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What is an integral-valued polynomial?

This talk is about polynomials: 2x* 4+ 5x, 3x” —2x +17,....
Call a polynomial P(x) integral-valued if P(n) € Z for all n € Z.

Example: If every coefficient of P(x) is an integer, then P(x) is
integral-valued, e.g., P(x) = 2x* 4 5x.
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What is an integral-valued polynomial?

This talk is about polynomials: 2x* 4+ 5x, 3x” —2x +17,....
Call a polynomial P(x) integral-valued if P(n) € Z for all n € Z.

Example: If every coefficient of P(x) is an integer, then P(x) is
integral-valued, e.g., P(x) = 2x* 4 5x.

The converse is false: P(x) can be integral-valued without having
integral coefficients!
1, 1 x(x-1)

Example: P(x) = X T eX=——— ForneZ, norn—1is

n(n—1)

even, so — e 7.

Integral-valued polynomials occur in several areas of math, such as
combinatorics, commutative algebra, and algebraic topology.

Our goal: find a nice description of all integral-valued polynomials.



Background: polynomials and their values

A polynomial is determined by “sufficiently many” of its values.

o If P(x) and Q(x) are polynomials such that P(x) = Q(x) for
infinitely many numbers x, then P(x) = Q(x) for all x.
For instance, a polynomial is completely determined by
knowing its values at all x > 0.

o If P(x) and Q(x) are polynomials of degree d such that
P(x) = Q(x) for d + 1 choices of x, then P(x) = Q(x) for
all x.

For instance, a quadratic polynomial is completely determined
by knowing its values at (any) three choices of x.



Background: polynomials and their values

A polynomial is determined by “sufficiently many” of its values.

o If P(x) and Q(x) are polynomials of degree d such that
P(x) = Q(x) for d + 1 choices of x, then P(x) = Q(x) for
all x.

Example. To verify the identity x> — 1 = (x — 1)(x?> + x + 1) for
all x, it is enough to check both sides are equal at 4 numbers:
both sides are polynomials of degree 3, so if they agree at 4
numbers then they agree everywhere. At x = 0,1, 2,3, both sides
take the same values (—1,0,7, and 26).

This method can be used in other cases to prove polynomial
identities combinatorially: when x is an integer, the two sides of
the identity could count the same thing in two different ways. And
equality at enough integers forces equality everywhere.
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Background: polynomials and their values

A polynomial is determined by “sufficiently many” of its values.

o If a polynomial P(x) satisfies P(r) € Q for all r € Q, then all
coefficients of P(x) lie in Q.

o If a polynomial P(x) satisfies P(n) € Z for all n € Z, then

the coefficients need not all lie in Z.
2

- -1
o P(X)ZX 2 x (since n(n2 )EZforaII neZ).

o

Q not P(x) = 4_ (smce P(2) = ;)

Q P(x

6Zf0ra|ln6Z>.
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Examples.

@ A polynomial with integer coefficients, of course. :)

1
o P(x) = =(xP — x) for all primes p. (Fermat's little theorem.)
p
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Integral-valued polynomials

Call a polynomial P(x) integral-valued if P(n) € Z for all n € Z.

Examples.

@ A polynomial with integer coefficients, of course. :)

1
o P(x) = =(xP — x) for all primes p. (Fermat's little theorem.)
p

° P(x) = %x(x +1)(2x + 1), because

P(n)=12+422+... 4+ n?> € Z for n >0,
P(n)=—(12+224+ ...+ (n" = 1)?)€Z for n=—n' <0.



Integral-valued polynomials

Call a polynomial P(x) integral-valued if P(n) € Z for all n € Z.

Further example.

x>. x(x—l)--r-n(!x—m—i—l)

for integers m > 0. The first few of these polynomials are

(4 () ()52 ()2
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Integral-valued polynomials

Call a polynomial P(x) integral-valued if P(n) € Z for all n € Z.

