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§1. Definitions and basic results from [5]

The purpose of this note is applying results from [5] to the particular case of
binomial rings, and extend them (in this particular case) by additional equivalent
assertions.

We start by introducing notation that will be used. The following definitions
1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 are copied from [5].

Definition 1. Let P denote the set of all primes. (A prime means an
integer n > 1 such that the only divisors of n are n and 1. The word
”divisor” means ”positive divisor”.)

Definition 2. We denote the set {0, 1, 2, ...} by N, and we denote
the set {1, 2, 3, ...} by N+. (Note that our notations conflict with the
notations used by Hazewinkel in [1]; in fact, Hazewinkel uses the letter
N for the set {1, 2, 3, ...}, which we denote by N+.)

Definition 3. Let Ξ be a family of symbols. We consider the poly-
nomial ring Q [Ξ] (this is the polynomial ring over Q in the indeter-
minates Ξ; in other words, we use the symbols from Ξ as variables
for the polynomials) and its subring Z [Ξ] (this is the polynomial ring
over Z in the indeterminates Ξ). 1. For any n ∈ N, let Ξn mean the
family of the n-th powers of all elements of our family Ξ (considered
as elements of Z [Ξ]) 2. (Therefore, whenever P ∈ Q [Ξ] is a polyno-
mial, then P (Ξn) is the polynomial obtained from P after replacing
every indeterminate by its n-th power.3)

Note that if Ξ is the empty family, then Q [Ξ] simply is the ring Q,
and Z [Ξ] simply is the ring Z.

Definition 4. If m and n are two integers, then we write m ⊥ n if
and only if m is coprime to n. If m is an integer and S is a set, then
we write m ⊥ S if and only if (m ⊥ n for every n ∈ S).

1For instance, Ξ can be (X0, X1, X2, ...), in which case Z [Ξ] means Z [X0, X1, X2, ...].
Or, Ξ can be (X0, X1, X2, ...;Y0, Y1, Y2, ...;Z0, Z1, Z2, ...), in which case Z [Ξ] means
Z [X0, X1, X2, ...;Y0, Y1, Y2, ...;Z0, Z1, Z2, ...].

2In other words, if Ξ = (ξi)i∈I , then we define Ξn as (ξni )i∈I .
For instance, if Ξ = (X0, X1, X2, ...), then Ξn = (Xn

0 , X
n
1 , X

n
2 , ...).

If Ξ = (X0, X1, X2, ...;Y0, Y1, Y2, ...;Z0, Z1, Z2, ...), then Ξn =
(Xn

0 , X
n
1 , X

n
2 , ...;Y

n
0 , Y

n
1 , Y

n
2 , ...;Z

n
0 , Z

n
1 , Z

n
2 , ...).

3For instance, if Ξ = (X0, X1, X2, ...) and P (Ξ) = (X0 +X1)
2 − 2X3 + 1, then P (Ξn) =

(Xn
0 +Xn

1 )
2 − 2Xn

3 + 1.
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Definition 5. A nest means a nonempty subset N of N+ such that
for every element d ∈ N , every divisor of d lies in N .

Here are some examples of nests: For instance, N+ itself is a nest.
For every prime p, the set {1, p, p2, p3, ...} is a nest; we denote this
nest by pN. For any integer m, the set {n ∈ N+ | n ⊥ m} is a nest;
we denote this nest by N⊥m. For any positive integer m, the set
{n ∈ N+ | n ≤ m} is a nest; we denote this nest by N≤m. For any
integer m, the set {n ∈ N+ | (n | m)} is a nest; we denote this nest by
N|m. Another example of a nest is the set {1, 2, 3, 5, 6, 10}.
Clearly, every nest N contains the element 1 4.

Definition 6. If N is a set5, we shall denote by XN the family
(Xn)n∈N of distinct symbols. Hence, Z [XN ] is the ring Z

[
(Xn)n∈N

]
(this is the polynomial ring over Z in |N | indeterminates, where
the indeterminates are labelled Xn, where n runs through the ele-
ments of the set N). For instance, Z

[
XN+

]
is the polynomial ring

Z [X1, X2, X3, ...] (since N+ = {1, 2, 3, ...}), and Z
[
X{1,2,3,5,6,10}

]
is the

polynomial ring Z [X1, X2, X3, X5, X6, X10].

If A is a commutative ring with unity, if N is a set, if (xd)d∈N ∈ AN is
a family of elements of A indexed by elements of N , and if P ∈ Z [XN ],
then we denote by P

(
(xd)d∈N

)
the element of A that we obtain if we

substitute xd for Xd for every d ∈ N into the polynomial P . (For
instance, if N = {1, 2, 5} and P = X2

1 + X2X5 −X5, and if x1 = 13,
x2 = 37 and x5 = 666, then P

(
(xd)d∈N

)
= 132 + 37 · 666− 666.)

We notice that whenever N and M are two sets satisfying N ⊆ M ,
then we canonically identify Z [XN ] with a subring of Z [XM ]. In
particular, when P ∈ Z [XN ] is a polynomial, and A is a commutative
ring with unity, and (xm)m∈M ∈ AM is a family of elements of A,
then P

(
(xm)m∈M

)
means P

(
(xm)m∈N

)
. (Thus, the elements xm for

m ∈ M \ N are simply ignored when evaluating P
(
(xm)m∈M

)
.) In

particular, if N ⊆ N+, and (x1, x2, x3, ...) ∈ AN+ , then P (x1, x2, x3, ...)
means P

(
(xm)m∈N

)
.

Definition 7. For any n ∈ N+, we define a polynomial wn ∈ Z
[
XN|n

]
by

wn =
∑
d|n

dXn�d
d .

Hence, for every commutative ring A with unity, and for any family
(xk)k∈N|n ∈ A

N|n of elements of A, we have

wn

(
(xk)k∈N|n

)
=
∑
d|n

dxn�dd .

4In fact, there exists some n ∈ N (since N is a nest and thus nonempty), and thus 1 ∈ N
(since 1 is a divisor of n, and every divisor of n must lie in N because N is a nest).

5We will use this notation only for the case of N being a nest. However, it equally makes
sense for any arbitrary set N .
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As explained in Definition 6, if N is a set containing N|n, if A is a com-
mutative ring with unity, and (xk)k∈N ∈ AN is a family of elements

of A, then wn
(
(xk)k∈N

)
means wn

(
(xk)k∈N|n

)
; in other words,

wn
(
(xk)k∈N

)
=
∑
d|n

dxn�dd .

The polynomials w1, w2, w3, ... are called the big Witt polynomials or,
simply, the Witt polynomials.6

Definition 8. Let n ∈ Z \ {0}. Let p ∈ P. We denote by vp (n) the
largest nonnegative integer m satisfying pm | n. Clearly, pvp(n) | n and
vp (n) ≥ 0. Besides, vp (n) = 0 if and only if p - n.
We also set vp (0) = ∞; this way, our definition of vp (n) extends to
all n ∈ Z (and not only to n ∈ Z \ {0}).
Definition 9. Let n ∈ N+. We denote by PFn the set of all prime
divisors of n. By the unique factorization theorem, the set PFn is
finite and satisfies n =

∏
p∈PFn

pvp(n).

Definition 10. An Abelian group A is called torsionfree if and only
if every element a ∈ A and every n ∈ N+ such that na = 0 satisfy
a = 0.

A ring R is called torsionfree if and only if the Abelian group (R,+)
is torsionfree.

Let us state a couple of theorems whose proofs we will mostly skip:

Theorem 1. Let N be a nest. Let A be a commutative ring with
unity. For every p ∈ P ∩ N , let ϕp : A → A be an endomorphism of
the ring A such that

(ϕp (a) ≡ ap mod pA holds for every a ∈ A and p ∈ P ∩N) . (1)

Let (bn)n∈N ∈ AN be a family of elements of A. Then, the following
three assertions C, D and Dexpl are equivalent:

Assertion C: Every n ∈ N and every p ∈ PFn satisfies

ϕp (bn�p) ≡ bn mod pvp(n)A. (2)

Assertion D: There exists a family (xn)n∈N ∈ AN of elements of A
such that (

bn = wn
(
(xk)k∈N

)
for every n ∈ N

)
.

6Caution: These polynomials are referred to as w1, w2, w3, ... most of the time in [1]
(beginning with Section 9). However, in Sections 5-8 of [1], Hazewinkel uses the notations
w1, w2, w3, ... for some different polynomials (the so-called p-adic Witt polynomials, defined
by formula (5.1) in [1]), which are not the same as our polynomials w1, w2, w3, ... (though
they are related to them: namely, the polynomial denoted by wk in Sections 5-8 of [1] is the
polynomial that we are denoting by wpk here after a renaming of variables; on the other hand,
the polynomial that we call wk here is something completely different).
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Assertion Dexpl: There exists a family (xn)n∈N ∈ AN of elements of
A such that bn =

∑
d|n

dxn�dd for every n ∈ N

 .

Proof of Theorem 1. According to Theorem 4 of [5], the assertions C and D
are equivalent.

On the other hand, if (xn)n∈N ∈ AN is a family of elements of A, then every

n ∈ N satisfies wn
(
(xk)k∈N

)
=
∑
d|n
dxn�dd . Therefore, the assertions D and Dexpl

are equivalent. Combining this with the fact that the assertions C and D are
equivalent, we conclude that the three assertions C, D and Dexpl are equivalent.
This proves Theorem 1.

Theorem 2. Let N be a nest. Let A be a torsionfree commuta-
tive ring with unity. For every p ∈ P ∩ N , let ϕp : A → A be an
endomorphism of the ring A such that (1) holds.

Let (bn)n∈N ∈ AN be a family of elements of A. Then, the five asser-
tions C, D, D′, Dexpl and Dexpl ′ are equivalent, where the assertions
C, D and Dexpl are the ones stated in Theorem 1, and the assertions
D′ and Dexpl ′ are the following ones:

Assertion D′: There exists one and only one family (xn)n∈N ∈ AN of
elements of A such that(

bn = wn
(
(xk)k∈N

)
for every n ∈ N

)
. (3)

Assertion Dexpl ′: There exists one and only one family (xn)n∈N ∈ AN
of elements of A such thatbn =

∑
d|n

dxn�dd for every n ∈ N

 .

Proof of Theorem 2. Whenever (xn)n∈N ∈ AN is a family of elements of A,

every n ∈ N satisfies wn
(
(xk)k∈N

)
=
∑
d|n
dxn�dd . Hence, the assertions D′ and

Dexpl ′ are equivalent.
But according to Theorem 9 of [5], the assertions C, D and D′ are equivalent.

Combined with the fact that the assertions D′ and Dexpl ′ are equivalent, this
yields that the four assertions C, D, D′ and Dexpl ′ are equivalent. Combined with
the fact that the assertions C, D and Dexpl are equivalent (this is due to Theorem
1), this yields that the five assertions C, D, D′, Dexpl and Dexpl ′ are equivalent.
This proves Theorem 2.
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Theorem 3. Let N be a nest. Let A be a commutative ring with
unity. For every n ∈ N , let ϕn : A → A be an endomorphism of the
ring A. Assume that

(ϕ1 = id) and (4)

(ϕn ◦ ϕm = ϕnm for every n ∈ N and every m ∈ N satisfying nm ∈ N) .
(5)

Also, assume that (1) holds.

Let (bn)n∈N ∈ AN be a family of elements of A. Then, the assertions
C, D, Dexpl, E , F , G and H are equivalent, where the assertions C, D
and Dexpl are the ones stated in Theorem 1, and the assertions E , F ,
G and H are the following ones:

Assertion E: There exists a family (yn)n∈N ∈ AN of elements of A
such that bn =

∑
d|n

dϕn�d (yd) for every n ∈ N

 .

Assertion F : Every n ∈ N satisfies∑
d|n

µ (d)ϕd (bn�d) ∈ nA.

Assertion G: Every n ∈ N satisfies∑
d|n

φ (d)ϕd (bn�d) ∈ nA.

Assertion H: Every n ∈ N satisfies

n∑
i=1

ϕn� gcd(i,n)

(
bgcd(i,n)

)
∈ nA.

Proof of Theorem 3. According to Theorem 5 of [5], the five assertions C, E ,
F , G and H are equivalent. Combined with the fact that the three assertions
C, D and Dexpl are equivalent (this is due to Theorem 1), this yields that the
assertions C, D, Dexpl, E , F , G and H are equivalent. This proves Theorem 3.

Theorem 4. Let N be a nest. Let A be a torsionfree commutative
ring with unity. For every n ∈ N , let ϕn : A→ A be an endomorphism
of the ring A such that the conditions (1), (4) and (5) are satisfied.

Let (bn)n∈N ∈ AN be a family of elements of A. Then, the assertions
C, D, D′, Dexpl, Dexpl ′, E , E ′, F , G and H are equivalent, where:

• the assertions C, D and Dexpl are the ones stated in Theorem 1,
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• the assertions D′ and Dexpl ′ are the ones stated in Theorem 2,

• the assertions E , F , G and H are the ones stated in Theorem 3, and

• the assertion E ′ is the following one:

Assertion E ′: There exists one and only one family (yn)n∈N ∈ AN of
elements of A such thatbn =

∑
d|n

dϕn�d (yd) for every n ∈ N

 . (6)

Proof of Theorem 4. Theorem 7 of [5] yields that the six assertions C, E , E ′,
F , G and H are equivalent. Combined with the fact that the five assertions C, D,
D′, Dexpl and Dexpl ′ are equivalent (this follows from Theorem 2), this yields that
the assertions C, D, D′, Dexpl, Dexpl ′, E , E ′, F , G and H are equivalent. Theorem
4 is thus proven.

§2. Binomial rings

So far we have done nothing but rewriting some results of [5]. We will now
introduce the so-called binomial rings, and study the simplifications that occur
in Theorem 4 when it is applied to such rings. The notion of binomial rings is a
classical one (see [3] and [4], among other sources).

First, let us define binomial coefficients.

Definition 11. Let B be a Q-algebra with unity. For any u ∈ B and

any r ∈ Q, we define an element

(
u

r

)
∈ B by

(
u

r

)
=


1

r!

r−1∏
k=0

(u− k) , if r ∈ N;

0, if r /∈ N
.

In particular, if r ∈ Q \ Z, then

(
u

r

)
is supposed to mean 0.

It is clear that Definition 11 generalizes the standard definition of binomial

coefficients

(
u

r

)
with u ∈ N and r ∈ N. As a consequence, we will refer to

the elements

(
u

r

)
defined in Definition 11 as ”binomial coefficients”. We will be

mainly concerned with rings which are not Q-algebras but in which the binomial

coefficients

(
u

r

)
can still be defined.
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Definition 12. Let A be a commutative ring with unity. We de-
note by N+A the subset {n · 1A | n ∈ N+} of A. This subset N+A

is multiplicatively closed, so a localization (N+A)−1A of the ring A
is defined. If A is torsionfree, then the canonical ring homomor-
phism A → (N+A)−1A is injective (because if A is torsionfree, then
each element of N+A is a non-zerodivisor in A). Hence, whenever
A is torsionfree, we will regard A as a subring of its localization
(N+A)−1A. It should be noticed that (N+A)−1A is a Q-algebra, since
each element of N+A has been made invertible in (N+A)−1A. Hence,
whenever A is a torsionfree commutative ring with unity, an element(
u

r

)
∈ (N+A)−1A is well-defined for every u ∈ A and r ∈ Q (because

every u ∈ A lies in (N+A)−1A). Of course, this element

(
u

r

)
does

not always lie in A (for example, if A = Z [X], r = 2 and u = X,

then

(
u

r

)
=

(
X

2

)
=

1

2
(X2 −X) ∈

(
N+Z[X]

)−1
(Z [X]) does not lie

in Z [X]).

Definition 13. Let A be a commutative ring with unity. We say that
A is a binomial ring if A is torsionfree and satisfies the following prop-

erty: For any u ∈ A and any r ∈ N, the element

(
u

r

)
∈ (N+A)−1A

lies in A.

The most important example of a binomial ring is:

Proposition 5. The ring Z is a binomial ring.

The proof of this hinges upon the following easy fact:

Proposition 6. Let A be a Q-algebra. Let u ∈ A. Let r ∈ Z. Then,(
u

r

)
= (−1)r

(
r − u− 1

r

)
.

Proposition 6 is known as the upper negation formula.

Proof of Proposition 6. If r /∈ N, then the equality

(
u

r

)
= (−1)r

(
r − u− 1

r

)
is obvious by virtue of both binomial coefficients

(
u

r

)
and

(
r − u− 1

r

)
being

zero. Hence, for the rest of this proof, we can WLOG assume that r ∈ N. Assume
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this. Since r ∈ N, the definition of

(
r − u− 1

r

)
yields

(
r − u− 1

r

)
=

1

r!

r−1∏
k=0

((r − u− 1)− k)︸ ︷︷ ︸
=−(u−((r−1)−k))

=(−1)(u−((r−1)−k))

=
1

r!

r−1∏
k=0

((−1) (u− ((r − 1)− k)))︸ ︷︷ ︸
=

(
r−1∏
k=0

(−1)

)(
r−1∏
k=0

(u−((r−1)−k))

)

=
1

r!

(
r−1∏
k=0

(−1)

)
︸ ︷︷ ︸

=(−1)r

(
r−1∏
k=0

(u− ((r − 1)− k))

)
︸ ︷︷ ︸

=
r−1∏
k=0

(u−k)

(here, we substituted k for (r−1)−k
in the product)

=
1

r!
(−1)r

r−1∏
k=0

(u− k) = (−1)r
1

r!

r−1∏
k=0

(u− k) .

Multiplying this identity with (−1)r, we obtain

(−1)r
(
r − u− 1

r

)
=

1

r!

r−1∏
k=0

(u− k) .

On the other hand, since r ∈ N, the definition of

(
u

r

)
yields

(
u

r

)
=

1

r!

r−1∏
k=0

(u− k) .

Compared to (−1)r
(
r − u− 1

r

)
=

1

r!

r−1∏
k=0

(u− k), this proves

(
u

r

)
= (−1)r

(
r − u− 1

r

)
.

Proposition 6 is proven.
Proof of Proposition 5. Clearly, the ring Z is torsionfree. Hence, in order to

prove that Z is binomial, we only need to show that for any u ∈ Z and any r ∈ N,

the element

(
u

r

)
∈ (N+Z)−1 Z lies in Z.

So let r ∈ N. We need to prove that

(
u

r

)
∈ Z for every u ∈ Z.

