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Math 4242 Fall 2016 (Darij Grinberg): homework set 2

Exercise 1. Let U =


6 3 −2 5
0 0 −1 2
0 0 0 1
0 0 0 0

.

(a) Find all column vectors x of size 4 satisfying Ux = b, where b =


1
5
2
0

.

(b) Find all column vectors x of size 4 satisfying Ux = b′, where b′ =


1
5
2
1

.

(c) Find all column vectors x of size 4 satisfying Ux = x.

Solution. The matrix U is in row-echelon form. Thus, systems of the form Ux = a
for a constant vector a can be solved by back-substitution. Parts (a) and (b) are
such systems, so this is how we will solve them. Part (c) is slightly different.

(a) Writing x as x =


x1
x2
x3
x4

, the equation Ux = b rewrites as the system


6x1 + 3x2 + (−2) x3 + 5x4 = 1;

(−1) x3 + 2x4 = 5;
1x4 = 2;

0 = 0

. This system can be solved by back-substitution:

The fourth equation (0 = 0) is automatically satisfied; the third equation can be
solved for x4 (yielding x4 = 2); the second equation can then be solved for x3 using
our already-obtained value of x4 (yielding x3 = −1); the lack of an equation with
“leading variable” x2 shows that x2 will be a free variable (say, x2 = s); finally, the
first equation can be solved for x1 using our already-obtained values for x2, x3, x4

(this yields x1 = −1
2

s− 11
6

). Thus, the solution is

x =


−1

2
s− 11

6
s
−1
2


with a free variable s ∈ R.

(b) Writing x as x =


x1
x2
x3
x4

, the equation Ux = b′ rewrites as the system
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
6x1 + 3x2 + (−2) x3 + 5x4 = 1;

(−1) x3 + 2x4 = 5;
1x4 = 2;

0 = 1

. This system can be solved by back-substitution:

The fourth equation (0 = 1) is unsatisfiable, so there are no solutions.

(c) Writing x as x =


x1
x2
x3
x4

, the equation Ux = x rewrites as the system


6x1 + 3x2 + (−2) x3 + 5x4 = x1;

(−1) x3 + 2x4 = x2;
1x4 = x3;

0 = x4

. Bringing the x1, x2, x3, x4 onto the left hand

sides transforms this into


5x1 + 3x2 + (−2) x3 + 5x4 = 0;
(−1) x2 + (−1) x3 + 2x4 = 0;

(−1) x3 + 1x4 = 0;
(−1) x4 = 0

. This system can again

be solved by back-substitution, leading to the only solution

x =


0
0
0
0

 .

[Alternative solution for (c): Rewrite the equation Ux = x as Ux− x = 04×1. Since
Ux− x = Ux− I4x = (U − I4) x, this can be furthermore rewritten as (U − I4) x =
04×1. Set A = U − I4. Then, our equation (U − I4) x = 04×1 can be rewritten as
Ax = 04×1. So we need to find all column vectors x satisfying Ax = 04×1.

But in my notes, there is the following theorem ([lina, Theorem 3.99]):

Theorem 0.1. Let n ∈ N. Let A be an invertibly upper-triangular n× n-matrix.
Then, A is invertible, and its inverse A−1 is again invertibly upper-triangular.

The matrix

A = U − I4 =


6 3 −2 5
0 0 −1 2
0 0 0 1
0 0 0 0

−


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 =


5 3 −2 5
0 −1 −1 2
0 0 −1 1
0 0 0 −1


is invertibly upper-triangular. Hence, Theorem 0.1 shows that A is invertible.
Now, the equation Ax = 04×1 rewrites as x = A−104×1, thus as x = 04×1 (since

A−104×1 = 04×1). So the only solution is x = 04×1 =


0
0
0
0

.]
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Exercise 2. Let A =

 1 4 2 1
1 3 3 1
1 2 4 1

.

(a) Find all column vectors x of size 4 satisfying Ax = b, where b =

 1
1
1

.

(b) Find all column vectors x of size 4 satisfying Ax = b, where b =

 1
1
0

.

Solution. Any form of Gaussian elimination will do here. Let me do it the way we
did in class:

Apply row operations to bring A into row echelon form: 1 4 2 1
1 3 3 1
1 2 4 1

 A−1
2,1−→
←−
A1

2,1

 1 4 2 1
0 −1 1 0
1 2 4 1

 A−1
3,1−→
←−
A1

3,1

 1 4 2 1
0 −1 1 0
0 −2 2 0


A−2

3,2−→
←−
A2

3,2

 1 4 2 1
0 −1 1 0
0 0 0 0

 .

Thus, A = EU, where E = A1
2,1A1

3,1A2
3,2 is a product of elementary matrices (thus

invertible) and U =

 1 4 2 1
0 −1 1 0
0 0 0 0

 is in row-echelon form.

Now, A = EU, so that each 3× 1-matrix b satisfies

Ax = b ⇐⇒ EUx = b ⇐⇒ Ux = E−1b.

