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§1. Definitions and basic results from [5]

The purpose of this note is applying results from [5] to the particular case of
binomial rings, and extend them (in this particular case) by additional equivalent
assertions.

We start by introducing notation that will be used. The following definitions
1,2,3,4,5,6,7,8,9 and 10 are copied from [5].

Definition 1. Let P denote the set of all primes. (A prime means an
integer n > 1 such that the only divisors of n are n and 1. The word
”divisor” means ”positive divisor”.)

Definition 2. We denote the set {0,1,2,...} by N, and we denote
the set {1,2,3,...} by N;. (Note that our notations conflict with the
notations used by Hazewinkel in [I]; in fact, Hazewinkel uses the letter
N for the set {1, 2,3, ...}, which we denote by N,.)

Definition 3. Let = be a family of symbols. We consider the poly-
nomial ring @Q [Z] (this is the polynomial ring over Q in the indeter-
minates =; in other words, we use the symbols from = as variables
for the polynomials) and its subring Z [=] (this is the polynomial ring
over Z in the indeterminates Z). EI For any n € N, let =" mean the
family of the n-th powers of all elements of our family = (considered
as elements of Z [Z]) Pl (Therefore, whenever P € Q[Z] is a polyno-
mial, then P (Z") is the polynomial obtained from P after replacing
every indeterminate by its n-th powerﬂ)

Note that if = is the empty family, then Q[Z] simply is the ring Q,
and Z [Z] simply is the ring Z.
Definition 4. If m and n are two integers, then we write m L n if

and only if m is coprime to n. If m is an integer and S' is a set, then
we write m L S if and only if (m L n for every n € 5).

'For instance, = can be (Xo, X1, Xa,...), in which case Z[Z] means Z[Xq, X1, X2, ...].
Or, Z can be (Xo,X1,Xo,.;Yo,1,Ys,...; 20,21, Z5,...), in which case Z[Z] means
Z[XOaXlaXQa"';YE);Y17Y27"';ZOaZbZ27"'}'

’In  other words, if Z = (§i)iers  then we define =" as (),
For instance, if Z = (X0, X1,Xo,...), then ZE" = (Xg, X1, Xy, ...
If = = (Xo,Xl,Xg,...;Yo,Yl,Yé,...;Zo,Zl,Zg,...), then =" =

(X6L7X1an§7 7}/071’ Y1n7Y2na ey Zgba Zf‘7 Zga )
3For instance, if 2 = (Xo, X1, X2,...) and P(Z) = (X + X1)* — 2X5 + 1, then P (E") =
(XP 4+ X7 —2X7 + 1.



Definition 5. A nest means a nonempty subset N of N such that
for every element d € N, every divisor of d lies in N.

Here are some examples of nests: For instance, N, itself is a nest.
For every prime p, the set {1,p,p? p?, ...} is a nest; we denote this
nest by p". For any integer m, the set {n € Ny |n L m} is a nest;
we denote this nest by N,,,. For any positive integer m, the set
{n € Ny |n<m} is a nest; we denote this nest by N.,,. For any
integer m, the set {n € N, | (n | m)} is a nest; we denote this nest by
Njm. Another example of a nest is the set {1,2,3,5,6,10}.

Clearly, every nest N contains the element 1 E|

Definition 6. If N is a setﬂ we shall denote by Xy the family
(Xn),en of distinet symbols. Hence, Z [Xy] is the ring Z [(X,,),,cy]
(this is the polynomial ring over Z in |N| indeterminates, where
the indeterminates are labelled X,,, where n runs through the ele-
ments of the set N). For instance, Z [XN J is the polynomial ring
Z[X1, X5, X3, ...] (since N = {1,2,3,...}), and Z [ X{1235,6,103] is the
polynomial ring Z [ X1, Xo, X3, X5, Xg, X10]-

If A is a commutative ring with unity, if N is a set, if (z4) ;. € AV is
a family of elements of A indexed by elements of N, and if P € Z [Xy],
then we denote by P ((z4),cy) the element of A that we obtain if we
substitute x4 for X, for every d € N into the polynomial P. (For
instance, if N = {1,2,5} and P = X? + X, X5 — X5, and if 7; = 13,
Ty = 37 and x5 = 666, then P ((z4),ey) = 13* 4+ 37 - 666 — 666.)

