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Problem

Let n ∈N.
Let a1, a2, ..., an be n nonnegative reals.
Let b1, b2, ..., bn be n nonnegative reals.
Let σ be a permutation of {1, 2, ..., n}.
For every k ∈ {1, 2, ..., n}, let ck = max ({a1bk, a2bk, ..., akbk} ∪ {akb1, akb2, ..., akbk}).
Prove that

a1bσ(1) + a2bσ(2) + ... + anbσ(n) ≤ c1 + c2 + ... + cn.

Remark

1) By the rearrangement inequality, it is enough to prove this inequality when
σ is the permutation (or, more precisely, one of the permutations) which makes
the sequences (a1, a2, ..., an) and

(
bσ(1), bσ(2), ..., bσ(n)

)
equally sorted (because if we

treat a1, a2, ..., an and b1, b2, ..., bn are constants, then this permutation σ maximizes
the left hand side a1bσ(1) + a2bσ(2) + ...+ anbσ(n) of our inequality, whereas the right
hand side is constant). But I don’t think this helps in solving the problem. It is
actually getting the cart before the horse: The rearrangement inequality can be
derived from our problem (see the remark after the solution for details).

2) The problem was conceived by me as a lemma to prove the “combinatorialist’s
Chebyshev inequality”, which states that (a1 + a2 + ... + an) (b1 + b2 + ... + bn) ≤
n (c1 + c2 + ... + cn) (under the conditions of the problem) and is due to Ahlswede
and Blinovsky ([AhlBli08, Lecture 15, Consequences of Theorem 33, no. 2]). This
inequality can be derived from our problem by summing the left hand side over
σ ∈ Cn (where Cn denotes the subgroup of the symmetric group Sn formed by all
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cyclic permutations). We leave the details to the reader. The proof in [AhlBli08] is
completely different.

Solution of the problem

We begin with a simple lemma:

Lemma 1. Let a, a′, b and b′ be four nonnegative reals. Then,

ab′ + a′b ≤ ab + max
{

ab′, a′b′, a′b
}

. (1)

(Note that this lemma 1 is the particular case of our problem when n = 2 and
σ = (1, 2).)

Proof of Lemma 1. We distinguish between three cases:
Case 1. We have a ≥ a′.
Case 2. We have b ≥ b′.
Case 3. We have neither a ≥ a′ nor b ≥ b′.
In Case 1, we have a ≥ a′ and thus

ab′︸︷︷︸
≤max{ab′,a′b′,a′b}

+ a′︸︷︷︸
≤a

b ≤ max
{

ab′, a′b′, a′b
}
+ ab = ab + max

{
ab′, a′b′, a′b

}
.

Thus, (1) is proven in Case 1.
In Case 2, we have b ≥ b′ and thus

a b′︸︷︷︸
≤b

+ a′b︸︷︷︸
≤max{ab′,a′b′,a′b}

≤ ab + max
{

ab′, a′b′, a′b
}

.

Thus, (1) is proven in Case 2.
Now let us consider Case 3. In this Case, we have neither a ≥ a′ nor b ≥ b′.

Thus, a < a′ and b < b′. Hence, a︸︷︷︸
<a′
−a′ < a′ − a′ = 0 and b︸︷︷︸

<b′
−b′ < b′ − b′ = 0.

Therefore, (a− a′) (b− b′) > 0 (since the product of two negative reals must always
be positive), so that

0 <
(
a− a′

) (
b− b′

)
= ab + a′b′︸︷︷︸

≤max{ab′,a′b′,a′b}

−ab′ − a′b

≤ ab + max
{

ab′, a′b′, a′b
}
− ab′ − a′b.

This rewrites as
ab′ + a′b ≤ ab + max

{
ab′, a′b′, a′b

}
.

