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Note: The below problem was published as problem 0222 in Mathematical Re-
flections 2012/1.

Problem

Let n € IN.
Let ay, ay, ..., a, be n nonnegative reals.
Let by, b, ..., b, be n nonnegative reals.
Let 0 be a permutation of {1,2,...,n}.
Forevery k € {1,2,...,n}, let ¢y = max ({a1by, axby, ..., axbg } U {axby, aiba, ..., arbi }).
Prove that

a1bg(1) + a2bs(2) + o+ Anbg(n) < €124 FCpe

Remark

1) By the rearrangement inequality, it is enough to prove this inequality when
o is the permutation (or, more precisely, one of the permutations) which makes
the sequences (ay,ay, ...,a,) and (bg(l), bo(2)s -wer bg(n)> equally sorted (because if we
treat aq, ay, ..., ay, and by, by, ..., by are constants, then this permutation ¢ maximizes
the left hand side a1b,(1) + a2b,(2) + ... + anby ;) Of our inequality, whereas the right
hand side is constant). But I don’t think this helps in solving the problem. It is
actually getting the cart before the horse: The rearrangement inequality can be
derived from our problem (see the remark after the solution for details).

2) The problem was conceived by me as a lemma to prove the “combinatorialist’s
Chebyshev inequality”, which states that (a1 +ax +...+a,) (b1 + by +...+b,) <
n(c1+ 2+ ...+ cu) (under the conditions of the problem) and is due to Ahlswede
and Blinovsky (JAhlBli08, Lecture 15, Consequences of Theorem 33, no. 2]). This
inequality can be derived from our problem by summing the left hand side over
o € C, (where C, denotes the subgroup of the symmetric group S, formed by all
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cyclic permutations). We leave the details to the reader. The proof in [AhlBli08] is
completely different.

Solution of the problem

We begin with a simple lemma:

Lemma 1. Let 4, 4/, b and V' be four nonnegative reals. Then,

ab’ +a'b < ab+max {ab’,a't’,a'b} . (1)

(Note that this lemma 1 is the particular case of our problem when n = 2 and
c=(1,2))

Proof of Lemma 1. We distinguish between three cases:
Case 1. We have a > a'.
Case 2. We have b > b'.
Case 3. We have neither a > a’ nor b > V'.
In Case 1, we have a > a’ and thus

ab’ + 4’ b <max{ab',a't',a’b} + ab = ab + max {ab’,a’t’,a'b} .
<max{al’,a'b’,a'b} <a

Thus, (1)) is proven in Case 1.
In Case 2, we have b > b’ and thus

a b + a'b < ab + max {ab’,a't’,a'b} .

<b <max{al',a’b’ ,a'b}

Thus, is proven in Case 2.

Now let us consider Case 3. In this Case, we have neither a > a’ nor b > V.
Thus,a <a’and b < V. Hence, a —a <a' —a’ =0and b -0 <V -0 =0.
Therefore, (a —a’) (b —b") > 0 (since the product of two negative reals must always
be positive), so that

0<(a—da)(b—V)=ab+ &’2’/ —ab’ —ad'b
<max{ab',a’'b’,a'b}

< ab+ max {ab’,a't’,a'b} —ab’ —a'b.

This rewrites as
ab’ +a'b < ab +max {ab’,a'b’,a’b} .
Thus, (1)) is proven in Case 3.
We thus have proven (1)) in all Cases 1, 2 and 3. Since these cases are clearly the

only possible cases to occur, this shows that (1) always holds. This proves Lemma
1. O
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Now, we need a trivial lemma from combinatorics:

Lemma 2. Let N be a positive integer, and let ¢ be a permutation of
{1,2,...,N} such that ¢ (N) = N. Then, there exists a permutation T of
{1,2,..., N — 1} such that

(o (i) =7 (i) for every i € {1,2,..,N —1}). (2)

Proof of Lemma 2. For every i € {1,2,..,N — 1}, we have o (i) € {1,2,..,N -1} []
Hence, we can defineamap 7: {1,2,..,N—1} — {1,2,..,N — 1} by

(t(u) =0 (u) forevery u € {1,2,...,N —1})).