We notice that whenever N and M are two sets satisfying N C M,
then we canonically identify Z [Xy| with a subring of Z[X,]. In
particular, when P € Z[Xy] is a polynomial, and A is a commutative
ring with unity, and (2,,),,c,; € AY is a family of elements of A,
then P ((zm),,cps) means P ((2),,cn). (Thus, the elements z,, for
m € M\ N are simply ignored when evaluating P ((zm),,c,/)-) In
particular, if N C N, and (21, 75, 23, ...) € AN+ then P (xy, 25, 23, ...)
means P ((Zm)nen)-

Definition 7. For any n € N, we define a polynomial w,, € Z [XNM}

by
w, = Z dX;/d.
dn

Hence, for every commutative ring A with unity, and for any family
(a:k)keNl € AN of elements of A, we have

Wn, ((xk)k:eN‘n> = Zd‘rs/d'

din

4In fact, there exists some n € N (since N is a nest and thus nonempty), and thus 1 € N
(since 1 is a divisor of n, and every divisor of n must lie in N because N is a nest).

We will use this notation only for the case of N being a nest. However, it equally makes
sense for any arbitrary set N.



As explained in Definition 6, if V is a set containing Ny, if A is a com-
mutative ring with unity, and (z;),cy € AN is a family of elements

of A, then wy, ((zx),cy) means wy, ((:Ek)keNl ); in other words,

Wn ((Th)pen) = Z daly”.

dn

The polynomials wq, ws, ws, ... are called the big Witt polynomials or,
simply, the Witt polynommlsﬁ

Definition 8. Let n € Z\ {0}. Let p € P. We denote by v, (n) the
largest nonnegative integer m satisfying p™ | n. Clearly, p**™ | n and
v, (n) > 0. Besides, v, (n) = 0 if and only if p { n.

We also set v, (0) = oo; this way, our definition of v, (n) extends to
all n € Z (and not only to n € Z\ {0}).

Definition 9. Let n € N,. We denote by PF n the set of all prime
divisors of n. By the unique factorization theorem, the set PFn is

finite and satisfies n = [ p%®™.
pePFn

Definition 10. An Abelian group A is called torsionfree if and only
if every element a € A and every n € N, such that na = 0 satisfy
a=0.

A ring R is called torsionfree if and only if the Abelian group (R, +)
is torsionfree.

Let us state a couple of theorems whose proofs we will mostly skip:

Theorem 1. Let N be a nest. Let A be a commutative ring with
unity. For every p €e PN N, let ¢, : A — A be an endomorphism of
the ring A such that

(pp (@) = a” mod pA holds for every a € Aandp e PNN). (1)

Let (by),cn € AY be a family of elements of A. Then, the following
three assertions C, D and D! are equivalent:

Assertion C: Every n € N and every p € PF n satisfies
©p (b p) = b, mod p**™ A, (2)

Assertion D: There exists a family (z,),.x € AY of elements of A
such that
(bn =w, ((xk)keN) for every n € N) )

6 Caution: These polynomials are referred to as w;, ws, w3, ... most of the time in [I]
(beginning with Section 9). However, in Sections 5-8 of [I], Hazewinkel uses the notations
wy, we, ws, ... for some different polynomials (the so-called p-adic Witt polynomials, defined
by formula (5.1) in [I]), which are not the same as our polynomials wy, wa, ws, ... (though
they are related to them: namely, the polynomial denoted by wy in Sections 5-8 of [I] is the
polynomial that we are denoting by w,» here after a renaming of variables; on the other hand,
the polynomial that we call wy, here is something completely different).



