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Let us define a function H : N — N by

n—1
H(n) = H k! for every n € N.
k=0

Our goal is to prove the following theorem:

Theorem 0 (MacMahon). We have
Hb+c)H(c+a)H(a+0b)| H(a)H (b)H (¢c)H (a+b+c¢)

for every a € N, every b € N and every ¢ € N.

Remark: Here, we denote by N the set {0,1,2,...} (and not the set {1,2,3, ...},

as some authors do).
Before we come to the proof, first some definitions:
Notations.

e Let R be aring. Let u € N and v € N, and let a;; be an element of R for
every (i,7) € {1,2,...,u} x {1,2,...,v} . Then, we denote by (a;;)1=/=" the
u X v matrix A € R** whose entry in row ¢ and column j is a; ; for every

(i,5) € {1,2, ..., u} x {1,2,...,v} .

Let R be a commutative ring with unity. Let P € R[X] be a polynomial.
Let j € N. Then, we denote by coeff; P the coefficient of the polynomial
P before X7. (In particular, this implies coeff; P = 0 for every j > deg P.)
Thus, for every P € R|[X]| and every d € N satisfying deg P < d, we have

P(X)= i coeffy, (P) - X*.

Let R be a ring. Let n € N. Let ay, ao, ..., a, be n elements of R. Then,
diag (ay, as, ..., a,) will mean the diagonal n x n matrix whose diagonal

entries are ai, ag, ..., a, (from top-left to bottom-right). In other words,
. N\ 1Si<n
. a;, ifi=j;
diag (ay, ag, ..., a,) = 0 i :
A 1<i<n

If n and m are two integers, then the binomial coefficient (m) € Qis
n
defined by

= n!

(m) m(m—1)~~(m—n+1)’ itn >0
0, ifn<0

n

It is well-known that (m) € Zforalln € Z and m € Z.
n
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We are first going to prove a known fact from linear algebra:

Theorem 1 (Vandermonde determinant). Let R be a commuta-
tive ring with unity. Let m € N. Let aq, ao, ..., a,, be m elements of
R. Then,

det (( a’ 1)25;"2) _ H (ai — a;) .

(i,4)€{1,2,....m}%
i>7

Actually we are more interested in a corollary - and generalization - of this
fact:

Theorem 2 (generalized Vandermonde determinant). Let R be

a commutative ring with unity. Let m € N. For every j € {1,2,...,m},

let P; € R[X] be a polynomial such that deg (P;) < j—1. Let a4, as,
., @ be m elements of R. Then,

det ((Pj( 122:) = (HCO@HJ 1 ) I @-ay.

(1,)€{1,2,...,m}?;
i>7

Both Theorems 1 and 2 can be deduced from the following lemma:

Lemma 3. Let R be a commutative ring with unity. Let m € N.
For every j € {1,2,...,m}, let P; € R[X] be a polynomial such that
deg (P;) < j—1. Let a1, ag, ..., a, be m elements of R. Then,

det ((PJ( iiiﬁ:) <H coeffj1 ( ) - det <( a 1)1:;:) '

Proof of Lemma 3. For every j € {1,2,...,m}, we have P; (X) = Z coefty, (P;)-

Xk (since deg (P;) < j—1 < m —1). Thus, for every i € {1,2,...,m} and
j€{1,2,...,m}, we have

m—1 m—1 m
P; (a;) = Z coeffy (P;) - af = a¥ - coeff, (P Z& ~1 coeff_y (Pj)
k=0 k=0 k=1

(here we substituted k — 1 for k in the sum). Hence,
1<j<m j—1\ 1<j<m 1<j<m
(P] (az))lgigm = (az )1§i§m ’ (Coeﬁi—l (PJ))1£Z§m :

But the matrix (coeff; ; (P]))EZSZ

for every i € {1,2,...,m} and j € {1,2,...,m} satisfying i > j [[), hence,

is upper triangular (since coeff;_; (P;) = 0

'because i > j yields i—1 > j—1, thus i—1 > deg (P;) (since deg (P;) < j—1) and therefore
coeff;_1 (P;) =0



1<i<m

det ((coeﬂ:i,l (Pj))lgjém) = [] coeff;_; (P;) (since the determinant of an upper
j=1

triangular matrix equals the product of its diagonal entries).
Now,

1<j<m

det ((Pj (al)ﬁigﬁ) = det ((az_l)gz‘gm - (coeff;_4 (ﬂ))igﬁ)

1\ 1<5<m <m
— det ((ai 1)1;;"1) - det ((coeffi_1 (P]))Ef;J

v~

m
= -H1 coeff;_1(P;)
=

= (H coeff;_4 (Pj)> - det ((az_1)12§;n) )
=1

and thus, Lemma 3 is proven.

