Math 4242 Fall 2016 (Darij Grinberg): homework set 3 due: Wed, 12 Oct 2016, 23:00 (Minneapolis time) by moodle or in class on 12 Oct 2016

[**Note:** This is an updated version of the homework set, where I have switched to the notation span $(u_1, u_2, ..., u_k)$ for the span of k vectors $u_1, u_2, ..., u_k$. The original version used the notation $\langle u_1, u_2, ..., u_k \rangle$.]

Exercise 1. Consider the vector space $\mathbb{R}^{2\times 2}$ of all 2×2 -matrices.

(a) Which of the following subsets of $\mathbb{R}^{2\times 2}$ are subspaces?

$$S_{1} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{R}^{2 \times 2} \mid a + d = b + c \right\};$$

$$S_{2} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{R}^{2 \times 2} \mid a + d = 0 \right\};$$

$$S_{3} = \left\{ A \in \mathbb{R}^{2 \times 2} \mid \det A = 0 \right\};$$

$$S_{4} = \left\{ A \in \mathbb{R}^{2 \times 2} \mid A^{2} = 0_{2 \times 2} \right\};$$

$$S_{5} = \left\{ A \in \mathbb{R}^{2 \times 2} \mid A \begin{pmatrix} 3 \\ 1 \end{pmatrix} = 0_{2 \times 1} \right\};$$

$$S_{6} = \left\{ A \in \mathbb{R}^{2 \times 2} \mid (1 \ 2) A \begin{pmatrix} 3 \\ 1 \end{pmatrix} = 0_{1 \times 1} \right\}.$$

(b) For **at least three** of the above subsets that are subspaces, find a list of 2×2 -matrices that spans it.

[**Example:** The subspace $\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{R}^{2\times 2} \mid a = b \right\}$ is the span span $(E_{1,1} + E_{1,2}, E_{2,1}, E_{2,2})$, where $E_{i,j}$ are as defined in §3.6 of the notes.] [20 points]

Exercise 2. (a) Does the span span
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ equal the whole vector space \mathbb{R}^3 ?

(b) Does the span span
$$\left(\begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}\right)$$
 equal the whole vector space \mathbb{R}^4 ?

The following "fill in the blanks" exercises are an experiment. I would have preferred to have some more interesting proofs in there, but I didn't come to the interesting parts in class... (Each correctly filled blank is worth 3 points.)

Exercise 3. Fill in the blanks in the following proof:

[6 points]

Proposition 0.1. Let *V* be a vector space. Let *U* be a subspace of *V*.

- (a) If u_1, u_2, \dots, u_k are elements of U, then $u_1 + u_2 + \dots + u_k \in U$.
- **(b)** The set U is closed under linear combination. In other words: If u_1, u_2, \ldots, u_k are elements of U, then every linear combination of u_1, u_2, \ldots, u_k also lies in U.
 - (c) Let u_1, u_2, \dots, u_k be elements of U. Then,

span
$$(u_1, u_2, \ldots, u_k) \subseteq U$$
.

Proof. (a) Roughly speaking, this is just a matter of applying the "closed under addition" axiom several times. But there is a subtlety involved (the sum of 0 elements of U is not obtained by addition, but rather defined as $\overrightarrow{0}$), and I want to illustrate the principle of induction, so I am going for a detailed and boring formal proof.

Let $u_1, u_2, ..., u_k$ be elements of U. We must show that $u_1 + u_2 + \cdots + u_k \in U$. We shall prove that

$$u_1 + u_2 + \dots + u_i \in U$$
 for every $i \in \{0, 1, \dots, k\}$. (1)

We will prove (1) by *induction over i*. (If you have never seen a proof by induction: this here is an example.) This means that we shall prove the following two claims:

Claim 1: (1) holds for i = 0.

Claim 2: If $j \in \{0, 1, ..., k-1\}$ is such that (1) holds for i = j, then (1) also holds for i = j + 1.