Assertion D™P': There exists a family (2,),.y € A" of elements of
A such that

b, = Z dxg/ “ for every n € N
dln

Proof of Theorem 1. According to Theorem 4 of [5], the assertions C and D
are equivalent.
On the other hand, if (z,), .y € AV is a family of elements of A, then every
n € N satisfies w, ((z)ey) = S dz"?. Therefore, the assertions D and D!
din

are equivalent. Combining this with the fact that the assertions C and D are
equivalent, we conclude that the three assertions C, D and D***! are equivalent.
This proves Theorem 1.

Theorem 2. Let N be a nest. Let A be a torsionfree commuta-
tive ring with unity. For every p € PN N, let ¢, : A — A be an
endomorphism of the ring A such that holds.

Let (by),cy € AY be a family of elements of A. Then, the five asser-
tions C, D, D', D™P' and D™P" are equivalent, where the assertions
C, D and D! are the ones stated in Theorem 1, and the assertions
D’ and D=PV are the following ones:

Assertion D': There exists one and only one family (z,,),, .y € AV of
elements of A such that

(by = wy, (k) 4en) for every n € N). (3)

Assertion DV : There exists one and only one family () pen € AN
of elements of A such that

b, = Z d:cg/ “for every n € N
dn

Proof of Theorem 2. Whenever (z,,),.x € A" is a family of elements of A,
n,/d

every n € N satisfies w, ((z4),cn) = > day”". Hence, the assertions D’ and
In
DP are equivalent.

But according to Theorem 9 of [5], the assertions C, D and D’ are equivalent.
Combined with the fact that the assertions D’ and D*P! are equivalent, this
yields that the four assertions C, D, D' and D*P! are equivalent. Combined with
the fact that the assertions C, D and D*®! are equivalent (this is due to Theorem
1), this yields that the five assertions C, D, D', D™P! and D*P! are equivalent.
This proves Theorem 2.



Theorem 3. Let N be a nest. Let A be a commutative ring with
unity. For every n € N, let ¢, : A — A be an endomorphism of the
ring A. Assume that

(pr=id)  and (4)
(©n © Pm = @nm for every n € N and every m € N satisfying nm € N).

(5)
Also, assume that holds.

Let (by), oy € AY be a family of elements of A. Then, the assertions
C, D, D= £ F., G and H are equivalent, where the assertions C, D
and D*P! are the ones stated in Theorem 1, and the assertions &, F,
G and H are the following ones:

Assertion £: There exists a family (y,),cy € A" of elements of A
such that

b, = Z dnda(ya) for every n € N
d|n

Assertion F: Every n € N satisfies

Z 1 (d) q (bn,q) € nA.

dln
Assertion G: Every n € N satisfies

3" 6(d) pa(baa) € nA.
d

Assertion H: Every n € N satisfies

Z P,/ ged(in) (bgcd(i,n)) € nA.

i=1

Proof of Theorem 3. According to Theorem 5 of [5], the five assertions C, &,
F, G and H are equivalent. Combined with the fact that the three assertions
C, D and D! are equivalent (this is due to Theorem 1), this yields that the
assertions C, D, D=P! £ F, G and H are equivalent. This proves Theorem 3.

Theorem 4. Let N be a nest. Let A be a torsionfree commutative
ring with unity. For everyn € N, let ¢, : A — A be an endomorphism
of the ring A such that the conditions , and are satisfied.

Let (bn),cn € AN be a family of elements of A. Then, the assertions
C, D, D, Dl vl g ¢ F G and H are equivalent, where:

e the assertions C, D and D***! are the ones stated in Theorem 1,

5



e the assertions D’ and DP! are the ones stated in Theorem 2,
e the assertions £, F, G and H are the ones stated in Theorem 3, and

e the assertion &’ is the following one:

Assertion £': There exists one and only one family (y,),cn € AN of
elements of A such that

b, = Z dn a (ya) for every n € N | . (6)
din

Proof of Theorem 4. Theorem 7 of [5] yields that the six assertions C, &, &',
F, G and ‘H are equivalent. Combined with the fact that the five assertions C, D,
D', D! and D™ are equivalent (this follows from Theorem 2), this yields that
the assertions C, D, D', D!, DxPl/ £ &' F G and H are equivalent. Theorem
4 is thus proven.