Proof of Theorem 1. For every j € {1,2,...,m}, define a polynomial P; €
j—1

R[X] by P;(X) =[] (X — ax). Then, P; is a monic polynomial of degree j — 1.
k=1

In other words, deg (P;) = j — 1 and coeff;_; (P;) = 1 for every j € {1,2,...,m}.

Thus, Lemma 3 yields

<m - 1\ 1<j<m
det ((P] (%))Ei@n) = (H coeff;_; (P])> - det ((aﬁ 1)1§i§m> . (1)
j=1
But the matrix (F; (%))EEZ is lower triangular (since P; (a;) = 0 for every
i€{l1,2,...m} and j € {1,2,...,m} satisfying i < j, as follows quickly from the

definition of P;); hence, det ((Pj (a;)< Sm) = ]I P (a;) (since the determinant
j=1

1<i<m

of a lower triangular matrix equals the product of its diagonal entries). Thus, (1
becomes

m m

HP] (a;) = Hcoeffj_l (P;) | - det ((af_l)ii:nn> = det ((af_l)ii;n> )

g=1 J=1 -1

j—1 j—1
But P; (X) = [[ (X — ay) yields P;(a;) = ] (a; — ax), so that
k=1 k=1
1<j< - e
N 1<j<m
det ((aﬁ 1)1§i§m> — HPJ- (aj) = H (aj —ai) = H (aj — ax)
Jj=1 J=lk=1 (,k)e{1,2,....m}%;
k<j
= I[I  (u—a)= I[I  (u-a).
(iv.j)e{l;Qv‘“"m}Q; (ivj)€{1'727""’m}2§
7<i 1>)

Hence, Theorem 1 is proven.
Now, Theorem 2 immediately follows from Lemma 3 and Theorem 1.
A consequence of Theorem 2:



Corollary 4. Let R be a commutative ring with unity. Let m € N.

Let aq, as, ..., a,, be m elements of R. Then,
o1 1<j<m
det (H (a; — k:)) = H (a; —aj) .
k=1 1<i<m (1.)€{1,2,....m}?;
i>j

Proof of Corollary 4. For every j € {1,2,...,m}, define a polynomial P; €

j—1

R[X]| by P;(X) = ][] (X — k). Then, P; is a monic polynomial of degree j — 1.
k=1

In other words, deg (P;) = j — 1 and coeff;_; (P;) = 1 for every j € {1,2,...,m}.

Thus, applying Theorem 2 to these polynomials P; yields the assertion of Corol—

lary 4.
Also notice that:

Lemma 5. Let m € N. Then,

[T G-i)=Hm.
(1.4)€{1,2,...,m}?;
1>

Proof of Lemma 5. We have

I G-5= 11 (i —j)

(i,§)€{1,2,....m}%; (i,)€{0,1,....m—1}%;
i>j i>j

(here we shifted i and j by 1, which doesn’t change anything since i — j remains constant)

i—1 7
= I I @&-»= 11 1II¢-»= 11 1ls
i€{0,1,..., mfl}je{o,lz?;}mfl}; i€{0,1,...,m—1} j=0 i€{0,1,...,m—1} j=1

=i!

(here, we substituted j for ¢ — j in the second product)
m—1
= JI =]+ =Hm
i€{0,1,...,m—1} k=0

Hence, Lemma 5 is proven.
Now, we notice that every a € N, every b € N and every ¢ € N satisfy

a+b+c—1 a+b—1 a+b+c—1 a+b+c—1
H(a+b+c)= H = I[ ¥ J[ #=H@+b- [] *
k=0 k=a+b k=a+b
=H(a+b)

=H(a+b) - [Jla+bd+i—1)
i=1
(here we substituted a + b+ ¢ — 1 for k in the product),

(2)



b+c—1 b—1 btc—1 b4c—1 c

H(b+c)= H K= |T[k |- I s=H®) J] =2 -J[G+i-1)
k=0 k=b k=b i=1

—H(b)
(here we substituted b+ 4 — 1 for & in the product), (3)
cta—1 ct+a—1 cta—1 c
H(c+a)= [] *= Hk' JI #=H@- [] #=H() [J(a+i-1)
k=0 k=a k=a i=1
\\,../
=H(a)
(here we substituted a 4+ ¢ — 1 for k in the product). (4)

Next, a technical lemma.