Further example.

x>. x(x—l)--r-n(!x—m—i—l)

for integers m > 0. The first few of these polynomials are

(4 () ()52 ()2

Indeed, for n > 0, the number (;) counts the number of

m-element subsets of {1,2,...,n} (“sampling balls from urns").

N -1
For n=—N < 0, we have (n> :(1)'"( m > € Z.
m m



Integral-valued polynomials

Call a polynomial P(x) integral-valued if P(n) € Z for all n € Z.

Further example.
1 m\ 4
P(x) = m;qb(d)x

for integers m > 1, where ¢(k) is the number of integers among
1,2,..., k that are relatively prime to k. The first few are

1 1 1
X, E(XZ—{—X), §(X3+2X), Z(X4—|—X2—|—2X).



Integral-valued polynomials

Call a polynomial P(x) integral-valued if P(n) € Z for all n € Z.

Further example.
1 m\ 4
PO = 5200 () >

for integers m > 1, where ¢(k) is the number of integers among

1,2,..., k that are relatively prime to k. The first few are
1 5 1 3 1 4 2
X, 2(X + x), 3(X + 2x), 4(X + x4+ 2x).

1
Forn>1, — qu (ﬂ) n? counts the number of necklaces with
m e d

m beads of colors 1,2,...,n up to a cyclic rotation (MacMahon
1892). It is not clear why it's in Z for n < 0. Will see why later!
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e P(—x),
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@ P(Q(x)) for any other integral-valued polynomial Q(x),
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Further examples. If P(x) is an integral-valued polynomial, so are
° P(—x),
@ P(x+ b) for b € Z,
@ P(Q(x)) for any other integral-valued polynomial Q(x),

@ aP(x) + bQ(x) + cR(x), where Q(x) and R(x) are
integral-valued polynomials and a, b, c € Z.



Integral-valued polynomials

Call a polynomial P(x) integral-valued if P(n) € Z for all n € Z.

Further examples. If P(x) is an integral-valued polynomial, so are
e P(—x),
@ P(x+b) for beZ,
@ P(Q(x)) for any other integral-valued polynomial Q(x),
@ aP(x) + bQ(x) + cR(x), where Q(x) and R(x) are

integral-valued polynomials and a, b, c € Z.

What kind of nice description could there be of all such
polynomials?



Classification of integral-valued polynomials

Theorem (Polya, 1915)

Let N € N. The integral-valued polynomials of degree < N are
exactly the polynomials that can be written as

o) +an(5)+ v an(y)

for some integers ag, a1, . .., ayn. Moreover, an integral-valued
polynomial can be written in this form in exactly one way.

We will explain where this formula for integral-valued polynomials
comes from (not its uniqueness) using the method of finite
differences, which is a discrete analogue of derivatives.



Classification of integral-valued polynomials: Examples

Recall that

(4 () ()52 ()2

In terms of these, integral-valued polynomials seen earlier are

e - () ().

%x(x-i- Dx+1) = 2(2) +3<)2<> i ()1<>
%( S42x) = 2<)3<>+2<)2()+<)1<>
Lter ez = o(2)+a(3) +1(3) + ()



[Motivation for proof] Finite differences of x°

Start with a polynomial P.

@ Write the values P(0), P(1), P(2),... in a line.

@ Write the successive differences P(1) — P(0), P(2) — P(1),...
on the next line.

@ Write the successive differences of these successive differences
on the next line.

o Etc.

Here is P(x) = x2.



otivation for proo inite differences of 3x — x+ 7
[Motivation for proof] Finite diff f 3x2

Start with a polynomial P.

@ Write the values P(0), P(1), P(2),... in a line.

@ Write the successive differences P(1) — P(0), P(2) — P(1),...
on the next line.

@ Write the successive differences of these successive differences
on the next line.

o Etc.
Here is P(x) = 3x? — x + 7.

7 9 17 31 51 7 109
2 8 14 20 26 32



[Motivation for proof] Finite differences of x3

Start with a polynomial P.

@ Write the values P(0), P(1), P(2),... in a line.