This map 7 is injectiveE| and surjectiveﬂ thus bijective. Hence, T is a permutation
of {1,2,..,N —1}. Everyi € {1,2,.., N — 1} satisfies 7 (i) = ¢ (i) (by the definition
of 7). This proves Lemma 2. O

Now, we come to the actual solution of the problem:

Solution of the problem. We will solve the problem by induction over n:

Induction base: In the case n = 0, the problem is evidently trueﬁ This completes
the induction base.

Induction step: Fix some integer N > 1. Assume that the problem has already
been solved for n = N — 1. Now we need to solve the problem for n = N.

Let ay, ay, ..., ay be N nonnegative reals.

Let by, by, ..., by be N nonnegative reals.

Let o be a permutation of {1,2,..., N}.

lProof. Leti € {1,2,..,N—1}. Then,i < N —1 < N, so thati # N, so that ¢ (i) # ¢ (N) (because
o is a permutation and thus injective). Combining o (i) € {1,2,...,N} with 0 (i) # 0 (N) = N,
we obtain 0 (i) € {1,2,...,N} \ {N} ={1,2,..,N — 1}, qed.

2Proof. Let u and v be two elements of {1,2,..,N —1} such that 7 (1) = 7(v). Then, by the
definition of 7, we have 7 (1) = ¢ (1) and 7 (v) = 0 (v), so that 0 (1) = 7 (u) = 7 (v) = 0 (v),
so that u = v (since ¢ is a permutation and thus injective). Thus, we have shown that any two
elements u and v of {1,2,..., N — 1} such that 7 (1) = 7 (v) must satisfy u = v. In other words,
T is injective, qed.

3P;’oof. Let p € {1,2,..,N—1}. Then, p < N—1 < N. Moreover, p € {1,2,..,N—1} C
{1,2,..,N}, so that o~ ! (p) is well-defined. We have 0! (p) # N (because if ¢! (p) were
= N, then p would be = ¢ (N) = N, contradicting p < N). Combining o' (p) € {1,2,..,N}
with 01 (p) # N, we obtain ¢! (p) € {1,2,.., N} \ {N} = {1,2,..,N —1}. Thus, 7 (¢! (p))
is well-defined. By the definition of 7, we have 7 (¢! (p)) = o (0! (p)) = p, and thus
p=t(c7t(p) et({1,2,..,.N—1}).

So we have proven that every p € {1,2,.., N — 1} satisfies p € 7({1,2,.., N —1}). In other

words, T is surjective.

4Proof. In the case n = 0, the inequality

albg(l) + azbg(z) +..+ anbg(n) <ci+coH+...+coy

takes the form 0 < 0, which is obviously true. Thus, in the case n = 0, the problem is true.
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For every k e {1, 2,..., N}, let ¢, = max ({albk, arby, ..., akbk} U {akbl, agby, ..., akbk}).
We must then prove that

albg'(l) + azbg(z) + ...+ EleU(N) <ci+cx+..+cnN. (3)

We distinguish between two cases:

Case 1: We have 0 (N) = N.

Case 2: We have 0 (N) # N.

First, let us consider Case 1. In this case, o (N) = N, so that Lemma 2 yields that
there exists a permutation 7 of {1,2,..., N — 1} such that

(o (i) =7 (i) foreveryie {1,2,..,N—1}). (4)

Consider this 7.
We assumed that the problem has already been solved for n = N — 1. Hence, we
can apply the problem to T and N — 1 instead of ¢ and 7, and obtain

ale(l) + 612197(2) + ...+ aN_le(N_l) <c+co+..+eoeno1 (5)
The definition of cy yields

CN = ImaX ({tlle, Elsz, ceey aNbN} U {ﬂNbl,Elez, ceey aNbN})
> anby(n) (6)

(since aNbU(N) S {aNbl,asz,...,aNbN} - {ale,asz,...,aNbN}U{aNbl, ﬂsz,..., aNbN}).
We can rewrite as follows: 7(1) = o(1), T(2) = 0(2), ..., T(N—-1) =
o (N —1). Thus, (5) becomes

albg(l) + azbg(z) + ...+ aN,lbU(N,l) <ci+tce+..+on-1

Adding this inequality to the inequality anb, () < cn (Which follows from @), we
obtain

albg(l) + Elzbo-(z) + ...+ aN—lbo'(N—l) + aNba'(N) <ci+o+..+cnyq1+cen.