For every u ∈ N, the definition of

(
u

r

)
yields

(
u

r

)
=

1

r!

r−1∏
k=0

(u− k) (since

r ∈ N). Hence, for every u ∈ N, the number

(
u

r

)
is the binomial coefficient ”u

choose r” known from enumerative combinatorics. Thus, by a known fact from
enumerative combinatorics, every u ∈ N satisfies(

u

r

)
= (the number of all r-element subsets of the set {1, 2, ..., u}) ∈ Z (7)
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(because the cardinality of any finite set is ∈ Z). Thus,

(
u

r

)
∈ Z is proven for

every u ∈ N.

Now it remains to prove

(
u

r

)
∈ Z for every u ∈ Z satisfying u /∈ N. So let

u ∈ Z satisfy u /∈ N. Since u /∈ N, we know that u is a negative integer, so that
−u is a positive integer. Thus, r − u− 1 ∈ N (since r ∈ N). Hence, (7) (applied

to r− u− 1 instead of u) yields

(
r − u− 1

r

)
∈ Z. But Proposition 6 (applied to

A = Q) yields (
u

r

)
= (−1)r

(
r − u− 1

r

)
︸ ︷︷ ︸

∈Z

∈ (−1)r Z ⊆ Z.

We have thus proven that

(
u

r

)
∈ Z for every u ∈ Z. As explained above, this

concludes the proof that Z is binomial. Thus, Proposition 5 is proven.
For a less trivial example of a binomial ring, we can take the ring of all

integer-valued polynomials:

Proposition 7. Let X be a symbol. The subring
{A ∈ Q [X] | A (n) ∈ Z for every n ∈ Z} of Q [X] is a binomial ring.

The proof of this proposition is easy and left to the reader. It is a known
fact that the subring {A ∈ Q [X] | A (n) ∈ Z for every n ∈ Z} of Q [X] is the

free Z-module with basis

((
X

0

)
,

(
X

1

)
,

(
X

2

)
, ...

)
; this, however, is not needed

in the proof.
Of course, every commutative Q-algebra with unity itself is a binomial ring

(because if A is a commutative Q-algebra with unity, then (N+A)−1A = A).
A crucial property of binomial rings is that they satisfy a generalization of

Fermat’s little theorem:

Theorem 8. Let A be a binomial ring. Let p ∈ P. Let a ∈ A. Then,
ap ≡ amod pA.

Theorem 8 is one of the fundamental properties of binomial rings. It appears in
[4, Proposition 1.1], and also follows from the implication (1) =⇒ (4) in Theorem
4.1 in Jesse Elliott’s paper [3]. We will reproduce the proof from [3] (in more
details). The main ingredient of the proof of this theorem is the following fact
about finite fields:

Proposition 9. Let p ∈ P.

(a) Consider the polynomial ring (Z� (pZ)) [X] in one indeterminate

X over Z� (pZ). Then,
p−1∏
k=0

(X − k) = Xp −X in (Z� (pZ)) [X].

(b) Consider the polynomial ring Z [X] in one indeterminate X over

Z. Then, there exists some Q ∈ Z [X] such that
p−1∏
k=0

(X − k) = Xp −

X + pQ in Z [X].
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Proof of Proposition 9. (a) Since p ∈ P, it is clear that Z� (pZ) is a field.
Define a polynomial R ∈ (Z� (pZ)) [X] by

R =

p−1∏
k=0

(X − k)− (Xp −X) .

This polynomial R has degree degR ≤ p − 1. (In fact, both polynomials
p−1∏
k=0

(X − k) and Xp−X have degree p and leading term Xp; hence, their leading

terms cancel upon subtraction, and their difference R is a polynomial of degree
≤ p− 1.)

Let π be the canonical projection Z → Z� (pZ). Clearly, π is a ring homo-
morphism, and we have Kerπ = pZ.

We recall the following known fact:
Fact Pf9.1: Let F be a field, and let P ∈ F [X] be a polynomial. If the

polynomial P has more than degP roots in F , then P = 0.
Now, let λ ∈ Z� (pZ). Then, there exists some ` ∈ {0, 1, ..., p− 1} such that

λ is the residue class of ` modulo p. Consider this `. Then, by the definition of
π, we have π (`) = (the residue class of ` modulo p) = λ. Hence, λ− π (`) = 0.

But since ` ∈ {0, 1, ..., p− 1}, it is clear that λ−π (`) is a factor in the product
p−1∏
k=0

(λ− π (k)). Hence, at least one factor in the product
p−1∏
k=0

(λ− π (k)) is 0 (since

λ− π (`) = 0). This yields that the whole product
p−1∏
k=0

(λ− π (k)) is 0 (because if

one factor in a product is 0, then the whole product must be 0). We have thus

shown that
p−1∏
k=0

(λ− π (k)) = 0.

Also, `p ≡ `mod p by Fermat’s Little Theorem. Thus, p | `p − `, so that
`p − ` ∈ pZ = Kerπ, hence π (`p − `) = 0. Since

π (`p − `) =

π (`)︸︷︷︸
=λ

p

− π (`)︸︷︷︸
=λ

(since π is a ring homomorphism)

= λp − λ,

this rewrites as λp − λ = 0.
Now, since

R =

p−1∏
k=0

X − k︸︷︷︸
=π(k)

− (Xp −X) =

p−1∏
k=0

(X − π (k))− (Xp −X) ,

we have

R (λ) =

p−1∏
k=0

(λ− π (k))︸ ︷︷ ︸
=0

− (λp − λ)︸ ︷︷ ︸
=0

= 0,
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so that

λ ∈ {x ∈ Z� (pZ) | R (x) = 0} = (the set of roots of the polynomial R in Z� (pZ)) .

Now forget that we fixed λ. We thus have shown that every λ ∈ Z� (pZ)
satisfies

λ ∈ (the set of roots of the polynomial R in Z� (pZ)) .

That is, every λ ∈ Z� (pZ) is a root of the polynomialR in Z� (pZ). Hence, there
exist at least p roots of the polynomial R in Z� (pZ) (since there exist p elements
of Z� (pZ)). Since p > p−1 ≥ degR, this yields that the polynomial R has more
than degR roots in Z� (pZ). Therefore, applying Fact Pf9.1 to F = Z� (pZ)

and P = R, we obtain R = 0. Hence, 0 = R =
p−1∏
k=0

(X − k)− (Xp −X), so that

p−1∏
k=0

(X − k) = Xp −X in (Z� (pZ)) [X]. This proves Proposition 9 (a).

(b) Let π be the canonical projection Z→ Z� (pZ). Clearly, Kerπ = pZ.
Consider the polynomial ring Z [X] in one indeterminate X over Z, and the

polynomial ring (Z� (pZ)) [X] in one indeterminate X over Z� (pZ). The canon-
ical projection π : Z → Z� (pZ) induces a ring homomorphism π [X] : Z [X] →
(Z� (pZ)) [X]. We have Ker (π [X]) = p · Z [X].

By the definition of π [X], we have (π [X]) (X) = X.

Since π [X] is a ring homomorphism, the polynomial
p−1∏
k=0

(X − k)−(Xp −X) ∈

Z [X] satisfies

(π [X])

(
p−1∏
k=0

(X − k)− (Xp −X)

)

=

p−1∏
k=0

(π [X]) (X)︸ ︷︷ ︸
=X

−k

−
(π [X]) (X)︸ ︷︷ ︸

=X

p

− (π [X]) (X)︸ ︷︷ ︸
=X


=

p−1∏
k=0

(X − k)− (Xp −X) = 0

(since Proposition 9 (a) yields
p−1∏
k=0

(X − k) = Xp −X in (Z� (pZ)) [X]). Hence,

the polynomial
p−1∏
k=0

(X − k)− (Xp −X) ∈ Z [X] satisfies

p−1∏
k=0

(X − k)− (Xp −X) ∈ Ker (π [X]) = p · Z [X] .

In other words, there exists some Q ∈ Z [X] such that
p−1∏
k=0

(X − k)− (Xp −X) =

pQ. In other words, there exists some Q ∈ Z [X] such that
p−1∏
k=0

(X − k) = Xp −

X + pQ. This proves Proposition 9 (b).
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Proof of Theorem 8. We know that A is a binomial ring. Hence, by the

definition of a binomial ring, for any u ∈ A and any r ∈ N, the element

(
u

r

)
∈

(N+A)−1A lies in A. Applied to u = a and r = p, this yields that the element(
a

p

)
∈ (N+A)−1A lies in A. By the definition of

(
a

p

)
, we have

(
a

p

)
=


1

p!

p−1∏
k=0

(a− k) , if p ∈ N;

0, if p /∈ N
=

1

p!

p−1∏
k=0

(a− k)

(since p ∈ N), so that

1

p!

p−1∏
k=0

(a− k) =

(
a

p

)
∈ A.

Multiplying this with p!, we obtain

p−1∏
k=0

(a− k) ∈ p!︸︷︷︸
=p(p−1)!

A = p (p− 1)!A︸ ︷︷ ︸
⊆A

⊆ pA.

Now, consider the polynomial ring Z [X] in one indeterminate X over Z.

Due to Proposition 9 (b), there exists some Q ∈ Z [X] such that
p−1∏
k=0

(X − k) =

Xp − X + pQ in Z [X]. Consider this Q. Evaluating the polynomial identity
p−1∏
k=0

(X − k) = Xp −X + pQ at X = q, we obtain

p−1∏
k=0

(a− k) = ap − a+ pQ (a) ,

so that

ap − a =

p−1∏
k=0

(a− k)︸ ︷︷ ︸
∈pA

−pQ (a)︸ ︷︷ ︸
∈A

∈ pA− pA ⊆ pA.

Hence, ap ≡ amod pA. This proves Theorem 8.
We will soon prove more properties of binomial rings. Let us first recall a

known fact:

Proposition 10. Let A be a commutative ring with unity. Let p ∈ P.
Let a ∈ A and b ∈ A. Then, (a+ b)p ≡ ap + bp mod pA.

Proof of Proposition 10. It is known that p |
(
p

k

)
for every k ∈ {1, 2, ..., p− 1}

(since p is prime). Thus, for every k ∈ {1, 2, ..., p− 1}, there exists some s ∈ Z

such that

(
p

k

)
= ps. Denote this s by sk. Then, sk ∈ Z satisfies

(
p

k

)
= psk for

every k ∈ {1, 2, ..., p− 1}.
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By the binomial formula,

(a+ b)p =

p∑
k=0

(
p

k

)
akbp−k =

(
p

0

)
︸︷︷︸

=1

a0︸︷︷︸
=1

bp−0︸︷︷︸
=bp

+

p−1∑
k=1

(
p

k

)
︸︷︷︸
=psk

(since k∈{1,2,...,p−1})

akbp−k +

(
p

p

)
︸︷︷︸

=1

ap bp−p︸︷︷︸
=b0=1

= bp +

p−1∑
k=1

pska
kbp−k︸ ︷︷ ︸

≡0 mod pA
(since pska

kbp−k∈pA)

+ap

≡ bp +

p−1∑
k=1

0 + ap = bp + ap = ap + bp mod pA.

This proves Proposition 10.

Lemma 11. Let A be a commutative ring with unity, and p ∈ Z be
an integer7. Let k ∈ N and ` ∈ N be such that k > 0. Let a ∈ A and
b ∈ A. If a ≡ bmod pkA, then ap

` ≡ bp
`
mod pk+`A.

Lemma 11 is exactly Lemma 3 in [9], and thus will not be proven here.
Now here is an important property of power series over binomial rings:

Theorem 12. Let Ξ be a family of symbols. Let A be a binomial
ring. Let u ∈ A. Let A [[Ξ]] denote the ring of power series in the
indeterminates Ξ over A (just as A [Ξ] denotes the ring of polynomials
in the indeterminates Ξ over A). Let P ∈ A [[Ξ]] be a power series
with constant term 1. Then, the canonical embedding A→ (N+A)−1A
induces a canonical embedding A [[Ξ]]→

(
(N+A)−1A

)
[[Ξ]], which we

will regard as an inclusion. Clearly, P ∈ A [[Ξ]] ⊆
(
(N+A)−1A

)
[[Ξ]]

and u ∈ A ⊆ (N+A)−1A. Since (N+A)−1A is a Q-algebra, a power
series P u ∈

(
(N+A)−1A

)
[[Ξ]] is thus defined. This power series P u

lies in A [[Ξ]].

Proof of Theorem 12. It is well-known that whenever B is a commutative Q-
algebra, v is an element of B, and Q ∈ B [[Ξ]] is a power series with constant term
1, then a power series Qv ∈ B [[Ξ]] is defined. Applied to B =

(
(N+A)−1A

)
[[Ξ]],

v = u and Q = P , this yields that a power series P u ∈
(
(N+A)−1A

)
[[Ξ]] is

defined. It remains to prove that this power series P u lies in A [[Ξ]].
Let C be the power series P − 1 ∈ A [[Ξ]]. Since the power series P has

constant term 1, the power series P − 1 has constant term 0. In other words, the
power series C has constant term 0 (since C = P − 1). Applying the binomial
formula, we thus get

(1 + C)u =
∑
r∈N

(
u

r

)
Cr, (8)

7Though we call it p, we do not require it to be a prime!
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where the sum on the right hand side converges because the power series C has

constant term 0. But we know that

(
u

r

)
∈ A for every u ∈ A and r ∈ N (since

A is a binomial ring). Thus, every r ∈ N satisfies(
u

r

)
︸︷︷︸
∈A⊆A[[Ξ]]

Cr︸︷︷︸
∈A[[Ξ]]

∈ A [[Ξ]] · A [[Ξ]] ⊆ A [[Ξ]] .

Hence, the equality (8) shows that (1 + C)u is a convergent sum of power series in
A [[Ξ]]. Hence, (1 + C)u itself lies in A [[Ξ]]. Since 1+C = P (because C = P−1),
we have thus shown that P u lies in A [[Ξ]]. This proves Theorem 12.

Lemma 13. Let Ξ be a family of symbols. Let A be a binomial ring.
Let n ∈ Z. Let u ∈ A. Let A [[Ξ]] denote the ring of power series in
the indeterminates Ξ over A.

Let P and Q be two power series in A [[Ξ]] with constant term 1.
Assume that P ≡ QmodnA [[Ξ]]. Then, P u ≡ Qu modnA [[Ξ]].

Proof of Lemma 13. The ideal nA [[Ξ]] is closed with respect to the (Ξ)-adic
topology on A [[Ξ]]. Hence, every sequence of elements of nA [[Ξ]] which converges
in A [[Ξ]] has its limit lying in nA [[Ξ]]. Thus, every convergent infinite sum whose
addends lie in nA [[Ξ]] must itself lie in nA [[Ξ]].

Now, let C be the power series P − 1 ∈ A [[Ξ]]. Since the power series P has
constant term 1, the power series P − 1 has constant term 0. In other words, the
power series C has constant term 0 (since C = P − 1). Applying the binomial
formula, we thus get

(1 + C)u =
∑
r∈N

(
u

r

)
Cr, (9)

where the sum on the right hand side converges because the power series C has
constant term 0.

Also, let D be the power series Q− 1 ∈ A [[Ξ]]. Since the power series Q has
constant term 1, the power series Q− 1 has constant term 0. In other words, the
power series D has constant term 0 (since D = Q − 1). Applying the binomial
formula, we thus get

(1 +D)u =
∑
r∈N

(
u

r

)
Dr, (10)

where the sum on the right hand side converges because the power series D has
constant term 0.

Subtracting (10) from (9), we obtain

(1 + C)u − (1 +D)u =
∑
r∈N

(
u

r

)
Cr −

∑
r∈N

(
u

r

)
Dr =

∑
r∈N

(
u

r

)
(Cr −Dr) . (11)

Thus, the infinite sum
∑
r∈N

(
u

r

)
(Cr −Dr) converges.
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Since C = P︸︷︷︸
≡QmodnA[[Ξ]]

−1 ≡ Q−1 = DmodnA [[Ξ]], we have Cr ≡ Dr modnA [[Ξ]]

for every r ∈ N. Thus, Cr − Dr ∈ nA [[Ξ]] for every r ∈ N. But we know that(
u

r

)
∈ A for every u ∈ A and r ∈ N (since A is a binomial ring). Thus,

(
u

r

)
︸︷︷︸
∈A

(Cr −Dr)︸ ︷︷ ︸
∈nA[[Ξ]]

∈ A · nA [[Ξ]] = n · A · A [[Ξ]]︸ ︷︷ ︸
⊆A[[Ξ]]

⊆ nA [[Ξ]]

for every r ∈ N. Hence,
∑
r∈N

(
u

r

)
(Cr −Dr) ∈ nA [[Ξ]] (since every convergent

infinite sum whose addends lie in nA [[Ξ]] must itself lie in nA [[Ξ]]). Due to
(11), this rewrites as (1 + C)u − (1 +D)u ∈ nA [[Ξ]]. Since 1 + C = P (because
C = P−1) and 1+D = Q (becauseD = Q−1), this rewrites as P u−Qu ∈ nA [[Ξ]].
In other words, P u ≡ Qu modnA [[Ξ]]. Lemma 13 is thus proven.

Lemma 14. Let X be a symbol. Let A be a binomial ring. Let p ∈ P.
Let A [[X]] denote the ring of power series in the indeterminate X over
A.

(a) The power series 1 +X and 1 +Xp have constant term 1. Thus,
the power series (1 +X)u and (1 +Xp)u are well-defined and lie in
A [[X]] for every u ∈ A.

(b) We have (1 +Xp)qn�p ≡ (1 +X)qn mod pvp(n)A [[X]] for every
n ∈ pN+ and q ∈ A.

Proof of Lemma 14. It is clear that the power series 1 + X and 1 + Xp have
constant term 1 (since p > 0).

(a) Let u ∈ A. Applying Theorem 12 to P = 1 + X and Ξ = (X), we con-
clude that the power series (1 +X)u is well-defined and lies in A [[X]]. Applying
Theorem 12 to P = 1 + Xp and Ξ = (X), we conclude that the power series
(1 +Xp)u is well-defined and lies in A [[X]]. This proves Lemma 14 (a).

(b) Let n ∈ pN+ and q ∈ A. We need to prove that (1 +Xp)qn�p ≡
(1 +X)qn mod pvp(n)A [[X]].

We defined vp (n) as the largest nonnegative integer m satisfying pm | n. Thus,
pvp(n) | n. Hence, there exists a z ∈ Z such that n = zpvp(n). Consider this z.
Since zpvp(n) = n ∈ pN+ ⊆ N+, we have z ∈ N+.