§2. Binomial rings

So far we have done nothing but rewriting some results of [5]. We will now
introduce the so-called binomial rings, and study the simplifications that occur
in Theorem 4 when it is applied to such rings. The notion of binomial rings is a
classical one (see [3] and [4], among other sources).

First, let us define binomial coefficients.

Definition 11. Let B be a Q-algebra with unity. For any v € B and

any r € Q, we define an element (u € B by

(u>_ —H(:—k), m;;eN;

u
In particular, if r € Q \ Z, then ( ) is supposed to mean 0.
r

It is clear that Definition 11 generalizes the standard definition of binomial

u
coefficients ( ) with u € N and r € N. As a consequence, we will refer to
r

the elements (u) defined in Definition 11 as ”binomial coefficients”. We will be
r
mainly concerned with rings which are not Q-algebras but in which the binomial

coeflicients <u) can still be defined.
r



Definition 12. Let A be a commutative ring with unity. We de-
note by N4 the subset {n-14 | n € Ny} of A. This subset N, 4
is multiplicatively closed, so a localization (N4 4) " A of the ring A
is defined. If A is torsionfree, then the canonical ring homomor-
phism A — (N,4)"" A is injective (because if A is torsionfree, then
each element of N, 4 is a non-zerodivisor in A). Hence, whenever
A is torsionfree, we will regard A as a subring of its localization
(N4)~" A. It should be noticed that (N, )" A is a Q-algebra, since
each element of N, 4 has been made invertible in (N A)_l A. Hence,
whenever A is a torsionfree commutative ring with unity, an element

<u) e (N, 4) ' A is well-defined for every u € A and r € Q (because
r

every u € A lies in (N;4) " A). Of course, this element (u) does
not always lie in A (for example, if A = Z[X], r = 2 and Tu = X,
then (u) = ()2() = %(X2 - X) e (I\er[x])f1 (Z[X]) does not lie
in Z [XT)

Definition 13. Let A be a commutative ring with unity. We say that
A is a binomial ring if A is torsionfree and satisfies the following prop-

erty: For any u € A and any r € N, the element (u> e (Nyy ) tA
r

lies in A.
The most important example of a binomial ring is:
Proposition 5. The ring Z is a binomial ring.
The proof of this hinges upon the following easy fact:

Proposition 6. Let A be a Q-algebra. Let u € A. Let r € Z. Then,

()

Proposition 6 is known as the upper negation formula.

w1
Proof of Proposition 6. If r ¢ N, then the equality <u) =(-1)" <T “ )
r r

-1
is obvious by virtue of both binomial coefficients (u and [ ) being
r r

zero. Hence, for the rest of this proof, we can WLOG assume that r € N. Assume



—u—1
this. Since r € N, the definition of <7’ “ ) yields
r

r—1 r—1

(r U_l):%flgr_u_1 B = [T @ (=)~ 8)
k=0 = ()u (((T(rl)l)k)k))) 5:O(Tﬁ1 ))(rf}' () )>
=( D) (I = (r=)=k)
)i
k=0 k=0
— :7‘1:[1(“7]6)

(here, we substituted k for (r—1)—k
in the product)

STt | (R ey (O

Multiplying this identity with (—1)", we obtain

(1) (7’—7:—1) :%h(u—k).

On the other hand, since r € N, the definition of <u) yields
r

—u—-=1 1 =1 -1
Compared to (—1)" <T ! > =7 (u — k), this proves <u) = (=1 <r ! )
T r

r r
Proposition 6 is proven.

