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The following result is due to Dan Schwarz. It was proposed as problem 4 (c) for
the 9th grade of the Romanian Mathematical Olympiad 2004. It was discussed in [1]
(where it was posted by tanlsth), in [2] and in [3].

Theorem 1. Let X be a set. Let n and m > 1 be two nonnegative integers
such that | X| > m(n —1)+ 1. Let By, Bs, ..., B, be n subsets of X such
that |B;| < m for every i € {1,2,...,n}. Then, there exists a subset Y of
X such that |Y|=n and |Y N B;| <1 for every i € {1,2,...,n}.

Proof of Theorem 1. We will prove Theorem 1 by induction over n.

Induction base: If n = 0, then Theorem 1 is trivially true (just set Y = &; then,
Y|=0=nand Y NB| =|@NB| =8 =0<1 forevery i € {1,2,...,n}). This
completes the induction base.

Induction step: Let N be a nonnegative integer. Assume that Theorem 1 holds for
n = N. We have to show that Theorem 1 also holds for n = N + 1.

We assumed that Theorem 1 holds for n = N. In other words, we assumed the
following assertion:

Assertion A: Let X be a set. Let m > 1 be a nonnegative integer such that
|X| > m (N —1)+ 1. Let By, B, ..., By be N subsets of X such that |B;| < m for
every ¢ € {1,2,..., N}. Then, there exists a subset Y of X such that |Y| = N and
Y N B;| <1 foreveryie{l,2,.., N}

Upon renaming X, Y and B; into X’, Y/ and B, respectively, this assertion rewrites
as:

Assertion A': Let X' be a set. Let m > 1 be a nonnegative integer such that
|X'| >m (N —1)+1. Let By, B), ..., By be N subsets of X’ such that |B]| < m for
every i € {1,2,..., N}. Then, there exists a subset Y’ of X’ such that |Y'| = N and
IY'NB!| <1 for every i € {1,2,...,N}.

Now, we have to show that Theorem 1 also holds for n = N + 1. In other words,
we have to prove the following assertion:

Assertion B: Let X be a set. Let m > 1 be a nonnegative integer such that
|IX| >m((N+1)—1)+ 1. Let By, By, ..., Byi1 be N + 1 subsets of X such that
|B;| < m for every i € {1,2,..., N + 1}. Then, there exists a subset Y of X such that
Y|=N+1and |YNB;| <1foreveryie{l,2,..,N+1}.

Proof of Assertion B. For every choice of X, m and By, By, ..., By.1, one of the
following two cases must hold:

Case 1: We have X = U B;.

je{1,2,,N+1}
Case 2: We have X # U B;.

je{1,2,...,.N+1}



Let us consider Case 1. In this case, let k € {1,2,..., N + 1}. Then,

U B 3 Bl > m=Nm
Fe{1,2,...N+1}\{k} FEQL2 NHIN(RY 2y GE{1,2, N+

—mN <mN+1=m(N+1)—-1)+1<|X|= U B
je{1,2,..,N+1}

so that U Bj 7£ U Bj. Since U Bj = BkU U Bj s
je{1,2,....N+1}\{k}

je{1,2,...N+1\{k} je{1,2,... .N+1} je{1,2,...,N+1}

this becomes U B; # ByU U Bj |. Thus, By € U B;
JE{1,200 N4\ (K} JE{1,2,0, N+1}\{k} JE{1,2,, N+1}\{k}
(since By, C U B; would yield U B; = ByU U B; |).
GE{1,2,0, N+1}\{k} je{1,2,., N+1}\{k} jE{1,2,., N+1}\{k}
Hence, we have shown that

B, ¢ U B; for every k € {1,2,...,. N +1}.
je{1,2,...N+11\{k}

For every k € {1,2, ..., N + 1}, let ; be an element of By, satisfying z) ¢ U B;
GE{1,2,..., N+1}\{k}
(such an z, exists, since By € U B;). Then, for every k € {1,2,..., N + 1}
JE{1 20 N+ (k)

and for every i € {1,2,..., N 4+ 1} satisfying ¢ # k, we have x ¢ B; (since xp ¢
Bj and B; C U B;). Hence, for every k € {1,2,...,N + 1}

JE{1,2,., N+1}\{k} FE{1,2,, N+1}\{k}

and for every i € {1,2,..., N 4+ 1} satisfying i # k, we have x; # x; (since =, ¢ B;

while z; € B;). Thus, the N + 1 elements zy, xs, ..., Tx11 are pairwise distinct.