Since n ∈ pN+, we have n�p ∈ N+, so that vp (n�p) ≥ 0. Thus, vp (n�p)
is a nonnegative integer. Denote this nonnegative integer vp (n�p) by `. Then,
` = vp (n�p) ≥ 0.

Applying Proposition 10 to A [[X]], 1 and X instead of A, a and b, we ob-
tain (1 +X)p ≡ 1p + Xp mod pA [[X]]. Since 1p = 1 and p = p1, this rewrites
as (1 +X)p ≡ 1 + Xp mod p1A [[X]]. Hence, Lemma 11 (applied to A [[X]], 1,
(1 +X)p and 1 +Xp instead of A, k, a and b) yields that

((1 +X)p)
p` ≡ (1 +Xp)p

`

mod p1+`A [[X]] .
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Since ((1 +X)p)
p`

= (1 +X)pp
`

= (1 +X)p
1+`

(because pp` = p1p` = p1+`), this
rewrites as

(1 +X)p
1+`

≡ (1 +Xp)p
`

mod p1+`A [[X]] . (12)

Let Ξ be the one-element family (X) of indeterminates. Then, A [[Ξ]] =
A [[X]]. Hence, (12) rewrites as

(1 +X)p
1+`

≡ (1 +Xp)p
`

mod p1+`A [[Ξ]] .

Hence, Lemma 13 (applied to qz, p1+`, (1 +X)p
1+`

and (1 +Xp)p
`

instead of u,
n, P and Q) yields(

(1 +X)p
1+`
)qz
≡
(

(1 +Xp)p
`
)qz

mod p1+`A [[Ξ]] .

Since
(

(1 +X)p
1+`
)qz

= (1 +X)p
1+`qz and

(
(1 +Xp)p

`
)qz

= (1 +Xp)p
`qz, this

rewrites as
(1 +X)p

1+`qz ≡ (1 +Xp)p
`qz mod p1+`A [[Ξ]] . (13)

But

1︸︷︷︸
=vp(p)

+ `︸︷︷︸
=vp(n�p)

= vp (p) + vp (n�p) = vp

p · (n�p)︸ ︷︷ ︸
=n

 = vp (n) ,

so that
p1+`qz = pvp(n)qz = q zpvp(n)︸ ︷︷ ︸

=n

= qn (14)

and thus

p`︸︷︷︸
=

1

p
p`+1

qz =
1

p
p`+1qz︸ ︷︷ ︸

=qn

= qn�p. (15)

Due to (14) and (15), the congruence (13) rewrites as

(1 +X)qn ≡ (1 +Xp)qn�p mod p1+`A [[Ξ]] .

Due to 1 + ` = vp (n) and A [[Ξ]] = A [[X]], this rewrites as (1 +X)qn ≡
(1 +Xp)qn�p mod pvp(n)A [[X]]. This proves Lemma 14 (b).

Using Lemma 14, we can now show a congruence property of binomial coeffi-
cients with ”numerator” in a binomial ring:

Lemma 15. Let A be a binomial ring. Let n ∈ N+ and let p ∈ PFn.
Let q ∈ A and r ∈ Q. Then,(

qn�p
rn�p

)
≡
(
qn

rn

)
mod pvp(n)A. (16)
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This Lemma 15 is a generalization of Lemma 19 from [5]. In fact, since Z is
a binomial ring, we can apply Lemma 15 to A = Z, and obtain precisely Lemma
19 from [5].

It should be said that Lemma 15 is nothing like a novel result. Indeed, it is
well-known in the case when A = Z, and in the general case it follows from the
known fact that, loosely speaking, any divisibility of a polynomial by an integer
which holds everywhere in Z must hold everywhere in any binomial ring. This
known fact is, e. g., a consequence of the implication (1) =⇒ (2) of Theorem 4.1
in Elliott’s paper [3] (to which I also refer the reader for a precise statement).

Also, in most cases, the exponent vp (n) in (16) can be replaced by larger
numbers. Details can be found by searching the internet for ”Jacobsthal’s con-
gruence”. Again, the case A = Z is ”the worst case” in the sense that divisibilities
that hold in this case must hold always in binomial rings. We will, however, never
need these stronger results.

Proof of Lemma 15. Since p ∈ PFn, we know that p is a prime and satisfies
p | n. Thus, p ∈ P (since p is a prime). Also, n ∈ pN+ (since n ∈ N+ and p | n),
so that n�p ∈ N+.

If rn /∈ N, then Lemma 15 is easily seen to be true.8 Therefore, we can WLOG
assume that rn ∈ N for the rest of the proof. Assume this.

Since rn ∈ N, we have rn ≥ 0. Combined with n > 0, this yields r ≥ 0.
Set m = qn. Lemma 14 yields (1 +Xp)qn�p ≡ (1 +X)qn mod pvp(n)A [[X]].

Since qn = m, this rewrites as (1 +Xp)m�p ≡ (1 +X)m mod pvp(n)A [[X]]. Hence,
for every λ ∈ N, we have(

the coefficient of the power series (1 +Xp)m�p before Xλ
)

≡
(
the coefficient of the power series (1 +X)m before Xλ

)
mod pvp(n)A. (17)

But it is easy to see that∑
λ∈N

(
m�p
λ�p

)
Xλ =

∑
λ∈pN

(
m�p
λ�p

)
Xλ (18)

8Proof. Assume that rn /∈ N. Then, rn�p /∈ N as well (since p ∈ N+). Hence, both sides of
(16) vanish. Thus, (16) holds, i. e., Lemma 15 is true, qed.
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9. However, the binomial formula yields

(1 +Xp)m�p

=
∑
µ∈N

(
m�p
µ

)
︸ ︷︷ ︸

=

(
m�p
pµ�p

) (Xp)µ︸ ︷︷ ︸
=Xpµ

=
∑
µ∈N

(
m�p
pµ�p

)
Xpµ =

∑
λ∈pN

(
m�p
λ�p

)
Xλ

(here we substituted λ for pµ, since the map N→ pN, µ 7→ pµ is a bijection)

=
∑
λ∈N

(
m�p
λ�p

)
Xλ (by (18)) ,

and thus every λ ∈ N satisfies(
the coefficient of the power series (1 +Xp)m�p before Xλ

)
=

(
m�p
λ�p

)
. (19)

Besides, the binomial formula yields

(1 +X)m =
∑
λ∈N

(
m

λ

)
Xλ.

Hence, every λ ∈ N satisfies(
the coefficient of the power series (1 +X)m before Xλ

)
=

(
m

λ

)
. (20)

Thus, every λ ∈ N satisfies(
m�p
λ�p

)
=
(

the coefficient of the power series (1 +Xp)m�p before Xλ
)

(by (19))

≡
(
the coefficient of the power series (1 +X)m before Xλ

)
(by (17))

=

(
m

λ

)
mod pvp(n)A (by (20)) .

9Proof of (18): Every λ ∈ N \ (pN) satisfies λ /∈ pN. Hence, every λ ∈ N \ (pN) satisfies
λ�p /∈ N. Thus, every λ ∈ N \ (pN) satisfies(

m�p
λ�p

)
=


1

(λ�p)!

λ�p−1∏
k=0

(m�p− k) , if λ�p ∈ N;

0, if λ�p /∈ N
= 0

(since λ�p /∈ N). Thus,
∑

λ∈N\(pN)

(
m�p
λ�p

)
︸ ︷︷ ︸

=0
(since λ∈N\(pN))

Xλ =
∑

λ∈N\(pN)
0Xλ = 0.

Now, pN ⊆ N, so that the sum
∑
λ∈N

(
m�p
λ�p

)
Xλ decomposes as

∑
λ∈N

(
m�p
λ�p

)
Xλ =

∑
λ∈pN

(
m�p
λ�p

)
Xλ +

∑
λ∈N\pN

(
m�p
λ�p

)
Xλ

︸ ︷︷ ︸
=0

=
∑
λ∈pN

(
m�p
λ�p

)
Xλ.

This proves (18).
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Since m = qn, this becomes(
qn�p
λ�p

)
≡
(
qn

λ

)
mod pvp(n)A.

Applying this to λ = rn, we obtain (16), and thus Lemma 15 is proven.
Here comes a result similar to, but somewhat more interesting than, Lemma

15:

Lemma 16. Let A be a binomial ring. Let n ∈ N+ and let p ∈ PFn.
Let q ∈ A and r ∈ Q. Assume that there exist two integers α and β

with vp (α) ≥ vp (β) and r =
α

β
. Then,

(
qn�p− 1

rn�p− 1

)
≡
(
qn− 1

rn− 1

)
mod pvp(n)A. (21)

This Lemma 16 is a generalization of Lemma 21 from [5]. In fact, since Z is
a binomial ring, we can apply Lemma 16 to A = Z, and obtain precisely Lemma
21 from [5].

It seems impossible to prove Lemma 16 by generalizing the proof of Lemma
21 in [5]. However, the we can prove Lemma 16 in a different way. It requires two
lemmas. The first one is a very basic one about binomial coefficients in binomial
rings:

Lemma 17. Let A be a binomial ring. Let u ∈ A. Let r ∈ Q. Then,(
u

r

)
=

(
u− 1

r − 1

)
+

(
u− 1

r

)
.

When applied to A = Z, Lemma 17 yields the standard recursion of the
binomial coefficients.

Proof of Lemma 17. If r /∈ N, then Lemma 17 is easily proven10. Hence, for
the rest of this proof, we can WLOG assume that r ∈ N. Assume this.

If r = 0, then Lemma 17 is also obvious11. Hence, for the rest of this proof,
we can WLOG assume that r 6= 0. Assume this.

Since r ∈ N and r 6= 0, we have r ∈ N+ and thus r − 1 ∈ N.

10Proof. Assume that r /∈ N. Then, r − 1 /∈ N as well. This causes the binomial coefficient(
u− 1

r − 1

)
to vanish, while r /∈ N shows that the binomial coefficients

(
u

r

)
and

(
u− 1

r

)
vanish

as well. Hence, the equation that needs to be proven (

(
u

r

)
=

(
u− 1

r − 1

)
+

(
u− 1

r

)
) reduces to

0 = 0 + 0, which is tautological. Thus, Lemma 17 is proven if r /∈ N.

11Proof. Assume that r = 0. Then, r− 1 = −1 /∈ N, so that the binomial coefficient

(
u− 1

r − 1

)
vanishes. On the other hand,

(
u

0

)
and

(
u− 1

0

)
both equal 1, since we have

(
x

0

)
= 1 for every
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By the definition of

(
u

r

)
, we have

(
u

r

)
=


1

r!

r−1∏
k=0

(u− k) , if r ∈ N;

0, if r /∈ N
=

1

r!

r−1∏
k=0

(u− k)︸ ︷︷ ︸
=(u−0)

r−1∏
k=1

(u−k)

(since r ∈ N)

=
1

r!
(u− 0)︸ ︷︷ ︸

=u

r−1∏
k=1

(u− k) =
1

r!
u

r−1∏
k=1

(u− k) =
1

r!
u

r−2∏
k=0

(u− (k + 1))︸ ︷︷ ︸
=(u−1)−k

(here, we substituted k + 1 for k in the product)

=
1

r!
u

r−2∏
k=0

((u− 1)− k) . (22)

By the definition of

(
u− 1

r

)
, we have

(
u− 1

r

)
=


1

r!

r−1∏
k=0

((u− 1)− k) , if r ∈ N;

0, if r /∈ N

=
1

r!

r−1∏
k=0

((u− 1)− k)︸ ︷︷ ︸
=((u−1)−(r−1))

r−2∏
k=0

((u−1)−k)

(since r ∈ N)

=
1

r!
((u− 1)− (r − 1))︸ ︷︷ ︸

=u−r

r−2∏
k=0

((u− 1)− k)

=
1

r!
(u− r)

r−2∏
k=0

((u− 1)− k) .

x ∈ A (this follows readily from the definition of

(
x

0

)
). Now, since r = 0, we have

(
u

r

)
−
(
u− 1

r

)
=

(
u

0

)
︸︷︷︸
=1

−
(
u− 1

0

)
︸ ︷︷ ︸

=1

= 1− 1 = 0.

Compared with

(
u− 1

r − 1

)
= 0, this yields

(
u− 1

r − 1

)
=

(
u

r

)
−
(
u− r
r

)
. Thus,

(
u

r

)
=

(
u− 1

r − 1

)
+(

u− 1

r

)
. Hence, Lemma 17 is proven in the case when r = 0.
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Subtracting this equation from (22), we obtain(
u

r

)
−
(
u− 1

r

)
=

1

r!
u
r−2∏
k=0

((u− 1)− k)− 1

r!
(u− r)

r−2∏
k=0

((u− 1)− k)

=
1

r!
(u− (u− r))︸ ︷︷ ︸

=r

r−2∏
k=0

((u− 1)− k) =
1

r!
r︸︷︷︸

=
1

(r − 1)!
(since r!=r·(r−1)!)

r−2∏
k=0︸︷︷︸

=
(r−1)−1∏
k=0

((u− 1)− k)

=
1

(r − 1)!

r−2∏
k=0

((u− 1)− k) . (23)

On the other hand, the definition of

(
u− 1

r − 1

)
yields

(
u− 1

r − 1

)
=

 1

(r − 1)!

(r−1)−1∏
k=0

((u− 1)− k) , if r − 1 ∈ N;

0, if r − 1 /∈ N

=
1

(r − 1)!

(r−1)−1∏
k=0

((u− 1)− k) (since r − 1 ∈ N)

=

(
u

r

)
−
(
u− 1

r

)
(by (23)) ,

so that

(
u

r

)
=

(
u− 1

r − 1

)
+

(
u− 1

r

)
. Thus, Lemma 17 is proven.

We are not yet completely ready to prove Lemma 16; we still need the following
fact (which we will also use independently):

Lemma 18. Let A be a binomial ring. Let n ∈ N+ and let p ∈ PFn.
Let q ∈ A. Then,

qn ≡ qn�p mod pvp(n)A.

Proof of Lemma 18. Since p ∈ PFn, we know that p is a prime and satisfies
p | n. Thus, p ∈ P (since p is a prime). Also, n ∈ pN+ (since n ∈ N+ and p | n),
so that n�p ∈ N+.

We defined vp (n) as the largest nonnegative integer m satisfying pm | n. Thus,
pvp(n) | n. Hence, there exists a z ∈ Z such that n = zpvp(n). Consider this z.
Since zpvp(n) = n ∈ pN+ ⊆ N+, we have z ∈ N+.

We have n�p ∈ N+, so that vp (n�p) ≥ 0. Thus, vp (n�p) is a nonnegative
integer. Denote this nonnegative integer vp (n�p) by `. Then, ` = vp (n�p) ≥ 0.

Now, vp (p) + vp (n�p) = vp

p · (n�p)︸ ︷︷ ︸
=n

 = vp (n). Since vp (p) = 1 and

vp (n�p) = `, this rewrites as 1 + ` = vp (n). Thus, p1+` = pvp(n), so that

p1+`z = pvp(n)z = zpvp(n) = n. (24)
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Also, p︸︷︷︸
=p1

p` = p1p` = p1+`, so that pp`z = p1+`z = n (by (24)) and thus

p`z = n�p. (25)

Theorem 8 (applied to a = q) yields qp ≡ qmod pA. In other words, qp ≡
qmod p1A (since p = p1). Lemma 11 (applied to k = 1, a = qp and b = q) thus

yields (qp)p
`

≡ qp
`
mod p1+`A. Since (qp)p

`

= qpp
`

= qp
1+`

(because pp` = p1p` =
p1+`), this rewrites as qp

1+` ≡ qp
`
mod p1+`A. Since 1 + ` = vp (n), this rewrites

as qp
vp(n) ≡ qp

`
mod pvp(n)A. Taking the z-th power of this congruence, we obtain(

qp
vp(n)

)z
≡
(
qp

`
)z

mod pvp(n)A.

But since (
qp

vp(n)
)z

= qp
vp(n)z = qn

(
since pvp(n)z = zpvp(n) = n

)
and (

qp
`
)z

= qp
`z = qn�p

(
since p`z = n�p (by (25))

)
,

this rewrites as qn ≡ qn�p mod pvp(n)A. This proves Lemma 18.
Proof of Lemma 16. Since p ∈ PFn, we know that p is a prime and satisfies

p | n. Thus, p ∈ P (since p is a prime). Also, n ∈ pN+ (since n ∈ N+ and p | n),
so that n�p ∈ N+.

Lemma 16 is readily seen to hold if rn /∈ N+. 12 Therefore, we can WLOG
assume that rn ∈ N+ for the rest of the proof. Assume this.

Since rn ∈ N+, we have rn > 0. Combined with n > 0, this yields r > 0.
It is easy to see that there exist two coprime integers α′ and β′ such that

β′ ⊥ p and r =
α′

β′
13. Consider these α′ and β′.

12Proof. Assume that rn /∈ N+. Then, rn�p /∈ N+. Hence, neither rn− 1 nor rn�p− 1 lies
in N. Consequently, both sides of (21) vanish, so that (21) is trivially satisfied. Thus, Lemma
16 is proven if rn /∈ N+.

13Proof. By assumption, there exist two integers α and β with vp (α) ≥ vp (β) and r =
α

β
.

Consider these α and β. Since
α

β
= r > 0, both α and β are nonzero. Thus, vp (α) and vp (β) are

well-defined nonnegative integers (not ∞). Now, let h = gcd (α, β). Then, h = gcd (α, β) | α,

so that
α

h
∈ Z. Also, h = gcd (α, β) | β, so that

β

h
∈ Z. Since α 6= 0 and β 6= 0, we have

gcd (α, β) 6= 0, so that h = gcd (α, β) 6= 0. Thus, vp (h) is a well-defined nonnegative integer
(not ∞).

Since

gcd

(
α

h
,
β

h

)
=

gcd (α, β)

h
=
h

h
(since gcd (α, β) = h)

= 1,

the integers
α

h
and

β

h
are coprime. That is,

α

h
⊥ β

h
.

Since α =
α

h
· h, we have vp (α) = vp

(α
h
· h
)

= vp

(α
h

)
+ vp (h). Since β =

β

h
· h, we have
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Recall that rn ∈ N+ ⊆ Z. Since r =
α′

β′
, this rewrites as

α′

β′
n ∈ Z. In other

words,
α′n

β′
∈ Z. In other words, β′ | α′n. But β′ ⊥ α′ (since α′ and β′ are

coprime).
It is known that if x, y and z are three integers such that x ⊥ y and x | yz,

then x | z. Applying this to x = β′, y = α′ and z = n, we obtain β′ | n. Hence,
n

β′
is an integer. Denote this integer by g. Then, |g| is a nonnegative integer.

