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What is an integral-valued polynomial?

This talk is about polynomials: 2x4 + 5x , 3x7 −
√

2x + 17, . . . .

Call a polynomial P(x) integral-valued if P(n) ∈ Z for all n ∈ Z.

Example: If every coefficient of P(x) is an integer, then P(x) is
integral-valued, e.g., P(x) = 2x4 + 5x .

The converse is false: P(x) can be integral-valued without having
integral coefficients!

Example: P(x) =
1

2
x2 − 1

2
x =

x(x − 1)

2
. For n ∈ Z, n or n − 1 is

even, so
n(n − 1)

2
∈ Z.

Integral-valued polynomials occur in several areas of math, such as
combinatorics, commutative algebra, and algebraic topology.

Our goal: find a nice description of all integral-valued polynomials.
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Background: polynomials and their values

A polynomial is determined by “sufficiently many” of its values.

If P(x) and Q(x) are polynomials such that P(x) = Q(x) for
infinitely many numbers x , then P(x) = Q(x) for all x .
For instance, a polynomial is completely determined by
knowing its values at all x > 0.

If P(x) and Q(x) are polynomials of degree d such that
P(x) = Q(x) for d + 1 choices of x , then P(x) = Q(x) for
all x .
For instance, a quadratic polynomial is completely determined
by knowing its values at (any) three choices of x .



Background: polynomials and their values

A polynomial is determined by “sufficiently many” of its values.

If P(x) and Q(x) are polynomials of degree d such that
P(x) = Q(x) for d + 1 choices of x , then P(x) = Q(x) for
all x .

Example. To verify the identity x3 − 1 = (x − 1)(x2 + x + 1) for
all x , it is enough to check both sides are equal at 4 numbers:
both sides are polynomials of degree 3, so if they agree at 4
numbers then they agree everywhere. At x = 0, 1, 2, 3, both sides
take the same values (−1, 0, 7, and 26).

This method can be used in other cases to prove polynomial
identities combinatorially: when x is an integer, the two sides of
the identity could count the same thing in two different ways. And
equality at enough integers forces equality everywhere.



Background: polynomials and their values

A polynomial is determined by “sufficiently many” of its values.

If a polynomial P(x) satisfies P(r) ∈ Q for all r ∈ Q, then all
coefficients of P(x) lie in Q.

If a polynomial P(x) satisfies P(n) ∈ Z for all n ∈ Z, then
the coefficients need not all lie in Z.

1 P(x) =
x2 − x

2

(
since

n(n − 1)

2
∈ Z for all n ∈ Z

)
.

2 P(x) =
x2 + x

2

(
since

n(n + 1)

2
∈ Z for all n ∈ Z

)
.

3 not P(x) =
x4 − x

4

(
since P(2) =

7

2

)
.
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Integral-valued polynomials

Call a polynomial P(x) integral-valued if P(n) ∈ Z for all n ∈ Z.

Examples.

A polynomial with integer coefficients, of course. :)

P(x) =
1

p
(xp − x) for all primes p. (Fermat’s little theorem.)

P(x) =
1

6
x(x + 1)(2x + 1), because

P(n) = 12 + 22 + · · ·+ n2 ∈ Z for n ≥ 0,
P(n) = −(12 + 22 + · · ·+ (n′ − 1)2) ∈ Z for n = −n′ < 0.
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Integral-valued polynomials

Call a polynomial P(x) integral-valued if P(n) ∈ Z for all n ∈ Z.

Further example.

P(x) =

(
x

m

)
:=

x(x − 1) · · · (x −m + 1)

m!

for integers m ≥ 0. The first few of these polynomials are(
x

0

)
= 1,

(
x

1

)
= x ,

(
x

2

)
=

x(x − 1)

2
,

(
x

3

)
=

x(x − 1)(x − 2)

6
.

Indeed, for n ≥ 0, the number

(
n

m

)
counts the number of

m-element subsets of {1, 2, . . . , n} (“sampling balls from urns”).

