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Let us define a function H : N→ N by

H (n) =
n−1∏
k=0

k! for every n ∈ N.

Our goal is to prove the following theorem:

Theorem 0 (MacMahon). We have

H (b+ c)H (c+ a)H (a+ b) | H (a)H (b)H (c)H (a+ b+ c)

for every a ∈ N, every b ∈ N and every c ∈ N.

Remark: Here, we denote by N the set {0, 1, 2, ...} (and not the set {1, 2, 3, ...} ,
as some authors do).

Before we come to the proof, first some definitions:
Notations.

• Let R be a ring. Let u ∈ N and v ∈ N, and let ai,j be an element of R for

every (i, j) ∈ {1, 2, ..., u} × {1, 2, ..., v} . Then, we denote by (ai,j)
1≤j≤v
1≤i≤u the

u× v matrix A ∈ Ru×v whose entry in row i and column j is ai,j for every
(i, j) ∈ {1, 2, ..., u} × {1, 2, ..., v} .

• Let R be a commutative ring with unity. Let P ∈ R [X] be a polynomial.
Let j ∈ N. Then, we denote by coeffj P the coefficient of the polynomial
P before Xj. (In particular, this implies coeffj P = 0 for every j > degP .)
Thus, for every P ∈ R [X] and every d ∈ N satisfying degP ≤ d, we have

P (X) =
d∑

k=0

coeffk (P ) ·Xk.

• Let R be a ring. Let n ∈ N. Let a1, a2, ..., an be n elements of R. Then,
diag (a1, a2, ..., an) will mean the diagonal n × n matrix whose diagonal
entries are a1, a2, ..., an (from top-left to bottom-right). In other words,

diag (a1, a2, ..., an) =

({
ai, if i = j;

0, if i 6= j

)1≤j≤n

1≤i≤n

.

• If n and m are two integers, then the binomial coefficient

(
m

n

)
∈ Q is

defined by (
m

n

)
=


m (m− 1) · · · (m− n+ 1)

n!
, if n ≥ 0;

0, if n < 0
.

It is well-known that

(
m

n

)
∈ Z for all n ∈ Z and m ∈ Z.
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We are first going to prove a known fact from linear algebra:

Theorem 1 (Vandermonde determinant). Let R be a commuta-
tive ring with unity. Let m ∈ N. Let a1, a2, ..., am be m elements of
R. Then,

det
((
aj−1
i

)1≤j≤m
1≤i≤m

)
=

∏
(i,j)∈{1,2,...,m}2;

i>j

(ai − aj) .

Actually we are more interested in a corollary - and generalization - of this
fact:

Theorem 2 (generalized Vandermonde determinant). Let R be
a commutative ring with unity. Letm ∈ N. For every j ∈ {1, 2, ...,m},
let Pj ∈ R [X] be a polynomial such that deg (Pj) ≤ j− 1. Let a1, a2,
..., am be m elements of R. Then,

det
(

(Pj (ai))
1≤j≤m
1≤i≤m

)
=

(
m∏
j=1

coeffj−1 (Pj)

)
·

∏
(i,j)∈{1,2,...,m}2;

i>j

(ai − aj) .

Both Theorems 1 and 2 can be deduced from the following lemma:

Lemma 3. Let R be a commutative ring with unity. Let m ∈ N.
For every j ∈ {1, 2, ...,m}, let Pj ∈ R [X] be a polynomial such that
deg (Pj) ≤ j − 1. Let a1, a2, ..., am be m elements of R. Then,

det
(

(Pj (ai))
1≤j≤m
1≤i≤m

)
=

(
m∏
j=1

coeffj−1 (Pj)

)
· det

((
aj−1
i

)1≤j≤m
1≤i≤m

)
.