Thus, (1) is proven in Case 3.
We thus have proven (1) in all Cases 1, 2 and 3. Since these cases are clearly the

only possible cases to occur, this shows that (1) always holds. This proves Lemma
1.
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Now, we need a trivial lemma from combinatorics:

Lemma 2. Let N be a positive integer, and let σ be a permutation of
{1, 2, ..., N} such that σ (N) = N. Then, there exists a permutation τ of
{1, 2, ..., N − 1} such that

(σ (i) = τ (i) for every i ∈ {1, 2, ..., N − 1}) . (2)

Proof of Lemma 2. For every i ∈ {1, 2, ..., N − 1}, we have σ (i) ∈ {1, 2, ..., N − 1} 1.
Hence, we can define a map τ : {1, 2, ..., N − 1} → {1, 2, ..., N − 1} by

(τ (u) = σ (u) for every u ∈ {1, 2, ..., N − 1})).

This map τ is injective2 and surjective3, thus bijective. Hence, τ is a permutation
of {1, 2, ..., N − 1}. Every i ∈ {1, 2, ..., N − 1} satisfies τ (i) = σ (i) (by the definition
of τ). This proves Lemma 2.

Now, we come to the actual solution of the problem:

Solution of the problem. We will solve the problem by induction over n:
Induction base: In the case n = 0, the problem is evidently true.4 This completes

the induction base.
Induction step: Fix some integer N ≥ 1. Assume that the problem has already

been solved for n = N − 1. Now we need to solve the problem for n = N.
Let a1, a2, ..., aN be N nonnegative reals.
Let b1, b2, ..., bN be N nonnegative reals.
Let σ be a permutation of {1, 2, ..., N}.

1Proof. Let i ∈ {1, 2, ..., N − 1}. Then, i ≤ N − 1 < N, so that i 6= N, so that σ (i) 6= σ (N) (because
σ is a permutation and thus injective). Combining σ (i) ∈ {1, 2, . . . , N} with σ (i) 6= σ (N) = N,
we obtain σ (i) ∈ {1, 2, . . . , N} \ {N} = {1, 2, ..., N − 1}, qed.

2Proof. Let u and v be two elements of {1, 2, ..., N − 1} such that τ (u) = τ (v). Then, by the
definition of τ, we have τ (u) = σ (u) and τ (v) = σ (v), so that σ (u) = τ (u) = τ (v) = σ (v),
so that u = v (since σ is a permutation and thus injective). Thus, we have shown that any two
elements u and v of {1, 2, ..., N − 1} such that τ (u) = τ (v) must satisfy u = v. In other words,
τ is injective, qed.

3Proof. Let p ∈ {1, 2, ..., N − 1}. Then, p ≤ N − 1 < N. Moreover, p ∈ {1, 2, ..., N − 1} ⊆
{1, 2, ..., N}, so that σ−1 (p) is well-defined. We have σ−1 (p) 6= N (because if σ−1 (p) were
= N, then p would be = σ (N) = N, contradicting p < N). Combining σ−1 (p) ∈ {1, 2, ..., N}
with σ−1 (p) 6= N, we obtain σ−1 (p) ∈ {1, 2, ..., N} \ {N} = {1, 2, ..., N − 1}. Thus, τ

(
σ−1 (p)

)
is well-defined. By the definition of τ, we have τ

(
σ−1 (p)

)
= σ

(
σ−1 (p)

)
= p, and thus

p = τ
(
σ−1 (p)

)
∈ τ ({1, 2, ..., N − 1}).

So we have proven that every p ∈ {1, 2, ..., N − 1} satisfies p ∈ τ ({1, 2, ..., N − 1}). In other
words, τ is surjective.

4Proof. In the case n = 0, the inequality

a1bσ(1) + a2bσ(2) + ... + anbσ(n) ≤ c1 + c2 + ... + cn

takes the form 0 ≤ 0, which is obviously true. Thus, in the case n = 0, the problem is true.
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For every k ∈ {1, 2, ..., N}, let ck = max ({a1bk, a2bk, ..., akbk} ∪ {akb1, akb2, ..., akbk}).
We must then prove that

a1bσ(1) + a2bσ(2) + ... + aNbσ(N) ≤ c1 + c2 + ... + cN. (3)

We distinguish between two cases:
Case 1: We have σ (N) = N.
Case 2: We have σ (N) 6= N.
First, let us consider Case 1. In this case, σ (N) = N, so that Lemma 2 yields that

there exists a permutation τ of {1, 2, ..., N − 1} such that

(σ (i) = τ (i) for every i ∈ {1, 2, ..., N − 1}) . (4)