For n = −N < 0, we have

(
n

m

)
= (−1)m

(
N + m − 1

m

)
∈ Z.
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Integral-valued polynomials

Call a polynomial P(x) integral-valued if P(n) ∈ Z for all n ∈ Z.

Further example.

P(x) =
1

m

∑
d |m

φ
(m
d

)
xd

for integers m ≥ 1, where φ(k) is the number of integers among
1, 2, . . . , k that are relatively prime to k. The first few are

x ,
1

2
(x2 + x),

1

3
(x3 + 2x),

1

4
(x4 + x2 + 2x).

For n ≥ 1,
1

m

∑
d |m

φ
(m
d

)
nd counts the number of necklaces with

m beads of colors 1, 2, . . . , n up to a cyclic rotation (MacMahon
1892). It is not clear why it’s in Z for n < 0. Will see why later!
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Integral-valued polynomials

Call a polynomial P(x) integral-valued if P(n) ∈ Z for all n ∈ Z.

Further examples. If P(x) is an integral-valued polynomial, so are

P(−x),

P(x + b) for b ∈ Z,

P(Q(x)) for any other integral-valued polynomial Q(x),

aP(x) + bQ(x) + cR(x), where Q(x) and R(x) are
integral-valued polynomials and a, b, c ∈ Z.

What kind of nice description could there be of all such
polynomials?
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Classification of integral-valued polynomials

Theorem (Polya, 1915)

Let N ∈ N. The integral-valued polynomials of degree ≤ N are
exactly the polynomials that can be written as

a0

(
x

0

)
+ a1

(
x

1

)
+ · · ·+ aN

(
x

N

)
for some integers a0, a1, . . . , aN . Moreover, an integral-valued
polynomial can be written in this form in exactly one way.

We will explain where this formula for integral-valued polynomials
comes from (not its uniqueness) using the method of finite
differences, which is a discrete analogue of derivatives.



Classification of integral-valued polynomials: Examples

Recall that(
x

0

)
= 1,

(
x

1

)
= x ,

(
x

2

)
=

x(x − 1)

2
,

(
x

3

)
=

x(x − 1)(x − 2)

6
.

In terms of these, integral-valued polynomials seen earlier are

1

2
(x2 + x) =

(
x

2

)
+

(
x

1

)
,

1

6
x(x + 1)(2x + 1) = 2

(
x

3

)
+ 3

(
x

2

)
+

(
x

1

)
,

1

3
(x3 + 2x) = 2

(
x

3

)
+ 2

(
x

2

)
+

(
x

1

)
,

1

4
(x4 + x2 + 2x) = 6

(
x

4

)
+ 9

(
x

3

)
+ 4

(
x

2

)
+

(
x

1

)
.



[Motivation for proof] Finite differences of x2

Start with a polynomial P.

Write the values P(0),P(1),P(2), . . . in a line.

Write the successive differences P(1)− P(0),P(2)− P(1), . . .
on the next line.

Write the successive differences of these successive differences
on the next line.

Etc.

Here is P(x) = x2.

0 1 4 9 16 25 36
1 3 5 7 9 11

2 2 2 2 2
0 0 0 0



[Motivation for proof] Finite differences of 3x2 − x + 7

Start with a polynomial P.

Write the values P(0),P(1),P(2), . . . in a line.

Write the successive differences P(1)− P(0),P(2)− P(1), . . .
on the next line.

Write the successive differences of these successive differences
on the next line.

Etc.

Here is P(x) = 3x2 − x + 7.

7 9 17 31 51 77 109
2 8 14 20 26 32

6 6 6 6 6
0 0 0 0



[Motivation for proof] Finite differences of x3

Start with a polynomial P.

Write the values P(0),P(1),P(2), . . . in a line.

Write the successive differences P(1)− P(0),P(2)− P(1), . . .
on the next line.

