Proof of a CWMO problem generalized

Darij Grinberg version 7 September 2009

The following result is due to Dan Schwarz. It was proposed as problem 4 (c) for the 9th grade of the Romanian Mathematical Olympiad 2004. It was discussed in [1] (where it was posted by tanlsth), in [2] and in [3].

Theorem 1. Let X be a set. Let n and $m \ge 1$ be two nonnegative integers such that $|X| \ge m(n-1) + 1$. Let $B_1, B_2, ..., B_n$ be n subsets of X such that $|B_i| \le m$ for every $i \in \{1, 2, ..., n\}$. Then, there exists a subset Y of X such that |Y| = n and $|Y \cap B_i| \le 1$ for every $i \in \{1, 2, ..., n\}$.

Proof of Theorem 1. We will prove Theorem 1 by induction over n.

Induction base: If n = 0, then Theorem 1 is trivially true (just set $Y = \emptyset$; then, |Y| = 0 = n and $|Y \cap B_i| = |\emptyset \cap B_i| = |\emptyset| = 0 \le 1$ for every $i \in \{1, 2, ..., n\}$). This completes the induction base.

Induction step: Let N be a nonnegative integer. Assume that Theorem 1 holds for n = N. We have to show that Theorem 1 also holds for n = N + 1.

We assumed that Theorem 1 holds for n = N. In other words, we assumed the following assertion:

Assertion A: Let X be a set. Let $m \ge 1$ be a nonnegative integer such that $|X| \ge m(N-1)+1$. Let $B_1, B_2, ..., B_N$ be N subsets of X such that $|B_i| \le m$ for every $i \in \{1, 2, ..., N\}$. Then, there exists a subset Y of X such that |Y| = N and $|Y \cap B_i| \le 1$ for every $i \in \{1, 2, ..., N\}$.

Upon renaming X, Y and B_i into X', Y' and B'_i , respectively, this assertion rewrites as:

Assertion \mathcal{A}' : Let X' be a set. Let $m \geq 1$ be a nonnegative integer such that $|X'| \geq m (N-1) + 1$. Let $B'_1, B'_2, ..., B'_N$ be N subsets of X' such that $|B'_i| \leq m$ for every $i \in \{1, 2, ..., N\}$. Then, there exists a subset Y' of X' such that |Y'| = N and $|Y' \cap B'_i| \leq 1$ for every $i \in \{1, 2, ..., N\}$.

Now, we have to show that Theorem 1 also holds for n = N + 1. In other words, we have to prove the following assertion:

Assertion \mathcal{B} : Let X be a set. Let $m \geq 1$ be a nonnegative integer such that $|X| \geq m((N+1)-1)+1$. Let $B_1, B_2, ..., B_{N+1}$ be N+1 subsets of X such that $|B_i| \leq m$ for every $i \in \{1, 2, ..., N+1\}$. Then, there exists a subset Y of X such that |Y| = N+1 and $|Y \cap B_i| \leq 1$ for every $i \in \{1, 2, ..., N+1\}$.

Proof of Assertion \mathcal{B} . For every choice of X, m and B_1 , B_2 , ..., B_{N+1} , one of the following two cases must hold:

Case 1: We have
$$X = \bigcup_{j \in \{1,2,\dots,N+1\}} B_j$$
.
Case 2: We have $X \neq \bigcup_{j \in \{1,2,\dots,N+1\}} B_j$.

Let us consider Case 1. In this case, let $k \in \{1, 2, ..., N+1\}$. Then,

$$\left| \bigcup_{j \in \{1, 2, \dots, N+1\} \setminus \{k\}} B_j \right| \le \sum_{j \in \{1, 2, \dots, N+1\} \setminus \{k\}} \underbrace{\left| B_j \right|}_{\le m} \le \sum_{j \in \{1, 2, \dots, N+1\} \setminus \{k\}} m = Nm$$

$$= mN < mN + 1 = m \left((N+1) - 1 \right) + 1 \le |X| = \left| \bigcup_{j \in \{1, 2, \dots, N+1\}} B_j \right|,$$
so that
$$B_i \ne M$$
Since
$$B_i = B_i \cup \{M\}$$

so that $\bigcup_{j\in\{1,2,\dots,N+1\}\backslash\{k\}}B_j\neq\bigcup_{j\in\{1,2,\dots,N+1\}}B_j. \text{ Since }\bigcup_{j\in\{1,2,\dots,N+1\}}B_j=B_k\cup\left(\bigcup_{j\in\{1,2,\dots,N+1\}\backslash\{k\}}B_j\right),$ this becomes $\bigcup_{j\in\{1,2,\dots,N+1\}\backslash\{k\}}B_j\neq B_k\cup\left(\bigcup_{j\in\{1,2,\dots,N+1\}\backslash\{k\}}B_j\right). \text{ Thus, }B_k\nsubseteq\bigcup_{j\in\{1,2,\dots,N+1\}\backslash\{k\}}B_j$ $(\text{since } B_k \subseteq \bigcup_{j \in \{1,2,\dots,N+1\} \setminus \{k\}} B_j \text{ would yield } \bigcup_{j \in \{1,2,\dots,N+1\} \setminus \{k\}} B_j = B_k \cup \left(\bigcup_{j \in \{1,2,\dots,N+1\} \setminus \{k\}} B_j\right)).$ Hence, we have all the state of t

