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1. Introduction

The point of this note is to
1) add some lemmata to Chapter 1 §2 of [1] (lemmata that are used in [1]

without mention, due to their intuitive obviousness);
2) show that the definition of α-equivalence given in [1] is equivalent to the

definition of α-equivalence given in some other sources;
3) prove some rules for substitution (in order to answer a MathOverflow

question of myself).
We are going to use the notations and the results of Chapter 1 of [1]. In

particular, the sign ≡ will stand for the α-equivalence defined in [1]. The different
notion of α-equivalence that we consider will be denoted by =α (in order not
to confuse it with ≡ as long as it is not yet proven that the two notions are
equivalent).

2. Sidenotes to Chapter 1 §2 of [1]

Here come several facts silently used in some proofs in §1.2 of [1]. These facts
are all pretty simple, intuitively clear and easy to prove, and I suspect this is
why they have not been explicitly stated in [1]. I am making them explicit and
proving them in detail in order to formalize the theory a little bit more.

We begin with some properties of bound variables (and their behaviour under
substitution).

Definition: If u is a term in L, let BV u denote the set of bounded
variables of the term u.

Before we continue, let us give an inductive method to compute BV u for a
term u:

If u = x for a variable x, then BV u = ∅.
If u = (v) w for terms v and w, then BV u = (BV v) ∪ (BV w).
If u = λxv for some variable x and some term v, then BV u = {x} ∪ (BV v).

Lemma 1.A. Let t, t1, ..., tm be terms in L, and x1, ..., xm be distinct
variables. Then, BV (t 〈t1/x1, ..., tm/xm〉) ⊆ (BV t) ∪ (BV t1) ∪ ... ∪
(BV tm).

Proof of Lemma 1.A. We proceed by induction over t:
If t is a variable or a term of the form (u) v, the induction step is clear.
Remains to consider the case when t = λxu for some variable x and some

term u.
In this case, BV t = {x} ∪ (BV u). There are two subcases to consider: the

subcase when x ∈ {x1, ..., xm} and the subcase when x /∈ {x1, ..., xm}.

1



First, let us consider the subcase when x ∈ {x1, ..., xm}. In this subcase, let
us WLOG assume that x = x1. Thus, t = λx1u, so that BV t = {x1} ∪ (BV u).

Now, t = λx1u and the definition of t 〈t1/x1, ..., tm/xm〉 result in
t 〈t1/x1, ..., tm/xm〉 = λx1 (u 〈t2/x2, ..., tm/xm〉), so that

BV (t 〈t1/x1, ..., tm/xm〉) = {x1} ∪ BV (u 〈t2/x2, ..., tm/xm〉) .

Since BV (u 〈t2/x2, ..., tm/xm〉) ⊆ (BV u)∪(BV t2)∪ ...∪(BV tm) by the induction
assumption, this becomes

BV (t 〈t1/x1, ..., tm/xm〉)
⊆ {x1} ∪ (BV u)︸ ︷︷ ︸

=BV t

∪ (BV t2) ∪ ... ∪ (BV tm)

= (BV t) ∪ (BV t2) ∪ ... ∪ (BV tm) ⊆ (BV t) ∪ (BV t1) ∪ ... ∪ (BV tm) .

Now, let us consider the subcase when x /∈ {x1, ..., xm}. In this subcase,
t = λxu and the definition of t 〈t1/x1, ..., tm/xm〉 result in t 〈t1/x1, ..., tm/xm〉 =
λx (u 〈t1/x1, ..., tm/xm〉). Thus,

BV (t 〈t1/x1, ..., tm/xm〉) = {x} ∪ BV (u 〈t1/x1, ..., tm/xm〉) .

Since BV (u 〈t1/x1, ..., tm/xm〉) ⊆ (BV u)∪(BV t1)∪ ...∪(BV tm) by the induction
assumption, this becomes

BV (t 〈t1/x1, ..., tm/xm〉) ⊆ {x} ∪ (BV u)︸ ︷︷ ︸
=BV t

∪ (BV t1) ∪ ... ∪ (BV tm)

= (BV t) ∪ (BV t1) ∪ ... ∪ (BV tm) .