@ Write the successive differences P(1) — P(0), P(2) — P(1),...
on the next line.

@ Write the successive differences of these successive differences
on the next line.

o Etc.

Here is P(x) = x3.

0 1 8 27 64 125 216
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Classification of integral-valued polynomials: proof

Why does it always boil down to zeroes?

Main lemma: If P(x) is a polynomial of degree N > 1 then
P(x + 1) — P(x) is a polynomial of degree N — 1.

Special case: P(x) = x".

To show (x + 1)V — x" is a polynomial of degree N — 1, the
binomial theorem says

(x+ 1DV =xN 4+ (I;I)x""l + (gl>x""2 4+ 41

Subtracting the xV term leaves only terms of degree < N — 1 on
N

the right hand side, and the term <1>XN_1 = NxV=1 has degree

N—1.
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Classification of integral-valued polynomials: proof

Why does it always boil down to zeroes?

Main lemma: If P(x) is a polynomial of degree N > 1 then
P(x + 1) — P(x) is a polynomial of degree N — 1.

General case: Set P(x) = ag 4+ aix* + -+ 4+ ayxV, ay # 0. Then
P(x+1)— P(x)
=(a0+a(x+1) +-+an(x+ 1))
— (ao+31X1 + - —|—aNxN)

=a(1-1D+a ((x+1)=x)+--Fan((x+ 1)V —xM).
~—— —_—

vanishes degree 0 degree N—1
(by special case) (by special case)

Since ay # 0, P(x + 1) — P(x) has degree N — 1. After enough
successive differences the polynomial becomes constant, and at the
next step all successive differences are 0.



Classification of integral-valued polynomials: proof

We are now ready to prove the theorem (minus the “exactly one
way" claim) by induction on N.

For polynomials of degree < 0, P(x) = ap = ao (g) where
ag = P(0) € Z. So we can take N > 1.

Let P(x) be an integral-valued polynomial of degree < N.
By main lemma, P(x 4 1) — P(x) is a polynomial of degree

< N —1, and is integral-valued of course. Hence by induction
hypothesis,

P(x+1) — P(x) = bo@ +b1<:> +"'+bN—1<NX1)

for some integers by, b, ..., by_1.



Classification of integral-valued polynomials: proof

We are now ready to prove the theorem (minus the “exactly one
way" claim) by induction on N.

For polynomials of degree < 0, P(x) = ap = ao (g) where
ag = P(0) € Z. So we can take N > 1.

Let P(x) be an integral-valued polynomial of degree < N.
By main lemma, P(x 4 1) — P(x) is a polynomial of degree

< N —1, and is integral-valued of course. Hence by induction
hypothesis,

X X X
P(x+1)— P(x) = bo<0> +b1<1> +"'+bN_1<N1>
for some integers by, b, ..., by_1.

Using P(x) — P(0) in place of P(x), WLOG P(0) = 0 (subtracting
constant term can't hurt).



Classification of integral-valued polynomials: proof

Using a telescoping sum, for every n > 1 we have

n—1
(P(k+1) — P(k)) = P(n) — P(0) = P(n).
kZ;) S~~~

=0
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(P(k+1) — P(k)) = P(n) — P(0) = P(n).
kZ;) S~~~

Since

RPINATNG TR

we set x = k and get

P(k+1)—P(k):bo<g> +b1<l1(> +-~+bN1<Nk1>.

Substituting this above,



Classification of integral-valued polynomials: proof

Using a telescoping sum, for every n > 1 we have

n—1
(P(k+1) — P(k)) = P(n) — P(0) = P(n).
kZ;) S~~~

Since

RPINATNG TR

we set x = k and get

P(k+1)—P(k):bo<g> +b1<l1(> +-~+bN1<Nk1>.