Proof of Proposition 5. Clearly, the ring Z is torsionfree. Hence, in order to
prove that Z is binomial, we only need to show that for any v € Z and any r € N,

the element (u) € (Nyz) ' Z lies in Z.
r

So let » € N. We need to prove that (u € 7Z for every u € Z.

r
" w) . u 1=l .
For every u € N, the definition of yields =~ [] (u— k) (since
T T T k=0

u
r € N). Hence, for every u € N, the number is the binomial coefficient ”u
r

choose r” known from enumerative combinatorics. Thus, by a known fact from
enumerative combinatorics, every u € N satisfies

(u) = (the number of all r-element subsets of the set {1,2,...,u}) € Z (7)
-



u
(because the cardinality of any finite set is € Z). Thus, ( ) € 7 is proven for
r
every u € N.
u
Now it remains to prove ( ) € Z for every u € Z satisfying u ¢ N. So let
r

u € Z satisfy u ¢ N. Since u ¢ N, we know that u is a negative integer, so that
—u is a positive integer. Thus, r —u — 1 € N (since r € N). Hence, (applied

—u—1
to r —u — 1 instead of u) yields <T “ ) € 7Z. But Proposition 6 (applied to
r

A = Q) yields o
()3 eerses

We have thus proven that (u) € Z for every u € Z. As explained above, this
r

concludes the proof that Z is binomial. Thus, Proposition 5 is proven.
For a less trivial example of a binomial ring, we can take the ring of all
integer-valued polynomials:

Proposition 7. Let X be a symbol. The subring
{AeQ[X] | A(n) € Z for every n € Z} of Q[X] is a binomial ring.

The proof of this proposition is easy and left to the reader. It is a known
fact that the subring {A € Q[X] | A(n) € Z for every n € Z} of Q[X] is the

X X X
free Z-module with basis ((0 ), (1 ), (2 ) , )7 this, however, is not needed

in the proof.

Of course, every commutative Q-algebra with unity itself is a binomial ring
(because if A is a commutative Q-algebra with unity, then (N, ) " A = A).

A crucial property of binomial rings is that they satisfy a generalization of
Fermat’s little theorem:

Theorem 8. Let A be a binomial ring. Let p € P. Let a € A. Then,
aP? = amod pA.

Theorem 8 is one of the fundamental properties of binomial rings. It appears in
[4, Proposition 1.1}, and also follows from the implication (1) = (4) in Theorem
4.1 in Jesse Elliott’s paper [3]. We will reproduce the proof from [3] (in more
details). The main ingredient of the proof of this theorem is the following fact
about finite fields:
Proposition 9. Let p € P.
(a) Consider the polynomial ring (Z,” (pZ)) [X] in one indeterminate
p—1

X over Z, (pZ). Then, k];[() (X —k)=XP—-Xin (Z/ (p2)) [X].

(b) Consider the polynomial ring Z [X] in one indeterminate X over
p—1

Z. Then, there exists some @ € Z [X] such that [[ (X — k) = X? —
k=0

X +pQ in Z [X].



Proof of Proposition 9. (a) Since p € P, it is clear that Z, (pZ) is a field.
Define a polynomial R € (Z/ (pZ)) [X] by

th(X—k:)—(X”—X).

k=0

This polynomial R has degree deg R < p — 1. (In fact, both polynomials
p—1
[] (X — k) and X? — X have degree p and leading term X?; hence, their leading
k=0
terms cancel upon subtraction, and their difference R is a polynomial of degree

<p-1)

Let 7 be the canonical projection Z — Z, (pZ). Clearly, 7 is a ring homo-
morphism, and we have Ker m = pZ.

We recall the following known fact:

Fact Pf9.1: Let F be a field, and let P € F[X] be a polynomial. If the
polynomial P has more than deg P roots in F', then P = 0.

Now, let A € Z (pZ). Then, there exists some ¢ € {0,1,...,p — 1} such that
A is the residue class of ¢ modulo p. Consider this £. Then, by the definition of
7, we have 7 (¢) = (the residue class of £ modulo p) = A. Hence, A — 7 () = 0.