In both subcases, we have proven that BV (t 〈t1/x1, ..., tm/xm〉) ⊆ (BV t) ∪
(BV t1) ∪ ... ∪ (BV tm). This completes the induction and thus proves Lemma
1.A.

Lemma 1.A is used in the proof of Lemma 1.12 in [1]. (In fact, this proof claims
that ”no bound variable of this term is free in u1, ..., un” 1. The reason why
this is true is the following: Lemma 1.A yields that BV (t 〈t1/x1, ..., tm/xm〉) ⊆
(BV t) ∪ (BV t1) ∪ ... ∪ (BV tm), and we know that no bound variable of any of
the terms t, t1, ..., tm is free in u1, ..., un.)

Lemma 1.B. Let u be a term in L, and let x and y be two variables.
Then, BV (u 〈y/x〉) ⊆ BV u.

Proof of Lemma 1.B. Apply Lemma 1.A to m = 1, t1 = y, x1 = x and t = u.
This yields BV (u 〈y/x〉) ⊆ (BV u) ∪ (BV y)︸ ︷︷ ︸

=∅

= BV u, and thus Lemma 1.B is

proven.
Lemma 1.B is used in the proof of Proposition 1.6 in [1]. (Namely, when this

proof says ”the induction hypothesis gives”, it silently uses the fact that no free

1Here, ”this term” refers to the term t 〈t1/x1, ..., tm/xm〉.
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variable in t1, ..., tk is bound in u 〈y/x〉 or u′ 〈y/x′〉 (this must be guaranteed,
lest we could not apply the induction hypothesis!). This holds because Lemma
1.B yields BV (u 〈y/x〉) ⊆ BV u ⊆ {x} ∪ (BV u) = BV t (since t = λxu) and
BV (u′ 〈y/x′〉) ⊆ BV t′ (for similar reasons), and because we know that no free
variable in t1, ..., tk is bound in t or t′.)

Next some lemmata about free variables:

Definition: If u is a term in L, let FV u denote the set of free variables
of the term u.

Before we continue, let us give an inductive method to compute FV u for a
term u:

If u = x for a variable x, then FV u = {x}.
If u = (v) w for terms v and w, then FV u = (FV v) ∪ (FV w).
If u = λxv for some variable x and some term v, then FV u = (FV v) \ {x}.

Lemma 1.C. Let u be a term in L, and let y be a variable which
does not appear in u. Let x be a variable. Then, FV (u 〈y/x〉) =
mapx,y (FV u). Here, mapx,y denotes the map V → V (where V is the
set of variables) which maps x to y and maps v to v for every variable
v 6= x.

Proof of Lemma 1.C. We proceed by induction over u:
If u is a variable, then everything is clear.
Consider the case when u = (v) w for terms v and w. In this case, u 〈y/x〉 =

(v 〈y/x〉) (w 〈y/x〉), so that

FV (u 〈y/x〉) = (FV (v 〈y/x〉)) ∪ (FV (w 〈y/x〉)) . (1)

By the induction assumption, FV (v 〈y/x〉) = mapx,y (FV v) and FV (w 〈y/x〉) =
mapx,y (FV w). Thus (1) becomes

FV (u 〈y/x〉) =
(
mapx,y (FV v)

)
∪

(
mapx,y (FV w)

)
= mapx,y ((FV v) ∪ (FV w)) .

Since (FV v) ∪ (FV w) = FV u (due to u = (v) w), this becomes FV (u 〈y/x〉) =
mapx,y (FV u), completing the induction (in the case u = (v) w).

It remains to complete the induction step in the case when u = λzv for some
variable z and some term v ∈ L.

