4))

en

= w1e1 + w2e2 + · · ·+ wn−1en−1 − (−wn) en

= w1e1 + w2e2 + · · ·+ wn−1en−1 + wnen

= (w1, 0, 0, . . . , 0, 0)T + (0, w2, 0, . . . , 0, 0)T

+ · · ·+ (0, 0, 0, . . . , wn−1, 0)T + (0, 0, 0, . . . , 0, wn)
T

= (w1, w2, . . . , wn)
T = w,

so that

w = w1 (e1 − en) + w2 (e2 − en) + · · ·+ wn−1 (en−1 − en)

∈ span (e1 − en, e2 − en, . . . , en−1 − en) .

Since we have proven this for every w ∈W, we thus have proven (3). Combining (3)
with (2), we find W = span (e1 − en, e2 − en, . . . , en−1 − en). Thus, Proposition 0.2
(a) is shown.
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Step 5: For each i ∈ {1, 2, . . . , n− 1}, the vector ei − ei+1 has the form

(0, 0, . . . , 0, 1,−1, 0, 0, . . . , 0)T

(where the 1 stands in position i, and the−1 stands in position i+ 1). Thus, the sum
of its entries is 0+ 0+ · · ·+ 0+ 1+ (−1) + 0+ 0+ · · ·+ 0 = 0, and this means that
it lies in W. Thus, we have shown that ei − ei+1 ∈ W for each i ∈ {1, 2, . . . , n− 1}.
In other words, the n− 1 vectors e1 − e2, e2 − e3, . . . , en−1 − en all lie in W.

Step 6: Set
X = span (e1 − e2, e2 − e3, . . . , en−1 − en) .

In order to prove Proposition 0.2 (b), we must show that W = X.
The n − 1 vectors e1 − e2, e2 − e3, . . . , en−1 − en all lie in W (by Step 5). Hence,

Proposition 0.1 (c) (applied to U = W, k = n− 1 and ui = ei − ei+1) shows that

span (e1 − e2, e2 − e3, . . . , en−1 − en) ⊆W

(since W is a subspace of Rn). Since the left hand side of this relation is X, it thus
rewrites as

X ⊆W. (5)

Step 7: For each i ∈ {1, 2, . . . , n− 1}, we have

(ei − ei+1) + (ei+1 − ei+2) + (ei+2 − ei+3) + · · ·+ (en−1 − en)

= (ei + ei+1 + ei+2 + · · ·+ en−1)− (ei+1 + ei+2 + ei+3 + · · ·+ en)

= ei − en

(we have just cancelled the common terms of the two sums), so that

ei − en = (ei − ei+1) + (ei+1 − ei+2) + (ei+2 − ei+3) + · · ·+ (en−1 − en)

∈ span (e1 − e2, e2 − e3, . . . , en−1 − en) = X.

In other words, the n− 1 vectors e1 − en, e2 − en, . . . , en−1 − en all lie in X.
Step 8: The set X is a subspace of Rn (since it is a , and every

is a subspace). But the n− 1 vectors e1− en, e2− en, . . . , en−1− en
all lie in X (by Step 7). Hence, Proposition 0.1 (c) (applied to U = ,
k = and ui = ) shows that

span (e1 − en, e2 − en, . . . , en−1 − en) ⊆ X.

Now, Proposition 0.2 (a) (which we have already proven) yields

W = span (e1 − en, e2 − en, . . . , en−1 − en) ⊆ X.

Combining this with (5), we find W = X. This completes the proof of Proposi-
tion 0.2 (b).
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Exercise 5. Let n = 5. Define W as in Proposition 0.2. Let w be the vector
(2, 3, 1,−2,−4)T ∈W.

(a) Write w as a linear combination of e1 − e5, e2 − e5, e3 − e5, e4 −
e5. (This is possible, since Proposition 0.2 (a) shows that W =
span (e1 − e5, e2 − e5, e3 − e5, e4 − e5).)

(b) Write w as a linear combination of e1 − e2, e2 − e3, e3 − e4, e4 −
e5. (This is possible, since Proposition 0.2 (b) shows that W =
span (e1 − e2, e2 − e3, e3 − e4, e4 − e5).) [10 points]

Proposition 0.3. Let v1, v2, . . . , vk be k vectors in some vector space V, and let
w1, w2, . . . , w` be ` vectors in V.