Substituting this above,

2 (o(6) +o )+t 1)) =ro0



Classification of integral-valued polynomials: proof

Soforn>1

But the hockey-stick identity says for every j > 0 that

(-6



Classification of integral-valued polynomials: proof

Soforn>1

Sl () o)
() S () S

:b0<’1’> +b1<’2’> +...+bN1<,r\',),

since the hockey-stick identity says for all j > 0 that

() ()



Classification of integral-valued polynomials: proof

for all n > 1.



Classification of integral-valued polynomials: proof

for all n > 1. Setting

c-a(;) el o3

the polynomials P(x) and Q(x) have P(n) = Q(n) for all n > 1.
Since a polynomial is determined by its values at infinitely many
numbers, P(x) = Q(x) for all x, so

P(x) = bo<)1<> + by ()2() +oet bN_1<;I).



Classification of integral-valued polynomials: proof

for all n > 1. Setting

c-a(;) el o3

the polynomials P(x) and Q(x) have P(n) = Q(n) for all n > 1.
Since a polynomial is determined by its values at infinitely many
numbers, P(x) = Q(x) for all x, so

P(x) = bo<)1<> + by ()2() +oet bN_1<;I).



Summary

We have now proven the existence part of

Let N € N. The integral-valued polynomials of degree < N are
exactly the polynomials that can be written as

o) +an(5) 4+ an(y)

for some integers ag, a1, . ..,an. Moreover, an integral-valued
polynomial can be written in this form in exactly one way.




Summary

We have now proven the existence part of

Let N € N. The integral-valued polynomials of degree < N are
exactly the polynomials that can be written as

o) +an(5) 4+ an(y)

for some integers ag, a1, . ..,an. Moreover, an integral-valued
polynomial can be written in this form in exactly one way.

A polynomial of degree < N is determined by its values at 0, 1,
..., N, and our proof only needed such values, so we proved

If a polynomial P(x) of degree < N satisfies P(n) € Z for
n=0,1,...,N then P(n) € Z for all n € Z.

Therefore if P(n) € Z for n > 0, P(n) € Z for all n € Z.
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If P(x) is integral-valued, how can we find ag, a1, . .., ay such that

P(x) =ao<g> +al<)1<> +~--+a/\/<l)\</>?

Ans: Use higher-order differences. Set (AP)(x)=P(x + 1)—P(x),
and for j > 1 set (AJ/T1P)(x) = (A/P)(x + 1) — (A P)(x). Think
of (AJP)(x) as discrete analogue of jth derivative PU)(x).
P h)— P
(Compare P(x + 1) — P(x) to P'(x) = ’I1im0 (x+ ,)7 (X))
—




If P(x) is integral-valued, how can we find ag, a1, . .., ay such that

P(x) =ao(g) +al<)1<) +~--+a/\/(l)\</ ?

Ans: Use higher-order differences. Set (AP)(x)= ( +1)—P(x),
and for j > 1 set (AJT1P)(x) = (AIP)(x + 1) — (AIP)(x). Think

of (AJP)(x) as discrete analogue of jth derivative PU)(x).
P(x + h) — P(x)

(Compare P(x + 1) — P(x) to P'(x) = ’Igno - )
Example. If P(x) = 3x? — x + 7 then
(AP)(x) = P(x+1)—P(x)
= 6x+2,
(A%P)(x) = (AP)(x+1)—(AP)(x)
= 6,

and (AJP)(x) = 0 for j > 2.



Theorem. For any polynomial P(x) of degree < N,

P(x):ao(g> +a1()1<> +"'+3N<I)\<I>

where a; = (A P)(0) = i(—l)f—"(fl) P(i). That is,

i=0



Theorem. For any polynomial P(x) of degree < N,

P(x):ao(g> +a1()1<> +"'+3N<I)\<I>

where a; = (A P)(0) = i(—ly‘—i@ P(i). That is,

i=0
P(x) = g(Af P)(0) C)

This is a discrete analogue of Taylor's formula

deg P j
!

