A modulus and square root inequality
A problem by Darij Grinberg

For any four reals a, b, ¢, d, prove the inequality
la+b—c—d+ja+c—b—d|+|a+d—b—]
> Va2 + b2 — Ve + d?| + ‘\/a2+02—\/b2—|—d2
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Solution by Darij Grinberg.
We will show the following generalization of the problem:

Theorem 1. Let V be an Euclidean space. Then, for any four
vectors a, b, ¢, d in V, the inequality

la+b—c—dl+|la+c—b—d|+]a+d—b—
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holds.
Here, we are using the following notations:

e For any vector v € V, we denote by |v| the length (i. e., the Euclidean
norm) of v.

e For any two vectors v and w in V, we denote by vw the scalar product
of v and w. (Note that this is not really a multiplication, since vw is
a scalar while v and w are vectors. In general, for three vectors u, v,
w in an Euclidean space, we do not have uv - w = vw - u.)

e For any vector v € V, we abbreviate vv as v

Before we begin proving Theorem 1, we recapitulate two important facts
about Euclidean spaces:

Cauchy-Schwarz inequality in vector form: If u and v are two
vectors in an Euclidean space, then |uv| < |u] - |v]|.

Triangle inequality: If v and w are two vectors in an Euclidean space,
then |u| + |v| > |u+ v].

Proof of Theorem 1. Denote

t=a+b+c+d,
r=a+b—c—d;
y=a+c—0b—d;
z=a+d—-b—c



Then,

tr+yz=(a+b+c+d)(a+b—c—d)+(a+c—b—d)(a+d—b—c)
((a+b)+(c+d)((a+b) = (c+d)+ ((a—b)+(c—d))((a—b) = (c—d))
((a+b)2— (c+d)2) + ((a—b)Q— (c—d)g)

= (@+bd)*+(@-b> |[-| (c+d’+(—a)? |=2(*+) - (*+d),
:(a2+2ab+b2;-(a2—2ab+b2) :(02+2cd+d25:-(c2—20d+d2>
=2a2+2b2 =2c24-2d?
so that )
(a®*+0*) — (P +d°) = 5 (tx + yz) . (1)

The triangle inequality, applied to the two vectors (a + b,a — b) and
(c+d,c— d) in the Euclidean space V&V 1 yields

|(a+b,a—b)|+|(c—|—d,c—d)| Z |(a—|—b,a—b)—|—(c—|—d,c—d)|

Since

|(a+b,a—b)| =1/(a+b,a—b) :\/a+b + (a —b)*;
\/(c+d,c—d) \/c+d —d)%

((@+b)+(c+d),(a=b)+(c d))l
((a4b)+ (c+d),(a—Db)+ (c —d))’

((a+b) + (c+d)* + ((a—b) + (c — d))*,

|(c+d,c—d)|
[(a+b,a—0b)+ (c+d,c—d)

- =

this rewrites as

\/(a+b)2 + (a—1D) +\/c+d >\/ a+0b)+ (c+d)* + ((a—0b) + (c—d)°.
But

(a+b)*+ (a—0b)* = (a’ +2ab+V*) + (a® — 2ab + b?) = 2a* + 20* = 2 (a® + b*) ;
(c+d)?+(c—d)? = (P +2cd+ &%) + (& = 2cd + d°) = 26" + 2d° =2 (P + d°) ;
(a+b)+(c+d)=a+b+c+d=t

(a—b)+(c—d)=a+c—b—d=y.

!The canonical scalar product on this space V @V is defined by (e, f) (g,h) = g+ fh

for any (e, f) € V@V and (g,h) € V @ V. In particular, we thus have (e, )2 =e? + f?

for any (e, f) e VaV.



Hence, this becomes
V2 (a2 4 12) + /2 (2 + d2) > \/t2 + 92,
1

But \/t? +y? > 7 (Jt|+ly|]) 2 Hence,

1

V2(a2 +02) +/2(2+d?) > —= (t| + |y]) -
V2
Dividing this by v/2, we obtain
1 1 .
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By switching ¢ with d (and, consequently, switching y with z) in the
above argument, we can similarly prove

Va2 + 02+ Vd2 +c2 > = (|t +z]), what rewrites as

Va2 + 02+ Ve +d? > = (Jt|+ |z]). (3)
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Now,
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(since |tz| < |t| - |z| and |yz| < |y|-|z| by the Cauchy-Schwarz inequality in vector form)
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By cyclically permuting the variables b, ¢, and d (and, consequently, cycli-
cally permuting z, y, and z) in the above argument, we can similarly prove
the two inequalities

i ||

va? + 2 = Vi +d?| < -yl + el (5)
‘ £l + 2] |t + ||

t] lyl
Va2 +d? — Vb2 +c2| < | 2| + <. (6)
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Now, the three inequalities (4), (5), (6) yield
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and Theorem 1 is proven.