Moreover, g =
n

β′
6= 0 (since n 6= 0), so that |g| > 0. Thus, |g| is a positive

integer. In other words, |g| ∈ N+.
We have

|α′| · |g| =

∣∣∣∣∣∣∣∣∣∣∣
α′ g︸︷︷︸

=
n

β′

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
α′ · n

β′︸ ︷︷ ︸
=
α′

β′
·n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
α′

β′︸︷︷︸
=r

·n

∣∣∣∣∣∣∣∣ = |rn| = rn (since rn > 0) (26)

vp (β) = vp

(
β

h
· h
)

= vp

(
β

h

)
+ vp (h). Now,

vp

(α
h

)
+ vp (h) = vp (α) ≥ vp (β) = vp

(
β

h

)
+ vp (h) .

Subtracting the nonnegative integer vp (h) from this inequality, we obtain vp

(α
h

)
≥ vp

(
β

h

)
.

Now, assume (for the sake of contradiction) that we don’t have
β

h
⊥ p. Then, p | β

h
(since p

is a prime), so that vp

(
β

h

)
≥ 1. Consequently, vp

(α
h

)
≥ vp

(
β

h

)
≥ 1, and thus p | α

h
. Now, p

is a common divisor of
α

h
and

β

h
(since p | α

h
and p | β

h
). Since p is a prime, this yields that

α

h

and
β

h
have a common prime divisor. But this is clearly absurd (since

α

h
and

β

h
are coprime).

This contradiction shows that our assumption (that we don’t have
β

h
⊥ p) was wrong. Hence,

we have
β

h
⊥ p.

Finally,

(α
h

)
(
β

h

) =
α

β
= r, so that r =

(α
h

)
(
β

h

) .

Altogether, we know that
α

h
and

β

h
are two coprime integers such that

β

h
⊥ p and r =

(α
h

)
(
β

h

) .

Hence, there exist two integers α′ and β′ such that β′ ⊥ p and r =
α′

β′
(namely, α′ =

α

h
and

β′ =
β

h
), qed.
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and

|β′| q · |g| = |β′| · |g|︸ ︷︷ ︸
=|β′·g|

q =

∣∣∣∣∣∣∣∣∣∣∣
β′ · g︸︷︷︸

=
n

β′

∣∣∣∣∣∣∣∣∣∣∣
q =

∣∣∣∣∣∣∣∣β
′ · n
β′︸ ︷︷ ︸

=n

∣∣∣∣∣∣∣∣ q = |n|︸︷︷︸
=n

(since n>0)

q = nq = qn. (27)

Since |α′| ∈ Z (because α′ ∈ Z), we can view |α′| as an element of A. Also,
since |β′| ∈ Z (because β′ ∈ Z), the element |β′| q of A is well-defined. Hence,
|α′| − |β′| q is an element of A.

It is known that if x, y and z are three integers such that x ⊥ y, x | z and
y | z, then xy | z. Applying this to x = β′, y = p and z = n, we obtain β′p | n.

Thus,
n

β′p
∈ Z. Hence, g is divisible by p (since g is an integer and satisfies

g�p =
n

β′
�p =

n

β′p
∈ Z). That is, p | g. Combined with g | |g| (because |g|

equals either g or −g), this yields p | g | |g|. Since p is a prime, this means that
p is a prime divisor of |g|. In other words, p ∈ PF (|g|).

Now, we can apply Lemma 15 to |α′| − |β′| q, |α′| and |g| instead of q, r and
n (because |g| ∈ N+ and p ∈ PF (|g|)). As a result, we obtain(

(|α′| − |β′| q) · |g|�p
|α′| · |g|�p

)
≡
(

(|α′| − |β′| q) · |g|
|α′| · |g|

)
mod pvp(|g|)A.

Since
(|α′| − |β′| q) · |g| = |α′| · |g|︸ ︷︷ ︸

=rn
(by (26))

− |β′| q · |g|︸ ︷︷ ︸
=qn

(by (27))

= rn− qn

and |α′| · |g| = rn (by (26)), this congruence rewrites as(
(rn− qn)�p

rn�p

)
≡
(
rn− qn
rn

)
mod pvp(|g|)A. (28)

Since β′ ⊥ p, we have p - β′ (because p is prime), so that vp (β′) = 0. But

g =
n

β′
, so that n = gβ′ and thus

vp (n) = vp (gβ′) = vp (g) + vp (β′)︸ ︷︷ ︸
=0

= vp (g) .

Since vp (g) = vp (|g|) 14, this rewrites as

vp (n) = vp (|g|) . (29)

14Proof. If g ≥ 0, then g = |g|, so that vp (g) = vp (|g|). Hence, for the rest of the proof of
vp (g) = vp (|g|), we can WLOG assume that we don’t have g ≥ 0. Assume this. Then, g < 0,
so that |g| = −g = (−1) g. Hence, vp (|g|) = vp ((−1) g) = vp (−1)︸ ︷︷ ︸

=0
(since p-−1)

+vp (g) = vp (g), qed.
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Hence, (28) rewrites as(
(rn− qn)�p

rn�p

)
≡
(
rn− qn
rn

)
mod pvp(n)A. (30)

On the other hand, recall that rn ∈ N+, so that rn−1 ∈ N. Thus, (−1)rn−1 is
well-defined. Moreover, p | |g| | |α′| · |g| = rn, so that rn�p is an integer. Thus,
(−1)rn�p−1 is well-defined. Now, it is easy to see that

(−1)rn�p ≡ (−1)rn mod pvp(n)A. (31)

15

We have rn ∈ N+ ⊆ Z. Thus, Proposition 6 (applied to qn−1 and rn instead
of u and r) yields(

qn− 1

rn

)
= (−1)rn

(
rn− (qn− 1)− 1

rn

)
= (−1)rn

(
rn− qn
rn

)
(since rn− (qn− 1)− 1 = rn− qn) . (32)

On the other hand, rn�p ∈ Z (since p | rn). Hence, Proposition 6 (applied to

15Proof of (31): Recall that |g| ∈ N+ and p ∈ PF (|g|). Thus, applying Lemma 18 to |g| and
−1 instead of n and q, we obtain

(−1)
|g| ≡ (−1)

|g|�p
mod pvp(|g|)A.

Since vp (|g|) = vp (n) (according to (29)), this rewrites as

(−1)
|g| ≡ (−1)

|g|�p
mod pvp(n)A.

Taking the |α′|-th power of this congruence, we obtain(
(−1)

|g|
)|α′|

≡
(

(−1)
|g|�p

)|α′|
mod pvp(n)A.

Since (
(−1)

|g|
)|α′|

= (−1)
|g|·|α′| = (−1)

rn

(because |g| · |α′| = |α′| · |g| = rn (by (26)))

and (
(−1)

|g|�p
)|α′|

= (−1)
(|g|�p)·|α′| = (−1)

rn�psince (|g|�p) · |α′| = 1

p
|α′| · |g|︸ ︷︷ ︸

=rn
(by (26))

=
1

p
rn = rn�p

 ,

this rewrites as
(−1)

rn ≡ (−1)
rn�p

mod pvp(n)A.

This proves (31).
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qn�p− 1 and rn�p instead of u and r) yields(
qn�p− 1

rn�p

)
= (−1)rn�p

(
rn�p− (qn�p− 1)− 1

rn�p

)
= (−1)rn�p︸ ︷︷ ︸
≡(−1)rn mod pvp(n)A

(
(rn− qn)�p

rn�p

)
︸ ︷︷ ︸

≡

(
rn− qn
rn

)
mod pvp(n)A

(by (30))

(since rn�p− (qn�p− 1)− 1 = rn�p− qn�p = (rn− qn)�p)

≡ (−1)rn
(
rn− qn
rn

)
=

(
qn− 1

rn

)
mod pvp(n)A (due to (32)) .

(33)

Finally, Lemma 17 (applied to qn�p and rn�p instead of u and r) yields(
qn�p
rn�p

)
=

(
qn�p− 1

rn�p− 1

)
+

(
qn�p− 1

rn�p

)
,

so that (
qn�p− 1

rn�p− 1

)
=

(
qn�p
rn�p

)
︸ ︷︷ ︸

≡

(
qn

rn

)
mod pvp(n)A

(by (16))

−
(
qn�p− 1

rn�p

)
︸ ︷︷ ︸

≡

(
qn− 1

rn

)
mod pvp(n)A

(by (33))

≡
(
qn

rn

)
−
(
qn− 1

rn

)
mod pvp(n)A. (34)

But Lemma 17 (applied to qn and rn instead of u and r) yields(
qn

rn

)
=

(
qn− 1

rn− 1

)
+

(
qn− 1

rn

)
,

so that (
qn− 1

rn− 1

)
=

(
qn

rn

)
−
(
qn− 1

rn

)
≡
(
qn�p− 1

rn�p− 1

)
mod pvp(n)A

(by (34)). This proves (21). Thus, Lemma 16 is proven.
Here is an obvious corollary of Lemma 16:

Corollary 19. Let A be a binomial ring. Let n ∈ N+ and let p ∈
PFn. Let q ∈ A and r ∈ Z. Then,(

qn�p− 1

rn�p− 1

)
≡
(
qn− 1

rn− 1

)
mod pvp(n)A.
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Proof of Corollary 19. There exist two integers α and β with vp (α) ≥ vp (β)

and r =
α

β
16. Thus, Lemma 16 yields

(
qn�p− 1

rn�p− 1

)
≡
(
qn− 1

rn− 1

)
mod pvp(n)A.

This proves Corollary 19.
Here is a further property of binomial coefficients, which we won’t need until

much later:

Proposition 20. Let A be a binomial ring. Let a ∈ A and b ∈ Q\{0}.
Then, (

a

b

)
=
a

b

(
a− 1

b− 1

)
.

Proof of Proposition 20. In the case when b /∈ N, the equality

(
a

b

)
=

a

b

(
a− 1

b− 1

)
holds (by virtue of both of its sides being 0), so that Proposition

20 is true in this case. Hence, for the rest of this proof, we can WLOG assume
that b ∈ N. Assume this.

Combining b ∈ N with b ∈ Q \ {0}, we obtain b ∈ N \ {0} = N+, so that

b− 1 ∈ N. Hence, the definition of

(
a− 1

b− 1

)
yields

(
a− 1

b− 1

)
=

1

(b− 1)!

(b−1)−1∏
k=0

((a− 1)− k) . (35)

16Proof. Since r ∈ Z, we know that r is an integer. Thus, vp (r) ≥ 0 = vp (1). Also, r =
r

1
.

Hence, there exist two integers α and β with vp (α) ≥ vp (β) and r =
α

β
(namely, α = r and

β = 1), qed.
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But the definition of

(
a

b

)
yields

(
a

b

)
=

1

b!

b−1∏
k=0

(a− k) (since b ∈ N)

=
1

b · (b− 1)!
(a− 0)︸ ︷︷ ︸

=a

b−1∏
k=1

(a− k)

(
since

b−1∏
k=0

(a− k) = (a− 0)
b−1∏
k=1

(a− k) and b! = b · (b− 1)!

)

=
1

b · (b− 1)!
a
b−1∏
k=1

(a− k) =
a

b
· 1

(b− 1)!

b−1∏
k=1

(a− k)

=
a

b
· 1

(b− 1)!

(b−1)−1∏
k=0

(a− (k + 1))︸ ︷︷ ︸
=(a−1)−k

(here we substituted k for k − 1 in the product)

=
a

b
· 1

(b− 1)!

(b−1)−1∏
k=0

((a− 1)− k)︸ ︷︷ ︸
=

(
a− 1

b− 1

)
(by (35))

=
a

b

(
a− 1

b− 1

)
.

This proves Proposition 20.

§3. The ghost-Witt equivalence theorem for binomial rings

We will now state our main theorem:

Theorem 30. Let N be a nest. Let A be a binomial ring. Let
(bn)n∈N ∈ AN be a family of elements of A. Then, the following

assertions Cbin, Dbin, D′bin, Dexpl
bin , Dexpl ′

bin , Ebin, E ′bin, Fbin, Gbin, Hbin,
Ibin and I ′bin are equivalent:

Assertion Cbin: Every n ∈ N and every p ∈ PFn satisfies

bn�p ≡ bn mod pvp(n)A.

Assertion Dbin: There exists a family (xn)n∈N ∈ AN of elements of A
such that (

bn = wn
(
(xk)k∈N

)
for every n ∈ N

)
.

Assertion D′bin: There exists one and only one family (xn)n∈N ∈ AN
of elements of A such that(

bn = wn
(
(xk)k∈N

)
for every n ∈ N

)
.
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Assertion Dexpl
bin : There exists a family (xn)n∈N ∈ AN of elements of

A such that bn =
∑
d|n

dxn�dd for every n ∈ N

 .

Assertion Dexpl ′
bin : There exists one and only one family (xn)n∈N ∈ AN

of elements of A such thatbn =
∑
d|n

dxn�dd for every n ∈ N

 .

Assertion Ebin: There exists a family (yn)n∈N ∈ AN of elements of A
such that bn =

∑
d|n

dyd for every n ∈ N

 .

Assertion E ′bin: There exists one and only one family (yn)n∈N ∈ AN
of elements of A such thatbn =

∑
d|n

dyd for every n ∈ N

 .

Assertion Fbin: Every n ∈ N satisfies∑
d|n

µ (d) bn�d ∈ nA.

Assertion Gbin: Every n ∈ N satisfies∑
d|n

φ (d) bn�d ∈ nA.

Assertion Hbin: Every n ∈ N satisfies
n∑
i=1

bgcd(i,n) ∈ nA.

Assertion Ibin: There exists a family (qn)n∈N ∈ AN of elements of A
such that bn =

∑
d|n

d

(
qdn�d
n�d

)
for every n ∈ N

 .

Assertion I ′bin: There exists one and only one family (qn)n∈N ∈ AN
of elements of A such thatbn =

∑
d|n

d

(
qdn�d
n�d

)
for every n ∈ N

 .
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As the reader will readily notice, most parts of Theorem 30 are particular
cases of corresponding parts of Theorem 4. We will explain this in detail when
we come to the proof of Theorem 30. However, Assertions Ibin and I ′bin don’t
seem to be extendable to the general case of Theorem 4, so we will have to prove
them from scratch.

Most of Theorem 30 is not new and goes back to Dwork, Dress, Siebeneicher,
Hazewinkel and many others (e. g., see the equivalence Dexpl

bin ⇐⇒ Fbin ⇐⇒
Gbin ⇐⇒ Hbin in the case A = Z and N = N+ appear in [2, Corollary on page
10]), although they rarely worked in the setting of binomial rings. Some of the
underlying ideas go back to Schur and even earlier. Only Assertions Ibin and I ′bin

seem to never have been studied before.
Before we start proving Theorem 30, let us quote a lemma (which is a conse-

quence of the Chinese Remainder Theorem for modules):

Lemma 31. Let A be an Abelian group (written additively). Let
n ∈ N+. Then, nA =

⋂
p∈PFn

(
pvp(n)A

)
.

Lemma 31 is Corollary 2 in [5]; thus we are not going to prove it here.
Let us also isolate as a lemma a very simple arithmetical argument which will

be used several times:

Lemma 32. Let n ∈ N+. Let p ∈ PFn. For any divisor d of n, the
assertions d - (n�p) and pvp(n) | d are equivalent (that is, d - (n�p)
holds if and only if pvp(n) | d holds).

Proof of Lemma 32. Let d be a divisor of n. Then, n�d ∈ Z. Thus, we can
define an integer e ∈ Z by e = n�d. Consider this e. Then, e = n�d, so that
de = n.

Since e is an integer, we have vp (e) ≥ 0.
We will prove the following assertions:
Assertion Pf32.1: If d - (n�p), then pvp(n) | d.
Assertion Pf32.2: If pvp(n) | d, then d - (n�p).
Proof of Assertion Pf32.1: Assume that d - (n�p).
We have defined vp (d) to be the largest nonnegative integer m satisfying

pm | d. Thus, pvp(d) | d.

Since e = n�d, we have
e

p
=
n�d
p

=
n

pd
=
n�p
d

/∈ Z (since d - (n�p)), so

that p - e. Thus, vp (e) = 0. But vp (d) + vp (e) = vp

(
de︸︷︷︸
=n

)
= vp (n), so that

vp (n) = vp (d) + vp (e)︸ ︷︷ ︸
=0

= vp (d). Hence, pvp(n) = pvp(d) | d. This proves Assertion

Pf32.1.
Proof of Assertion Pf32.2: Assume that pvp(n) | d.
We have defined vp (d) to be the largest nonnegative integer m satisfying

pm | d. Thus, vp (d) = (the largest nonnegative integer m satisfying pm | d). But
since pvp(n) | d, we have

vp (n) ≤ (the largest nonnegative integer m satisfying pm | d) = vp (d) ,
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so that

vp (d) ≥ vp

(
n︸︷︷︸

=de

)
= vp (de) = vp (d) + vp (e) .

Subtracting vp (d) from this inequality yields 0 ≥ vp (e) (because vp (d) is a non-
negative integer, not ∞). Combined with vp (e) ≥ 0, this results in vp (e) = 0.

Thus, p - e. In other words,
e

p
/∈ Z. Since e = n�d, this rewrites as

n�d
p

/∈ Z.

Hence,
n�p
d

=
n

pd
=
n�d
p

/∈ Z, so that d - (n�p). This proves Assertion Pf32.2.

Now, the assertions d - (n�p) and pvp(n) | d are equivalent. This is because the
former of these assertions implies the latter (according to Assertion Pf32.1), and
because the latter of these assertions implies the former (according to Assertion
Pf32.2). Thus, Lemma 32 is proven.

Proof of Theorem 30. By the definition of a ”binomial ring”, every binomial
ring is torsionfree. Since A is a binomial ring, this yields that A is torsionfree.

For every n ∈ N , define a map ϕn : A → A by ϕn = id. Clearly, ϕn is
an endomorphism of the ring A for every a ∈ A. Moreover, every a ∈ A and
p ∈ P ∩ N satisfy ϕp (a) ≡ ap mod pA 17. In other words, the condition (1) is
satisfied. Moreover, the condition (4) is satisfied (since ϕ1 = id by the definition
of ϕ1), and the condition (5) is also satisfied (since ϕn ◦ ϕm = ϕnm for every
n ∈ N and every m ∈ N satisfying nm ∈ N 18). Hence, the three conditions
(1), (4) and (5) are satisfied. Therefore, Theorem 4 yields that the assertions C,
D, D′, Dexpl, Dexpl ′, E , E ′, F , G and H are equivalent, where:

• the assertions C, D and Dexpl are the ones stated in Theorem 1,

• the assertions D′ and Dexpl ′ are the ones stated in Theorem 2,

• the assertions E , F , G and H are the ones stated in Theorem 3, and

• the assertion E ′ is the one stated in Theorem 4.