Consider this τ.
We assumed that the problem has already been solved for n = N− 1. Hence, we

can apply the problem to τ and N − 1 instead of σ and n, and obtain

a1bτ(1) + a2bτ(2) + ... + aN−1bτ(N−1) ≤ c1 + c2 + ... + cN−1. (5)

The definition of cN yields

cN = max ({a1bN, a2bN, ..., aNbN} ∪ {aNb1, aNb2, ..., aNbN})
≥ aNbσ(N) (6)

(since aNbσ(N) ∈ {aNb1, aNb2, ..., aNbN} ⊆ {a1bN, a2bN, ..., aNbN}∪{aNb1, aNb2, ..., aNbN}).
We can rewrite (4) as follows: τ (1) = σ (1), τ (2) = σ (2), ..., τ (N − 1) =

σ (N − 1). Thus, (5) becomes

a1bσ(1) + a2bσ(2) + ... + aN−1bσ(N−1) ≤ c1 + c2 + ... + cN−1.

Adding this inequality to the inequality aNbσ(N) ≤ cN (which follows from (6)), we
obtain

a1bσ(1) + a2bσ(2) + ... + aN−1bσ(N−1) + aNbσ(N) ≤ c1 + c2 + ... + cN−1 + cN.

In other words, (3) holds. We have thus proven (3) in Case 1.
Next, let us consider Case 2. In this case, σ (N) 6= N.
Let j = σ−1 (N). Thus, j = σ−1 (N) 6= N, so that j ∈ {1, 2, ..., N − 1}.
Let η be the permutation σ ◦ (N, j) of {1, 2, ..., N} (where (N, j) is the transposi-

tion which transposes N with j). Then,

η (N) = (σ ◦ (N, j)) (N) = σ ((N, j) (N))︸ ︷︷ ︸
=j

(by the definition of (N,j))

= σ (j) = N

(since j = σ−1 (N)). Hence, Lemma 2 (applied to η instead of σ) yields that there
exists a permutation τ of {1, 2, ..., N − 1} such that

(η (i) = τ (i) for every i ∈ {1, 2, ..., N − 1}) . (7)
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Consider this τ.
We assumed that the problem has already been solved for n = N− 1. Hence, we

can apply the problem to τ and N − 1 instead of σ and n, and obtain

a1bτ(1) + a2bτ(2) + ... + aN−1bτ(N−1) ≤ c1 + c2 + ... + cN−1. (8)

But for every i ∈ {1, 2, ..., N − 1}� {j}, we have

τ (i)
= η (i) (by (7), since i ∈ {1, 2, ..., N − 1}� {j} ⊆ {1, 2, ..., N − 1})
= (σ ◦ (N, j)) (i) (since η = σ ◦ (N, j))
= σ ((N, j) (i)) = σ (i) (9)

since
i ∈ {1, 2, ..., N − 1}︸ ︷︷ ︸

={1,2,...,N}�{N}

� {j} = ({1, 2, ..., N}� {N})� {j} = {1, 2, ..., N}� {N, j} ,

and thus i /∈ {N, j} , so that (N, j) (i) = i (by the definition of (N, j) )

 .

On the other hand,

τ (j) = η (j) (by (7), applied to i = j (since j ∈ {1, 2, ..., N − 1} ))
= (σ ◦ (N, j)) (j) (since η = σ ◦ (N, j))

= σ

 (N, j) (j)︸ ︷︷ ︸
=N

(by the definition of (N,j))

 = σ (N) .

Now,

a1bτ(1) + a2bτ(2) + ... + aN−1bτ(N−1)

= ∑
i∈{1,2,...,N−1}

aibτ(i) = aj bτ(j)︸︷︷︸
=bσ(N)

(since τ(j)=σ(N))

+ ∑
i∈{1,2,...,N−1}�{j}

ai bτ(i)︸︷︷︸
=bσ(i)
(by (9))

(since j ∈ {1, 2, ..., N − 1})
= ajbσ(N) + ∑

i∈{1,2,...,N−1}�{j}
aibσ(i).