But since ¢ € {0,1,...,p — 1}, it is clear that A— (¢) is a factor in the product
p—1 p—1
[T (A= (k)). Hence, at least one factor in the product [] (A — 7 (k)) is 0 (since
k=0 k=0

p—1
A —m () =0). This yields that the whole product [[ (A — 7 (k)) is 0 (because if
k=0
one factor in a product is 0, then the whole product must be 0). We have thus
shown that H (A—m(k)) =0.

Also, Ep = Emod p by Fermat’s Little Theorem. Thus, p | /£ — ¢, so that
? — (€ pZ = Kerm, hence 7 (* — ¢) = 0. Since

p
T(P—=0)=|n)| —7n) (since 7 is a ring homomorphism)
~—~—
=\ =X
=\ =)
this rewrites as \? — A = 0.
Now, since
p—1
R= H X— |- =X)=]](X -7 (k) - (X" - X),
77r(k) k=0
we have
p—1
RN =[] =n®) - - =0,
o ——

10



so that
AXe{xe€eZ,/(pZ) | R(x)=0} = (the set of roots of the polynomial R in Z/ (pZ)) .

Now forget that we fixed \. We thus have shown that every A\ € Z (pZ)
satisfies
A € (the set of roots of the polynomial R in Z, (pZ)) .

That is, every A € Z (pZ) is aroot of the polynomial Rin Z  (pZ). Hence, there
exist at least p roots of the polynomial R in Z, (pZ) (since there exist p elements
of Z,/ (pZ)). Since p > p—1 > deg R, this yields that the polynomial R has more
than deg R roots in Z, (pZ). Therefore, applying Fact Pf9.1 to F' = Z/ (pZ)

p—1
and P = R, we obtain R = 0. Hence, 0 = R = [] (X — k) — (X? — X), so that
k=0

p—1
I[[ (X —k)=XP—Xin (Z/ (pZ))[X]. This proves Proposition 9 (a).
k=0
(b) Let 7 be the canonical projection Z — Z, (pZ). Clearly, Ker m = pZ.

Consider the polynomial ring Z [X] in one indeterminate X over Z, and the
polynomial ring (Z, (pZ)) [ X] in one indeterminate X over Z (pZ). The canon-
ical projection 7 : Z — Z, (pZ) induces a ring homomorphism 7 [X] : Z[X] —
(Z,/ (pZ)) [ X]. We have Ker (7 [X]) =p - Z[X].

By the definition of 7 [ X], we have (7 [X]) (X) = X.

p—1
Since 7 [X] is a ring homomorphism, the polynomial [] (X — k)—(X? — X) €

Z | X] satisfies o
(m [X]) (H (X — k) — (XP —X)>
k=0
=11 { XD )~k | = | [ @ XD(X) | — (=w[X])(X)
:ﬁ(X—k)—(Xp—X)zo
(since Proposition 9 (a) yields Z]j: (X —k)=X?—-Xin (Z/ (pZ))[X]). Hence,

p—1
the polynomial [] (X — k) — (X? — X)) € Z[X] satisfies
k=0
p—1
[T(X -k —(X? = X) eKer (n[X]) =p- Z[X].
k=0
p—1
In other words, there exists some @) € Z [X] such that [[ (X —k)— (X? - X) =
k=0
p—1
pQ. In other words, there exists some @) € Z[X] such that [[ (X — k) = X? —
k=0
X + p@. This proves Proposition 9 (b).