Hence, we have shown that

$$B_k \nsubseteq \bigcup_{j \in \{1,2,...,N+1\} \setminus \{k\}} B_j$$
 for every $k \in \{1,2,...,N+1\}$.

For every $k \in \{1, 2, ..., N+1\}$, let x_k be an element of B_k satisfying $x_k \notin \bigcup_{j \in \{1, 2, ..., N+1\} \setminus \{k\}} B_j$ (such an x_k exists, since $B_k \nsubseteq \bigcup_{j \in \{1,2,...,N+1\} \setminus \{k\}} B_j$). Then, for every $k \in \{1,2,...,N+1\}$ and for every $i \in \{1, 2, ..., N+1\}$ satisfying $i \neq k$, we have $x_k \notin B_i$ (since $x_k \notin \bigcup_{j \in \{1, 2, ..., N+1\} \setminus \{k\}} B_j$ and $B_i \subseteq \bigcup_{j \in \{1, 2, ..., N+1\} \setminus \{k\}} B_j$). Hence, for every $k \in \{1, 2, ..., N+1\}$ and for every $i \in \{1, 2, ..., N+1\}$ satisfying $i \neq k$, we have $x_k \neq x_i$ (since $x_k \notin B_i$ while $x_i \in B_i$). Thus, the N+1 elements $x_1, x_2, ..., x_{N+1}$ are pairwise distinct. Set $Y = \{x_1, x_2, ..., x_{N+1}\}$. Then, |Y| = N + 1 (since the N + 1 elements $x_1, x_2, ..., x_N + 1$). ..., x_{N+1} are pairwise distinct). Besides, for every $i \in \{1, 2, ..., N+1\}$, we have $\{x_1, x_2, ..., x_{N+1}\} \cap B_i = \{x_i\} \text{ (since } x_i \in B_i, \text{ but } x_k \notin B_i \text{ for every } k \in \{1, 2, ..., N+1\}$ satisfying $i \neq k$), and thus

$$|Y \cap B_i| = |\{x_1, x_2, ..., x_{N+1}\} \cap B_i| = |\{x_i\}| = 1 \le 1.$$

Thus, Assertion \mathcal{B} is proven in Case 1.

Now, let us consider Case 2. In this case, $X \supseteq \bigcup_{j \in \{1,2,\dots,N+1\}} B_j$, but $X \neq \bigcup_{j \in \{1,2,\dots,N+1\}} B_j$. Hence, $X \nsubseteq \bigcup_{j \in \{1,2,\dots,N+1\}} B_j$, so that there exists some $x \in X$ such that $x \notin \bigcup_{j \in \{1,2,\dots,N+1\}} B_j$. Thus, $x \notin B_i$ for every $i \in \{1, 2, ..., N+1\}$.

We want to prove Assertion \mathcal{B} . If every $i \in \{1, 2, ..., N+1\}$ satisfies $B_i = \emptyset$, then Assertion \mathcal{B} is trivial (just let Y be any subset of X satisfying |Y| = N + 1 ; then, for every $i \in \{1, 2, ..., N+1\}$, we have $|Y \cap B_i| = |Y \cap \emptyset| = |\emptyset| = 0 \le 1$, so that Assertion \mathcal{B} is fulfilled). Hence, for the rest of the proof of Assertion \mathcal{B} , we

Such a subset Y exists, since $|X| \ge m((N+1)-1)+1 = \underbrace{m}_{>1} N+1 \ge N+1$.

may assume that not every $i \in \{1, 2, ..., N+1\}$ satisfies $B_i = \emptyset$. So assume that not every $i \in \{1, 2, ..., N+1\}$ satisfies $B_i = \emptyset$. In other words, there exists some $k \in \{1, 2, ..., N+1\}$ such that $B_k \neq \emptyset$. WLOG assume that $B_{N+1} \neq \emptyset$. Let u be an element of B_{N+1} .