(a) If {v1, v2, . . . , vk} ⊆ {w1, w2, . . . , w`}, then span (v1, v2, . . . , vk) ⊆
span (w1, w2, . . . , w`).

(b) If {v1, v2, . . . , vk} = {w1, w2, . . . , w`}, then span (v1, v2, . . . , vk) =
span (w1, w2, . . . , w`).

(Proposition 0.3 (b) shows that rearranging the vectors in a span and/or du-
plicating some of them does not change the span. For instance, span (α, β, γ) =
span (γ, α, β) = span (α, β, γ, β, α) whenever α, β, γ are three vectors. Proposi-
tion 0.3 (a) shows that, for example, span (α, γ) and span (γ, β, γ) are subsets of
span (α, β, γ).)

Proof of Proposition 0.3. Let U denote the span span (w1, w2, . . . , w`). Then, U is a
subspace of V (since every span is a subspace).

(a) Assume that {v1, v2, . . . , vk} ⊆ {w1, w2, . . . , w`}. Each of the vectors w1, w2, . . . , w`

is a linear combination of w1, w2, . . . , w`, and thus lies in the span span (w1, w2, . . . , w`).
In other words,

{w1, w2, . . . , w`} ⊆ span (w1, w2, . . . , w`) .

Thus,

{v1, v2, . . . , vk} ⊆ {w1, w2, . . . , w`} ⊆ span (w1, w2, . . . , w`) = U.

Hence, v1, v2, . . . , vk are elements of U. Proposition 0.1 (c) (applied to ui = vi) thus
shows that

span (v1, v2, . . . , vk) ⊆ U = span (w1, w2, . . . , w`) .

This proves Proposition 0.3 (a).
(b) Assume that {v1, v2, . . . , vk} = {w1, w2, . . . , w`}. Then, of course, {v1, v2, . . . , vk} ⊆
{w1, w2, . . . , w`} (since a set is always a subset of itself). Hence, Proposition 0.3 (a)
yields

span (v1, v2, . . . , vk) ⊆ span (w1, w2, . . . , w`) . (6)

But we can also apply Proposition 0.3 (a) with the roles of v1, v2, . . . , vk and the
roles of w1, w2, . . . , w` interchanged (because {v1, v2, . . . , vk} = {w1, w2, . . . , w`} also
yields {w1, w2, . . . , w`} ⊆ {v1, v2, . . . , vk}); thus we obtain

span (w1, w2, . . . , w`) ⊆ span (v1, v2, . . . , vk) .
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Combining this with (6), we end up with span (v1, v2, . . . , vk) = span (w1, w2, . . . , w`).
This proves Proposition 0.3 (b).

Exercise 6. (a) Is the list

 1
1
0

 ,

 0
1
1

 ,

 1
0
1

 linearly independent?

(b) Is the list




1
1
0
0

 ,


0
1
1
0

 ,


0
0
1
1

 ,


1
0
0
1


 linearly independent? [10

points]

Exercise 7. Fill in the blanks in the following proof. [9 points]

Proposition 0.4. Let V be a vector space. Let v1, v2, . . . , vk be k vectors in V.
Assume that the list (v1, v2, . . . , vk) is linearly dependent. Then, there exists
some i ∈ {1, 2, . . . , k} such that vi ∈ span (v1, v2, . . . , vi−1) and

span (v1, v2, . . . , vk) = span (v1, v2, . . . , vi−1, vi+1, . . . , vk) . (7)

(The right hand side of (7) is the span of the vectors v1, v2, . . . , vk with the vector
vi skipped over.)

[Notice that when i = 1, the span span (v1, v2, . . . , vi−1) has to be interpreted
as the “empty span” span () =

{−→
0
}

.]

Proof. We have assumed that (v1, v2, . . . , vk) is linearly dependent. In other words,
there exists some numbers λ1, λ2, . . . , λk ∈ R, not all zero, such that

λ1v1 + λ2v2 + · · ·+ λkvk =
−→
0 . (8)

Consider such numbers λ1, λ2, . . . , λk ∈ R. 1

There exists at least one i ∈ {1, 2, . . . , k} such that λi 6= 0 (because λ1, λ2, . . . , λk
are not all zero). Consider the largest such i. Thus, λi 6= 0, but all of the numbers
λi+1, λi+2, . . . , λk are 0.