P(x) =3 PO0)Z.
j=0 /



We have seen several integral-valued polynomials P(x) earlier, and

how th itt Vrar () - ran )
ow they are written as ao | o a{ | a( )

209 = (5)+ ()
%x(x+1)(2x+1) <>+ (;) ()

0020 = 25 va(5) ()
%(x4+x2+2x) _ 6<4>+9<3>+4<2>+<)1(>-

All coefficients on the right can be found using the higher-order
difference formula (A/P)(0) = (=1 " (4) P(i) for the
coefficient of (j) Let's look at other examples.
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Coefficients of (x? — x)/p.

1
For prime p, —(xP — x) is integral-valued. How does it look in

Polya’s theorem?

0 202~ x) = <’2(>

. %(x3—x) _ (g) +2<’2<>.



Coefficients of (x? — x)/p.

1
For prime p, —(xP — x) is integral-valued. How does it look in

Polya’s theorem?

0 202~ x) = <’2(>
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° %(x5 —x) :24<;> +48<:> +30(§> +6<)2<>.



Coefficients of (x? — x)/p.

1
For prime p, —(xP — x) is integral-valued. How does it look in

Polya’s theorem?

. %(X?’—x): (g) +2<’2<>.
° %(x5 —x) :24<;> +48<:> +30(’;> +6<)2<>.

1 P!
o —(xP—x)=>_ L {p} (X) where the curly braces denote
p j=2P ) \J

Stirling numbers of the second kind.



Coefficients for sums of powers

Famous identities: for any integer n > 1,

1424+---4+n = Zn(n+1),

124224 ...402 =

Q=N =

n(n+1)(2n+1).

For any k > 1, 1k 42k ... 4 nk = S, (n) for a polynomial Sk(x)
of degree k + 1.

beon=(3)+)
° fx(x+ 1)(2x + 1) =2<3> +3<X> + @

k+1 . k+1
e Sk(x)=>_(—-1) { i } <J> where the curly braces
Jj=1

denote Stirling numbers of the second kind.



Coefficients: binomial coefficients |
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Coefficients: binomial coefficients |

X
3+3+v

)~ )
-2 e

This is the Chu-Vandermonde convolution identity. To prove

m
it, it suffices to show that (n + 6) =3 < ¢ > (”) for
m k=0 \m — k) \k

n €N, or even just for 0 < n < m. There is a balls-and-urns
argument.

(m) -
(
<x
(



Coefficients: binomial coefficients |l

) =Eea(])
° = aj k, .| for k> 1,
<m Eo PN
where aj i m is the number of 0, 1-matrices of size k x j with

entry sum m without zero columns. (Thanks to Gjergji
Zaimi.)



Bonus: a question

For each m > 1, let

1 m—1 )
Pm(x) = — H(Xm —x")
i=0

= %(Xm —1)(x™ = x)(x™ = x?) - (x™ = x

Why is Pp(x) integral-valued?



Bonus: a question

For each m > 1, let

1 m—1 )
Pulx) = — J[(x"=x)
i=0

= %(x’" _ 1)(Xm _ x)(Xm _ X2) L (Xm B Xm_l)'

Why is Pp(x) integral-valued?

There is a slick proof that P, (p) € Z for prime p. (Namely: The
symmetric group Sp, embeds into GL,, (Z/pZ).) This generalizes
to Pm(p") € Z for prime powers p". But this is not enough to
ensure Pp,(n) € Z for all integers n! (Yet, this holds.)



Bonus: a question

For each m > 1, let

1 m—1 )
Pulx) = — J[(x"=x)
i=0

= %(x’" _ 1)(Xm _ x)(Xm _ X2) L (Xm B Xm_l)'

Why is Pp(x) integral-valued?

There is a slick proof that P, (p) € Z for prime p. (Namely: The
symmetric group Sp, embeds into GL,, (Z/pZ).) This generalizes
to Pm(p") € Z for prime powers p". But this is not enough to
ensure Pp,(n) € Z for all integers n! (Yet, this holds.)

Thanks to Keith Conrad and Tom Roby for help.
Thank you for listening!
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