Set Y = {z1,29,...,xn41}. Then, |Y| = N + 1 (since the N + 1 elements z;, xo,

.., Tny41 are pairwise distinct). Besides, for every ¢ € {1,2,..., N + 1}, we have

{z1,29,...,xny11} N B; = {z;} (since z; € B;, but xy ¢ B; for every k € {1,2,.... N + 1}

satisfying i # k), and thus

Y N B;| = {z1, 22, ana} N Bi| = {z} =1 < 1.

Thus, Assertion B is proven in Case 1.

Now, let us consider Case 2. In this case, X D U B, but X # U B;.
je{1,2,,N+1} jE{12, N+1}

Hence, X ¢ U B;, so that there exists some x € X such that = ¢ U B;.
je{1,2,.,N+1} je{1,2,.,N+1}
Thus, x ¢ B; for every i € {1,2,..., N + 1}.

We want to prove Assertion B. If every i € {1,2,..., N + 1} satisfies B; = @&, then
Assertion B is trivial (just let Y be any subset of X satisfying [Y| = N +1 1
then, for every i € {1,2,... N +1}, we have |YNB;)| = |[YNg| = |8 =0 < 1,
so that Assertion B is fulfilled). Hence, for the rest of the proof of Assertion B, we

!Such a subset Y exists, since | X| >m ((N+1)—1)+1=_m N+1>N +1.
>1



may assume that not every ¢ € {1,2,..., N + 1} satisfies B; = @. So assume that
not every i € {1,2,..., N + 1} satisfies B; = &. In other words, there exists some
k€ {1,2,..., N + 1} such that By # @. WLOG assume that By.; # @. Let u be an
element of By.;.

Set X' = X\ ((Bys1 \ {u})U{z}) and B} = B;n X’ for every i € {1,2,..., N + 1}.
Then, Bj, BY, ..., By are N subsets of X’ and we have

|Byi1 \ {u}| = |Bns1| — 1 (since u € By41)
<m-—1 (since |Byi1| <m),
thus
|(Bya \ {u}) U{z}] = [Byya \ {u}] +1 (since ¢ By yields z ¢ By \ {u})
<(m-1)+1=m,
hence

(X = 1X\ (Byga \ {u}) U{a})] = [X] = [(Bysa \ {u}) U{z}| 2 m (N +1) = 1)+ 1—m
(since | X|>m((N+1)—1)+1and |[(Bys1 \{u})U{z}| <m)
=mN+1—-m=m(N-1)+1

and |B]| = |B,NX'| < |B;] < m for every i € {1,2,..., N}. Hence, by Assertion
A’, there exists a subset Y of X’ such that |Y'| = N and |Y' N B} < 1 for every
i€ {1,2,..,N}. Note that x ¢ Y’ since Y/ C X' = X \ ((By4+1 \ {u})U{z}) and
r ¢ X\ ((Byia\ {u}) U{z}).

Notice that

By =By N X" = By N (XN ((Bya \ {u}) U{z}))

—(X\(By 2 \[u)\ Lz}
CX\(Br1\{u})

C By N (X \ By \ {u})) = (Bytr N X)\ (Bya \ {u})
= Byni1\ (By41 \ {u}) (since By41 € X yields Byy1 N X = Byy1)
={u} (since u € By41) ,

so that Y' N By, € By, C {u} and thus ‘Y’ N ij+1| < Ku}| =1.

Altogether, we have seen that |Y' N B}| < 1 for every i € {1,2,..., N} and that
’Y’ N By Jrl| < 1. Combining these two facts, we conclude that |Y' N Bj| <1 for every
ie{1,2,..,N+1}.

Now, let Y =Y’ U {z}. Then,

Y| =Y'u{z} =Y+1 (since x ¢ Y)
=N + 1.



Besides, for every i € {1,2,..., N 4+ 1}, we have

YNB|=|Y'U{z})nB|=|(YNB)U{z}nB)| =Y NB)Ug|=|Y'NB;|=|Y NnX')N B
N e’
=4, since

x¢B;
(since Y’ C X' yields Y =Y’ N X")

=\Y'Nn(BNX)=Y'nBj| <1
N——

:BZ(

Thus, Assertion B is proven in Case 2.

Altogether, we have now verified Assertion B in both Cases 1 and 2. But we know
that for every choice of X, m and By, Bs, ..., By1, either Case 1 or Case 2 is satisfied.
Thus, Assertion B is proven in every possible case. In other words, Theorem 1 holds
for n = N + 1. This completes the induction step.

Therefore, the induction proof of Theorem 1 is complete.
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