Now, (8) yields

−→
0 = λ1v1 + λ2v2 + · · ·+ λkvk

= (λ1v1 + λ2v2 + · · ·+ λivi) + (λi+1vi+1 + λi+2vi+2 + · · ·+ λkvk)︸ ︷︷ ︸
=
−→
0

(since all of λi+1,λi+2,...,λk are 0)

= λ1v1 + λ2v2 + · · ·+ λivi

= (λ1v1 + λ2v2 + · · ·+ λi−1vi−1) + λivi.

1They are, of course, not uniquely determined – for instance, you could scale them all by 2, and
they would still satisfy (8) – but one collection of such numbers will be enough for us.
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Solving this for the λivi, we obtain

λivi = − (λ1v1 + λ2v2 + · · ·+ λi−1vi−1) .

We can divide this equality by λi (since ), and thus obtain

vi =
− (λ1v1 + λ2v2 + · · ·+ λi−1vi−1)

λi

=
−λ1

λi
v1 +

−λ2

λi
v2 + · · ·+

−λi−1

λi
vi−1

∈ span (v1, v2, . . . , vi−1) .

Thus, we have found some i satisfying vi ∈ span (v1, v2, . . . , vi−1). We now need to
show that (7) holds as well.

We have {v1, v2, . . . , vi−1} ⊆ {v1, v2, . . . , vi−1, vi+1, . . . , vk} and thus

span (v1, v2, . . . , vi−1) ⊆ span (v1, v2, . . . , vi−1, vi+1, . . . , vk)

(by Proposition 0.3 (a), with v1, v2, . . . , vi−1 and v1, v2, . . . , vi−1, vi+1, . . . , vk taking
the roles of v1, v2, . . . , vk and w1, w2, . . . , w`).

Let U = span (v1, v2, . . . , vi−1, vi+1, . . . , vk). Thus, U is a span, therefore a sub-
space of V. We have

vi ∈ span (v1, v2, . . . , vi−1) ⊆ span (v1, v2, . . . , vi−1, vi+1, . . . , vk) = U. (9)

Now, all of the k vectors v1, v2, . . . , vk lie in U (in fact, for the vector vi it follows from
(9), while for the others it follows from the fact that {v1, v2, . . . , vi−1, vi+1, . . . , vk} ⊆
span (v1, v2, . . . , vi−1, vi+1, . . . , vk) = U). Thus, Proposition 0.1 (c) (applied to ui =
vi) shows that

span (v1, v2, . . . , vk) ⊆ U = span (v1, v2, . . . , vi−1, vi+1, . . . , vk) . (10)

But Proposition 0.3 (a) (with and taking the
roles of v1, v2, . . . , vk and w1, w2, . . . , w`) shows that

span (v1, v2, . . . , vi−1, vi+1, . . . , vk) ⊆ span (v1, v2, . . . , vk) .

Combined with (10), this yields (7). This proves Proposition 0.4.

Exercise 8. Let V be the vector space R3 of column vectors of size 3. Let
v1, v2, v3, v4 be four vectors in V. As shown in class, v1, v2, v3, v4 must auto-
matically be linearly dependent. Hence, by Proposition 0.4, there exists some
i ∈ {1, 2, 3, 4} satisfying vi ∈ span (v1, v2, . . . , vi−1).

(a) Find all such i if v1 = (1, 0, 0)T, v2 = (0, 1, 0)T, v3 = (0, 0, 1)T and v4 =

(1, 2, 3)T.
(b) Find all such i if v1 = (1, 1, 2)T, v2 = (2, 1, 3)T, v3 = (0, 1, 1)T and v4 =

(1, 2, 3)T. [Hint: There are two such i now.]
(c) Find all such i if v1 = (0, 0, 0)T, v2 = (1, 0, 1)T, v3 = (0, 1, 1)T and v4 =

(0, 0, 1)T. [Hint: span () =
{−→

0
}

.] [21 points]