Proof of Lemma 3. For every j ∈ {1, 2, ...,m}, we have Pj (X) =
m−1∑
k=0

coeffk (Pj)·

Xk (since deg (Pj) ≤ j − 1 ≤ m − 1). Thus, for every i ∈ {1, 2, ...,m} and
j ∈ {1, 2, ...,m}, we have

Pj (ai) =
m−1∑
k=0

coeffk (Pj) · aki =
m−1∑
k=0

aki · coeffk (Pj) =
m∑
k=1

ak−1
i · coeffk−1 (Pj)

(here we substituted k − 1 for k in the sum). Hence,

(Pj (ai))
1≤j≤m
1≤i≤m =

(
aj−1
i

)1≤j≤m
1≤i≤m · (coeffi−1 (Pj))

1≤j≤m
1≤i≤m .

But the matrix (coeffi−1 (Pj))
1≤j≤m
1≤i≤m is upper triangular (since coeffi−1 (Pj) = 0

for every i ∈ {1, 2, ...,m} and j ∈ {1, 2, ...,m} satisfying i > j 1); hence,

1because i > j yields i−1 > j−1, thus i−1 > deg (Pj) (since deg (Pj) ≤ j−1) and therefore
coeffi−1 (Pj) = 0
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det
(

(coeffi−1 (Pj))
1≤j≤m
1≤i≤m

)
=

m∏
j=1

coeffj−1 (Pj) (since the determinant of an upper

triangular matrix equals the product of its diagonal entries).
Now,

det
(

(Pj (ai))
1≤j≤m
1≤i≤m

)
= det

((
aj−1
i

)1≤j≤m
1≤i≤m · (coeffi−1 (Pj))

1≤j≤m
1≤i≤m

)
= det

((
aj−1
i

)1≤j≤m
1≤i≤m

)
· det

(
(coeffi−1 (Pj))

1≤j≤m
1≤i≤m

)
︸ ︷︷ ︸

=
m∏

j=1
coeffj−1(Pj)

=

(
m∏
j=1

coeffj−1 (Pj)

)
· det

((
aj−1
i

)1≤j≤m
1≤i≤m

)
,

and thus, Lemma 3 is proven.
Proof of Theorem 1. For every j ∈ {1, 2, ...,m}, define a polynomial Pj ∈

R [X] by Pj (X) =
j−1∏
k=1

(X − ak). Then, Pj is a monic polynomial of degree j − 1.

In other words, deg (Pj) = j − 1 and coeffj−1 (Pj) = 1 for every j ∈ {1, 2, ...,m}.
Thus, Lemma 3 yields

det
(

(Pj (ai))
1≤j≤m
1≤i≤m

)
=

(
m∏
j=1

coeffj−1 (Pj)

)
· det

((
aj−1
i

)1≤j≤m
1≤i≤m

)
. (1)

But the matrix (Pj (ai))
1≤j≤m
1≤i≤m is lower triangular (since Pj (ai) = 0 for every

i ∈ {1, 2, ...,m} and j ∈ {1, 2, ...,m} satisfying i < j, as follows quickly from the

definition of Pj); hence, det
(

(Pj (ai))
1≤j≤m
1≤i≤m

)
=

m∏
j=1

Pj (aj) (since the determinant

of a lower triangular matrix equals the product of its diagonal entries). Thus, (1)
becomes

m∏
j=1

Pj (aj) =

 m∏
j=1

coeffj−1 (Pj)︸ ︷︷ ︸
=1

 · det
((
aj−1
i

)1≤j≤m
1≤i≤m

)
= det

((
aj−1
i

)1≤j≤m
1≤i≤m

)
.

But Pj (X) =
j−1∏
k=1

(X − ak) yields Pj (aj) =
j−1∏
k=1

(aj − ak), so that

det
((
aj−1
i

)1≤j≤m
1≤i≤m

)
=

m∏
j=1

Pj (aj) =
m∏
j=1

j−1∏
k=1

(aj − ak) =
∏

(j,k)∈{1,2,...,m}2;
k<j

(aj − ak)

=
∏

(i,j)∈{1,2,...,m}2;
j<i

(ai − aj) =
∏

(i,j)∈{1,2,...,m}2;
i>j

(ai − aj) .