Once these two claims are proven, the *principle of mathematical induction* will yield that (1) holds for all $i \in \{0, 1, ..., k\}$. In fact:

- Claim 1 shows that (1) holds for i = 0;
- thus, Claim 2 (applied to j = 0) shows that (1) holds for i = 1;
- thus, Claim 2 (applied to i = 1) shows that (1) holds for i = 2;
- thus, Claim 2 (applied to j = 2) shows that (1) holds for i = 3;
- and so on, applying Claim 2 for higher and higher i, until we arrive at i = k.

See Chapter 5 in Lehman/Leighton/Meyer for an introduction to proofs by induction.

Of course, we still have to prove the two claims.

1. Proof of Claim 1: For i = 0, the statement (1) claims that $u_1 + u_2 + \cdots + u_0 \in U$. In order to make sense of this, we must recall that empty sums of vectors are defined to mean $\overrightarrow{0}$. Thus,

$$u_1 + u_2 + \dots + u_0 = (\text{empty sum of vectors}) = \overrightarrow{0}.$$

But U is a subspace of V, and thus contains $\overrightarrow{0}$ (this is one of the axioms for a subspace). Thus, $\overrightarrow{0} \in U$, so that $u_1 + u_2 + \cdots + u_0 = \overrightarrow{0} \in U$. In other words, (1) holds for i = 0. This proves Claim 1.

2. Proof of Claim 2: Let $j \in \{0, 1, ..., k-1\}$ be such that (1) holds for i = j. (The statement that (1) holds for i = j is called the *induction hypothesis*.) We must show that (1) also holds for i = j + 1.

Since (1) holds for i = j, we have $u_1 + u_2 + \cdots + u_j \in U$. Now,

This is a sum of two vectors in U, and thus belongs to U (since U is closed under addition). In other words, $u_1 + u_2 + \cdots + u_{j+1} \in U$. Thus, (1) also holds for i = j + 1. This proves Claim 2.

Now, both Claims 1 and 2 are proven, so that the proof of (1) is complete.

(Usually, the proof of Claim 1 is called the "induction base", and the proof of Claim 2 is called the "induction step".)

Now that (1) is proven, we can simply apply (1) to i = k, and conclude that $u_1 + u_2 + \cdots + u_k \in U$. This proves Proposition 0.1 (a).

(b) Let u_1, u_2, \ldots, u_k be elements of U. Let $\lambda_1, \lambda_2, \ldots, \lambda_k$ be real numbers.

The set U is a subspace of V, and thus is closed under scaling. Hence, the vectors $\lambda_1 u_1, \lambda_2 u_2, \ldots, \lambda_k u_k$ all belong to U (since the vectors u_1, u_2, \ldots, u_k belong to U). Thus, Proposition 0.1 (a) (applied to $\lambda_1 u_1, \lambda_2 u_2, \ldots, \lambda_k u_k$ instead of u_1, u_2, \ldots, u_k) shows that $\lambda_1 u_1 + \lambda_2 u_2 + \cdots + \lambda_k u_k \in U$.

Now, we have shown that $\lambda_1 u_1 + \lambda_2 u_2 + \cdots + \lambda_k u_k \in U$ whenever $\lambda_1, \lambda_2, \dots, \lambda_k$ are real numbers. In other words: every linear combination of u_1, u_2, \dots, u_k also lies in U. This proves Proposition 0.1 **(b)**.

(c) Proposition 0.1 (b) shows that every linear combination of u_1, u_2, \ldots, u_k lies in U. But span (u_1, u_2, \ldots, u_k) is precisely the set of these linear combinations. Hence, span $(u_1, u_2, \ldots, u_k) \subseteq U$. This proves Proposition 0.1 (c).

A remark: The "empty span" span () (that is, the span of no vectors) is the subspace $\{\overrightarrow{0}\}$ (not the empty set!). This is because $\overrightarrow{0}$ counts as a linear combination of an empty list of vectors (being the empty sum). This will be important later.

Exercise 4. Fill in the blanks in the following proof:

[21 points]

Proposition 0.2. Let n be a positive integer. Define a subset W of \mathbb{R}^n by

$$W = \left\{ (x_1, x_2, \dots, x_n)^T \in \mathbb{R}^n \mid x_1 + x_2 + \dots + x_n = 0 \right\}.$$

In other words, *W* is the set of all column vectors of size *n* whose entries sum to 0.