Hence, (8) rewrites as

ajbσ(N) + ∑
i∈{1,2,...,N−1}�{j}

aibσ(i) ≤ c1 + c2 + ... + cN−1. (10)
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But

a1bσ(1) + a2bσ(2) + ... + aNbσ(N)

=
(

a1bσ(1) + a2bσ(2) + ... + aN−1bσ(N−1)

)
︸ ︷︷ ︸
= ∑

i∈{1,2,...,N−1}
aibσ(i)=ajbσ(j)+ ∑

i∈{1,2,...,N−1}�{j}
aibσ(i)

(since j∈{1,2,...,N−1})

+aNbσ(N)

= aj bσ(j)︸︷︷︸
=bN (since σ(j)=N)

+ ∑
i∈{1,2,...,N−1}�{j}

aibσ(i) + aNbσ(N)

= ajbN + ∑
i∈{1,2,...,N−1}�{j}

aibσ(i) + aNbσ(N)

= ajbN + aNbσ(N)︸ ︷︷ ︸
≤ajbσ(N)+max{ajbN ,aNbN ,aNbσ(N)}
(by Lemma 1, applied to a=aj, a′=aN ,

b=bσ(N) and b′=bN)

+ ∑
i∈{1,2,...,N−1}�{j}

aibσ(i)

≤ ajbσ(N) + max
{

ajbN, aNbN, aNbσ(N)

}
+ ∑

i∈{1,2,...,N−1}�{j}
aibσ(i)

= ajbσ(N) + ∑
i∈{1,2,...,N−1}�{j}

aibσ(i)︸ ︷︷ ︸
≤c1+c2+...+cN−1

(by (10))

+max
{

ajbN, aNbN, aNbσ(N)

}

≤ c1 + c2 + ... + cN−1 + max
{

ajbN, aNbN, aNbσ(N)

}
. (11)

But
{

ajbN, aNbN, aNbσ(N)

}
⊆ {a1bN, a2bN, ..., aNbN} ∪ {aNb1, aNb2, ..., aNbN} 5, so

that

max
{

ajbN, aNbN, aNbσ(N)

}
≤ max ({a1bN, a2bN, ..., aNbN} ∪ {aNb1, aNb2, ..., aNbN})

= cN

(since cN is defined as max ({a1bN, a2bN, ..., aNbN} ∪ {aNb1, aNb2, ..., aNbN})). Hence,

5This is because

ajbN ∈ {a1bN , a2bN , ..., aNbN} ⊆ {a1bN , a2bN , ..., aNbN} ∪ {aNb1, aNb2, ..., aNbN} ;

aNbN ∈ {a1bN , a2bN , ..., aNbN} ⊆ {a1bN , a2bN , ..., aNbN} ∪ {aNb1, aNb2, ..., aNbN} ;
aNbσ(N) ∈ {aNb1, aNb2, ..., aNbN} ⊆ {a1bN , a2bN , ..., aNbN} ∪ {aNb1, aNb2, ..., aNbN} .
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(11) becomes

a1bσ(1) + a2bσ(2) + ... + aNbσ(N) ≤ c1 + c2 + ... + cN−1 + max
{

ajbN, aNbN, aNbσ(N)

}
︸ ︷︷ ︸

≤cN

≤ c1 + c2 + ... + cN−1 + cN = c1 + c2 + ... + cN.

In other words, (3) holds. We have thus proven (3) in Case 2.
Since the cases 1 and 2 are the only possible cases, and since we have proven

(3) in both of these cases, we conclude that (3) is true. We thus have shown that
a1bσ(1) + a2bσ(2) + ... + aNbσ(N) ≤ c1 + c2 + ... + cN. But this means that we have
solved the problem for n = N. This completes the induction step.

Thus, the induction proof of our problem is complete.

Remark

The problem that we just solved generalizes the rearrangement inequality. To see
why, here is one possible form of the rearrangement inequality:

Corollary 3. Let n ∈N.

Let a1, a2, ..., an be n reals such that a1 ≤ a2 ≤ ... ≤ an.

Let b1, b2, ..., bn be n reals such that b1 ≤ b2 ≤ ... ≤ bn.