Hence, Theorem 1 is proven.
Now, Theorem 2 immediately follows from Lemma 3 and Theorem 1.
A consequence of Theorem 2:
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Corollary 4. Let R be a commutative ring with unity. Let m ∈ N.
Let a1, a2, ..., am be m elements of R. Then,

det

(j−1∏
k=1

(ai − k)

)1≤j≤m

1≤i≤m

 =
∏

(i,j)∈{1,2,...,m}2;
i>j

(ai − aj) .

Proof of Corollary 4. For every j ∈ {1, 2, ...,m}, define a polynomial Pj ∈

R [X] by Pj (X) =
j−1∏
k=1

(X − k). Then, Pj is a monic polynomial of degree j − 1.

In other words, deg (Pj) = j − 1 and coeffj−1 (Pj) = 1 for every j ∈ {1, 2, ...,m}.
Thus, applying Theorem 2 to these polynomials Pj yields the assertion of Corol-
lary 4.

Also notice that:

Lemma 5. Let m ∈ N. Then,∏
(i,j)∈{1,2,...,m}2;

i>j

(i− j) = H (m) .

Proof of Lemma 5. We have∏
(i,j)∈{1,2,...,m}2;

i>j

(i− j) =
∏

(i,j)∈{0,1,...,m−1}2;
i>j

(i− j)

(here we shifted i and j by 1, which doesn’t change anything since i− j remains constant)

=
∏

i∈{0,1,...,m−1}

∏
j∈{0,1,...,m−1};

i>j

(i− j) =
∏

i∈{0,1,...,m−1}

i−1∏
j=0

(i− j) =
∏

i∈{0,1,...,m−1}

i∏
j=1

j︸︷︷︸
=i!

(here, we substituted j for i− j in the second product)

=
∏

i∈{0,1,...,m−1}

i! =
m−1∏
k=0

k! = H (m) .

Hence, Lemma 5 is proven.
Now, we notice that every a ∈ N, every b ∈ N and every c ∈ N satisfy

H (a+ b+ c) =
a+b+c−1∏
k=0

k! =


a+b−1∏
k=0

k!︸ ︷︷ ︸
=H(a+b)

 ·
a+b+c−1∏
k=a+b

k! = H (a+ b) ·
a+b+c−1∏
k=a+b

k!

= H (a+ b) ·
c∏
i=1

(a+ b+ i− 1)!

(here we substituted a+ b+ i− 1 for k in the product) ,
(2)
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H (b+ c) =
b+c−1∏
k=0

k! =


b−1∏
k=0

k!︸ ︷︷ ︸
=H(b)

 ·
b+c−1∏
k=b

k! = H (b) ·
b+c−1∏
k=b

k! = H (b) ·
c∏
i=1

(b+ i− 1)!

(here we substituted b+ i− 1 for k in the product) , (3)

H (c+ a) =
c+a−1∏
k=0

k! =


a−1∏
k=0

k!︸ ︷︷ ︸
=H(a)

 ·
c+a−1∏
k=a

k! = H (a) ·
c+a−1∏
k=a

k! = H (a) ·
c∏
i=1

(a+ i− 1)!

(here we substituted a+ i− 1 for k in the product) . (4)

Next, a technical lemma.

Lemma 6. For every i ∈ N and j ∈ N satisfying i ≥ 1 and j ≥ 1, we
have(

a+ b+ i− 1

a+ i− j

)
=

(a+ b+ i− 1)!

(a+ i− 1)! · (b+ j − 1)!
·
j−1∏
k=1

(a+ i− k) .

The proof of this lemma is completely straightforward: Either we have a +
i − j ≥ 0 and Lemma 6 follows from standard manipulations with binomial

coefficients, or we have a+i−j < 0 and Lemma 6 follows from

(
a+ b+ i− 1

a+ i− j

)
=

0 and
j−1∏
k=1

(a+ i− k) = 0.