For each $i \in \{1,2,\ldots,n\}$, let e_i be the column vector $E_{i,1} = (0,0,\ldots,0,1,0,0,\ldots,0)^T$ (where the 1 is in the i-th position) in \mathbb{R}^n .

(a) We have

$$W = \text{span}(e_1 - e_n, e_2 - e_n, \dots, e_{n-1} - e_n).$$

(b) We have

$$W = \text{span}(e_1 - e_2, e_2 - e_3, \dots, e_{n-1} - e_n).$$

Proof. (The following proof is more detailed and nicer than the one given in class.) *Step 1:* First, let us prove that the subset W is a subspace of \mathbb{R}^n . Indeed:

- The zero vector $\overrightarrow{0} = 0_{n \times 1} = (0, 0, \dots, 0)^T$ belongs to W, since it satisfies $0 + 0 + \dots + 0 = 0$.
- Let $x \in W$ and $y \in W$. We want to show that $x + y \in W$. Write $x \in W$ as $x = (x_1, x_2, ..., x_n)^T$, and write $y \in W$ as $y = (y_1, y_2, ..., y_n)^T$. Then, $x_1 + x_2 + \cdots + x_n = 0$ (since $(x_1, x_2, ..., x_n)^T = x \in W$) and $y_1 + y_2 + \cdots + y_n = 0$ (for similar reasons). Now, the vector $x + y = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)^T$ satisfies

$$(x_1 + y_1) + (x_2 + y_2) + \dots + (x_n + y_n)$$

$$= \underbrace{(x_1 + x_2 + \dots + x_n)}_{=0} + \underbrace{(y_1 + y_2 + \dots + y_n)}_{=0} = 0 + 0 = 0,$$

and therefore also lies in W. We thus have proven that $x + y \in W$ for all $x \in W$ and $y \in W$. In other words, W is closed under addition.

• Let $x \in W$ and $\lambda \in \mathbb{R}$. We want to show that $\lambda x \in W$. Write $x \in W$ as $x = (x_1, x_2, ..., x_n)^T$. Then, $x_1 + x_2 + \cdots + x_n = 0$ (since $(x_1, x_2, ..., x_n)^T = x \in W$). Now, the vector $\lambda x = \underline{\hspace{1cm}}$ satisfies

and therefore also lies in W. We thus have proven that $\lambda x \in W$ for all $x \in W$ and $\lambda \in \mathbb{R}$. In other words, W is closed under scaling.

This shows that W is a subspace of \mathbb{R}^n .

Step 2: For each $i \in \{1, 2, ..., n-1\}$, the vector $e_i - e_n$ has the form

$$(0,0,\ldots,0,1,0,0,\ldots,0,-1)^T$$

(where the 1 stands in position i). Thus, the sum of its entries is $0 + 0 + \cdots + 0 + 1 + 0 + 0 + \cdots + 0 + (-1) = 0$, and this means that it lies in W. Thus, we have shown that $e_i - e_n \in W$ for each $i \in \{1, 2, ..., n - 1\}$. In other words, the n - 1 vectors $e_1 - e_n, e_2 - e_n, ..., e_{n-1} - e_n$ all lie in W.

Step 3: The set W is a subspace of \mathbb{R}^n (by Step 1). Also, the n-1 vectors $e_1-e_n,e_2-e_n,\ldots,e_{n-1}-e_n$ all lie in W (by Step 2). Hence, Proposition 0.1 (c) (applied to U=W, k=n-1 and $u_i=e_i-e_n$) shows that

span
$$(e_1 - e_n, e_2 - e_n, \dots, e_{n-1} - e_n) \subseteq W.$$
 (2)

Step 4: Now, we are going to prove

$$W \subseteq \text{span}(e_1 - e_n, e_2 - e_n, \dots, e_{n-1} - e_n).$$
 (3)