Write the successive differences of these successive differences
on the next line.

Etc.

Here is P(x) = x3.

0 1 8 27 64 125 216
1 7 19 37 61 91

6 12 18 24 30
6 6 6 6

0 0 0



Classification of integral-valued polynomials: proof

Why does it always boil down to zeroes?

Main lemma: If P(x) is a polynomial of degree N ≥ 1 then
P(x + 1)− P(x) is a polynomial of degree N − 1.

Special case: P(x) = xN .
To show (x + 1)N − xN is a polynomial of degree N − 1, the
binomial theorem says

(x + 1)N = xN +

(
N

1

)
xN−1 +

(
N

2

)
xN−2 + · · ·+ 1.

Subtracting the xN term leaves only terms of degree ≤ N − 1 on

the right hand side, and the term

(
N

1

)
xN−1 = NxN−1 has degree

N − 1.
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Classification of integral-valued polynomials: proof

Why does it always boil down to zeroes?

Main lemma: If P(x) is a polynomial of degree N ≥ 1 then
P(x + 1)− P(x) is a polynomial of degree N − 1.

General case: Set P(x) = a0 + a1x
1 + · · ·+ aNx

N , aN 6= 0. Then

P(x + 1)− P(x)

= (a0 + a1(x + 1)1 + · · ·+ aN(x + 1)N)

− (a0 + a1x
1 + · · ·+ aNx

N)

= a0 (1− 1)︸ ︷︷ ︸
vanishes

+ a1 ((x + 1)1 − x1)︸ ︷︷ ︸
degree 0

(by special case)

+ · · ·+ aN ((x + 1)N − xN)︸ ︷︷ ︸
degree N−1

(by special case)

.

Since aN 6= 0, P(x + 1)− P(x) has degree N − 1. After enough
successive differences the polynomial becomes constant, and at the
next step all successive differences are 0.
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Classification of integral-valued polynomials: proof

We are now ready to prove the theorem (minus the “exactly one
way” claim) by induction on N.

For polynomials of degree ≤ 0, P(x) = a0 = a0

(
x

0

)
, where

a0 = P(0) ∈ Z. So we can take N ≥ 1.

Let P(x) be an integral-valued polynomial of degree ≤ N.

By main lemma, P(x + 1)− P(x) is a polynomial of degree
≤ N − 1, and is integral-valued of course. Hence by induction
hypothesis,

P(x + 1)− P(x) = b0

(
x

0

)
+ b1

(
x

1

)
+ · · ·+ bN−1

(
x

N − 1

)
for some integers b0, b1, . . . , bN−1.

Using P(x)− P(0) in place of P(x), WLOG P(0) = 0 (subtracting
constant term can’t hurt).
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Classification of integral-valued polynomials: proof

Using a telescoping sum, for every n ≥ 1 we have

n−1∑
k=0

(P(k + 1)− P(k)) = P(n)− P(0)︸︷︷︸
=0

= P(n).

Since

P(x + 1)− P(x) = b0

(
x

0

)
+ b1

(
x

1

)
+ · · ·+ bN−1

(
x

N − 1

)
we set x = k and get

P(k + 1)− P(k) = b0

(
k

0

)
+ b1

(
k

1

)
+ · · ·+ bN−1

(
k

N − 1

)
.

Substituting this above,

n−1∑
k=0

(
b0

(
k

0

)
+ b1

(
k

1

)
+ · · ·+ bN−1

(
k

N − 1

))
= P(n).
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k

0
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(
k

1
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(
k

N − 1

))
= P(n).
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N
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Summary

We have now proven the existence part of

Theorem

Let N ∈ N. The integral-valued polynomials of degree ≤ N are
exactly the polynomials that can be written as

a0

(
x

0

)
+ a1

(
x

1

)
+ · · ·+ aN

(
x

N

)
for some integers a0, a1, . . . , aN . Moreover, an integral-valued
polynomial can be written in this form in exactly one way.