Another trivial lemma:

Lemma 7. Let R be a commutative ring with unity. Let u ∈ N, and
let ai,j be an element of R for every (i, j) ∈ {1, 2, ..., u}2 .

Let α1, α2, ..., αu be u elements of R. Let β1, β2, ..., βu be u elements
of R. Then,

det
(

(αiai,jβj)
1≤j≤u
1≤i≤u

)
=

u∏
i=1

αi ·
u∏
i=1

βi · det
(

(ai,j)
1≤j≤u
1≤i≤u

)
.

This is clear because the matrix (αiai,jβj)
1≤j≤u
1≤i≤u can be written as the product

diag (α1, α2, ..., αu) · (ai,j)1≤j≤u
1≤i≤u · diag (β1, β2, ..., βu) ,

and thus

det
(

(αiai,jβj)
1≤j≤u
1≤i≤u

)
= det

(
diag (α1, α2, ..., αu) · (ai,j)1≤j≤u

1≤i≤u · diag (β1, β2, ..., βu)
)

= det (diag (α1, α2, ..., αu))︸ ︷︷ ︸
=

u∏
i=1

αi

· det
(

(ai,j)
1≤j≤u
1≤i≤u

)
· det (diag (β1, β2, ..., βu))︸ ︷︷ ︸

=
u∏

i=1
βi

.
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Now, back to proving Theorem 0:
We have

det

(((
a+ b+ i− 1

a+ i− j

))1≤j≤c

1≤i≤c

)

= det

( (a+ b+ i− 1)!

(a+ i− 1)! · (b+ j − 1)!
·
j−1∏
k=1

(a+ i− k)

)1≤j≤c

1≤i≤c

 (by Lemma 6)

= det

((a+ b+ i− 1)!

(a+ i− 1)!
·
j−1∏
k=1

(a+ i− k) · 1

(b+ j − 1)!

)1≤j≤c

1≤i≤c


=

c∏
i=1

(a+ b+ i− 1)!

(a+ i− 1)!
·

c∏
i=1

1

(b+ i− 1)!
· det

(j−1∏
k=1

(a+ i− k)

)1≤j≤c

1≤i≤c


(by Lemma 7, applied toR = Q, u = c, ai,j =

j−1∏
k=1

(a+ i− k), αi =
(a+ b+ i− 1)!

(a+ i− 1)!

and βi =
1

(b+ i− 1)!
). Since

det

(j−1∏
k=1

(a+ i− k)

)1≤j≤c

1≤i≤c

 =
∏

(i,j)∈{1,2,...,c}2;
i>j

(a+ i)− (a+ j)︸ ︷︷ ︸
=i−j


(by Corollary 4, applied to R = Z, m = c and ai = a+ i for every i ∈ {1, 2, ..., c})

=
∏

(i,j)∈{1,2,...,c}2;
i>j

(i− j) = H (c) (by Lemma 5, applied to m = c) ,

this becomes

det

(((
a+ b+ i− 1

a+ i− j

))1≤j≤c

1≤i≤c

)
=

c∏
i=1

(a+ b+ i− 1)!

(a+ i− 1)!
·

c∏
i=1

1

(b+ i− 1)!
·H (c) .

(5)
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Now,

H (a)H (b)H (c)H (a+ b+ c)

H (b+ c)H (c+ a)H (a+ b)

=

H (a)H (b)H (c)H (a+ b) ·
c∏
i=1

(a+ b+ i− 1)!(
H (b) ·

c∏
i=1

(b+ i− 1)!

)
·
(
H (a) ·

c∏
i=1

(a+ i− 1)!

)
·H (a+ b)

(by (2), (3) and (4))

=

c∏
i=1

(a+ b+ i− 1)!

c∏
i=1

(b+ i− 1)! ·
c∏
i=1

(a+ i− 1)!
·H (c) =

c∏
i=1

(a+ b+ i− 1)!

c∏
i=1

(a+ i− 1)!︸ ︷︷ ︸
=

c∏
i=1

(a+ b+ i− 1)!