In other words, (3) holds. We have thus proven (3) in Case 1.
Next, let us consider Case 2. In this case, o (N) # N.
Letj =0 1(N). Thus, j=c"' (N) # N, so thatj € {1,2,..,N — 1}.
Let 17 be the permutation o o (N, j) of {1,2,..., N} (where (N, ) is the transposi-
tion which transposes N with j). Then,
n(N)=(co(N,j))(N)=0c  ((NJj)(N) =c(j)=N
~ ———r

N\ —

=]
(by the definition of (N,j))

(since j = ¢! (N)). Hence, Lemma 2 (applied to 7 instead of ¢) yields that there
exists a permutation T of {1,2,..., N — 1} such that

(n (i) =7 (i) for everyi € {1,2,..,N —1}). (7)




A problem on maxima and rearrangements page 5

Consider this T.

We assumed that the problem has already been solved for n = N — 1. Hence, we
can apply the problem to T and N — 1 instead of ¢ and 7, and obtain

aboq) + azbep) + o Han—1byn_1) St o+ +on-a (8)

But for every i € {1,2,.., N — 1} \ {j}, we have

T (i)
=1 (i (by (7), sincei € {1,2,..,N -1} \ {j} € {1,2,..,N —1})
—(eo(N))(@)  (sincen =0co(N,))
=0 ((N,j) () = o (i) ©)
since
1€{12.,N-1}\{j} = ({12... N}N\ANH\{j} ={L2,... N}\{N,j},

— {12, NIN{N}

and thus i ¢ {N,j}, so that (N,j) (i) = i (by the definition of (N,j))
On the other hand,

T(j) = 17( ) by (), applied to i = j (since j € {1,2,..,N — 1}))
= (0o ( (since # = oo (N,j))
=0 (N).

(by the deflmtlon of (N,j))

a1br(1) + azbro) + .. Fan-—1by (v 1

)
= ). abg=a by + )3 a; be (i
i€{12,.,N-1} :\b’(/) i€{1,2,.,N-1}\{j} T
(since 7(j)=c(N)) (by @I)

(since j € {1,2,..,N —1})

= aiby () + ) aibei).
i€{1,2,., N—11\{j}

Hence, (8) rewrites as

a]'ba(N) —+ Z aiba(i) <ci+co+...+cenog. (10)
i€{1,2,..N—11\{j}
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But
a1by(1) + a2 2) + .. + anby(w)
= <ﬂ1ba(1) + a2by(0) + .. + aN—lba(N—1)> +anbo(n)

J/

-

I,

a;b,n=a;b, i+ Y a;by ;i
ieqanoty OO s Ny Y
(since je{1,2,..,.N—1})

=q + )3 aiba (i) + aNDe(n)

=by (since o(j)=N) {12 NN

= aij + Z aibg(l-) + aNbg‘(N)
{12, . N-1\{j}

= El]'bN + IZNbU(N) + Z aiba(i)
N ~ 4 i€{1,2,..N—11\{j}

gajbg(N)+max{a]~bN,11NbN,aNbg(N)}
(by Lemma 1, applied to a=a;, a'=ay,
b=by(x) and b'=by)

< ajby(n) + max {aij, aNbN/aNba(N)} + )3 aib i)
i€{12,.,N-11\{j}

= ajby(ny + Y a;by(;) + max {aij, anbn, anbg(n) }
ie{12,.,N-17\j}

-

SC1+C2+...+CN_1

(by (10))
<c14+0o+...+cny1+ max {aij, anby, aNbU(N)} . (11)