A polynomial of degree ≤ N is determined by its values at 0, 1,
. . . ,N, and our proof only needed such values, so we proved

Corollary

If a polynomial P(x) of degree ≤ N satisfies P(n) ∈ Z for
n = 0, 1, . . . ,N then P(n) ∈ Z for all n ∈ Z.

Therefore if P(n) ∈ Z for n ≥ 0, P(n) ∈ Z for all n ∈ Z.
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Coefficients

If P(x) is integral-valued, how can we find a0, a1, . . . , aN such that

P(x) = a0

(
x

0

)
+ a1

(
x

1

)
+ · · ·+ aN

(
x

N

)
?

Ans: Use higher-order differences. Set (∆P)(x)=P(x + 1)−P(x),
and for j ≥ 1 set (∆j+1P)(x) = (∆jP)(x + 1)− (∆jP)(x). Think
of (∆jP)(x) as discrete analogue of jth derivative P(j)(x).

(Compare P(x + 1)− P(x) to P ′(x) = lim
h→0

P(x + h)− P(x)

h
.)

Example. If P(x) = 3x2 − x + 7 then

(∆P)(x) = P(x + 1)− P(x)

= 6x + 2,

(∆2P)(x) = (∆P)(x + 1)− (∆P)(x)

= 6,

and (∆jP)(x) = 0 for j > 2.
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Coefficients

Theorem. For any polynomial P(x) of degree ≤ N,

P(x) = a0

(
x

0

)
+ a1

(
x

1

)
+ · · ·+ aN

(
x

N

)

where aj = (∆jP)(0) =
j∑

i=0
(−1)j−i

(
j

i

)
P(i). That is,

P(x) =

degP∑
j=0

(∆jP)(0)

(
x

j

)
.

This is a discrete analogue of Taylor’s formula

P(x) =

degP∑
j=0

P(j)(0)
x j

j!
.
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Coefficients

We have seen several integral-valued polynomials P(x) earlier, and

how they are written as a0

(
x

0

)
+ a1

(
x

1

)
+ · · ·+ aN

(
x

N

)
:

1

2
(x2 + x) =

(
x

2

)
+

(
x

1

)
,

1

6
x(x + 1)(2x + 1) = 2

(
x

3

)
+ 3

(
x

2

)
+

(
x

1

)
,

1

3
(x3 + 2x) = 2

(
x

3

)
+ 2

(
x

2

)
+

(
x

1

)
,

1

4
(x4 + x2 + 2x) = 6

(
x

4

)
+ 9

(
x

3

)
+ 4

(
x

2

)
+

(
x

1

)
.

All coefficients on the right can be found using the higher-order
difference formula (∆jP)(0) =

∑j
i=0(−1)j−i

(j
i

)
P(i) for the

coefficient of
(x
j

)
. Let’s look at other examples.



Coefficients of (xp − x)/p.

For prime p,
1

p
(xp − x) is integral-valued. How does it look in

Polya’s theorem?

1

2
(x2 − x) =

(
x

2

)
.

1

3
(x3 − x) = 2

(
x

3

)
+ 2

(
x

2

)
.

1

5
(x5 − x) = 24

(
x

5

)
+ 48

(
x

4

)
+ 30

(
x

3

)
+ 6

(
x

2

)
.

1

p
(xp − x) =

p∑
j=2

j!

p

{
p
j

}(
x

j

)
, where the curly braces denote

Stirling numbers of the second kind.



Coefficients of (xp − x)/p.

For prime p,
1

p
(xp − x) is integral-valued. How does it look in

Polya’s theorem?

1

2
(x2 − x) =

(
x

2

)
.

1

3
(x3 − x) = 2

(
x

3

)
+ 2

(
x

2

)
.

1

5
(x5 − x) = 24

(
x

5

)
+ 48

(
x

4

)
+ 30

(
x

3

)
+ 6

(
x

2

)
.