So what is E−1 ? Since E = A1
2,1A1

3,1A2
3,2, we have E−1 = A−2

3,2 A−1
3,1 A−1

2,1 =

 1 0 0
−1 1 0
1 −2 1

.

(More explicitly, E−1 is the matrix obtained from I3 by doing precisely the same row
operations that we applied to A to obtain U.)

(a) We must solve Ax = b, thus Ux = E−1b. Since U =

 1 4 2 1
0 −1 1 0
0 0 0 0


and E−1b =

 1 0 0
−1 1 0
1 −2 1

 1
1
1

 =

 1
0
0

, this means that we must solve

 1 4 2 1
0 −1 1 0
0 0 0 0

 x =

 1
0
0

. The solution is x =


1− r− 6s

s
s
r

 with two free

variables r, s ∈ R.
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(b) We must solve Ax = b, thus Ux = E−1b. Since U =

 1 4 2 1
0 −1 1 0
0 0 0 0


and E−1b =

 1 0 0
−1 1 0
1 −2 1

 1
1
0

 =

 1
0
−1

, this means that we must solve 1 4 2 1
0 −1 1 0
0 0 0 0

 x =

 1
0
−1

. There are no solutions.

Exercise 3. Recall that the determinant of a 2 × 2-matrix is computed by the
formula

det
(

a b
c d

)
= ad− bc.

Use this to prove (by direct computation) that det (AB) = det A · det B holds for
all 2× 2-matrices A and B.

Solution. Setting A =

(
a b
c d

)
and B =

(
x y
z w

)
, we have AB =

(
ax + bz ay + bw
cx + dz cy + dw

)
and thus

det (AB) = (ax + bz) (cy + dw)− (ay + bw) (cx + dz)
= adwx− bcwx− adyz + bcyz.

Comparing this with

det A︸ ︷︷ ︸
=ad−bc

· det B︸ ︷︷ ︸
=xw−yz

= (ad− bc) (xw− yz) = adwx− bcwx− adyz + bcyz,

we confirm det (AB) = det A · det B.

Exercise 4. I have mentioned in class that determinants of square matrices behave
predictably under the standard row operations:

• The operation Aλ
u,v preserves the determinant (that is, det

(
Aλ

u,vC
)
= det C

for any C).

• The operation Sλ
u multiplies the determinant by λ (that is, det

(
Sλ

uC
)
=

λ det C for any C).

• The operation Tu,v negates the determinant (that is, det (Tu,vC) = −det C
for any C).

Also, I have mentioned that the determinant of a triangular matrix is the prod-
uct of its diagonal entries.
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Compute

det


1 0 0 0 0 7
2 1 0 0 0 0
0 3 1 0 0 0
0 0 4 1 0 0
0 0 0 5 1 0
0 0 0 0 6 1

 .

(Mind the 7 in the upper-right corner!)

Solution. We perform row operations to our matrix:
1 0 0 0 0 7
2 1 0 0 0 0
0 3 1 0 0 0
0 0 4 1 0 0
0 0 0 5 1 0
0 0 0 0 6 1


A−2

2,1−→


1 0 0 0 0 7
0 1 0 0 0 −2 · 7
0 3 1 0 0 0
0 0 4 1 0 0
0 0 0 5 1 0
0 0 0 0 6 1



A−3
3,2−→


1 0 0 0 0 7
0 1 0 0 0 −2 · 7
0 0 1 0 0 2 · 3 · 7
0 0 4 1 0 0
0 0 0 5 1 0
0 0 0 0 6 1


A−4

4,3−→


1 0 0 0 0 7
0 1 0 0 0 −2 · 7
0 0 1 0 0 2 · 3 · 7
0 0 0 1 0 −2 · 3 · 4 · 7
0 0 0 5 1 0
0 0 0 0 6 1



A−5
5,4−→


1 0 0 0 0 7
0 1 0 0 0 −2 · 7
0 0 1 0 0 2 · 3 · 7
0 0 0 1 0 −2 · 3 · 4 · 7
0 0 0 0 1 2 · 3 · 4 · 5 · 7
0 0 0 0 6 1


A−6

6,5−→


1 0 0 0 0 7
0 1 0 0 0 −2 · 7
0 0 1 0 0 2 · 3 · 7
0 0 0 1 0 −2 · 3 · 4 · 7
0 0 0 0 1 2 · 3 · 4 · 5 · 7
0 0 0 0 0 1− 2 · 3 · 4 · 5 · 6 · 7

 .

All of these operations have preserved the determinant (since any operation Aλ
u,v

preserves the determinant). But the result is an upper-triangular matrix, whose
determinant is therefore the product of its diagonal entries:

1 · 1 · 1 · 1 · 1 · 1 · (1− 2 · 3 · 4 · 5 · 6 · 7) = −5039.

Hence, the determinant of our initial matrix must also be −5039.

References

[lina] Darij Grinberg, Notes on linear algebra, version of 13 December 2016.
https://github.com/darijgr/lina

https://github.com/darijgr/lina