Now, comparing the assertions C, D, D′, Dexpl, Dexpl ′, E , E ′, F , G and H with
the respective assertions Cbin, Dbin, D′bin, Dexpl

bin , Dexpl ′
bin , Ebin, E ′bin, Fbin, Gbin and

Hbin, we notice that:

• we have C ⇐⇒ Cbin (since ϕp︸︷︷︸
=id

(by the definition
of ϕp)

(bn�p) = id (bn�p) = bn�p);

• we have D ⇐⇒ Dbin (because Assertions D and Dbin are identical);

• we have D′ ⇐⇒ D′bin (because Assertions D′ and D′bin are identical);

17Proof. Let a ∈ A and p ∈ P ∩ N . By the definition of ϕp, we have ϕp = id, so that
ϕp (a) = id (a) = a ≡ ap mod pA (since Theorem 8 yields ap ≡ amod pA), qed.

18Proof. Let n ∈ N and m ∈ N be such that nm ∈ N . By the definition of ϕn, we have
ϕn = id. By the definition of ϕm, we have ϕm = id. By the definition of ϕnm, we have
ϕnm = id. Since ϕn = id and ϕm = id, we have ϕn ◦ ϕm = id ◦ id = id = ϕnm, qed.
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• we have Dexpl ⇐⇒ Dexpl
bin (because Assertions Dexpl and Dexpl

bin are identical);

• we have Dexpl ′ ⇐⇒ Dexpl ′
bin (because Assertions Dexpl ′ and Dexpl ′

bin are identi-
cal);

• we have E ⇐⇒ Ebin (since ϕn�d︸︷︷︸
=id

(by the definition
of ϕn�d)

(yd) = id (yd) = yd);

• we have E ′ ⇐⇒ E ′bin (since ϕn�d︸︷︷︸
=id

(by the definition
of ϕn�d)

(yd) = id (yd) = yd);

• we have F ⇐⇒ Fbin (since ϕd︸︷︷︸
=id

(by the definition
of ϕd)

(bn�d) = id (bn�d) = bn�d);

• we have G ⇐⇒ Gbin (since ϕd︸︷︷︸
=id

(by the definition
of ϕd)

(bn�d) = id (bn�d) = bn�d);

• we haveH ⇐⇒ Hbin (since ϕn� gcd(i,n)︸ ︷︷ ︸
=id

(by the definition
of ϕn� gcd(i,n))

(
bgcd(i,n)

)
= id

(
bgcd(i,n)

)
= bgcd(i,n)).

Hence, the (already proven) equivalence of the assertions C, D, D′, Dexpl,
Dexpl ′, E , E ′, F , G and H yields the equivalence of the assertions Cbin, Dbin, D′bin,
Dexpl

bin , Dexpl ′
bin , Ebin, E ′bin, Fbin, Gbin and Hbin.

Now let us prove the equivalence of these assertions with the remaining two
assertions Ibin and I ′bin. We will do this by proving the implications Cbin =⇒ Ibin,
Ibin =⇒ Cbin, Ibin =⇒ I ′bin and I ′bin =⇒ Ibin.

Proof of the implication Ibin =⇒ Cbin: Assume that Assertion Ibin holds. In
other words, there exists a family (qn)n∈N ∈ AN of elements of A such thatbn =

∑
d|n

d

(
qdn�d
n�d

)
for every n ∈ N

 . (36)

Consider this family (qn)n∈N . We are going to prove that Assertion Cbin holds as
well.

Let n ∈ N and p ∈ PFn. We are going to show that bn�p ≡ bn mod pvp(n)A.
Since n ∈ N , every divisor of n lies in N (because N is a nest). Since p ∈ PFn,

we know that p is a prime divisor of n. Thus, p is a prime and satisfies p | n.
Since p | n and n ∈ N+, we have n�p ∈ N+, and thus n�p is a divisor of n.
Therefore, n�p ∈ N (since every divisor of n lies in N). Hence, we can apply
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(36) to n�p instead of n. Thus we obtain

bn�p =
∑

d|(n�p)

d

(
qd (n�p)�d
(n�p)�d

)
=
∑

d|(n�p)

d

(
qd (n�d)�p
(n�d)�p

)
(37)

(since (n�p)�d = (n�d)�p for every divisor d of n�p) .

On the other hand, applying (36) directly, we obtain

bn =
∑
d|n

d

(
qdn�d
n�d

)

=
∑
d|n;

d|(n�p)︸ ︷︷ ︸
=

∑
d|(n�p)

(since the divisors d of n
satisfying d|(n�p) are exactly

the divisors of n�p)

d

(
qdn�d
n�d

)
+

∑
d|n;

d-(n�p)︸ ︷︷ ︸
=

∑
d|n;

pvp(n)|d
(because for every divisor d of n,

the assertions d-(n�p) and pvp(n)|d
are equivalent (by Lemma 32))

d

(
qdn�d
n�d

)

=
∑

d|(n�p)

d

(
qdn�d
n�d

)
+
∑
d|n;

pvp(n)|d

d︸︷︷︸
≡0 mod pvp(n)A

(since pvp(n)|d)

(
qdn�d
n�d

)

≡
∑

d|(n�p)

d

(
qdn�d
n�d

)
+
∑
d|n;

pvp(n)|d

0

(
qdn�d
n�d

)
︸ ︷︷ ︸

=0

=
∑

d|(n�p)

d

(
qdn�d
n�d

)
mod pvp(n)A.

(38)

But every divisor d of n�p satisfies n�d ∈ N+ and p ∈ PF (n�d) 19. Hence,
every s ∈ A and every divisor d of n�p satisfy(

s (n�d)�p
1 (n�d)�p

)
≡
(
sn�d
1n�d

)
mod pvp(n�d)A

(by Lemma 15, applied to n�d, s and 1 instead of n, q and r). This rewrites as(
s (n�d)�p
(n�d)�p

)
≡
(
sn�d
n�d

)
mod pvp(n�d)A (39)

(since 1 (n�d)�p = (n�d)�p and 1n�d = n�d). From this, it is easy to
conclude that every s ∈ A and every divisor d of n�p satisfy

d

(
s (n�d)�p
(n�d)�p

)
≡ d

(
sn�d
n�d

)
mod pvp(n)A (40)

19Proof. Let d be a divisor of n�p. Then,
n�p
d
∈ N+ (since n�p ∈ N+ and since d is a

divisor of n�p), so that
n�d
p

=
n

pd
=
n�p
d
∈ N+. Thus, n�d = p︸︷︷︸

∈N+

n�d
p︸ ︷︷ ︸
∈N+

∈ N+N+ ⊆ N+.

Moreover, since
n�d
p
∈ N+, we know that p | (n�d), so that p is a prime divisor of n�d (since

p is a prime). In other words, p ∈ PF (n�d), qed.

33



20. Thus, ∑
d|(n�p)

d

(
qd (n�d)�p
(n�d)�p

)
︸ ︷︷ ︸

≡d

(
qdn�d
n�d

)
mod pvp(n)A

(by (40), applied to s=qd)

≡
∑

d|(n�p)

d

(
qdn�d
n�d

)
mod pvp(n)A. (42)

Now, (37) becomes

bn�p =
∑

d|(n�p)

d

(
qd (n�d)�p
(n�d)�p

)
≡
∑

d|(n�p)

d

(
qdn�d
n�d

)
(by (42))

≡ bn mod pvp(n)A (by (38)) .

Now forget that we fixed n and p. We thus have shown that every n ∈ N and
every p ∈ PFn satisfies

bn�p ≡ bn mod pvp(n)A.

In other words, Assertion Cbin holds. We have thus proven Assertion Cbin under
the assumption of Assertion Ibin. In other words, the implication Ibin =⇒ Cbin is
proven.

20Proof of (40): Let s ∈ A. Let d be a divisor of n�p. Then, (39) yields(
s (n�d)�p
(n�d)�p

)
≡
(
sn�d
n�d

)
mod pvp(n�d)A.

In other words, (
s (n�d)�p
(n�d)�p

)
−
(
sn�d
n�d

)
∈ pvp(n�d)A. (41)

On the other hand, we defined vp (d) as the largest nonnegative integer m satisfying pm | d.
Thus, pvp(d) | d. Thus, there exists an e ∈ Z such that d = pvp(d)e. Consider this e.

Now,

d

(
s (n�d)�p
(n�d)�p

)
− d
(
sn�d
n�d

)
= d︸︷︷︸

=pvp(d)e

((
s (n�d)�p
(n�d)�p

)
−
(
sn�d
n�d

))

= pvp(d)e

((
s (n�d)�p
(n�d)�p

)
−
(
sn�d
n�d

))
︸ ︷︷ ︸

∈pvp(n�d)A

∈ pvp(d)epvp(n�d)A = pvp(d)pvp(n�d)︸ ︷︷ ︸
=pvp(d)+vp(n�d)

eA︸︷︷︸
⊆A

⊆ pvp(d)+vp(n�d)A.

Since

vp (d) + vp (n�d) = vp

d · (n�d)︸ ︷︷ ︸
=n

 = vp (n) ,

this simplifies to d

(
s (n�d)�p
(n�d)�p

)
− d
(
sn�d
n�d

)
∈ pvp(n)A. In other words, d

(
s (n�d)�p
(n�d)�p

)
≡

d

(
sn�d
n�d

)
mod pvp(n)A. This proves (40).
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Proof of the implication Cbin =⇒ Ibin: Assume that Assertion Cbin holds. In
other words, every n ∈ N and every p ∈ PFn satisfies

bn�p ≡ bn mod pvp(n)A. (43)

We will now show that Assertion Ibin holds.
Indeed, we are going to construct a family (rn)n∈N ∈ AN of elements of A

such that every m ∈ N satisfies

bm =
∑
d|m

d

(
rdm�d
m�d

)
. (44)

Indeed, we will construct this family (rn)n∈N recursively. Here is the recursion
step: Let n ∈ N be arbitrary. Assume that we have already constructed an
element rm of A for every m ∈ N ∩ {1, 2, ..., n− 1} in such a way that (44) is
satisfied for every m ∈ N ∩{1, 2, ..., n− 1}. We now need to construct an element
rn of A such that (44) is satisfied for every m ∈ N ∩{1, 2, ..., n}. Once such an rn
is constructed, our recursive step will be complete, and the family will be defined.

According to our assumption, we have already constructed an element rm of A
for every m ∈ N∩{1, 2, ..., n− 1}. As a consequence, we have already constructed
an element rd ∈ A for every divisor d of n satisfying d 6= n (because every such d
lies in N ∩ {1, 2, ..., n− 1}).

Let p ∈ PFn. Then, p is a prime divisor of n. In other words, p is a prime and
satisfies p | n. Hence, n�p ∈ N+ (since n ∈ N+), so that n�p is a divisor of n.
But since N is a nest, every divisor of n lies in N (because n ∈ N). Thus, n�p
lies in N (since n�p is a divisor of n). Combined with n�p ∈ {1, 2, ..., n− 1}
(this is clear because n�p ∈ N+ and n� p︸︷︷︸

>1

< n�1 = n), this yields n�p ∈

N ∩ {1, 2, ..., n− 1}. Hence, we can apply (44) to m = n�p (since we know that
(44) is satisfied for every m ∈ N ∩{1, 2, ..., n− 1}). As a result of this, we obtain

bn�p =
∑

d|(n�p)

d

(
rd (n�p)�d
(n�p)�d

)
=
∑

d|(n�p)

d

(
rd (n�d)�p
(n�d)�p

)
(45)

(since (n�p)�d = (n�d)�p for every divisor d of n�p) .

Recall that every s ∈ A and every divisor d of n�p satisfy

d

(
s (n�d)�p
(n�d)�p

)
≡ d

(
sn�d
n�d

)
mod pvp(n)A. (46)

(This is proven exactly in the same way as we have proven (42) during the proof
of the implication Ibin =⇒ Cbin.)

But recall that we have already constructed an element rd ∈ A for every

divisor d of n satisfying d 6= n. Thus, the sum
∑
d|n;
d6=n

d

(
rdn�d
n�d

)
makes sense. This
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sum satisfies∑
d|n;
d 6=n

d

(
rdn�d
n�d

)

=
∑
d|n;
d6=n;

d|(n�p)︸ ︷︷ ︸
=

∑
d|(n�p)

(since the divisors d of n
satisfying d6=n and d|(n�p) are

exactly the divisors of n�p)

d

(
rdn�d
n�d

)
+

∑
d|n;
d6=n

d-(n�p)︸ ︷︷ ︸
=

∑
d|n;
d6=n;

pvp(n)|d
(because for every divisor d of n,

the assertions d-(n�p) and pvp(n)|d
are equivalent (by Lemma 32))

d

(
rdn�d
n�d

)

=
∑

d|(n�p)

d

(
rdn�d
n�d

)
︸ ︷︷ ︸

≡d

(
rd (n�d)�p
(n�d)�p

)
mod pvp(n)A

(because (46) (applied to s=rd) yields

d

(
rd (n�d)�p
(n�d)�p

)
≡d

(
rdn�d
n�d

)
mod pvp(n)A)

+
∑
d|n;
d6=n;

pvp(n)|d

d︸︷︷︸
≡0 mod pvp(n)A

(since pvp(n)|d)

(
rdn�d
n�d

)

≡
∑

d|(n�p)

d

(
rd (n�d)�p
(n�d)�p

)
+
∑
d|n;
d6=n;

pvp(n)|d

0

(
rdn�d
n�d

)

︸ ︷︷ ︸
=0

=
∑

d|(n�p)

d

(
rd (n�d)�p
(n�d)�p

)
= bn�p mod pvp(n)A (by (45)) .

Now forget that we fixed p. We have thus shown that every p ∈ PFn satisfies

bn −
∑
d|n;
d6=n

d

(
rdn�d
n�d

)
∈ pvp(n)A.

In other words,

bn −
∑
d|n;
d 6=n

d

(
rdn�d
n�d

)
∈
⋂

p∈PFn

(
pvp(n)A

)
= nA (by Lemma 31) .

Hence, there exists some element ζ of A such that

bn −
∑
d|n;
d6=n

d

(
rdn�d
n�d

)
= nζ. (47)

Fix such a ζ. Now define an element rn of A by rn = ζ.
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We are now going to show that (44) is satisfied for every m ∈ N ∩{1, 2, ..., n}.
Indeed, this is known to hold for every m ∈ N ∩ {1, 2, ..., n− 1} (by the induc-
tion hypothesis), so we only need to check it for every m ∈ (N ∩ {1, 2, ..., n}) \
(N ∩ {1, 2, ..., n− 1}). But the only such m is n. So we only need to prove that
(44) is satisfied for m = n. Let us do this now: Since every x ∈ A satisfies(
x

1

)
= x (this follows readily from the definition of binomial coefficients), we

have

(
rn
1

)
= rn. Since n is a divisor of n, we have

∑
d|n

d

(
rdn�d
n�d

)
= n

(
rnn�n
n�n

)
︸ ︷︷ ︸
=

(
rn · 1

1

)
(since n�n=1)

+
∑
d|n;
d6=n

d

(
rdn�d
n�d

)

= n

(
rn · 1

1

)
︸ ︷︷ ︸

=

(
rn
1

)
=rn=ζ

+
∑
d|n;
d 6=n

d

(
rdn�d
n�d

)

= nζ +
∑
d|n;
d6=n

d

(
rdn�d
n�d

)
= bn (owing to (47)) .

In other words, (44) is satisfied for m = n.
We have thus shown that (44) is satisfied for every m ∈ N ∩ {1, 2, ..., n}.

Thus, we have constructed an element rn of A such that (44) is satisfied for every
m ∈ N ∩{1, 2, ..., n}. This completes the recursion step of the recursive definition
of the family (rn)n∈N . Due to its construction, this family (rn)n∈N satisfies (44)
for every m ∈ N . Hence, for every n ∈ N , we have

bn =
∑
d|n

d

(
rdn�d
n�d

)
(by (44), applied to m = n) .

Hence, there exists a family (qn)n∈N ∈ AN of elements of A such thatbn =
∑
d|n

d

(
qdn�d
n�d

)
for every n ∈ N


(namely, the family (rn)n∈N). In other words, Assertion Ibin is satisfied. We
have thus proven Assertion Ibin under the assumption of Assertion Cbin. In other
words, the implication Cbin =⇒ Ibin is proven.

Proof of the implication Ibin =⇒ I ′bin: Assume that Assertion Ibin holds. In
other words, there exists a family (qn)n∈N ∈ AN of elements of A such thatbn =

∑
d|n

d

(
qdn�d
n�d

)
for every n ∈ N

 .
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Let (Qn)n∈N be such a family. Thus, (Qn)n∈N ∈ AN is a family of elements of A
such that bn =

∑
d|n

d

(
Qdn�d
n�d

)
for every n ∈ N

 . (48)

We are now going to prove that Assertion I ′bin holds.
Let (qn)n∈N ∈ AN be any family of elements of A such thatbn =

∑
d|n

d

(
qdn�d
n�d

)
for every n ∈ N

 . (49)

We are going to show that this family (qn)n∈N equals (Qn)n∈N . Indeed, let us
show that

qn = Qn for every n ∈ N. (50)

Proof of (50): We are going to prove (50) by strong induction over n.
Induction step:21 Let m ∈ N . Assume that (50) holds for every n ∈ N

satisfying n < m. We will now show that (50) holds for n = m.
Applying (49) to n = m, we obtain

bm =
∑
d|m

d

(
qdm�d
m�d

)
= m

(
qmm�m
m�m

)
︸ ︷︷ ︸

=

(
qm
1

)
(since qmm�m=qm and m�m=1)

+
∑
d|m;
d6=m

d

(
qdm�d
m�d

)

(since m is a divisor of m)

= m

(
qm
1

)
︸ ︷︷ ︸

=qm

(since every x∈A satisfies

(
x

1

)
=x)

+
∑
d|m;
d6=m

d

(
qdm�d
m�d

)

= mqm +
∑
d|m;
d 6=m

d

(
qdm�d
m�d

)
,

so that

mqm = bm −
∑
d|m;
d 6=m

d

(
qdm�d
m�d

)
. (51)

The same argument, using (48) in lieu of (49), reveals that

mQm = bm −
∑
d|m;
d 6=m

d

(
Qdm�d
m�d

)
. (52)

21A strong induction needs no induction base.
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But we have assumed that (50) holds for every n ∈ N satisfying n < m. Thus,
in particular, for any divisor d of m satisfying d 6= m, we have qd = Qd (because
d ∈ N and d < m). Hence, the right hand side of (51) equals the right hand side
of (52). As a consequence, the left hand sides of these two equalities must also
be equal. That is, we have mqm = mQm. In other words, m (qm −Qm) = 0.