Consider this case. Clearly, FV u = (FV v) \ {z} in this case.
Two subcases are possible: the subcase z = x and the subcase z 6= x.
Consider the subcase z = x. In this subcase, u = λzv = λxv, thus u 〈y/x〉 =

λxv = u, so that FV (u 〈y/x〉) = FV u. But we want to prove that FV (u 〈y/x〉) =
mapx,y (FV u). So we only need to check that mapx,y (FV u) = FV u. But this is
clear because x /∈ FV u (since u = λxv, so that FV u = (FV v)\{x}) and because
mapx,y leaves every variable except of x fixed.
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Now consider the subcase z 6= x. In this subcase, u = λzv leads to u 〈y/x〉 =
λz (v 〈y/x〉), so that FV (u 〈y/x〉) = (FV (v 〈y/x〉)) \ {z}. By the induction hy-
pothesis, FV (v 〈y/x〉) = mapx,y (FV v) (since y does not appear in v, which is
because y does not appear in u). Thus, FV (u 〈y/x〉) = (FV (v 〈y/x〉))︸ ︷︷ ︸

=mapx,y(FV v)

\ {z} =

(
mapx,y (FV v)

)
\ {z}. Let us now show that(

mapx,y (FV v)
)
\ {z} = mapx,y ((FV v) \ {z}). In fact, FV v does not con-

tain y (because y does not appear in u, and thus y does not appear in v ei-
ther), so that FV v ⊆ V � {y} (where V denotes the set of all variables). Also,
{z} ⊆ V � {y} (since z 6= y (which is because y does not appear in u = λzv,
while z does appear in λzv)). Now, mapx,y is injective on V � {y} (because
(x, y) is the only possible pair of distinct variables which have the same value
under mapx,y, and therefore there is no such pair inside (V � {y})× (V � {x})).
Thus, mapx,y ((FV v) \ {z}) =

(
mapx,y (FV v)

)
\

(
mapx,y {z}

)
(since FV v and

{z} both are subsets of V � {y}). Since mapx,y {z} = {z} (because z 6= x, and

thus mapx,y z = z), this becomes mapx,y ((FV v) \ {z}) =
(
mapx,y (FV v)

)
\ {z}.

Now,

FV (u 〈y/x〉) =
(
mapx,y (FV v)

)
\{z} = mapx,y

(FV v) \ {z}︸ ︷︷ ︸
=FV u

 = mapx,y (FV u) .

Thus, FV (u 〈y/x〉) = mapx,y (FV u) is proven in every possible case and sub-
case. Lemma 1.C is proven.

Lemma 1.D. Let x and x′ be two variables, let u and u′ be two
terms in L, and let y be a variable which does not appear in any
of the terms u and u′. Assume that FV (u 〈y/x〉) = FV (u′ 〈y/x′〉).
Then, FV (λxu) = FV (λx′u′).

Proof of Lemma 1.D. Lemma 1.C yields FV (u 〈y/x〉) = mapx,y (FV u) (where
mapx,y is defined as in Lemma 1.C). But y /∈ FV u (because y does not appear in

u). Now we will prove that (FV u) \ {x} =
(
mapx,y (FV u)

)
\ {y}.

In fact, let z be an arbitrary element of (FV u) \ {x}. Then, z 6= x, but also
z ∈ FV u, so that z 6= y (since z ∈ FV u and y /∈ FV u). Now, due to z 6= x,
we have mapx,y z = z (because mapx,y w = w for every variable w 6= x), and
thus z = mapx,y z ∈ mapx,y (FV u) (since z ∈ FV u). Together with z /∈ {y}
(since z 6= y), this yields z ∈

(
mapx,y (FV u)

)
\ {y}. Thus we have shown that

every z ∈ (FV u) \ {x} satisfies z ∈
(
mapx,y (FV u)

)
\ {y}. In other words,

(FV u) \ {x} ⊆
(
mapx,y (FV u)

)
\ {y}.