Let σ be a permutation of {1, 2, ..., n}.
Then,

a1bσ(1) + a2bσ(2) + ... + anbσ(n) ≤ a1b1 + a2b2 + ... + anbn.

Proof of Corollary 3. Let α = min {a1, a2, ..., an} and β = min {b1, b2, ..., bn}.
For every k ∈ {1, 2, ..., n}, let a′k = ak − α and b′k = bk − β. Then, every k ∈
{1, 2, ..., n} satisfies a′k = ak − α︸︷︷︸

=min{a1,a2,...,an}≤ak

≥ ak − ak = 0. In other words, a′1,

a′2, ..., a′n are n nonnegative reals. Similarly, b′1, b′2, ..., b′n are n nonnegative reals,
i.e., every k ∈ {1, 2, ..., n} satisfies b′k ≥ 0.

For every k ∈ {1, 2, ..., n}, let

c′k = max
({

a′1b′k, a′2b′k, ..., a′kb′k
}
∪
{

a′kb′1, a′kb′2, ..., a′kb′k
})

.

Then, the problem that we have solved (applied to (a′1, a′2, ..., a′n), (b′1, b′2, ..., b′n) and
(c′1, c′2, ..., c′n) instead of (a1, a2, ..., an), (b1, b2, ..., bn) and (c1, c2, ..., cn)) yields

a′1b′σ(1) + a′2b′σ(2) + ... + a′nb′σ(n) ≤ c′1 + c′2 + ... + c′n. (12)

But now, it is easy to see that every k ∈ {1, 2, ..., n} satisfies

c′k ≤ a′kb′k (13)
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6. Hence, it is almost trivial that every k ∈ {1, 2, ..., n} satisfies c′k = a′kb′k
7. Thus,

n
∑

k=1
c′k =

n
∑

k=1
a′kb′k.

6Proof of (13). Let k ∈ {1, 2, ..., n}. By definition of c′k, we have

c′k = max
({

a′1b′k, a′2b′k, ..., a′kb′k
}
∪
{

a′kb′1, a′kb′2, ..., a′kb′k
})

∈
{

a′1b′k, a′2b′k, ..., a′kb′k
}
∪
{

a′kb′1, a′kb′2, ..., a′kb′k
}

(since the maximum of a set always belongs to that set). Thus, either c′k ∈
{

a′1b′k, a′2b′k, ..., a′kb′k
}

or
c′k ∈

{
a′kb′1, a′kb′2, ..., a′kb′k

}
(or both). In other words, we must be in one of the following two cases:

Case 1. We have c′k ∈
{

a′1b′k, a′2b′k, ..., a′kb′k
}

.
Case 2. We have c′k ∈

{
a′kb′1, a′kb′2, ..., a′kb′k

}
.

Let us first consider Case 1. In this case, we have c′k ∈
{

a′1b′k, a′2b′k, ..., a′kb′k
}

, so that there exists
an i ∈ {1, 2, ..., k} such that c′k = a′ib

′
k. Consider such an i. Then, i ∈ {1, 2, ..., k}, so that i ≤ k and

thus ai ≤ ak (since a1 ≤ a2 ≤ ... ≤ an) and

a′i = ai︸︷︷︸
≤ak

−α
(
by the definition of a′i

)
≤ ak − α = a′k

(
since a′k = ak − α by the definition of a′k

)
.

Since b′k ≥ 0, this yields a′ib
′
k ≤ a′kb′k. Thus, c′k = a′ib

′
k ≤ a′kb′k. So we have proven c′k ≤ a′kb′k in Case

1.
Now let us consider Case 2. In this case, we have c′k ∈

{
a′kb′1, a′kb′2, ..., a′kb′k

}
, so that there exists

an i ∈ {1, 2, ..., k} such that c′k = a′kb′i . Consider such an i. Then, i ∈ {1, 2, ..., k}, so that i ≤ k and
thus bi ≤ bk (since b1 ≤ b2 ≤ ... ≤ bn) and

b′i = bi︸︷︷︸
≤bk

−β
(
by the definition of b′i

)
≤ bk − β = b′k

(
since b′k = bk − β by the definition of b′k

)
.