11



Proof of Theorem 8. We know that A is a binomial ring. Hence, by the

u
definition of a binomial ring, for any u € A and any r € N, the element €
r

(Nya) ' Alies in A. Applied to v = a and r = p, this yields that the element
a) € (N, 4) " Alies in A. By the definition of (a)) we have
p p

1 _ : ‘ 1P
(since p € N), so that

Z%;ij)(a_k): (Z) €A

Multiplying this with p!, we obtain

p—1
[[a=k)e p A=pp-1)ACpA
50 N~ h—/

=p(p—1)! cA

Now, consider the polynomial ring Z [X] in one indeterminate X over Z.
Due to Proposition 9 (b), there exists some () € Z [X] such that pﬁl (X —k) =
X? — X + pQ in Z[X]. Consider this ). Evaluating the polynlogrzrﬁial identity

p—1

[ (X —=Fk)=XP—-X+pQ at X = ¢, we obtain

k=0
p—1
[[a—k) =a"-a+pQ ),
k=0
so that
p—1
ap—a:H(a—k)—p (a) € pA — pA C pA.
k=0 €A
————
EpA

Hence, a? = amod pA. This proves Theorem 8.
We will soon prove more properties of binomial rings. Let us first recall a
known fact:

Proposition 10. Let A be a commutative ring with unity. Let p € P.
Let a € Aand b € A. Then, (a+b)" = a? + b” mod pA.

Proof of Proposition 10. 1t is known that p | (p)

k
(since p is prime). Thus, for every k € {1,2,...,p — 1}, there exists some s € Z

forevery k € {1,2,...,p — 1}

such that <Z) = ps. Denote this s by s;. Then, s, € Z satisfies <i) = psy, for
every k € {1,2,...,p— 1}.

12



By the binomial formula,

p p—1
DY kip—k 0 0 p kpp—k p
(a+b)ng()abp :()abp + () a”b? +()a
k=0 k \(1_, k=1 k p

=1 —pp

=1 =PSk =1
(since ke{1,2,...,p—1})

=+ Z pspaPF  4a?
—_——
=0mod pA
(since pspakbP—FecpA)
p—1
Ebp+20+ap:bp+ap=ap+bpmodpA.
k=1

This proves Proposition 10.

Lemma 11. Let A be a commutative ring with unity, and p € Z be
an integei} Let k € N and ¢ € N be such that £ > 0. Let a € A and
be A. If a=bmodpFA, then a = b mod pF+*A.

Lemma 11 is exactly Lemma 3 in [9], and thus will not be proven here.
Now here is an important property of power series over binomial rings:

Theorem 12. Let = be a family of symbols. Let A be a binomial
ring. Let u € A. Let A[[Z]] denote the ring of power series in the
indeterminates = over A (just as A [Z] denotes the ring of polynomials
in the indeterminates = over A). Let P € A[[Z]] be a power series
with constant term 1. Then, the canonical embedding A — (N, 4)™" A
induces a canonical embedding A [[Z]] — (N4 A" A) [[E]], which we
will regard as an inclusion. Clearly, P € A[[Z]] C ((N+A)_1 A) [[E]]
and u € A C (N,4) " A Since (N, 4)"' A is a Q-algebra, a power
series P* € ((Nj N A) [[Z]] is thus defined. This power series P"
lies in A [[Z]].

Proof of Theorem 12. 1t is well-known that whenever B is a commutative Q-
algebra, v is an element of B, and ) € B [[Z]] is a power series with constant term
1, then a power series QV € B [[Z]] is defined. Applied to B = ((N+A)_1 A) [[=]],
v = u and @ = P, this yields that a power series P* € ((N+A)_1 A) [[E]] is
defined. Tt remains to prove that this power series P* lies in A [[Z]].

Let C' be the power series P — 1 € AJ[Z]]. Since the power series P has
constant term 1, the power series P — 1 has constant term 0. In other words, the
power series C' has constant term 0 (since C' = P — 1). Applying the binomial

formula, we thus get
u U r
aror=3 (e )

reN

"Though we call it p, we do not require it to be a prime!
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where the sum on the right hand side converges because the power series C' has
U

constant term 0. But we know that ) € A for every u € A and r € N (since
r

A is a binomial ring). Thus, every r € N satisfies

(u) L e A[E]]- A[E]) € A[[E]).

r
—~ €A[E]]
€ACA[[E]]

Hence, the equality (8)) shows that (1 4+ C')" is a convergent sum of power series in
A[[Z]]. Hence, (1 + C)" itself lies in A [[Z]]. Since 1+C = P (because C' = P—1),
we have thus shown that P* lies in A [[Z]]. This proves Theorem 12.