Indeed, let $w \in W$. Write w as $w = (w_1, w_2, ..., w_n)^T$. Then, $w_1 + w_2 + \cdots + w_n = 0$ (since $(w_1, w_2, ..., w_n)^T = w \in W$), so that

$$w_1 + w_2 + \dots + w_{n-1} = -w_n. \tag{4}$$

But now,

$$w_{1}(e_{1} - e_{n}) + w_{2}(e_{2} - e_{n}) + \cdots + w_{n-1}(e_{n-1} - e_{n})$$

$$= w_{1}e_{1} + w_{2}e_{2} + \cdots + w_{n-1}e_{n-1} - \underbrace{(w_{1} + w_{2} + \cdots + w_{n-1})}_{=-w_{n}} e_{n}$$

$$= w_{1}e_{1} + w_{2}e_{2} + \cdots + w_{n-1}e_{n-1} - (-w_{n})e_{n}$$

$$= w_{1}e_{1} + w_{2}e_{2} + \cdots + w_{n-1}e_{n-1} + w_{n}e_{n}$$

$$= (w_{1}, 0, 0, \dots, 0, 0)^{T} + (0, w_{2}, 0, \dots, 0, 0)^{T}$$

$$+ \cdots + (0, 0, 0, \dots, w_{n-1}, 0)^{T} + (0, 0, 0, \dots, 0, w_{n})^{T}$$

$$= (w_{1}, w_{2}, \dots, w_{n})^{T} = w,$$

so that

$$w = w_1 (e_1 - e_n) + w_2 (e_2 - e_n) + \dots + w_{n-1} (e_{n-1} - e_n)$$

 $\in \text{span} (e_1 - e_n, e_2 - e_n, \dots, e_{n-1} - e_n).$

Since we have proven this for **every** $w \in W$, we thus have proven (3). Combining (3) with (2), we find $W = \text{span}(e_1 - e_n, e_2 - e_n, \dots, e_{n-1} - e_n)$. Thus, Proposition 0.2 **(a)** is shown.

Step 5: For each $i \in \{1, 2, ..., n-1\}$, the vector $e_i - e_{i+1}$ has the form

$$(0,0,\ldots,0,1,-1,0,0,\ldots,0)^T$$

(where the 1 stands in position i, and the -1 stands in position i+1). Thus, the sum of its entries is $0+0+\cdots+0+1+(-1)+0+0+\cdots+0=0$, and this means that it lies in W. Thus, we have shown that $e_i-e_{i+1}\in W$ for each $i\in\{1,2,\ldots,n-1\}$. In other words, the n-1 vectors $e_1-e_2,e_2-e_3,\ldots,e_{n-1}-e_n$ all lie in W.

Step 6: Set

$$X = \text{span}(e_1 - e_2, e_2 - e_3, \dots, e_{n-1} - e_n).$$

In order to prove Proposition 0.2 (b), we must show that W = X.

The n-1 vectors $e_1-e_2, e_2-e_3, \ldots, e_{n-1}-e_n$ all lie in W (by Step 5). Hence, Proposition 0.1 (c) (applied to U=W, k=n-1 and $u_i=e_i-e_{i+1}$) shows that

$$\operatorname{span}(e_1 - e_2, e_2 - e_3, \dots, e_{n-1} - e_n) \subseteq W$$

(since W is a subspace of \mathbb{R}^n). Since the left hand side of this relation is X, it thus rewrites as

$$X \subseteq W$$
. (5)

Step 7: For each i ∈ {1, 2, . . . , n − 1}, we have

$$(e_i - e_{i+1}) + (e_{i+1} - e_{i+2}) + (e_{i+2} - e_{i+3}) + \dots + (e_{n-1} - e_n)$$

$$= (e_i + e_{i+1} + e_{i+2} + \dots + e_{n-1}) - (e_{i+1} + e_{i+2} + e_{i+3} + \dots + e_n)$$

$$= e_i - e_n$$

(we have just cancelled the common terms of the two sums), so that

$$e_i - e_n = (e_i - e_{i+1}) + (e_{i+1} - e_{i+2}) + (e_{i+2} - e_{i+3}) + \dots + (e_{n-1} - e_n)$$

 $\in \text{span}(e_1 - e_2, e_2 - e_3, \dots, e_{n-1} - e_n) = X.$

In other words, the n-1 vectors $e_1-e_n, e_2-e_n, \dots, e_{n-1}-e_n$ all lie in X.