N

But {a]-bN, aNbN,aNbU(N)} - {ale, asz,..., EleN} U {aNbl,asz, ...,lleN} SO
that

max {El]'bN, aNbN,EleU(N)} S max ({ﬂle, Elsz, ...,lleN} U {aNbl,asz, ceey lleN})

(since cy is defined as max ({a1bn, a2bn;, ..., anbn } U {anb1, anby, ..., anbn})). Hence,

5This is because

aij S {ﬂle,ﬂsz,...,aNbN} g {a1bN,a2bN,...,aNbN} U {aNbl,asz,...,aNbN};
{IleN S {ale,asz,...,aNbN} g {ale,asz,...,aNbN} U {aNblraNbZ/---/aNbN}}
“Nba(N) € {anby, anby, .., anbn} C {a1bn, a2by, ...,anbn} U {anby, anba, ..., anbn} -
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becomes

albg(l) + a2ba(2) + ...+ EleU(N) <c1+c+...+cny_q1+ max {aij, anby, Llea(N)}

-

<cnN
<c+4+c+..+enygt+en=c1+c+ ...+ N

In other words, (3) holds. We have thus proven (3) in Case 2.

Since the cases 1 and 2 are the only possible cases, and since we have proven
(3) in both of these cases, we conclude that (3) is true. We thus have shown that
mby(1) + a2by(0) + ... +anbyny < €1+ 2 + ... + cn. But this means that we have
solved the problem for n = N. This completes the induction step.

Thus, the induction proof of our problem is complete. O

Remark

The problem that we just solved generalizes the rearrangement inequality. To see
why, here is one possible form of the rearrangement inequality:

Corollary 3. Let n € IN.

Let a1, ay, ..., a, be n reals such that a1 < a; < ... < a,.

Let by, by, ..., b, be n reals such that by < by < ... < b,,.

Let 0 be a permutation of {1,2,...,n}.

Then,

albo(l) + azbg(z) + ...+ anbo(n) < ayby +axby + ... + a,by,.

Proof of Corollary 3. Let « = min {ay,ay,...,a,} and B = min {by, by, ..., b, }.
For every k € {1,2,..,n}, let a = ay —a and b, = by — B. Then, every k €
{1,2,...,n} satisfies a; = a5 — X > a; —a; = 0. In other words, 4],
=min{ay,ay,....4, } <ay
ay, ..., 4, are n nonnegative reals. Similarly, b}, V), ..., bj, are n nonnegative reals,
ie,every k € {1,2,..,n} satisfies b > 0.
For every k € {1,2,...,n}, let

¢} = max ({a\bl, ayb, .., a\b.} U {albl, albh, ..., albL}) .

Then, the problem that we have solved (applied to (4}, a5, ..., a},), (b, b5, ..., b;,) and
(¢}, ch, ..., cy,) instead of (ay,ay, ..., a,), (b1, b2, ..., by) and (c1, ¢y, ..., cn)) yields

a1by gy + aabgo) + o+ by S 1+ G (12)
But now, it is easy to see that every k € {1,2,...,n} satisfies

¢ < apby (13)
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ﬂ Hence, it is almost trivial that every k € {1,2,..., n} satisfies c; = a;b; ﬂ Thus,

& / L /1,/
Y= L ab.
k=1 k=1

®Proof of . Let k € {1,2,...,n}. By definition of c;, we have

/ Iy 1/ Iy ! 1,/
Ck = max ({albk, aZbk,...,lebk} U {ﬂkb ,ﬂkbz,..., akbk})
Iy 1/ 1./ AN N 1,/

€ {aiby, ayby, ..., by} U {ap by, apby, ... apby }

(since the maximum of a set always belongs to that set). Thus, either ¢} € {a}b},a}b,, ... a b} } or
¢ € {a}b], by, ..., a;cbllc} (or both). In other words, we must be in one of the following two cases:

Case 1. We have ¢}, € {a}b,, ayb,, ..., a}b }.