Now, A is a binomial ring. By the definition of a binomial ring, this yields
that A is torsionfree. Thus, we have qm −Qm = 0 (since m is a positive integer,
and since m (qm −Qm) = 0). In other words, qm = Qm. In other words, (50)
holds for n = m. This completes the induction step. Thus, the induction proof
of (50) is complete.

Now we know that (50) holds. In other words, the family (qn)n∈N equals
(Qn)n∈N .

Now forget that we fixed (qn)n∈N . We thus have shown that whenever (qn)n∈N ∈
AN is any family of elements of A such thatbn =

∑
d|n

d

(
qdn�d
n�d

)
for every n ∈ N

 ,

this family (qn)n∈N must equal (Qn)n∈N . Hence, there exists at most one family
(qn)n∈N ∈ AN of elements of A such thatbn =

∑
d|n

d

(
qdn�d
n�d

)
for every n ∈ N


(because every such family must equal (Qn)n∈N). Combined with the fact that
there exists at least one such family (because Assertion Ibin holds), this yields
that there exists one and only one such family. In other words, Assertion I ′bin

holds. We have thus proven Assertion I ′bin under the assumption of Assertion
Ibin. In other words, the implication Ibin =⇒ I ′bin is proven.

Proof of the implication I ′bin =⇒ Ibin: The implication I ′bin =⇒ Ibin obviously
holds, because if there exists one and only one family with a certain property,
then there clearly exists at least one family with this property.

Now we have proven the implications Ibin =⇒ I ′bin and I ′bin =⇒ Ibin. Com-
bining these two implications, we obtain the equivalence I ′bin ⇐⇒ Ibin.

We also have proven the implications Cbin =⇒ Ibin and Ibin =⇒ Cbin. Com-
bining these two implications, we obtain the equivalence Cbin ⇐⇒ Ibin.

Combining the equivalences Cbin ⇐⇒ Ibin and I ′bin ⇐⇒ Ibin, we obtain the
equivalence Cbin ⇐⇒ Ibin ⇐⇒ I ′bin.

Now recall that the assertions Cbin, Dbin, D′bin, Dexpl
bin , Dexpl ′

bin , Ebin, E ′bin, Fbin,
Gbin and Hbin are equivalent. Combining this with the equivalence Cbin ⇐⇒
Ibin ⇐⇒ I ′bin, we conclude that the assertions Cbin, Dbin, D′bin, Dexpl

bin , Dexpl ′
bin , Ebin,

E ′bin, Fbin, Gbin, Hbin, Ibin and I ′bin are equivalent. Theorem 30 is thus proven.

§4. Applications in binomial rings
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We can obtain several concrete divisibilities by applying Theorem 30 to par-
ticular families (bn)n∈N . Here is probably the simplest one:

Theorem 41. Let A be a binomial ring. Let q ∈ A. Then:

(a) There exists one and only one family (xn)n∈N+
∈ AN+ of elements

of A such that(
qn = wn

(
(xk)k∈N+

)
for every n ∈ N+

)
.

(b) There exists one and only one family (yn)n∈N+
∈ AN+ of elements

of A such that qn =
∑
d|n

dyd for every n ∈ N+

 .

(c) Every n ∈ N+ satisfies∑
d|n

µ (d) qn�d ∈ nA.

(d) Every n ∈ N+ satisfies∑
d|n

φ (d) qn�d ∈ nA.

(e) Every n ∈ N+ satisfies

n∑
i=1

qgcd(i,n) ∈ nA.

(f) There exists one and only one family (qn)n∈N ∈ AN of elements
of A such thatqn =

∑
d|n

d

(
qdn�d
n�d

)
for every n ∈ N+

 .

This Theorem 41 generalizes Theorem 16 from [5]. Indeed, Theorem 16 from
[5] can be proven by applying Theorem 41 (more precisely, parts (a), (b), (c),
(d) and (e) of Theorem 41) to A = Z (since Z is a binomial ring).

Proof of Theorem 41. Let N be the nest N+. Define a family (bn)n∈N ∈ AN by
(bn = qn for every n ∈ N). According to Theorem 30, the assertions Cbin, Dbin,
D′bin, Dexpl

bin , Dexpl ′
bin , Ebin, E ′bin, Fbin, Gbin, Hbin, Ibin and I ′bin are equivalent (these

assertions were stated in Theorem 30). Since the assertion Cbin is true for our
family (bn)n∈N ∈ AN (because every n ∈ N and every p ∈ PFn satisfies

bn�p = qn�p (by the definition of bn�p)

≡ qn
(
since Lemma 18 yields qn ≡ qn�p mod pvp(n)A

)
= bn mod pvp(n)A
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), this yields that the assertions Dbin, D′bin, Dexpl
bin , Dexpl ′

bin , Ebin, E ′bin, Fbin, Gbin,
Hbin, Ibin and I ′bin must also be true for our family (bn)n∈N ∈ AN . But for the
family (bn)n∈N ∈ AN ,

• assertion D′bin is equivalent to Theorem 41 (a) (since N = N+ and bn = qn);

• assertion E ′bin is equivalent to Theorem 41 (b) (since N = N+ and bn = qn);

• assertion Fbin is equivalent to Theorem 41 (c) (since N = N+ and bn�d =
qn�d);

• assertion Gbin is equivalent to Theorem 41 (d) (since N = N+ and bn�d =
qn�d);

• assertionHbin is equivalent to Theorem 41 (e) (since N = N+ and bgcd(i,n) =
qgcd(i,n));

• assertion I ′bin is equivalent to Theorem 41 (f) (since N = N+ and bn = qn).

Hence, Theorem 41 (a), Theorem 41 (b), Theorem 41 (c), Theorem 41 (d),
Theorem 41 (e) and Theorem 41 (f) must be true (since the assertions D′bin,
E ′bin, Fbin, Gbin, Hbin and I ′bin are true for the family (bn)n∈N ∈ AN). This proves
Theorem 41.

Here is a more interesting corollary:

Theorem 42. Let A be a binomial ring. Let q ∈ A and r ∈ Q. Then:

(a) There exists one and only one family (xn)n∈N+
∈ AN+ of elements

of A such that((
qn

rn

)
= wn

(
(xk)k∈N+

)
for every n ∈ N+

)
.

(b) There exists one and only one family (yn)n∈N+
∈ AN+ of elements

of A such that (qn
rn

)
=
∑
d|n

dyd for every n ∈ N+

 .

(c) Every n ∈ N+ satisfies∑
d|n

µ (d)

(
qn�d
rn�d

)
∈ nA.

(d) Every n ∈ N+ satisfies∑
d|n

φ (d)

(
qn�d
rn�d

)
∈ nA.
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(e) Every n ∈ N+ satisfies

n∑
i=1

(
q gcd (i, n)

r gcd (i, n)

)
∈ nA.

(f) There exists one and only one family (qn)n∈N ∈ AN of elements
of A such that(qn

rn

)
=
∑
d|n

d

(
qdn�d
n�d

)
for every n ∈ N+

 .

This Theorem 42 generalizes Theorem 17 from [5]. Indeed, Theorem 17 from
[5] can be proven by applying Theorem 42 (more precisely, parts (a), (b), (c),
(d) and (e) of Theorem 42) to A = Z (since Z is a binomial ring).

Proof of Theorem 42. Let N be the nest N+. Define a family (bn)n∈N ∈ AN

by

(
bn =

(
qn

rn

)
for every n ∈ N

)
. According to Theorem 30, the assertions Cbin,

Dbin, D′bin, Dexpl
bin , Dexpl ′

bin , Ebin, E ′bin, Fbin, Gbin, Hbin, Ibin and I ′bin are equivalent
(these assertions were stated in Theorem 30). Since the assertion Cbin is true for
our family (bn)n∈N ∈ AN (because every n ∈ N and every p ∈ PFn satisfies

bn�p =

(
q (n�p)
r (n�p)

)
(by the definition of bn�p)

=

(
qn�p
rn�p

)
≡
(
qn

rn

)
(by Lemma 15)

= bn mod pvp(n)A

), this yields that the assertions Dbin, D′bin, Dexpl
bin , Dexpl ′

bin , Ebin, E ′bin, Fbin, Gbin,
Hbin, Ibin and I ′bin must also be true for our family (bn)n∈N ∈ AN . But for the
family (bn)n∈N ∈ AN ,

• assertion D′bin is equivalent to Theorem 42 (a) (since N = N+ and bn =(
qn

rn

)
);

• assertion E ′bin is equivalent to Theorem 42 (b) (since N = N+ and bn =(
qn

rn

)
);

• assertion Fbin is equivalent to Theorem 42 (c) (since N = N+ and bn�d =(
q (n�d)

r (n�d)

)
=

(
qn�d
rn�d

)
);

• assertion Gbin is equivalent to Theorem 42 (d) (since N = N+ and bn�d =(
q (n�d)

r (n�d)

)
=

(
qn�d
rn�d

)
);
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• assertionHbin is equivalent to Theorem 42 (e) (since N = N+ and bgcd(i,n) =(
q gcd (i, n)

r gcd (i, n)

)
);

• assertion I ′bin is equivalent to Theorem 42 (f) (since N = N+ and bn =(
q (n�d)

r (n�d)

)
=

(
qn�d
rn�d

)
).

Hence, Theorem 42 (a), Theorem 42 (b), Theorem 42 (c), Theorem 42 (d),
Theorem 42 (e) and Theorem 42 (f) must be true (since the assertions D′bin,
E ′bin, Fbin, Gbin, Hbin and I ′bin are true for the family (bn)n∈N ∈ AN). This proves
Theorem 42.

Furthermore, we have:

Theorem 43. Let A be a binomial ring. Let q ∈ A and r ∈ Z. Then:

(a) There exists one and only one family (xn)n∈N+
∈ AN+ of elements

of A such that((
qn− 1

rn− 1

)
= wn

(
(xk)k∈N+

)
for every n ∈ N+

)
.

(b) There exists one and only one family (yn)n∈N+
∈ AN+ of elements

of A such that(qn− 1

rn− 1

)
=
∑
d|n

dyd for every n ∈ N+

 .

(c) Every n ∈ N+ satisfies∑
d|n

µ (d)

(
qn�d− 1

rn�d− 1

)
∈ nA.

(d) Every n ∈ N+ satisfies∑
d|n

φ (d)

(
qn�d− 1

rn�d− 1

)
∈ nA.

(e) Every n ∈ N+ satisfies

n∑
i=1

(
q gcd (i, n)− 1

r gcd (i, n)− 1

)
∈ nA.

(f) If r 6= 0, then every n ∈ N+ satisfies∑
d|n

µ (d)

(
qn�d
rn�d

)
∈ q
r
nA.
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(g) If r 6= 0, then every n ∈ N+ satisfies∑
d|n

φ (d)

(
qn�d
rn�d

)
∈ q
r
nA.

(h) If r 6= 0, then every n ∈ N+ satisfies

n∑
i=1

(
q gcd (i, n)

r gcd (i, n)

)
∈ q
r
nA.

(i) There exists one and only one family (qn)n∈N ∈ AN of elements
of A such that(qn− 1

rn− 1

)
=
∑
d|n

d

(
qdn�d
n�d

)
for every n ∈ N+

 .

This Theorem 43 generalizes Theorem 20 from [5]. Indeed, Theorem 20 from
[5] can be proven by applying Theorem 43 (more precisely, parts (a), (b), (c),
(d), (e), (f), (g) and (h) of Theorem 43) to A = Z (since Z is a binomial ring).

Proof of Theorem 43. Let N be the nest N+. Define a family (bn)n∈N ∈ AN

by

(
bn =

(
qn− 1

rn− 1

)
for every n ∈ N

)
. According to Theorem 30, the assertions

Cbin, Dbin, D′bin, Dexpl
bin , Dexpl ′

bin , Ebin, E ′bin, Fbin, Gbin,Hbin, Ibin and I ′bin are equivalent
(these assertions were stated in Theorem 30). Since the assertion Cbin is true for
our family (bn)n∈N ∈ AN (because every n ∈ N and every p ∈ PFn satisfies

bn�p =

(
q (n�p)− 1

r (n�p)− 1

)
(by the definition of bn�p)

=

(
qn�p− 1

rn�p− 1

)
≡
(
qn− 1

rn− 1

)
(by Corollary 19)

= bn mod pvp(n)A

), this yields that the assertions Dbin, D′bin, Dexpl
bin , Dexpl ′

bin , Ebin, E ′bin, Fbin, Gbin,
Hbin, Ibin and I ′bin must also be true for our family (bn)n∈N ∈ AN . But for the
family (bn)n∈N ∈ AN ,

• assertion D′bin is equivalent to Theorem 43 (a) (since N = N+ and bn =(
qn− 1

rn− 1

)
);

• assertion E ′bin is equivalent to Theorem 43 (b) (since N = N+ and bn =(
qn− 1

rn− 1

)
);

• assertion Fbin is equivalent to Theorem 43 (c) (since N = N+ and bn�d =(
q (n�d)− 1

r (n�d)− 1

)
=

(
qn�d− 1

rn�d− 1

)
);
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• assertion Gbin is equivalent to Theorem 43 (d) (since N = N+ and bn�d =(
q (n�d)− 1

r (n�d)− 1

)
=

(
qn�d− 1

rn�d− 1

)
);

• assertionHbin is equivalent to Theorem 43 (e) (since N = N+ and bgcd(i,n) =(
q gcd (i, n)− 1

r gcd (i, n)− 1

)
);

• assertion I ′bin is equivalent to Theorem 43 (i) (since N = N+ and bn =(
q (n�d)− 1

r (n�d)− 1

)
=

(
qn�d− 1

rn�d− 1

)
).

Hence, Theorem 43 (a), Theorem 43 (b), Theorem 43 (c), Theorem 43 (d),
Theorem 43 (e) and Theorem 43 (i) must be true (since the assertions D′bin, E ′bin,
Fbin, Gbin, Hbin and I ′bin are true for the family (bn)n∈N ∈ AN).

In order to complete the proof of Theorem 43, it now remains to verify parts
(f), (g) and (h) of Theorem 43.

Assume that r 6= 0. Thus, every m ∈ N+ satisfies rm 6= 0.
Theorem 43 (f) follows from Theorem 43 (c), since∑

d|n

µ (d)

(
qn�d
rn�d

)
︸ ︷︷ ︸

=
qn�d
rn�d

(
qn�d− 1

rn�d− 1

)
(by Proposition 20, applied to

a=qn�d and b=rn�d)

=
∑
d|n

µ (d)
qn�d
rn�d︸ ︷︷ ︸

=
q

r

(
qn�d− 1

rn�d− 1

)
=
q

r

∑
d|n

µ (d)

(
qn�d− 1

rn�d− 1

)
︸ ︷︷ ︸

∈nA
(by Theorem 43 (c))

∈ q
r
nA.

Theorem 43 (g) follows from Theorem 43 (d), because∑
d|n

φ (d)

(
qn�d
rn�d

)
︸ ︷︷ ︸

=
qn�d
rn�d

(
qn�d− 1

rn�d− 1

)
(by Proposition 20, applied to

a=qn�d and b=rn�d)

=
∑
d|n

φ (d)
qn�d
rn�d︸ ︷︷ ︸

=
q

r

(
qn�d− 1

rn�d− 1

)
=
q

r

∑
d|n

φ (d)

(
qn�d− 1

rn�d− 1

)
︸ ︷︷ ︸

∈nA
(by Theorem 43 (d))

∈ q
r
nA.
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Theorem 43 (h) follows from Theorem 43 (e), since

n∑
i=1

(
q gcd (i, n)

r gcd (i, n)

)
︸ ︷︷ ︸

=
q gcd (i, n)

r gcd (i, n)

(
q gcd (i, n)− 1

r gcd (i, n)− 1

)
(by Proposition 20, applied to
a=q gcd(i,n) and b=r gcd(i,n))

=
n∑
i=1

q gcd (i, n)

r gcd (i, n)︸ ︷︷ ︸
=
q

r

(
q gcd (i, n)− 1

r gcd (i, n)− 1

)

=
q

r

n∑
i=1

(
q gcd (i, n)− 1

r gcd (i, n)− 1

)
︸ ︷︷ ︸

∈nA
(by Theorem 43 (e))

∈ q
r
nA.

Now, all parts of Theorem 43 are proven. The proof of Theorem 43 is thus
complete.

§5. The integer case

Since Z is a binomial ring, we can apply Theorem 30 to A = Z and obtain
a result about families of integers. This alone is not very interesting. What is
interesting is that we can add a further equivalent assertion to this result:

Theorem 60. Let N be a nest. Let (bn)n∈N ∈ ZN be a family of

integers. Then, the following assertions C∅, D∅, D′∅, Dexpl
∅ , Dexpl ′

∅ , E∅,
E ′∅, F∅, G∅, H∅, I∅, I ′∅, K∅ and Kinv

∅ are equivalent:

Assertion C∅: Every n ∈ N and every p ∈ PFn satisfies

bn�p ≡ bn mod pvp(n)Z.

Assertion D∅: There exists a family (xn)n∈N ∈ ZN of integers such
that (

bn = wn
(
(xk)k∈N

)
for every n ∈ N

)
.

Assertion D′∅: There exists one and only one family (xn)n∈N ∈ ZN
of integers such that(

bn = wn
(
(xk)k∈N

)
for every n ∈ N

)
.

Assertion Dexpl
∅ : There exists a family (xn)n∈N ∈ ZN of integers such

that bn =
∑
d|n

dxn�dd for every n ∈ N

 .
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Assertion Dexpl ′
∅ : There exists one and only one family (xn)n∈N ∈ ZN

of integers such thatbn =
∑
d|n

dxn�dd for every n ∈ N

 .

Assertion E∅: There exists a family (yn)n∈N ∈ ZN of integers such
that bn =

∑
d|n

dyd for every n ∈ N

 .