Step 8: The set X is a subspace of \mathbb{R}^n (since it is a ______, and every _____ is a subspace). But the n-1 vectors $e_1-e_n, e_2-e_n, \ldots, e_{n-1}-e_n$ all lie in X (by Step 7). Hence, Proposition 0.1 (c) (applied to U= ______, and $u_i=$ ______) shows that

$$\mathrm{span}\left(e_1-e_n,e_2-e_n,\ldots,e_{n-1}-e_n\right)\subseteq X.$$

Now, Proposition 0.2 (a) (which we have already proven) yields

$$W = \operatorname{span} (e_1 - e_n, e_2 - e_n, \dots, e_{n-1} - e_n) \subseteq X.$$

Combining this with (5), we find W = X. This completes the proof of Proposition 0.2 **(b)**.

Exercise 5. Let n = 5. Define W as in Proposition 0.2. Let w be the vector $(2,3,1,-2,-4)^T \in W$.

- (a) Write w as a linear combination of $e_1 e_5$, $e_2 e_5$, $e_3 e_5$, $e_4 e_5$. (This is possible, since Proposition 0.2 (a) shows that $W = \text{span}(e_1 e_5, e_2 e_5, e_3 e_5, e_4 e_5)$.)
- **(b)** Write w as a linear combination of $e_1 e_2, e_2 e_3, e_3 e_4, e_4 e_5$. (This is possible, since Proposition 0.2 **(b)** shows that $W = \text{span}\left(e_1 e_2, e_2 e_3, e_3 e_4, e_4 e_5\right)$.) [10 points]

Proposition 0.3. Let v_1, v_2, \ldots, v_k be k vectors in some vector space V, and let w_1, w_2, \ldots, w_ℓ be ℓ vectors in V.

- (a) If $\{v_1, v_2, ..., v_k\} \subseteq \{w_1, w_2, ..., w_\ell\}$, then span $(v_1, v_2, ..., v_k) \subseteq \text{span}(w_1, w_2, ..., w_\ell)$.
- **(b)** If $\{v_1, v_2, ..., v_k\} = \{w_1, w_2, ..., w_\ell\}$, then span $(v_1, v_2, ..., v_k) = \text{span}(w_1, w_2, ..., w_\ell)$.

(Proposition 0.3 **(b)** shows that rearranging the vectors in a span and/or duplicating some of them does not change the span. For instance, span $(\alpha, \beta, \gamma) = \operatorname{span}(\gamma, \alpha, \beta) = \operatorname{span}(\alpha, \beta, \gamma, \beta, \alpha)$ whenever α, β, γ are three vectors. Proposition 0.3 **(a)** shows that, for example, span (α, γ) and span (γ, β, γ) are subsets of span (α, β, γ) .)

Proof of Proposition 0.3. Let U denote the span span $(w_1, w_2, ..., w_\ell)$. Then, U is a subspace of V (since every span is a subspace).

(a) Assume that $\{v_1, v_2, \dots, v_k\} \subseteq \{w_1, w_2, \dots, w_\ell\}$. Each of the vectors w_1, w_2, \dots, w_ℓ is a linear combination of w_1, w_2, \dots, w_ℓ , and thus lies in the span span $(w_1, w_2, \dots, w_\ell)$. In other words,

$$\{w_1, w_2, \ldots, w_\ell\} \subseteq \operatorname{span}(w_1, w_2, \ldots, w_\ell).$$

Thus,

$$\{v_1, v_2, \ldots, v_k\} \subseteq \{w_1, w_2, \ldots, w_\ell\} \subseteq \text{span}(w_1, w_2, \ldots, w_\ell) = U.$$

Hence, v_1, v_2, \ldots, v_k are elements of U. Proposition 0.1 (c) (applied to $u_i = v_i$) thus shows that

$$\mathrm{span}\left(v_1,v_2,\ldots,v_k\right)\subseteq U=\mathrm{span}\left(w_1,w_2,\ldots,w_\ell\right).$$

This proves Proposition 0.3 (a).