Lemma 6. For every : € N and j € N satisfying« > 1 and j > 1, we
have

a+b+i—1 (a+b+i—1)! ﬁ N
= (a+1i—Fk
a+i—7j (a+i—1!-(b+7—1)! Pl

The proof of this lemma is completely straightforward: Either we have a +
1 — 7 > 0 and Lemma 6 follows from standard manipulations with binomial
a+b+i— 1)

a+1—7

coefficients, or we have a+7—j < 0 and Lemma 6 follows from (

j—1
0and ] (a+i—Fk)=0.
k=1
Another trivial lemma:
Lemma 7. Let R be a commutative ring with unity. Let v € N, and
let a;; be an element of R for every (i,7) € {1,2,...,u}".

Let aq, aa, ..., ay, be u elements of R. Let 1, Ba, ..., 8, be u elements
of R. Then,

1< < 1<'<
det ((O‘iaidﬁ] 1<f<ff) HQ’ Hﬁl det ( isg 1<g§_§> '

.. . 1<5<
This is clear because the matrix (o;a; ;0;) 21,

dlag (ala g, ...y au) ' (a’Z,J)}izgzj ’ dla’g (ﬁla 527 Ly} ﬁu) )

can be written as the product

and thus
det <(aiai,jﬁj)1§g§3 )
= det (diag (a1, 03, - @) - (@) 250 - diag (B, B, o, ) )

= (j_et (dlag (al, Qg, ..., Ozu)) -det (((I%])}iz;:j) . Elet (dlag (51, 52, ceey Bu)z

v~

u u
=11 a; =11 B
i=1 i=1



Now, back to proving Theorem 0:

We have
1\ LSise
det ((a+b—i‘-z ) ))
a+1—] 1<i<e
1<j<e
b+i—1)! =
= det (atb+i (a+1i—k (by Lemma 6)
(a+i—1)-(b+j5—1)!
k=1 1<i<c

(a+b+i—1) I R
a 7 —

= det k) —

° < wrio eri=n <b+y—1>)

k=1 1<i<c
+b+i—1) s o
(a 71—
— t —k
H (a+i—1)! H b—l—z—l de ( (a+i )>
=1 =1 k=1 1<i<c
i-1 (a+b+i—1)!
by L 7 lied to R = = i = L — k), = .
(by Lemma 7, applied to B = Q, u = ¢, a;,; IEIWH ), (a+i—1)
1 .
and ﬁi:m). Since

det (H(a+z‘—k)> = 1T (a+1) —(a+ )

k=1 1<i<c (i) €{1.2,..0.c}%; —ij
i>]

(by Corollary 4, applied to R = Z, m = ¢ and a; = a + ¢ for every i € {1,2, ...

= H (1t—j)=Hc) (by Lemma 5, applied to m = ¢),
(i.3)€{1,2,...c}%;
i>7

this becomes

b+i—1\)'° ‘ b+i—1)
det ((a+ —|.-Z. )> (@a+b+i H Hc).
a+1i—j 1<i<e paley (a+i—1)! paley b—i—z—l
(5)




Now,
H(a)H (b)H (¢)H (a+b+c)
Hb+c)H (c+a)H (a+D)

H (a) H (b) H (c) H (a+b) - [] (a+b+i—1)!

ﬁ(a+i—1)!>-H(a+b)

i=1

(H(b) H<b+z—1>) ( (a)-
(by,and

[[a+b+i-1) [[(a+b+i—1)!
o i=1 =1 1
— c c H(C)— c R H(C)
[To+i—1D![](a+i—1)! [[(a+i—1) [I+:-1)
=1 =1 i=1 =1
c %r _]_' 4 V]_
=11 at ﬂ ) =11 .

=1

! ((( vl 1))) (by @) -
€7

bai— 1\ 1si<e
(since ((a i —i__Z , )) € 7). In other words,
a+i—] I<i<e

Hb+c)H(c+a)H(a+0b)|H(a)H (b)H (c)H (a+b+¢).

(yrla+b+i—1)! © 1
_<H (a+i—1)! )’(g(bﬂ—n!)'H(C)
d

Thus, Theorem 0 is finally proven.

Remarks.

1. Theorem 0 was briefly mentioned (with a combinatorial interpretation,
but without proof) on the first page of [1]. It also follows from the formula
(2.1) in [3] (since H(a)H (b)H (¢)H (a+b+c) _ IEI (a—i—{?+i— 1)'(2 — 1)!>,
H(b+c¢)H (c+a)H (a+D) —i(a+i—=1)10b+i—1)
or, equivalently, the formula (2.17) in [4]. It is also generalized in [2], Section 429
(where one has to consider the limit z — 1).