Assertion E ′∅: There exists one and only one family (yn)n∈N ∈ ZN of
integers such thatbn =

∑
d|n

dyd for every n ∈ N

 .

Assertion F∅: Every n ∈ N satisfies∑
d|n

µ (d) bn�d ∈ nZ.

Assertion G∅: Every n ∈ N satisfies∑
d|n

φ (d) bn�d ∈ nZ.

Assertion H∅: Every n ∈ N satisfies

n∑
i=1

bgcd(i,n) ∈ nZ.

Assertion I∅: There exists a family (qn)n∈N ∈ ZN of integers such
that bn =

∑
d|n

d

(
qdn�d
n�d

)
for every n ∈ N

 .

Assertion I ′∅: There exists one and only one family (qn)n∈N ∈ ZN of
integers such thatbn =

∑
d|n

d

(
qdn�d
n�d

)
for every n ∈ N

 .
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Assertion K∅: There exist two sets U and V and two maps f : U → U
and g : V → V such that every n ∈ N satisfies

|Fix (fn)| <∞, |Fix (gn)| <∞ and |Fix (fn)|−|Fix (gn)| = bn.

Here, whenever S is a set and h : S → S is a map, we denote by
Fix (h) the set of fixed points of the map h.

Assertion Kinv
∅ : There exist two sets U and V and two invertible maps

f : U → U and g : V → V such that every n ∈ N satisfies

|Fix (fn)| <∞, |Fix (gn)| <∞ and |Fix (fn)|−|Fix (gn)| = bn.

Here, whenever S is a set and h : S → S is a map, we denote by
Fix (h) the set of fixed points of the map h.

Assertions K∅ and Kinv
∅ appear to be of a totally different nature than the

assertions preceding them, although in the proof we will see that they are actually
very close to Assertion E∅. Note that the equivalence D∅ ⇐⇒ F∅ ⇐⇒ G∅ ⇐⇒
H∅ (at least in the case when N = N+) appears as the Corollary on page 10 of the
paper [2] by Dress and Siebeneicher; they also more or less state the equivalence
F∅ ⇐⇒ G∅ ⇐⇒ H∅ ⇐⇒ Kinv

∅ (again, only in the case when N = N+) on page 3
(in the sentence encompassing formulas (1.5) and (1.6)).

”Almost” all of Theorem 60 follows from Theorem 30 just by setting A = Z;
the only thing that needs to be proven is the equivalence of Assertions K∅ and
Kinv
∅ to the other assertions. While the proof of this is rather easy, it will be long

because of lots of notations which we will need to introduce. Before we start with
this proof, let us make a definition which has already been made in Theorem 60:

Definition 60. Whenever S is a set and h : S → S is a map, we
denote by Fix (h) the set of fixed points of the map h.

We start with the following lemma, which will aid us in proving the implication
E∅ ⇐⇒ Kinv

∅ :

Lemma 61. Let N be a nest. Let (sn)n∈N ∈ NN be a family of
nonnegative integers. Then, there exists a set P and an invertible
map j : P → P such that every n ∈ N satisfies

|Fix (jn)| =
∑
d|n

dsd.

In order to prove this lemma, let us define the notion of a ”disjoint union” of
sets which are not necessarily a-priori disjoint:

Definition 61. Let I be a set. For every i ∈ I, let Ui be a set. Then,
we define

⊔
i∈I
Ui (where i is a symbol used for indexing) to be the set⋃

i∈I
{i}×Ui (which is a subset of I×

(⋃
i∈I
Ui

)
). This set

⊔
i∈I
Ui is called
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the disjoint union of the sets Ui over all i ∈ I. (Notice that each
i ∈ I satisfies {i} × Ui ∼= Ui as sets, and the sets {i} × Ui for distinct
i ∈ I are pairwise disjoint. Hence,

⊔
i∈I
Ui =

⋃
i∈I
{i} × Ui is a union of

pairwise disjoint sets which are isomorphic to the respective sets Ui.
This should not be confused with the union

⋃
i∈I
Ui, which can be much

smaller than
⊔
i∈I
Ui when the sets Ui are not pairwise disjoint.)

Definition 62. Let I be a set. For every i ∈ I, let Ui and Vi be
two sets and fi : Ui → Vi a map. Then, we define

⊔
i∈I
fi (where i is

a symbol used for indexing) to be the map F :
⊔
i∈I
Ui →

⊔
i∈I
Vi which

satisfies

(F (i, α) = (i, fi (α)) for every i ∈ I and every α ∈ Ui) .

This map
⊔
i∈I
fi is called the disjoint union of the maps fi over all

i ∈ I.

The disjoint union of maps has the following properties:

Proposition 62. Let I be a set. For every i ∈ I, let Ui, Vi and Wi

be three sets and fi : Ui → Vi and gi : Vi → Wi be two maps. Then,(⊔
i∈I

gi

)
◦

(⊔
i∈I

fi

)
=
⊔
i∈I

(gi ◦ fi)

as maps from
⊔
i∈I
Ui to

⊔
i∈I
Wi.

Proposition 63. Let I be a set. For every i ∈ I, let Ui be a set.
Then, the map

⊔
i∈I

idUi :
⊔
i∈I
Ui →

⊔
i∈I
Ui is the identity map.

Proposition 64. Let I be a set. For every i ∈ I, let Ui and Vi
be two sets and fi : Ui → Vi an invertible map. Then, the map⊔
i∈I
fi :

⊔
i∈I
Ui →

⊔
i∈I
Vi is also invertible and satisfies

(⊔
i∈I

fi

)−1

=
⊔
i∈I

(
f−1
i

)
.

Propositions 62, 63 and 64 belong to the very fundaments of mathematics and
will not be proven here.

Proof of Lemma 61 (sketched). Let J be the set
⊔
n∈N
{1, 2, ..., sn}. Then, J =⋃

n∈N
{n}×{1, 2, ..., sn} (by the definition of

⊔
n∈N
{1, 2, ..., sn}), so that J ⊆ N×N+.

Define a map r : N × N+ → N by

(r (n, i) = n for every (n, i) ∈ N × N+) .
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Since J ⊆ N × N+, it is clear that r (j) is defined for every j ∈ J .
Let us notice that every d ∈ N satisfies

{j ∈ J | r (j) = d} = {d} × {1, 2, ..., sd} (53)

and therefore

|{j ∈ J | r (j) = d}| = |{d} × {1, 2, ..., sd}| = |{d}|︸︷︷︸
=1

· |{1, 2, ..., sd}|︸ ︷︷ ︸
=sd

= sd. (54)

Let us now introduce some notations:

• For every positive integer d, we denote by Zd the ring Z� (dZ). This is a
finite commutative ring with size

|Zd| = d. (55)

• For every i ∈ N and every positive integer d, let id denote the residue class
of i modulo d. This residue class is an element of Z� (dZ) = Zd. Note
that the map Z → Z� (dZ) which sends every integer w to wd is a ring
homomorphism. Thus, 0d = 0, 1d = 1, and any two integers u and v satisfy
ud + vd = u+ vd and ud · vd = uvd.

• For every positive integer d and every integer u, define a map Pd,u : Zd → Zd
by

(Pd,u (x) = x+ ud for every x ∈ Zd) .

It is easy to see that

Pd,0 = idZd for every positive integer d. (56)

Moreover,

Pd,u◦Pd,v = Pd,u+v for every positive integer d and any u ∈ Z and v ∈ Z.
(57)

Finally,

P `
d,u = Pd,`u for every positive integer d, any u ∈ Z and any ` ∈ N.

(58)
Also, for every positive integer d and every u ∈ Z,

the map Pd,u : Zd → Zd is invertible. (59)

Now, let Q be the set
⊔
j∈J

Zr(j). Then, Q =
⊔
j∈J

Zr(j) =
⋃
j∈J
{j} × Zr(j) (by the

definition of
⊔
j∈J

Zr(j)).

Now, let α be the map
⊔
j∈J

Pr(j),1 :
⊔
j∈J

Zr(j) →
⊔
j∈J

Zr(j). This map is well-

defined since for every j ∈ J , the map Pr(j),1 : Zr(j) → Zr(j) is well-defined.
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We know that the map α is a map from
⊔
j∈J

Zr(j) to
⊔
j∈J

Zr(j). Since
⊔
j∈J

Zr(j) =

Q, this rewrites as follows: The map α is a map from Q to Q.
We know that Pr(j),1 : Zr(j) → Zr(j) is an invertible map for every j ∈ J (due

to (59), applied to r (j) and 1 instead of d and u). Thus, Proposition 64 (applied
to J , j, Zr(j), Zr(j) and Pr(j),1 instead of I, i, Ui, Vi and fi) yields that the map⊔
j∈J

Pr(j),1 :
⊔
j∈J

Zr(j) →
⊔
j∈J

Zr(j) is also invertible and satisfies

(⊔
j∈J

Pr(j),1

)−1

=⊔
j∈J

(
P−1
r(j),1

)
.

So we know that the map
⊔
j∈J

Pr(j),1 :
⊔
j∈J

Zr(j) →
⊔
j∈J

Zr(j) is invertible. Since

this map
⊔
j∈J

Pr(j),1 has been called α, this rewrites as follows: The map α is

invertible.
Also, every n ∈ N satisfies

αn =
⊔
j∈J

Pr(j),n. (60)

(Indeed, this is easy to see by induction over n, using the fact that α =
⊔
j∈J

Pr(j),1

as well as (57) and (56).)
Now fix an n ∈ N . It is easy to see that

Fix (αn) =
⋃
j∈J ;
r(j)|n

{j} × Zr(j)

(since (60) shows that an element of {j} × Zr(j) is fixed under αn if and only if
r (j) | n). Hence,

|Fix (αn)| =

∣∣∣∣∣∣∣∣
⋃
j∈J ;
r(j)|n

{j} × Zr(j)

∣∣∣∣∣∣∣∣ =
∑
j∈J ;
r(j)|n

∣∣{j} × Zr(j)∣∣︸ ︷︷ ︸
=|{j}|·|Zr(j)|(

since the sets {j} × Zr(j) are clearly pairwise disjoint for distinct j
)

=
∑
j∈J ;
r(j)|n

|{j}|︸︷︷︸
=1

·
∣∣Zr(j)∣∣︸ ︷︷ ︸

=r(j)
(by (55), applied to
r(j) instead of d)

=
∑
j∈J ;
r(j)|n

r (j)

=
∑
d∈N ;
d|n

∑
j∈J ;
r(j)=d

r (j)︸︷︷︸
=d

(since r(j)=d)

(since every j ∈ J such that r (j) = d satisfies r (j) ∈ N and r (j) | n)

=
∑
d∈N ;
d|n

d · (the number of all j ∈ J satisfying r (j) = d)︸ ︷︷ ︸
=|{j∈J | r(j)=d}|=sd

(by (54))

=
∑
d∈N ;
d|n

dsd =
∑
d|n;
d∈N

dsd =
∑
d|n

dsd
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(since every divisor d of n satisfies d ∈ N anyway).
Now forget that we fixed n. We thus have shown that every n ∈ N satisfies

|Fix (αn)| =
∑
d|n
dsd. Moreover, we know that α : Q→ Q is invertible.

Hence, there exists a set P and an invertible map j : P → P such that every
n ∈ N satisfies

|Fix (jn)| =
∑
d|n

dsd

(namely, we can take P = Q and j = α). Lemma 61 is thus proven.
Lemma 61 almost completely takes care of the implication E∅ =⇒ Kinv

∅ (we
will show this argument in details later). Let us now state a fact to which the
implication K∅ =⇒ E∅ boils down to:

Proposition 65. Let N be a nest. Let P be a set, and j : P → P
be a map. Assume that every n ∈ N satisfies |Fix (jn)| < ∞. Then,
there exists a family (sn)n∈N ∈ NN of nonnegative integers such
that every n ∈ N satisfies

|Fix (jn)| =
∑
d|n

dsd.

Before we start proving this, let us state a simple lemma:

Lemma 66. Let P be a set. Let j : P → P be a map. Let n and m
be nonnegative integers such that m | n. Then, Fix (jm) ⊆ Fix (jn).

The proof of this is a well-known induction argument and left to the reader.
We record another lemma:

Lemma 67. Let X be a finite set. Let j : X → X be a map. Let
n ∈ N+. Assume that

every x ∈ X satisfies jn (x) = x. (61)

Assume also that

every x ∈ X and k ∈ {1, 2, ..., n− 1} satisfy jk (x) 6= x. (62)

Then, |X| is a nonnegative integer divisible by n.

Again, this is a well-known fact. Here is a very brief sketch of its proof:
Proof of Lemma 67 (sketched). Clearly, |X| is a nonnegative integer (since X

is finite). Let Zn be the cyclic group with n elements, and ζ a generator of Zn.
Then, the group Zn can be presented by its generator ζ with the only relation
being ζn = 1. But from (61), we know that jn = idX . Hence, we can define
a group action of the group Zn on the set X by letting ζ · x = j (x) for every
x ∈ X. This action is free (due to (62)). Hence, every orbit under this action has
size |Zn| = n. But the set X is the disjoint union of all orbits under the action.
Hence, |X| is the sum of the sizes of these orbits. Since the size of each orbit is
n, this yields that |X| is the sum of several n’s. Thus, |X| is divisible by n. This
proves Lemma 67.

Finally, one more classical lemma:
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Lemma 68. Let X be a set. Let j : X → X be a map. Let
x ∈ X. Assume that the set {m ∈ N+ | jm (x) = x} is nonempty.
Then, there exists an f ∈ N+ such that

{m ∈ N+ | jm (x) = x} = f · N+.

Lemma 68 is a well-known fact (even if not usually written in this form). It is
(more or less) the reason why every element of a finite group has a well-defined or-
der. The proof proceeds by letting f be the smallest element of {m ∈ N+ | jm (x) = x}
(indeed, such an element exists because {m ∈ N+ | jm (x) = x} is a nonempty
subset of N+), and showing that {m ∈ N+ | jm (x) = x} = f · N+ (this uses
division with remainder). We will not give any more details on this proof.

Proof of Proposition 65. For every n ∈ N , define a subset Fn of Fix (jn) by

Fn = (Fix (jn)) \
⋃
e∈N ;
e<n

(Fix (je)) . (63)

Since Fn is a subset of Fix (jn), we have

|Fn| ≤ |Fix (jn)| <∞ for every n ∈ N.

That is, Fn is a finite set for every n ∈ N .
Now, we are going to show the following assertions:
Assertion 1: Every n ∈ N satisfies

Fix (jn) =
⋃
d∈N ;
d|n

Fd.

Assertion 2: The sets Fd for distinct d ∈ N are pairwise disjoint.
Assertion 3: For every n ∈ N , we have

|Fix (jn)| =
∑
d∈N ;
d|n

|Fd| .

Assertion 4: For every n ∈ N , the number |Fn| is a nonnegative integer
divisible by n.

Proof of Assertion 1: Let n ∈ N . Since N is a nest, this yields that every
divisor of n lies in N (because every divisor of an element of a nest must lie in
that nest).

Let x ∈ Fix (jn) be arbitrary. We are going to show that x ∈
⋃
d∈N ;
d|n

Fd.

Indeed, we know that x ∈ Fix (jn). That is, x is a fixed point of the map jn.
Thus jn (x) = x.

Now, n ∈ N ⊆ N+ and jn (x) = x. Hence, there exists an m ∈ N+ such that
jm (x) = x (namely, m = n). In other words, the set {m ∈ N+ | jm (x) = x} is
nonempty. Hence, Lemma 68 (applied to P instead of X) yields that there exists
an f ∈ N+ such that

{m ∈ N+ | jm (x) = x} = f · N+. (64)
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Consider this f .
Since n ∈ N+ and jn (x) = x, we have n ∈ {m ∈ N+ | jm (x) = x} = f · N+

(by (64)). Thus, f | n. Since f ∈ N+, this yields that f is a divisor of n. Since
every divisor of n lies in N , this yields that f lies in N . Thus, f ∈ N . On the
other hand,

f = f · 1︸︷︷︸
∈N+

∈ f · N+ = {m ∈ N+ | jm (x) = x} (by (64)) ,

so that f ∈ N+ and jf (x) = x. We can rewrite jf (x) = x as x ∈ Fix
(
jf
)
.

On the other hand, it is easy to see (using (64)) that

x /∈
⋃
e∈N ;
e<f

(Fix (je))

22. Combining this with x ∈ Fix
(
jf
)
, we obtain

x ∈
(
Fix

(
jf
))
\
⋃
e∈N ;
e<f

(Fix (je)) = Ff

(since Ff =
(
Fix

(
jf
))
\
⋃
e∈N ;
e<f

(Fix (je)) by the definition of Ff ). Thus, x ∈ Ff ⊆⋃
d∈N ;
d|n

Fd (since f is an element of N satisfying f | n).

Now, forget that we have fixed x. We thus have shown that every x ∈ Fix (jn)
satisfies x ∈

⋃
d∈N ;
d|n

Fd. In other words,

Fix (jn) ⊆
⋃
d∈N ;
d|n

Fd. (65)

Now, let y be any element of
⋃
d∈N ;
d|n

Fd. We are going to prove that y ∈ Fix (jn).

Since y ∈
⋃
d∈N ;
d|n

Fd, there exists a g ∈ N satisfying g | n satisfying y ∈ Fg.

Consider this g. Since g ∈ N ⊆ N+, we know that g is a nonnegative integer.
Now,

y ∈ Fg = (Fix (jg)) \
⋃
e∈N ;
e<g

(Fix (je)) (by the definition of Fg)

⊆ Fix (jg) ⊆ Fix (jn) (by Lemma 66, applied to g instead of m (since g | n)) .

22Proof: Assume (for the sake of contradiction) that x ∈
⋃
e∈N ;
e<f

(Fix (je)). Then, there exists

an element e ∈ N satisfying e < f such that x ∈ Fix (je). Consider this e.
We have x ∈ Fix (je). This means that je (x) = x. Also, e ∈ N ⊆ N+. Since e ∈ N+ and

je (x) = x, we have e ∈ {m ∈ N+ | jm (x) = x} = f · N+ (by (64)). Since every element of
f ·N+ is ≥ f , this shows that e ≥ f . But this contradicts e < f . This contradiction shows that
our assumption (that x ∈

⋃
e∈N ;
e<f

(Fix (je))) was wrong. Hence, we have x /∈
⋃
e∈N ;
e<f

(Fix (je)), qed.
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Now, forget that we fixed y. We thus have proven that every y ∈
⋃
d∈N ;
d|n

Fd

satisfies y ∈ Fix (jn). In other words,⋃
d∈N ;
d|n

Fd ⊆ Fix (jn) .