(a+ i− 1)!

· 1
c∏
i=1

(b+ i− 1)!︸ ︷︷ ︸
=

c∏
i=1

1

(b+ i− 1)!

·H (c)

=

(
c∏
i=1

(a+ b+ i− 1)!

(a+ i− 1)!

)
·

(
c∏
i=1

1

(b+ i− 1)!

)
·H (c)

= det

(((
a+ b+ i− 1

a+ i− j

))1≤j≤c

1≤i≤c

)
(by (5)) (6)

∈ Z

(since

((
a+ b+ i− 1

a+ i− j

))1≤j≤c

1≤i≤c
∈ Zc×c). In other words,

H (b+ c)H (c+ a)H (a+ b) | H (a)H (b)H (c)H (a+ b+ c) .

Thus, Theorem 0 is finally proven.

Remarks.
1. Theorem 0 was briefly mentioned (with a combinatorial interpretation,

but without proof) on the first page of [1]. It also follows from the formula

(2.1) in [3] (since
H (a)H (b)H (c)H (a+ b+ c)

H (b+ c)H (c+ a)H (a+ b)
=

c∏
i=1

(a+ b+ i− 1)! (i− 1)!

(a+ i− 1)! (b+ i− 1)!
),

or, equivalently, the formula (2.17) in [4]. It is also generalized in [2], Section 429
(where one has to consider the limit x→ 1).

2. We can prove more:

Theorem 8. For every a ∈ N, every b ∈ N and every c ∈ N, we have

H (a)H (b)H (c)H (a+ b+ c)

H (b+ c)H (c+ a)H (a+ b)

= det

(((
a+ b+ i− 1

a+ i− j

))1≤j≤c

1≤i≤c

)
= det

(((
a+ b

a+ i− j

))1≤j≤c

1≤i≤c

)
.

We recall a useful fact to help us in the proof:
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Theorem 9, the Vandermonde convolution identity. Let x ∈ Z
and y ∈ Z. Let q ∈ Z. Then,(

x+ y

q

)
=
∑
k∈Z

(
x

k

)(
y

q − k

)
.

(The sum on the right hand side is an infinite sum, but only finitely
many of its addends are nonzero.)

Proof of Theorem 8. For every i ∈ {1, 2, ..., c} and every j ∈ {1, 2, ..., c}, we
have(
a+ b+ i− 1

a+ i− j

)
=
∑
k∈Z

(
a+ b

k

)(
i− 1

a+ i− j − k

)
(by Theorem 9, applied to x = a+ b, y = i− 1 and q = a+ i− j)

=
∑
`∈Z

(
a+ b

a− j + `

)(
i− 1

i− `

)
(here we substituted a− j + ` for k in the sum)

=
c∑
`=1

(
a+ b

a− j + `

)(
i− 1

i− `

)


here, we restricted the summation from ` ∈ Z to ` ∈ {1, 2, ..., c} ,
which doesn’t change the sum because(

a+ b

a− j + `

)(
i− 1

i− `

)
= 0 for all ` ∈ Z� {1, 2, ..., c}


=

c∑
`=1

(
i− 1

i− `

)(
a+ b

a− j + `

)
.

Thus, ((
a+ b+ i− 1

a+ i− j

))1≤j≤c

1≤i≤c
=

(
c∑
`=1

(
i− 1

i− `

)(
a+ b

a− j + `

))1≤j≤c

1≤i≤c

=

((
i− 1

i− j

))1≤j≤c

1≤i≤c
·
((

a+ b

a− j + i

))1≤j≤c

1≤i≤c

=

((
i− 1

i− j

))1≤j≤c

1≤i≤c
·
((

a+ b

a+ i− j

))1≤j≤c

1≤i≤c
. (7)