2. We can prove more:

Theorem 8. For every a € N, every b € N and every ¢ € N, we have

H(a)H (b)H (¢)H (a+b+c)
Hb+c)H (c+a)H (a+D)

boi— 1\ Sise b 1<j<e
() e (D))
a+1—7 1<i<e a+1—7 1<i<e

We recall a useful fact to help us in the proof:
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Theorem 9, the Vandermonde convolution identity. Let x € Z
and y € Z. Let g € Z. Then,

(-2 06

(The sum on the right hand side is an infinite sum, but only finitely
many of its addends are nonzero.)

Proof of Theorem 8. For every i € {1,2,...,c} and every j € {1,2,...,c}, we
have

at+b+i1—-1 a+b 7 — 1
( ati—j >_Z( k )(aﬂ'—j—kz)

kEZ
(by Theorem 9, applied tox =a+b,y=i—1and ¢g=a+1i — j)

— 1
_ Z( cH‘—b )(Z ) (here we substituted a — j + ¢ for k in the sum)
= a—j—|—€ 1—0

()0

here, we restricted the summation from ¢ € Z to ¢ € {1,2,...,c},
which doesn’t change the sum because

a+0b 1—1
=0 f 11 Z 1,2, ...
(a—j+€)<i—€) 0 for all £ € Z\ {1,2,...,¢}

< (i—l)( a+b )

— i—{0)\a—j+1()
((a+b+i—1>)1§j§c c (i—1)< a+b )
a+1i—7 I<i<e — 1—0)\a—75+/¢

1<j<e
1<i<c
i1 1<j<c a+b 1<j<c
B ((Z _j))1§i§c . ((a —-J+ i))lgigc
(ENEEE
=7/ ) 1<i<e at+i—7/)/ <<

i— 1)\ == i—1
Now, the matrix <( >) is lower triangular (since ( ) = 0 for every

t=1) /) 1<i<e t=J
i€ {1,2,...,m} and j € {1,2,...,m} satisfying i < 7). Since the determinant of
an lower triangular matrix equals the product of its diagonal entries, this yields

()R )
_(9'51)_1



Now,

aa((720)

1<j<e
1<i<c

w (7))

1<j<c

'((aijfj)>

1<i<c

(by (@)

 — 1

al

1

_j)) a+b

J/

—~
=1 by

:"mt<(<aijfj))

Combined with (6], this yields Theorem 8.

1<j<c
1<i<c

3. We notice a particularly known consequence of Corollary 4:

Corollary 10. Let m € N. Let a4, as,

()7 e

1<i<m
In particular,
H(m) |

11

.esy G be m integers. Then,

I1

(i,)€{1,2,....m}*;
1>7

(ai - CLj) .

— ay).

(i,)e{1,2,...,m}%;

i>j

Proof of Corollary 10. For every i € {1
have

1
1

T (0~ b

,2,...,m} and j € {1,2,...,m},

-1 % i 1
(a. 1):%:1‘ (a; — k) — D
j— j—1) Pl (=Dt
Therefore,
a; — 1 1<j<m j—1 1 1<j<m
det ,1 =det | [1-]] (a; —k) i
J - 1<i<m k=1 (‘7 N ) 1<i<m
m m 1 j—1 1<j<m
e =y e (e )
= = \ = g 1<i<m
=1 m-1 1 1 1 = I (a;—a;) by Corollary 4
T 1 = 2
k=0 k' ml__Il kl H (m) (Zj)e{if‘;vm}
i=1
j—1
(by Lemma 7, applied to R =Q, u=m, a;; = H (a; — k), a; =1 and f;
k=1
1
= m H (a; — a;),

(i,4)€{1,2,....m}%
i>j

1<j<e
1§i§c)
1<5<c

a(((50))
1<i<e a+i—)

we

1<j<e

1<i<c

)




so that

(i.4)€{1,2,....m}?;

1>)
Thus,
Hm) | [T (w-a)
(i.)€{1,2,...m}?;
1>)
1<j<m
i — 1 _
(since det (a. 1) € Z). Thus, Corollary 10 is proven.
j j—
€Z 1<i<m

Corollary 11. Let m € N. Let a4, as, ..., a,, be m integers. Then,

det (((j Cii 1)):::) - H (m) = 1T (a; — aj) .

(i,j)E{II,Q,‘...,m}Z;
1>)
Proof of Corollary 11. This follows from Corollary 10, applied to a;+1 instead
of Q;.
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