Combined with (65), this yields Fix (jn) =
⋃
d∈N ;
d|n

Fd. This proves Assertion 1.

Proof of Assertion 2: Let d1 and d2 be two distinct elements of N . We are
going to prove that the sets Fd1 and Fd2 are disjoint.

Indeed, since d1 and d2 are distinct, we have either d1 < d2 or d2 < d1. Since
the situation is symmetric with respect to d1 and d2, we can WLOG assume that
d1 < d2. So assume this.

Let x ∈ Fd1 ∩ Fd2 .
By the definition of Fd1 , we have

Fd1 =
(
Fix

(
jd1
))
\
⋃
e∈N ;
e<d1

(Fix (je)) ⊆ Fix
(
jd1
)
.

Now, x ∈ Fd1∩Fd2 ⊆ Fd1 ⊆ Fix
(
jd1
)
⊆
⋃
e∈N ;
e<d2

(Fix (je)) (since d1 ∈ N and d1 < d2).

But by the definition of Fd2 , we have

Fd2 =
(
Fix

(
jd2
))
\
⋃
e∈N ;
e<d2

(Fix (je)) .

Thus, x ∈ Fd1 ∩ Fd2 ⊆ Fd2 =
(
Fix

(
jd2
))
\
⋃
e∈N ;
e<d2

(Fix (je)). Consequently, x /∈⋃
e∈N ;
e<d2

(Fix (je)). This contradicts the fact that x ∈
⋃
e∈N ;
e<d2

(Fix (je)).

Now forget that we fixed x. We thus have found a contradiction for every
x ∈ Fd1 ∩ Fd2 . In other words, there exists no x ∈ Fd1 ∩ Fd2 . In other words,
Fd1 ∩ Fd2 = ∅. We thus have shown that the sets Fd1 and Fd2 are disjoint.

Now forget that we fixed d1 and d2. We thus have proven that for any two
distinct elements d1 and d2 of N , the sets Fd1 and Fd2 are disjoint. In other words:
The sets Fd for distinct d ∈ N are pairwise disjoint. This proves Assertion 2.

Proof of Assertion 3: Let n ∈ N . Assertion 2 says that the sets Fd for distinct
d ∈ N are pairwise disjoint. In particular, this yields that the sets Fd for distinct
d ∈ N satisfying d | n are pairwise disjoint. Hence, the union

⋃
d∈N ;
d|n

Fd is a union

of pairwise disjoint sets, so that we have

∣∣∣∣∣∣∣
⋃
d∈N ;
d|n

Fd

∣∣∣∣∣∣∣ =
∑
d∈N ;
d|n

|Fd|. But Assertion 1
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yields Fix (jn) =
⋃
d∈N ;
d|n

Fd, and thus

|Fix (jn)| =

∣∣∣∣∣∣∣∣
⋃
d∈N ;
d|n

Fd

∣∣∣∣∣∣∣∣ =
∑
d∈N ;
d|n

|Fd| .

This proves Assertion 3.
Proof of Assertion 4: Let n ∈ N . Since N is a nest, this yields that every

divisor of n lies in N (because every divisor of an element of a nest must lie in
that nest).

Clearly, n ∈ N ⊆ N+. It is now easy to see that

every x ∈ Fn satisfies jn (x) = x. (66)

23

Furthermore,

every x ∈ Fn and k ∈ {1, 2, ..., n− 1} satisfy jk (x) 6= x. (67)

24

23Proof of (66): Let x ∈ Fn. Then,

x ∈ Fn = (Fix (jn)) \
⋃
e∈N ;
e<n

(Fix (je)) ⊆ Fix (jn) .

Hence, x is a fixed point of the map jn. In other words, jn (x) = x. This proves (66).
24Proof of (67): Let x ∈ Fn and k ∈ {1, 2, ..., n− 1}. Assume (for the sake of contradiction)

that jk (x) = x.
So we have k ∈ {1, 2, ..., n− 1} ⊆ N+ and jk (x) = x. Hence, there exists an m ∈ N+ such

that jm (x) = x (namely, m = k). In other words, the set {m ∈ N+ | jm (x) = x} is nonempty.
Thus, Lemma 68 yields that there exists an f ∈ N+ such that

{m ∈ N+ | jm (x) = x} = f · N+. (68)

Consider this f .
Since n ∈ N+ and jn (x) = x (by (66)), we have n ∈ {m ∈ N+ | jm (x) = x} = f · N+ (by

(68)). Thus, f | n. Since f ∈ N+, this shows that f is a divisor of n. Since every divisor of n
lies in N , this shows that f ∈ N .

On the other hand, since k ∈ N+ and jk (x) = x, we have k ∈ {m ∈ N+ | jm (x) = x} =
f · N+ (by (68)). Thus, f | k. Since k ∈ N+, this yields that f ≤ k. But k < n (since
k ∈ {1, 2, ..., n− 1}). Thus, f ≤ k < n.

Now,
f = f · 1︸︷︷︸

∈N+

∈ f · N+ = {m ∈ N+ | jm (x) = x} (by (68)) ,

so that f ∈ N+ and jf (x) = x. In other words, x is a fixed point of the map jf , so that

x ∈ Fix
(
jf
)
⊆
⋃
e∈N ;
e<n

(Fix (je)) (69)

(since f ∈ N and f < n).
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Now we know that (66) and (67) hold, and that Fn is a finite set. Thus we
can almost apply Lemma 67 to Fn instead of X; the only thing that prevents us
from doing so is the fact that j is a map P → P rather than a map Fn → Fn.
But we can easily see that j (Fn) ⊆ Fn (mainly using (66)), which means that
j restricts to a map Fn → Fn. Applying Lemma 67 to Fn and this restriction
instead of X and j, we conclude that |Fn| is a nonnegative integer divisible by n.
This proves Assertion 4.

We have now proven all four assertions 1, 2, 3 and 4. It is now very easy

to conclude the proof of Proposition 65: We know that

(
|Fn|
n

)
n∈N

is a family

of nonnegative integers (since, for every n ∈ N , Assertion 4 yields that |Fn| is a

nonnegative integer divisible by n, so that
|Fn|
n

is a nonnegative integer). That

is,

(
|Fn|
n

)
n∈N
∈ NN . Moreover, for every n ∈ N , we have

|Fix (jn)| =
∑
d∈N ;
d|n

|Fd|︸︷︷︸
=d·
|Fd|
d

(by Assertion 3)

=
∑
d∈N ;
d|n

d · |Fd|
d
.

Hence, there exists a family (sn)n∈N ∈ NN of nonnegative integers such that
every n ∈ N satisfies

|Fix (jn)| =
∑
d|n

dsd

(namely,

(
|Fn|
n

)
n∈N

is such a family). Proposition 65 is thus proven.

Proof of Theorem 60. Set A = Z. Thus, elements of A are the same thing as
integers. From Proposition 5, we know that Z is a binomial ring. In other words,
A is a binomial ring (since A = Z).

By Theorem 30, the assertions Cbin, Dbin, D′bin, Dexpl
bin , Dexpl ′

bin , Ebin, E ′bin, Fbin,
Gbin, Hbin, Ibin and I ′bin listed in Theorem 30 are equivalent.

Now, comparing the assertions Cbin, Dbin, D′bin, Dexpl
bin , Dexpl ′

bin , Ebin, E ′bin, Fbin,

Gbin, Hbin, Ibin and I ′bin with the respective assertions C∅, D∅, D′∅, Dexpl
∅ , Dexpl ′

∅ ,
E∅, E ′∅, F∅, G∅, H∅, I∅ and I ′∅, we notice that:

• we have Cbin ⇐⇒ C∅ (since A = Z);

But
x ∈ Fn = (Fix (jn)) \

⋃
e∈N ;
e<n

(Fix (je))

(by the definition of Fn). Hence, x /∈
⋃
e∈N ;
e<n

(Fix (je)). This contradicts (69). This contradiction

shows that our assumption (that jk (x) = x) was wrong. Thus, jk (x) 6= x. This proves (67).
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• we have Dbin ⇐⇒ D∅ (because A = Z and because elements of A are the
same thing as integers);

• we have D′bin ⇐⇒ D′∅ (because A = Z and because elements of A are the
same thing as integers);

• we have Dexpl
bin ⇐⇒ D

expl
∅ (because A = Z and because elements of A are the

same thing as integers);

• we have Dexpl ′
bin ⇐⇒ Dexpl ′

∅ (because A = Z and because elements of A are
the same thing as integers);

• we have Ebin ⇐⇒ E∅ (because A = Z and because elements of A are the
same thing as integers);

• we have E ′bin ⇐⇒ E ′∅ (because A = Z and because elements of A are the
same thing as integers);

• we have Fbin ⇐⇒ F∅ (since A = Z);

• we have Gbin ⇐⇒ G∅ (since A = Z);

• we have Hbin ⇐⇒ H∅ (since A = Z);

• we have Ibin ⇐⇒ I∅ (because A = Z and because elements of A are the
same thing as integers);

• we have I ′bin ⇐⇒ I ′∅ (because A = Z and because elements of A are the
same thing as integers).

Hence, the (already proven) equivalence of the assertions Cbin, Dbin, D′bin,
Dexpl

bin , Dexpl ′
bin , Ebin, E ′bin, Fbin, Gbin, Hbin, Ibin and I ′bin yields the equivalence of the

assertions C∅, D∅, D′∅, Dexpl
∅ , Dexpl ′

∅ , E∅, E ′∅, F∅, G∅, H∅, I∅ and I ′∅.
Now let us prove the equivalence of these assertions with the remaining two

assertions K∅ and Kinv
∅ . We will do this by proving the implications E∅ =⇒ Kinv

∅ ,
Kinv
∅ =⇒ K∅ and K∅ =⇒ E∅.

Proof of the implication E∅ =⇒ Kinv
∅ : Assume that Assertion E∅ holds. In

other words, there exists a family (yn)n∈N ∈ ZN of integers such thatbn =
∑
d|n

dyd for every n ∈ N

 . (70)

Consider such a family (yn)n∈N . For every n ∈ N , define an integer y′n by y′n =
max {0, yn}. For every n ∈ N , define an integer y′′n by y′′n = max {0,−yn}.

It is completely straightforward to see that

y′n − y′′n = yn for every n ∈ N (71)

(since every a ∈ Z satisfies max {0, a} −max {0,−a} = a).
For every n ∈ N , the integer y′n is nonnegative (since y′n = max {0, yn} ≥ 0).

Thus, (y′n)n∈N is a family of nonnegative integers. That is, (y′n)n∈N ∈ NN . Hence,
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Lemma 61 (applied to (sn)n∈N = (y′n)n∈N) yields that there exists a set P ′ and
an invertible map j′ : P ′ → P ′ such that every n ∈ N satisfies

|Fix (j′n)| =
∑
d|n

dy′d.

Consider this P ′ and this j′.
For every n ∈ N , the integer y′′n is nonnegative (since y′′n = max {0,−yn} ≥ 0).

Thus, (y′′n)n∈N is a family of nonnegative integers. That is, (y′′n)n∈N ∈ NN . Hence,
Lemma 61 (applied to (sn)n∈N = (y′′n)n∈N) yields that there exists a set P ′′ and
an invertible map j′′ : P ′′ → P ′′ such that every n ∈ N satisfies

|Fix (j′′n)| =
∑
d|n

dy′′d .

Consider this P ′′ and this j′′.
Now, every n ∈ N satisfies

|Fix (j′n)| =
∑
d|n

dy′d <∞,

|Fix (j′′n)| =
∑
d|n

dy′′d <∞

and

|Fix (j′n)|︸ ︷︷ ︸
=
∑
d|n

dy′d

− |Fix (j′′n)|︸ ︷︷ ︸
=
∑
d|n

dy′′d

=
∑
d|n

dy′d −
∑
d|n

dy′′d

=
∑
d|n

d (y′d − y′′d)︸ ︷︷ ︸
=yd

(by (71), applied to d instead of n)

=
∑
d|n

dyd = bn (by (70)) .

Hence, there exist two sets U and V and two invertible maps f : U → U and
g : V → V such that every n ∈ N satisfies

|Fix (fn)| <∞, |Fix (gn)| <∞ and |Fix (fn)|− |Fix (gn)| = bn

(namely, we can take U = P ′, V = P ′′, f = j′ and g = j′′). In other words,
Assertion Kinv

∅ holds. We have thus proven Assertion Kinv
∅ under the assumption

of Assertion E∅. In other words, the implication E∅ =⇒ Kinv
∅ is proven.

Proof of the implication Kinv
∅ =⇒ K∅: The implication Kinv

∅ =⇒ K∅ is ob-
viously valid (because the statement of Assertion K∅ is clearly contained in the
statement of Assertion Kinv

∅ ).
Proof of the implication K∅ =⇒ E∅: Assume that Assertion K∅ holds. In

other words, there exist two sets U and V and two maps f : U → U and g : V → V
such that every n ∈ N satisfies

|Fix (fn)| <∞, |Fix (gn)| <∞ and |Fix (fn)|− |Fix (gn)| = bn.
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Consider these two sets U and V and these two maps f and g.
We know that every n ∈ N satisfies |Fix (fn)| < ∞. Hence, Proposition

65 (applied to U and f instead of P and j) yields that there exists a family
(sn)n∈N ∈ NN of nonnegative integers such that every n ∈ N satisfies

|Fix (fn)| =
∑
d|n

dsd.

Denote this family (sn)n∈N by (αn)n∈N . Thus, (αn)n∈N is a family of nonnega-
tive integers such that every n ∈ N satisfies

|Fix (fn)| =
∑
d|n

dαd. (72)

We know that every n ∈ N satisfies |Fix (gn)| < ∞. Hence, Proposition
65 (applied to V and g instead of P and j) yields that there exists a family
(sn)n∈N ∈ NN of nonnegative integers such that every n ∈ N satisfies

|Fix (gn)| =
∑
d|n

dsd.

Denote this family (sn)n∈N by (βn)n∈N . Thus, (βn)n∈N is a family of nonnega-
tive integers such that every n ∈ N satisfies

|Fix (gn)| =
∑
d|n

dβd. (73)

For every n ∈ N , it is clear that αn − βn is an integer (since αn and βn are
nonnegative integers). Thus, (αn − βn)n∈N is a family of integers, i. e., we have
(αn − βn)n∈N ∈ ZN .

Also, recall that every n ∈ N satisfies |Fix (fn)|− |Fix (gn)| = bn. Thus, every
n ∈ N satisfies

bn = |Fix (fn)|︸ ︷︷ ︸
=
∑
d|n

dαd

(by (72))

− |Fix (gn)|︸ ︷︷ ︸
=
∑
d|n

dβd

(by (73))

=
∑
d|n

dαd −
∑
d|n

dβd =
∑
d|n

d (αd − βd) .

Hence, there exists a family (yn)n∈N ∈ ZN of integers such thatbn =
∑
d|n

dyd for every n ∈ N


(namely, the family (αn − βn)n∈N). In other words, Assertion E∅ holds. We have
thus proven Assertion E∅ under the assumption of Assertion K∅. In other words,
the implication K∅ =⇒ E∅ is proven.

Now we have proven the implications E∅ =⇒ Kinv
∅ , Kinv

∅ =⇒ K∅ and K∅ =⇒
E∅. Combining these three implications, we obtain the equivalence E∅ ⇐⇒
Kinv
∅ ⇐⇒ K∅.
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Now recall that the assertions C∅, D∅, D′∅, Dexpl
∅ , Dexpl ′

∅ , E∅, E ′∅, F∅, G∅, H∅,
I∅ and I ′∅ are equivalent. Combining this with the equivalence E∅ ⇐⇒ Kinv

∅ ⇐⇒
K∅, we conclude that the assertions C∅, D∅, D′∅, Dexpl

∅ , Dexpl ′
∅ , E∅, E ′∅, F∅, G∅,

H∅, I∅, I ′∅, K∅ and Kinv
∅ are equivalent. Theorem 60 is thus proven.

We will not dwell on particular cases and applications of Theorem 60, since
most of them have been already discussed in [5]. While our Theorem 60 is stronger
than Theorem 15 of [5], it seems that Theorem 15 of [5] is enough for most of the
interesting applications25, so we wouldn’t gain much from applying Theorem 60.

What we will do, however, is formulate and prove a ”finite” version of Theorem
60:

Theorem 70. Let N be a finite nest. Let (bn)n∈N ∈ ZN be a family

of integers. Then, the assertions C∅, D∅, D′∅, Dexpl
∅ , Dexpl ′

∅ , E∅, E ′∅,
F∅, G∅, H∅, I∅, I ′∅, K∅, Kinv

∅ , Kfin
∅ and Kfin inv

∅ are equivalent, where

the assertions C∅, D∅, D′∅, Dexpl
∅ , Dexpl ′

∅ , E∅, E ′∅, F∅, G∅, H∅, I∅, I ′∅,
K∅ and Kinv

∅ are the ones stated in Theorem 60, and the assertions
Kfin
∅ and Kfin inv

∅ are the following ones:

Assertion Kfin
∅ : There exist two finite sets U and V and two maps

f : U → U and g : V → V such that every n ∈ N satisfies

|Fix (fn)| − |Fix (gn)| = bn.

Here, whenever S is a set and h : S → S is a map, we denote by
Fix (h) the set of fixed points of the map h.

Assertion Kfin inv
∅ : There exist two finite sets U and V and two in-

vertible maps f : U → U and g : V → V such that every n ∈ N
satisfies

|Fix (fn)| − |Fix (gn)| = bn.

Here, whenever S is a set and h : S → S is a map, we denote by
Fix (h) the set of fixed points of the map h.

The proof of this relies on the following ”finite” version of Lemma 61:

Lemma 71. Let N be a finite nest. Let (sn)n∈N ∈ NN be a family
of nonnegative integers. Then, there exists a finite set P and an
invertible map j : P → P such that every n ∈ N satisfies

|Fix (jn)| =
∑
d|n

dsd.

The proof of Lemma 71 proceeds exactly as the proof of Lemma 61, except
that one also has to notice that Q is finite. The trivial details are left to the
reader.

The proof of Theorem 70, too, proceeds exactly as the proof of Theorem 60,
with obvious changes to account for finiteness conditions.

25In particular, applying Assertion Kinv
∅ to families like (bn)n∈N+

= (qn)n∈N+
and (bn)n∈N+

=((
qn

rn

))
n∈N+

gives results which could be derived in a better way combinatorially.
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