Now, the matrix

((
i− 1

i− j

))1≤j≤c

1≤i≤c
is lower triangular (since

(
i− 1

i− j

)
= 0 for every

i ∈ {1, 2, ...,m} and j ∈ {1, 2, ...,m} satisfying i < j). Since the determinant of
an lower triangular matrix equals the product of its diagonal entries, this yields

det

(((
i− 1

i− j

))1≤j≤c

1≤i≤c

)
=

m∏
j=1

(
j − 1

j − j

)
︸ ︷︷ ︸

=

(
j − 1

0

)
=1

= 1. (8)

8



Now,

det

(((
a+ b+ i− 1

a+ i− j

))1≤j≤c

1≤i≤c

)
= det

(((
i− 1

i− j

))1≤j≤c

1≤i≤c
·
((

a+ b

a+ i− j

))1≤j≤c

1≤i≤c

)
(by (7))

= det

(((
i− 1

i− j

))1≤j≤c

1≤i≤c

)
︸ ︷︷ ︸

=1 by (8)

· det

(((
a+ b

a+ i− j

))1≤j≤c

1≤i≤c

)

= det

(((
a+ b

a+ i− j

))1≤j≤c

1≤i≤c

)
.

Combined with (6), this yields Theorem 8.
3. We notice a particularly known consequence of Corollary 4:

Corollary 10. Let m ∈ N. Let a1, a2, ..., am be m integers. Then,

det

(((
ai − 1

j − 1

))1≤j≤m

1≤i≤m

)
·H (m) =

∏
(i,j)∈{1,2,...,m}2;

i>j

(ai − aj) .

In particular,

H (m) |
∏

(i,j)∈{1,2,...,m}2;
i>j

(ai − aj) .

Proof of Corollary 10. For every i ∈ {1, 2, ...,m} and j ∈ {1, 2, ...,m}, we
have (

ai − 1

j − 1

)
=

j−1∏
k=1

(ai − k)

(j − 1)!
= 1 ·

j−1∏
k=1

(ai − k) · 1

(j − 1)!
. (9)

Therefore,

det

(((
ai − 1

j − 1

))1≤j≤m

1≤i≤m

)
= det

(1 ·
j−1∏
k=1

(ai − k) · 1

(j − 1)!

)1≤j≤m

1≤i≤m


=

m∏
i=1

1︸︷︷︸
=1

·
m∏
i=1

1

(i− 1)!︸ ︷︷ ︸
=

m−1∏
k=0

1

k!
=

1
m−1∏
i=1

k!

=
1

H (m)

· det

(j−1∏
k=1

(ai − k)

)1≤j≤m

1≤i≤m


︸ ︷︷ ︸

=
∏

(i,j)∈{1,2,...,m}2;
i>j

(ai−aj) by Corollary 4

(
by Lemma 7, applied to R = Q, u = m, ai,j =

j−1∏
k=1

(ai − k) , αi = 1 and βi =
1

(i− 1)!

)
=

1

H (m)
·

∏
(i,j)∈{1,2,...,m}2;

i>j

(ai − aj) ,

9



so that ∏
(i,j)∈{1,2,...,m}2;

i>j

(ai − aj) = det

(((
ai − 1

j − 1

))1≤j≤m

1≤i≤m

)
·H (m) .

Thus,

H (m) |
∏

(i,j)∈{1,2,...,m}2;
i>j

(ai − aj)

(since det


(ai − 1

j − 1

)
︸ ︷︷ ︸

∈Z


1≤j≤m

1≤i≤m

 ∈ Z). Thus, Corollary 10 is proven.

Corollary 11. Let m ∈ N. Let a1, a2, ..., am be m integers. Then,

det

(((
ai

j − 1

))1≤j≤m

1≤i≤m

)
·H (m) =

∏
(i,j)∈{1,2,...,m}2;

i>j

(ai − aj) .

Proof of Corollary 11. This follows from Corollary 10, applied to ai+1 instead
of ai.
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