Now, let z′ be an arbitrary element of
(
mapx,y (FV u)

)
\ {y}. Then, z′ ∈

mapx,y (FV u), so that there exists some w′ ∈ FV u such that z′ = mapx,y w′.
Consider this w′. Clearly, w′ 6= x (since w′ = x would yield z′ = mapx,y w′︸︷︷︸

=x

=

mapx,y x = y, contradicting z′ ∈
(
mapx,y (FV u)

)
\ {y}). Thus, mapx,y w′ = w′
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(since mapx,y w = w for every variable w 6= x). Thus, z′ = mapx,y w′ = w′ ∈ FV u.
Combined with z′ /∈ {x} (since z′ = w′ 6= x), this yields z′ ∈ (FV u) \ {x}. Thus
we have shown that every z′ ∈

(
mapx,y (FV u)

)
\{y} satisfies z′ ∈ (FV u)\{x}. In

other words,
(
mapx,y (FV u)

)
\{y} ⊆ (FV u)\{x}. Combined with (FV u)\{x} ⊆(

mapx,y (FV u)
)
\ {y}, this yields (FV u) \ {x} =

(
mapx,y (FV u)

)
\ {y}.

Thus,

FV (λxu) = (FV u) \ {x} =
(
mapx,y (FV u)

)︸ ︷︷ ︸
=FV(u〈y/x〉)

\ {y} = (FV (u 〈y/x〉)) � {y} .

Similarly, FV (λx′u′) = (FV (u′ 〈y/x′〉))\{y}. Therefore, FV (u 〈y/x〉) = FV (u′ 〈y/x′〉)
yields

FV (λxu) = (FV (u 〈y/x〉))︸ ︷︷ ︸
=FV(u′〈y/x′〉)

\ {y} = (FV (u′ 〈y/x′〉)) \ {y} = FV (λx′u′) .

Lemma 1.D is proven.
Lemma 1.D is used in the proof that t and t′ have the same free variables if

t ≡ t′ (this fact is given without proof on page 12 of [1]).

Lemma 1.E. Let u be a term in L, and x be a variable. Then,
u 〈x/x〉 = u.

Proof of Lemma 1.E. This is a trivial induction proof (induction on u), so we
omit it.

Lemma 1.E is used in the proof of Proposition 1.14 in [1] (in fact, it is the
reason why u′ [x′/x′] = u′).

3. Equivalent definitions of α-equivalence

Not everybody defines the notion of α-equivalence the same way as it is done in
[1]. In some other texts, α-equivalence is defined in a different way, which, instead
of the substitution 〈t/x〉 defined in [1], uses another notion of substitution:

Definition. For any term t in L and any variables x1 and y1, we
define the term t {y1/x1} as the result of the replacement of every oc-
curence of x1 in t by y1 (where ”every occurence” really means ”every
occurence”, including bounded and free occurences and occurences in
abstractions). The definition is by induction on t, as follows:

if t = x1, then t {y1/x1} = y1;

if t is a variable 6= x1, then t {y1/x1} = t;

if t = (u) v for some terms u and v, then t {y1/x1} = (u {y1/x1}) (v {y1/x1});
if t = λxu for some variable x and some term u, then t {y1/x1} =
λ (x {y1/x1}) (u {y1/x1}).
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Intuitively, this {y1/x1} substitution is a very low-level kind of substitution,
best understood as a blind find-replace operation without regard to the meaning
of the x1’s which are being replaced. Similarly one can define a substitution
{y1/x1, ..., ym/xm} for m variables x1, ..., xm and m variables y1, ..., ym, but I will
not use it.2 Now here is the second definition of α-equivalence I am speaking
about:

Definition. Let us define a relation =α on terms in L. 3 Namely,
we define t =α t′ by induction on the length of t by the following
clauses:

if t is a variable, then t =α t′ if and only if t = t′;

if t = (u) v for some terms u and v, then t =α t′ if and only if
t′ = (u′) v′ for some terms u′ and v′ with u =α u′ and v =α v′;

if t = λxu for some variable x and some term u, then t =α t′ if and
only if t′ = λx′u′ for some variable x′ and some term u′ such that all
variables y except a finite number satisfy u {y/x} =α u′ {y/x′}.

We claim that the relation =α defined by this definition is the α-equivalence
defined in [1]; i. e., we claim that the following theorem holds:

Theorem 1.F. The relations ≡ and =α are identical.