(b) Assume that $\{v_1, v_2, \ldots, v_k\} = \{w_1, w_2, \ldots, w_\ell\}$. Then, of course, $\{v_1, v_2, \ldots, v_k\} \subseteq \{w_1, w_2, \ldots, w_\ell\}$ (since a set is always a subset of itself). Hence, Proposition 0.3 **(a)** yields

$$\operatorname{span}(v_1, v_2, \dots, v_k) \subseteq \operatorname{span}(w_1, w_2, \dots, w_\ell). \tag{6}$$

But we can also apply Proposition 0.3 (a) with the roles of v_1, v_2, \ldots, v_k and the roles of w_1, w_2, \ldots, w_ℓ interchanged (because $\{v_1, v_2, \ldots, v_k\} = \{w_1, w_2, \ldots, w_\ell\}$ also yields $\{w_1, w_2, \ldots, w_\ell\} \subseteq \{v_1, v_2, \ldots, v_k\}$); thus we obtain

$$\mathrm{span}\left(w_1,w_2,\ldots,w_\ell\right)\subseteq\mathrm{span}\left(v_1,v_2,\ldots,v_k\right).$$

Combining this with (6), we end up with span $(v_1, v_2, ..., v_k) = \text{span}(w_1, w_2, ..., w_\ell)$. This proves Proposition 0.3 (b).

Exercise 6. (a) Is the list
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ linearly independent?

(b) Is the list $\begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$ linearly independent? [10 points]

Exercise 7. Fill in the blanks in the following proof.

[9 points]

Proposition 0.4. Let V be a vector space. Let v_1, v_2, \ldots, v_k be k vectors in V. Assume that the list (v_1, v_2, \ldots, v_k) is linearly dependent. Then, there exists some $i \in \{1, 2, \ldots, k\}$ such that $v_i \in \text{span}(v_1, v_2, \ldots, v_{i-1})$ and

$$\mathrm{span}(v_1, v_2, \dots, v_k) = \mathrm{span}(v_1, v_2, \dots, v_{i-1}, v_{i+1}, \dots, v_k). \tag{7}$$

(The right hand side of (7) is the span of the vectors v_1, v_2, \ldots, v_k with the vector v_i skipped over.)

[Notice that when i=1, the span span (v_1,v_2,\ldots,v_{i-1}) has to be interpreted as the "empty span" span $()=\left\{\overrightarrow{0}\right\}$.]

Proof. We have assumed that $(v_1, v_2, ..., v_k)$ is linearly dependent. In other words, there exists some numbers $\lambda_1, \lambda_2, ..., \lambda_k \in \mathbb{R}$, **not all zero**, such that

$$\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_k v_k = \overrightarrow{0}. \tag{8}$$

Consider such numbers $\lambda_1, \lambda_2, \dots, \lambda_k \in \mathbb{R}$.

There exists **at least one** $i \in \{1, 2, ..., k\}$ such that $\lambda_i \neq 0$ (because $\lambda_1, \lambda_2, ..., \lambda_k$ are not all zero). Consider the **largest** such i. Thus, $\lambda_i \neq 0$, but all of the numbers $\lambda_{i+1}, \lambda_{i+2}, ..., \lambda_k$ are 0.

Now, (8) yields

$$\overrightarrow{0} = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_k v_k$$

$$= (\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_i v_i) + \underbrace{(\lambda_{i+1} v_{i+1} + \lambda_{i+2} v_{i+2} + \dots + \lambda_k v_k)}_{\text{(since all of } \lambda_{i+1}, \lambda_{i+2}, \dots, \lambda_k \text{ are 0})}$$

$$= \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_i v_i$$

$$= (\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_{i-1} v_{i-1}) + \lambda_i v_i.$$

¹They are, of course, not uniquely determined – for instance, you could scale them all by 2, and they would still satisfy (8) – but one collection of such numbers will be enough for us.