Set $X' = X \setminus ((B_{N+1} \setminus \{u\}) \cup \{x\})$ and $B'_i = B_i \cap X'$ for every $i \in \{1, 2, ..., N+1\}$. Then, $B'_1, B'_2, ..., B'_N$ are N subsets of X', and we have

$$|B_{N+1} \setminus \{u\}| = |B_{N+1}| - 1$$
 (since $u \in B_{N+1}$)
 $\leq m - 1$ (since $|B_{N+1}| \leq m$),

thus

$$|(B_{N+1} \setminus \{u\}) \cup \{x\}| = |B_{N+1} \setminus \{u\}| + 1 \qquad \text{(since } x \notin B_{N+1} \text{ yields } x \notin B_{N+1} \setminus \{u\})$$

$$\leq (m-1) + 1 = m,$$

hence

$$|X'| = |X \setminus ((B_{N+1} \setminus \{u\}) \cup \{x\})| = |X| - |(B_{N+1} \setminus \{u\}) \cup \{x\}| \ge m((N+1)-1) + 1 - m$$
(since $|X| \ge m((N+1)-1) + 1$ and $|(B_{N+1} \setminus \{u\}) \cup \{x\}| \le m$)
$$= mN + 1 - m = m(N-1) + 1$$

and $|B_i'| = |B_i \cap X'| \le |B_i| \le m$ for every $i \in \{1, 2, ..., N\}$. Hence, by Assertion \mathcal{A}' , there exists a subset Y' of X' such that |Y'| = N and $|Y' \cap B_i'| \le 1$ for every $i \in \{1, 2, ..., N\}$. Note that $x \notin Y'$, since $Y' \subseteq X' = X \setminus ((B_{N+1} \setminus \{u\}) \cup \{x\})$ and $x \notin X \setminus ((B_{N+1} \setminus \{u\}) \cup \{x\})$.

Notice that

$$B'_{N+1} = B_{N+1} \cap X' = B_{N+1} \cap \underbrace{\left(X \setminus \left(\left(B_{N+1} \setminus \{u\}\right) \cup \{x\}\right)\right)}_{=\left(X \setminus \left(B_{N+1} \setminus \{u\}\right)\right) \setminus \{x\}}$$

$$\subseteq B_{N+1} \cap \left(X \setminus \left(B_{N+1} \setminus \{u\}\right)\right) = \left(B_{N+1} \cap X\right) \setminus \left(B_{N+1} \setminus \{u\}\right)$$

$$= B_{N+1} \setminus \left(B_{N+1} \setminus \{u\}\right) \qquad \text{(since } B_{N+1} \subseteq X \text{ yields } B_{N+1} \cap X = B_{N+1})$$

$$= \{u\} \qquad \text{(since } u \in B_{N+1}),$$

so that $Y' \cap B'_{N+1} \subseteq B'_{N+1} \subseteq \{u\}$ and thus $|Y' \cap B'_{N+1}| \le |\{u\}| = 1$.

Altogether, we have seen that $|Y' \cap B'_i| \leq 1$ for every $i \in \{1, 2, ..., N\}$ and that $|Y' \cap B'_{N+1}| \leq 1$. Combining these two facts, we conclude that $|Y' \cap B'_i| \leq 1$ for every $i \in \{1, 2, ..., N+1\}$.

Now, let $Y = Y' \cup \{x\}$. Then,

$$|Y| = |Y' \cup \{x\}| = |Y'| + 1$$
 (since $x \notin Y'$)
= $N + 1$.

Besides, for every $i \in \{1, 2, ..., N + 1\}$, we have

$$|Y \cap B_i| = |(Y' \cup \{x\}) \cap B_i| = |(Y' \cap B_i) \cup \underbrace{(\{x\} \cap B_i)}_{=\varnothing, \text{ since } x \notin B_i}| = |(Y' \cap B_i) \cup \varnothing| = |Y' \cap B_i| = |(Y' \cap X') \cap B_i|$$

$$(\text{since } Y' \subseteq X' \text{ yields } Y' = Y' \cap X')$$

$$= |Y' \cap \underbrace{(B_i \cap X')}_{=B_i'}| = |Y' \cap B_i'| \le 1.$$

Thus, Assertion \mathcal{B} is proven in Case 2.

Altogether, we have now verified Assertion \mathcal{B} in both Cases 1 and 2. But we know that for every choice of X, m and B_1 , B_2 , ..., B_{N+1} , either Case 1 or Case 2 is satisfied. Thus, Assertion \mathcal{B} is proven in every possible case. In other words, Theorem 1 holds for n = N + 1. This completes the induction step.

Therefore, the induction proof of Theorem 1 is complete.

References

- [1] tanlsth et al., MathLinks topic #118091 ("subset conditions"), posts #3-#5. http://www.mathlinks.ro/viewtopic.php?t=118091
- [2] Dan Schwarz (alias mavropnevma), $MathLinks\ topic\ \#299325$ ("Renewal of an old problem").
- http://www.mathlinks.ro/viewtopic.php?t=299325
- [3] perfect_radio, grobber et al., $MathLinks\ topic\ \#76786\ ("S-property\ of\ a\ set")$. http://www.mathlinks.ro/viewtopic.php?t=76786