We prove this using a lemma:

Lemma 1.G. Let t be a term in L. Let x and y be two variables such
that y does not occur in t. Then, t 〈y/x〉 ≡ t {y/x}.

Proof of Lemma 1.G. We prove this by induction over t:
If t is a variable, then everything is clear because the definitions of t 〈y/x〉 and

t {y/x} for t being a variable are the same.
If t = (u) v for some terms u and v, then everything is clear again because the

definition of t 〈y/x〉 says

t 〈y/x〉 = (u 〈y/x〉)︸ ︷︷ ︸
≡u{y/x}

(by the induction
assumption)

(v 〈y/x〉)︸ ︷︷ ︸
≡v{y/x}

(by the induction
assumption)

(since t = (u) v)

≡ (u {y/x}) (v {y/x}) = t {y/x}(
since the definition of t {y/x} says

t {y/x} = (u {y/x}) (v {y/x}) (since t = (u) v)

)
.

2Note that t {s/x} cannot be defined if s is just assumed to be an arbitrary term (rather
than a single variable).

3We denote this relation by =α, but later (in Theorem 1.F) we will show that this relation
is identical to the relation ≡ from [1].
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So it only remains to consider the case when t = λzu for some variable z and
some term u. By the induction assumption, u 〈y/x〉 ≡ u {y/x}.

Two subcases are possible: the subcase z 6= x and the subcase z = x.
First consider the subcase z 6= x. In this subcase, t 〈y/x〉 = λz (u 〈y/x〉) ≡

λz (u {y/x}) (by Corollary 1.7, since u 〈y/x〉 ≡ u {y/x}) and
t {y/x} = λ (z {y/x}) (u {y/x}) = λz (u {y/x}) (since z 6= x and thus z {y/x} =
z), so that t 〈y/x〉 ≡ λz (u {y/x}) = t {y/x}.

Now consider the subcase z = x. In this subcase, t = λzu = λxu, so that
t 〈y/x〉 = λxu, but on the other hand t = λxu gives us t {y/x} = λ (x {y/x})︸ ︷︷ ︸

=y

(u {y/x}) =

λy (u {y/x}) ≡ λy (u 〈y/x〉) (by Corollary 1.7, since u {y/x} ≡ u 〈y/x〉). Since y
does not occur in u (because y does not occur in t), we have λxu ≡ λy (u 〈y/x〉)
by Lemma 1.9, so that t 〈y/x〉 = λxu ≡ λy (u 〈y/x〉) ≡ t {y/x}.

Hence, t 〈y/x〉 ≡ t {y/x} is proved in every case and every subcase. Lemma
1.G is thus proven.

Lemma 1.H. Let t and t′ be two terms in L such that t =α t′. Then,
t ≡ t′.

Proof of Lemma 1.H. We proceed by induction over the length of t.
There are three cases to consider: the case when t is a variable; the case when

t = (u) v for some terms u and v; the case when t = λxu for some variable x and
some term u.

In the case when t is a variable, the relation t =α t′ yields that t′ is the same
variable as t. Thus, t ≡ t′.

In the case when t = (u) v for some terms u and v, the relation t =α t′ yields
that t′ = (u′) v′ for some terms u′ and v′ with u =α u′ and v =α v′. By the
induction assumption, u =α u′ yields u ≡ u′, and v =α v′ yields v ≡ v′. Thus,
t′ = (u′) v′ for some terms u′ and v′ with u ≡ u′ and v ≡ v′. This means that
t ≡ t′.