Solving this for the $\lambda_i v_i$, we obtain

$$\lambda_i v_i = -\left(\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_{i-1} v_{i-1}\right).$$

We can divide this equality by λ_i (since _____), and thus obtain

$$\begin{aligned} v_i &= \frac{-\left(\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_{i-1} v_{i-1}\right)}{\lambda_i} \\ &= \frac{-\lambda_1}{\lambda_i} v_1 + \frac{-\lambda_2}{\lambda_i} v_2 + \dots + \frac{-\lambda_{i-1}}{\lambda_i} v_{i-1} \\ &\in \operatorname{span}\left(v_1, v_2, \dots, v_{i-1}\right). \end{aligned}$$

Thus, we have found some i satisfying $v_i \in \text{span}(v_1, v_2, \dots, v_{i-1})$. We now need to show that (7) holds as well.

We have $\{v_1, v_2, \dots, v_{i-1}\} \subseteq \{v_1, v_2, \dots, v_{i-1}, v_{i+1}, \dots, v_k\}$ and thus

$$\operatorname{span}(v_1, v_2, \dots, v_{i-1}) \subseteq \operatorname{span}(v_1, v_2, \dots, v_{i-1}, v_{i+1}, \dots, v_k)$$

(by Proposition 0.3 (a), with $v_1, v_2, ..., v_{i-1}$ and $v_1, v_2, ..., v_{i-1}, v_{i+1}, ..., v_k$ taking the roles of $v_1, v_2, ..., v_k$ and $w_1, w_2, ..., w_\ell$).

Let $U = \text{span}(v_1, v_2, \dots, v_{i-1}, v_{i+1}, \dots, v_k)$. Thus, U is a span, therefore a subspace of V. We have

$$v_i \in \text{span}(v_1, v_2, \dots, v_{i-1}) \subseteq \text{span}(v_1, v_2, \dots, v_{i-1}, v_{i+1}, \dots, v_k) = U.$$
 (9)

Now, all of the k vectors v_1, v_2, \ldots, v_k lie in U (in fact, for the vector v_i it follows from (9), while for the others it follows from the fact that $\{v_1, v_2, \ldots, v_{i-1}, v_{i+1}, \ldots, v_k\} \subseteq \text{span}(v_1, v_2, \ldots, v_{i-1}, v_{i+1}, \ldots, v_k) = U$). Thus, Proposition 0.1 (c) (applied to $u_i = v_i$) shows that

$$span(v_1, v_2, ..., v_k) \subseteq U = span(v_1, v_2, ..., v_{i-1}, v_{i+1}, ..., v_k).$$
 (10)

But Proposition 0.3 (a) (with _____ and ____ taking the roles of v_1, v_2, \ldots, v_k and w_1, w_2, \ldots, w_ℓ) shows that

$$\operatorname{span}(v_1, v_2, \dots, v_{i-1}, v_{i+1}, \dots, v_k) \subseteq \operatorname{span}(v_1, v_2, \dots, v_k).$$

Combined with (10), this yields (7). This proves Proposition 0.4.

Exercise 8. Let V be the vector space \mathbb{R}^3 of column vectors of size 3. Let v_1, v_2, v_3, v_4 be four vectors in V. As shown in class, v_1, v_2, v_3, v_4 must automatically be linearly dependent. Hence, by Proposition 0.4, there exists some $i \in \{1, 2, 3, 4\}$ satisfying $v_i \in \text{span}(v_1, v_2, \dots, v_{i-1})$.

- (a) Find all such i if $v_1 = (1,0,0)^T$, $v_2 = (0,1,0)^T$, $v_3 = (0,0,1)^T$ and $v_4 = (1,2,3)^T$.
- **(b)** Find all such i if $v_1 = (1,1,2)^T$, $v_2 = (2,1,3)^T$, $v_3 = (0,1,1)^T$ and $v_4 = (1,2,3)^T$. [**Hint:** There are two such i now.]
- (c) Find all such i if $v_1 = (0,0,0)^T$, $v_2 = (1,0,1)^T$, $v_3 = (0,1,1)^T$ and $v_4 = (0,0,1)^T$. [Hint: span () = $\{\overrightarrow{0}\}$.] [21 points]