Since a′k ≥ 0, this yields a′kb′i ≤ a′kb′k. Thus, c′k = a′kb′i ≤ a′kb′k. So we have proven c′k ≤ a′kb′k in
Case 2.

Thus, we have proven c′k ≤ a′kb′k in each of the two cases 1 and 2. Since these two cases are the
only possible cases, this yields that c′k ≤ a′kb′k always holds. This proves (13).

7Proof. Let k ∈ {1, 2, ..., n}. Then,

a′kb′k ∈
{

a′1b′k, a′2b′k, ..., a′kb′k
}
⊆
{

a′1b′k, a′2b′k, ..., a′kb′k
}
∪
{

a′kb′1, a′kb′2, ..., a′kb′k
}

.

Since every element of a set is always ≤ to the maximum of that set, this yields

a′kb′k ≤ max
({

a′1b′k, a′2b′k, ..., a′kb′k
}
∪
{

a′kb′1, a′kb′2, ..., a′kb′k
})

= c′k.

Combined with (13), this yields c′k = a′kb′k, qed.
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Now, (12) can be rewritten as

0

≥
(

a′1b′σ(1) + a′2b′σ(2) + ... + a′nb′σ(n)
)

︸ ︷︷ ︸
=

n
∑

k=1
a′kb′

σ(k)

−
(
c′1 + c′2 + ... + c′n

)︸ ︷︷ ︸
=

n
∑

k=1
c′k=

n
∑

k=1
a′kb′k

=
n

∑
k=1

a′kb′σ(k) −
n

∑
k=1

a′kb′k

=
n

∑
k=1

a′k︸︷︷︸
=ak−α

(by the definition of a′k)

 b′σ(k)︸︷︷︸
=bσ(k)−β

(by the definition of b′
σ(k))

− b′k︸︷︷︸
=bk−β

(by the definition of b′k)


=

n

∑
k=1

(ak − α)
((

bσ(k) − β
)
− (bk − β)

)
︸ ︷︷ ︸

=bσ(k)−bk

=
n

∑
k=1

(ak − α)
(

bσ(k) − bk

)
︸ ︷︷ ︸
=ak(bσ(k)−bk)−α(bσ(k)−bk)

=
n

∑
k=1

(
ak

(
bσ(k) − bk

)
− α

(
bσ(k) − bk

))
=

n

∑
k=1

ak

(
bσ(k) − bk

)
− α

n

∑
k=1

(
bσ(k) − bk

)
.

(14)

But since σ is bijective (since σ is a permutation), we have ∑
k∈{1,2,...,n}

bσ(k) =

∑
k∈{1,2,...,n}

bk (here, we substituted k for σ (k) in the sum, since σ is bijective), so

that

n

∑
k=1

(
bσ(k) − bk

)
=

n

∑
k=1

bσ(k)︸ ︷︷ ︸
= ∑

k∈{1,2,...,n}
bσ(k)= ∑

k∈{1,2,...,n}
bk

−
n

∑
k=1

bk︸ ︷︷ ︸
= ∑

k∈{1,2,...,n}
bk

= ∑
k∈{1,2,...,n}

bk − ∑
k∈{1,2,...,n}

bk = 0.
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Thus, (14) becomes

0

≥
n

∑
k=1

ak

(
bσ(k) − bk

)
− α

n

∑
k=1

(
bσ(k) − bk

)
︸ ︷︷ ︸

=0

=
n

∑
k=1

ak

(
bσ(k) − bk

)
− α0

=
n

∑
k=1

ak

(
bσ(k) − bk

)
=

n

∑
k=1

akbσ(k)︸ ︷︷ ︸
=a1bσ(1)+a2bσ(2)+...+anbσ(n)

−
n

∑
k=1

akbk︸ ︷︷ ︸
=a1b1+a2b2+...+anbn

=
(

a1bσ(1) + a2bσ(2) + ... + anbσ(n)

)
− (a1b1 + a2b2 + ... + anbn) .

In other words,

a1bσ(1) + a2bσ(2) + ... + anbσ(n) ≤ a1b1 + a2b2 + ... + anbn.

This proves Corollary 3.
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