Now let us consider the final remaining case: the case when t = λxu for some
variable x and some term u. In this case, t =α t′ means that t′ = λx′u′ for some
variable x′ and some term u′ such that all variables y except a finite number satisfy
u {y/x} =α u′ {y/x′}. By the induction assumption, this yields that all variables
y except a finite number satisfy u {y/x} ≡ u′ {y/x′} (because the terms u {y/x}
and u′ {y/x′} are as long as u and u′, respectively, and therefore shorter than t
and t′, respectively). Thus, all variables y except a finite number and except those
which occur in u or u′ satisfy u 〈y/x〉 ≡ u′ 〈y/x′〉 (because Lemma 1.G yields that
these variables satisfy u 〈y/x〉 ≡ u {y/x} and u′ 〈y/x′〉 ≡ u′ {y/x′}, so that they
satisfy u 〈y/x〉 ≡ u {y/x} ≡ u′ {y/x′} ≡ u′ 〈y/x′〉). But ”all variables y except a
finite number and except those which occur in u or u′ ” can be rewritten as ”all
variables y except a finite number”, because only finitely many variables occur in
u or u′. Thus, all variables y except a finite number satisfy u 〈y/x〉 ≡ u′ 〈y/x′〉.
Hence, t ≡ t′ (by the definition of ≡).

Thus we have proven that t ≡ t′ in all possible cases. The proof of Lemma
1.H is complete.
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Lemma 1.I. Let t and t′ be two terms in L such that t ≡ t′. Then,
t =α t′.

Proof of Lemma 1.I. We proceed by induction over the length of t.
There are three cases to consider: the case when t is a variable; the case when

t = (u) v for some terms u and v; the case when t = λxu for some variable x and
some term u.

In the case when t is a variable, the relation t ≡ t′ yields that t′ is the same
variable as t. Thus, t =α t′.

In the case when t = (u) v for some terms u and v, the relation t ≡ t′ yields
that t′ = (u′) v′ for some terms u′ and v′ with u ≡ u′ and v ≡ v′. By the induction
assumption, u ≡ u′ yields u =α u′, and v ≡ v′ yields v =α v′. Thus, t′ = (u′) v′

for some terms u′ and v′ with u =α u′ and v =α v′. This means that t =α t′.
Now let us consider the final remaining case: the case when t = λxu for some

variable x and some term u. In this case, t ≡ t′ means that t′ = λx′u′ for some
variable x′ and some term u′ such that all variables y except a finite number satisfy
u 〈y/x〉 ≡ u′ 〈y/x′〉. Thus, all variables y except a finite number and except those
which occur in u or u′ satisfy u {y/x} ≡ u′ {y/x′} (because Lemma 1.G yields that
these variables satisfy u 〈y/x〉 ≡ u {y/x} and u′ 〈y/x′〉 ≡ u′ {y/x′}, so that they
satisfy u {y/x} ≡ u 〈y/x〉 ≡ u′ 〈y/x′〉 ≡ u′ {y/x′}). But ”all variables y except a
finite number and except those which occur in u or u′ ” can be rewritten as ”all
variables y except a finite number”, because only finitely many variables occur in
u or u′. Thus, all variables y except a finite number satisfy u {y/x} ≡ u′ {y/x′}.
By the induction assumption, this yields that all variables y except a finite number
satisfy u {y/x} =α u′ {y/x′} (because the terms u {y/x} and u′ {y/x′} are as long
as u and u′, respectively, and therefore shorter than t and t′, respectively). Hence,
t =α t′ (by the definition of =α).

Thus we have proven that t =α t′ in all possible cases. The proof of Lemma
1.I is complete.

Proof of Theorem 1.F. Theorem 1.F follows directly from Lemma 1.H and
Lemma 1.I.

4. Some rules for substitution

Now we are going to prove the following properties of the substitution defined
in Chapter 1 §2 of [1]:

Lemma 1.J. Any variable x and any s ∈ Λ satisfy x [s/x] = s.

Lemma 1.K. Any two distinct variables x and y and any s ∈ Λ
satisfy y [s/x] = y.

Lemma 1.L. If t1 ∈ Λ, t2 ∈ Λ and s ∈ Λ are three equivalence classes
and x is a variable, then (t1t2) [s/x] = (t1 [s/x]) (t2 [s/x]).

Lemma 1.M. If x and y are two distinct variables, and s ∈ Λ and r ∈
Λ are two equivalence classes, then (λyr) [s/x] = λy′ (r [y′/y] [s/x]),
where y′ is any variable which is not free in x, s or r.
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Lemma 1.N. If x and y are two distinct variables, and s ∈ Λ and
r ∈ Λ are two equivalence classes such that y is not a free variable in
s, then (λyr) [s/x] = λy (r [s/x]).