Case 2. We have ¢}, € {a}by, a;b}, ..., a1 }.

Let us first consider Case 1. In this case, we have ¢}, € {a}b}, ayb;, ..., a}b} }, so that there exists
ani € {1,2,..,k} such that ¢; = ajb;. Consider such an i. Then, i € {1,2,..,, k}, so that i < k and
thus a; < a; (since a1 < ap < ... <ay,) and

a,= a; —u (by the definition of a;)
~—
<a
<a—a=a (since aj = a; — a by the definition of a;) .

Since bj, > 0, this yields a/b; < a;b;. Thus, ¢ = ajb}, < a,b;. So we have proven ¢} < a;b; in Case
1.

Now let us consider Case 2. In this case, we have ¢}, € {aibi,a;cbé, . a;cb,’c}, so that there exists
ani € {1,2,..,k} such that ¢; = a;b;. Consider such an i. Then, i € {1,2,..,,k}, so that i < k and
thus b; < by (since by < by < ... <by)and

b= b —p (by the definition of b})
<by
<by—B="b (since b}, = by, — B by the definition of b},) .

zinceza;{ > 0, this yields a;b] < aib;. Thus, ¢, = a;b < a.b,. So we have proven ¢, < a;b} in
ase 2.
Thus, we have proven ¢j, < a;b; in each of the two cases 1 and 2. Since these two cases are the
only possible cases, this yields that ¢ < a;b; always holds. This proves (13).
7Proof. Letk € {1,2,..,n}. Then,

/1,/ Iyl o/ /1! /1! /1! 1,/ 1,/ 11,/ 1/
mby € {aiby, asby, ..., by} C {aiby, asby, ..., b} U {apby, apby, ..., apby }
Since every element of a set is always < to the maximum of that set, this yields
!,/ Iy o/ 1,/ /1,7 !,/ 1,/ /
aby, < max ({ayby, asby, ..., apby } U {apby, ayby, ..., aibi }) = .

Combined with (13), this yields c; = a;b;, qed.
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Now, can be rewritten as

0
> (b)) + a5 ) + o+ a;b;,(n)) —(j+ch+.tcp)

(

~\~

n n
_ Z a/b/ :k)gl C;(:k)gl u;(b]/(
n
. /
=) akb Z a;by
k=1
n
_ / / /
=) ay by (k) - b
=1 —~— N ~
=ap—K =b (k)f.B =b —ﬁ

(by the definition of a;C) (by the definition of b/ )

(by the definition of b’ (k))

:i (ar — ) (( (k)_/3> (b — B ) i\(ak—oc< ()_bk)J

k=1 k=1
=bott) b = (bt ~bk) =2 (bo) ~br)
n n
= 1 (o (oo 0] = (b =) = B (b~ ) = 5 (o =)
(14)
But since ¢ is bijective (since ¢ is a permutation), we have Y b, K =
ke{1,2,..,n}

Y. by (here, we substituted k for o (k) in the sum, since ¢ is bijective), so
ke{1,2,..n}

that
n n n
> (o —b¢) = > bogk) - Yb
—— N
= ¥ bp= ¥ b = ¥
ke{1,2,.,n} ke{1,2,..n} ke{1,2,...n}

S D T

ke{1,2,..n} ke{12,..n}
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Thus, becomes

0
n n n
> Y a (ba(k) - bk) —ay, <brf(k) - bk) =) & <b¢7(k) - bk) — a0
k=1 k=1 k=1
-0
n n n
=) (ba(k) - bk) = Y by - Y agby
k=1 k=1 k=1
=1by(1)+a2by )+ A anby(n) :a1b1+a277;:+anbn

= (albg(l) + azbg(z) + ...+ Elnba(n)) - (111171 +ayby + ...+ anbn) .
In other words,
alba(l) + ﬂzbg(z) + ...+ aﬂbo(n) < ai1b1 4+ arby + ... + aub,,.

This proves Corollary 3. ]
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