1

p
(xp − x) =

p∑
j=2

j!

p

{
p
j

}(
x

j

)
, where the curly braces denote

Stirling numbers of the second kind.



Coefficients of (xp − x)/p.

For prime p,
1

p
(xp − x) is integral-valued. How does it look in

Polya’s theorem?

1

2
(x2 − x) =

(
x

2

)
.

1

3
(x3 − x) = 2

(
x

3

)
+ 2

(
x

2

)
.

1

5
(x5 − x) = 24

(
x

5

)
+ 48

(
x

4

)
+ 30

(
x

3

)
+ 6

(
x

2

)
.

1

p
(xp − x) =

p∑
j=2

j!

p

{
p
j

}(
x

j

)
, where the curly braces denote

Stirling numbers of the second kind.



Coefficients of (xp − x)/p.

For prime p,
1

p
(xp − x) is integral-valued. How does it look in

Polya’s theorem?

1

2
(x2 − x) =

(
x

2

)
.

1

3
(x3 − x) = 2

(
x

3

)
+ 2

(
x

2

)
.

1

5
(x5 − x) = 24

(
x

5

)
+ 48

(
x

4

)
+ 30

(
x

3

)
+ 6

(
x

2

)
.

1

p
(xp − x) =

p∑
j=2

j!

p

{
p
j

}(
x

j

)
, where the curly braces denote

Stirling numbers of the second kind.



Coefficients for sums of powers

Famous identities: for any integer n ≥ 1,

1 + 2 + · · ·+ n =
1

2
n(n + 1),

12 + 22 + · · ·+ n2 =
1

6
n(n + 1)(2n + 1).

For any k ≥ 1, 1k + 2k + · · ·+ nk = Sk(n) for a polynomial Sk(x)
of degree k + 1.

1

2
x(x + 1) =

(
x

2

)
+

(
x

1

)
.

1

6
x(x + 1)(2x + 1) = 2

(
x

3

)
+ 3

(
x

2

)
+

(
x

1

)
.

Sk(x) =
k+1∑
j=1

(j − 1)!

{
k + 1
j

}(
x

j

)
, where the curly braces

denote Stirling numbers of the second kind.



Coefficients: binomial coefficients I

(
x

m

)
=

(
x

m

)
, duh.(

x + 1

m

)
=

(
x

m − 1

)
+

(
x

m

)
.(

x + 2

m

)
=

(
x

m − 2

)
+ 2

(
x

m − 1

)
+

(
x

m

)
.(

x + `

m

)
=

m∑
k=0

(
`

m − k

)(
x

k

)
for ` ≥ 0.

This is the Chu-Vandermonde convolution identity. To prove

it, it suffices to show that

(
n + `

m

)
=

m∑
k=0

(
`

m − k

)(
n

k

)
for

n ∈ N, or even just for 0 ≤ n ≤ m. There is a balls-and-urns
argument.
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Coefficients: binomial coefficients II

(
kx

m

)
=

m∑
j=0

aj ,k,m

(
x

j

)
for k ≥ 1,

where aj ,k,m is the number of 0, 1-matrices of size k × j with
entry sum m without zero columns. (Thanks to Gjergji
Zaimi.)



Bonus: a question

For each m ≥ 1, let

Pm(x) =
1

m!

m−1∏
i=0

(xm − x i )

=
1

m!
(xm − 1)(xm − x)(xm − x2) · · · (xm − xm−1).

Why is Pm(x) integral-valued?

There is a slick proof that Pm(p) ∈ Z for prime p. (Namely: The
symmetric group Sm embeds into GLm (Z/pZ).) This generalizes
to Pm(pr ) ∈ Z for prime powers pr . But this is not enough to
ensure Pm(n) ∈ Z for all integers n! (Yet, this holds.)

Thanks to Keith Conrad and Tom Roby for help.
Thank you for listening!
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