Lemma 1.O. If x is a variable, and s ∈ Λ and r ∈ Λ are two equiva-
lence classes, then (λxr) [s/x] = λxr.

Proof of Lemma 1.J. Let s be a representative of the equivalence class s.
Clearly, x is a representative of x, and no bound variable of x is free in s (since
x has no bound variable). Therefore, by the definition of substitution, x [s/x] is
the equivalence class of x 〈s/x〉. Since x 〈s/x〉 = s, this means that x [s/x] is the
equivalence class of s. In other words, x [s/x] = s (because s is the equivalence
class of s). This proves Lemma 1.J.

Proof of Lemma 1.K. Let s be a representative of the equivalence class s.
Clearly, y is a representative of y, and no bound variable of y is free in s (since
y has no bound variable). Therefore, by the definition of substitution, y [s/x] is
the equivalence class of y 〈s/x〉. Since y 〈s/x〉 = y, this means that y [s/x] is the
equivalence class of y. In other words, y [s/x] = y. This proves Lemma 1.K.

Proof of Lemma 1.L. Let s be a representative of the equivalence class s.
Let t1 be a representative of the equivalence class t1 such that no bound

variable of t1 is free in s. 4 Let t2 be a representative of the equivalence class
t2 such that no bound variable of t2 is free in s. 5 Then, clearly, no bound
variable of t1t2 is free in s (since BV (t1t2) = (BV t1) ∪ (BV t2)), and we know
that t1t2 is a representative of the equivalence class t1t2. Thus, the definition of
(t1t2) [s/x] says that (t1t2) [s/x] is the equivalence class of (t1t2) 〈s/x〉. On the
other hand, the definition of t1 [s/x] says that t1 [s/x] is the equivalence class of
t1 〈s/x〉 (since no bound variable of t1 is free in s), and the definition of t2 [s/x]
says that t2 [s/x] is the equivalence class of t2 〈s/x〉 (since no bound variable of t2
is free in s). Since we know that (t1t2) 〈s/x〉 = (t1 〈s/x〉) (t2 〈s/x〉), we therefore
conclude that

(t1t2) [s/x] =

equivalence class of (t1t2) 〈s/x〉︸ ︷︷ ︸
=(t1〈s/x〉)(t2〈s/x〉)


= (equivalence class of (t1 〈s/x〉) (t2 〈s/x〉))
= (equivalence class of t1 〈s/x〉)︸ ︷︷ ︸

=t1[s/x]

(equivalence class of t2 〈s/x〉)︸ ︷︷ ︸
=t2[s/x]

= (t1 [s/x]) (t2 [s/x]) .

Lemma 1.L is proven.
Proof of Lemma 1.N. Let s be a representative of the equivalence class s. Let

r be a representative of the equivalence class r such that no bound variable of r

4Such a representative t1 exists due to Lemma 1.10.
5Such a representative t2 exists due to Lemma 1.10.
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is free in s. 6 Then, λyr is a representative of λyr, and no bound variable of
λyr is free in s (because BV (λyr) = {y} ∪ (BV r), but neither y nor any bound
variable of r is free in s). Therefore, by the definition of (λyr) [s/x], we know that
(λyr) [s/x] is the equivalence class of (λyr) 〈s/x〉. Since (λyr) 〈s/x〉 = λy (r 〈s/x〉)
(because x 6= y), this rewrites as follows: (λyr) [s/x] is the equivalence class of
λy (r 〈s/x〉). But since r [s/x] is the equivalence class of r 〈s/x〉 (by the definition
of r [s/x], since no bound variable of r is free in s), the class λy (r [s/x]) is
the equivalence class of λy (r 〈s/x〉). So now we know that both (λyr) [s/x]
and λy (r [s/x]) are the equivalence class of λy (r 〈s/x〉). Thus, (λyr) [s/x] =
λy (r [s/x]). This proves Lemma 1.N.

Proof of Lemma 1.M. Let y′ be any variable which is not free in x, s or r.
Then, y′ is not free in λyr either. Proposition 1.14 (applied to λyr, y, r and
y′ instead of t, x, u and x′) yields λyr = λy′ (r [y′/y]). Lemma 1.N (applied to
y′ and r [y′/y] instead of y and r) yields (λy′ (r [y′/y])) [s/x] = λy′ (r [y′/y] [s/x])
(here we use y′ 6= x, which is because y′ is not free in x). Thus, (λyr)︸ ︷︷ ︸

=λy′(r[y′/y])

[s/x] =

(λy′ (r [y′/y])) [s/x] = λy′ (r [y′/y] [s/x]). This proves Lemma 1.M.
Proof of Lemma 1.O. Let s be a representative of the equivalence class s. Let

p be a representative of the equivalence class λxr such that no bound variable of
p is free in s. 7 Then, the definition of (λxr) [s/x] yields that (λxr) [s/x] is the
equivalence class of p 〈s/x〉. But x is not a free variable in p (because x is not
a free variable in λxr), and therefore p 〈s/x〉 = p (by Lemma 1.1 in [1]). Hence,
(λxr) [s/x] is the equivalence class of p (since (λxr) [s/x] is the equivalence class
of p 〈s/x〉). In other words, (λxr) [s/x] = λxr (since we know that the equivalence
class of p is λxr). This proves Lemma 1.O.

Appendix: Proof of Corollary 1.3 of [1], Chapter 1, §1

Below is a writeup of the proof of Corollary 1.3 of [1]. I made this writeup at
a time when the proof given in [1] was wrong; now the proof in [1] was corrected,
so there is no use in this writeup anymore except for the little bit of additional
detail it gives.

Proof of Corollary 1.3: WLOG assume that x1, ..., xu are those variables
among the set {x1, ..., xm} which don’t occur in t. Then, x1, ..., xu are not free in
t, so that Lemma 1.1 yields t 〈y1/x1, ..., ym/xm〉 = t 〈yu+1/xu+1, ..., ym/xm〉. Now,
the sets {xu+1, ..., xm} and {y1, ..., ym} have no common elements (because ev-
ery of the variables xu+1, ..., xm occurs in t, while none of the variables y1, ..., ym

does). The hypothesis of Lemma 1.2 is satisfied (with k = 0), because none of
the yi is bound in t. Thus,

t 〈yu+1/xu+1, ..., ym/xm〉 〈t1/y1, ..., tm/ym〉 = t 〈tu+1/xu+1, ..., tm/xm, t1/y1, ..., tm/ym〉 .

But y1, ..., ym are not free in t, and thus Lemma 1.1 yields

t 〈tu+1/xu+1, ..., tm/xm, t1/y1, ..., tm/ym〉 = t 〈tu+1/xu+1, ..., tm/xm〉 .
6Such a representative r exists due to Lemma 1.10.
7Such a representative p exists due to Lemma 1.10.

10



Finally, x1, ..., xu are not free in t, so that Lemma 1.1 yields (again)

t 〈tu+1/xu+1, ..., tm/xm〉 = t 〈t1/x1, ..., tm/xm〉 .

Altogether,

t 〈y1/x1, ..., ym/xm〉︸ ︷︷ ︸
=t〈yu+1/xu+1,...,ym/xm〉

〈t1/y1, ..., tm/ym〉

= t 〈yu+1/xu+1, ..., ym/xm〉 〈t1/y1, ..., tm/ym〉 = t 〈tu+1/xu+1, ..., tm/xm, t1/y1, ..., tm/ym〉
= t 〈tu+1/xu+1, ..., tm/xm〉 = t 〈t1/x1, ..., tm/xm〉 ,

qed.

References

[1] Jean-Louis Krivine, Lambda-calculus, types and models, 22 January 2009,
updated version of 5 June 2011.
http://www.pps.jussieu.fr/~krivine/articles/Lambda.pdf

11