Lemma 13. Let = be a family of symbols. Let A be a binomial ring.
Let n € Z. Let u € A. Let A[[Z]] denote the ring of power series in
the indeterminates = over A.

Let P and @) be two power series in A[[Z]] with constant term 1.
Assume that P = @ modnA [[Z]]. Then, P* = Q" modnA[[Z]].

Proof of Lemma 13. The ideal nA[[Z]] is closed with respect to the (Z)-adic
topology on A [[Z]]. Hence, every sequence of elements of nA [[Z]] which converges
in A [[Z]] has its limit lying in nA [[Z]]. Thus, every convergent infinite sum whose
addends lie in nA [[Z]] must itself lie in nA [[Z]].

Now, let C' be the power series P — 1 € A[[Z]]. Since the power series P has
constant term 1, the power series P — 1 has constant term 0. In other words, the
power series C' has constant term 0 (since C' = P — 1). Applying the binomial

formula, we thus get
u
1+0) = cr 9
a+oy=3 (e 9

where the sum on the right hand side converges because the power series C' has
constant term 0.

Also, let D be the power series @) — 1 € A[[Z]]. Since the power series ) has
constant term 1, the power series () — 1 has constant term 0. In other words, the
power series D has constant term 0 (since D = @ — 1). Applying the binomial

formula, we thus get
u
1+ D)" = D" 10
aroy =3 (M) (10

reN

where the sum on the right hand side converges because the power series D has
constant term 0.

Subtracting from @, we obtain

1+O) —(1+D) =Y Cf)c -y (:f)pr = (:f) (C" - D). (11)

reN reN reN

Thus, the infinite sum ) (u) (C™ — D) converges.

reN \T
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Since C' = P —1=Q—-1= DmodnA][[Z]], we have C" = D" mod nA [[Z]]
=Q mod nA[[Z]]

for every r € N. Thus, C" — D" € nA[[Z]] for every r € N. But we know that

<u) € A for every u € A and r € N (since A is a binomial ring). Thus,
r

“) (C"— D)€ A-nA[E] =n- A A[E] € nA[E]
T ) N——— ~—
\EZ/ enAl[E]] CA[[E]]

for every » € N. Hence, (u) (C"— D7) € nAJ[Z]] (since every convergent
reN \T
infinite sum whose addends lie in nA [[Z]] must itself lie in nA[[Z]]). Due to

(L1), this rewrites as (1 +C)" — (1 + D)" € nA[[Z]]. Since 1 + C = P (because
C' = P—1)and 14D = @ (because D = (Q—1), this rewrites as P*—Q" € nA[[Z]].
In other words, P* = @*modnA [[Z]]. Lemma 13 is thus proven.

Lemma 14. Let X be asymbol. Let A be a binomial ring. Let p € P.
Let A [[X]] denote the ring of power series in the indeterminate X over

A.

(a) The power series 1 + X and 1+ X? have constant term 1. Thus,
the power series (1 + X)" and (1 + X?)" are well-defined and lie in
A [[X]] for every u € A.

(b) We have (1+ X?)™? = (1+ X)" modp*»™ A [[X]] for every
n € pN, and q € A.

Proof of Lemma 14. 1t is clear that the power series 1 + X and 1 + X? have
constant term 1 (since p > 0).

(a) Let u € A. Applying Theorem 12 to P =1+ X and = = (X), we con-
clude that the power series (1 + X)" is well-defined and lies in A [[X]]. Applying
Theorem 12 to P = 1 + X? and = = (X), we conclude that the power series
(1+ XP)" is well-defined and lies in A [[X]]. This proves Lemma 14 (a).

(b) Let n € pN, and ¢ € A. We need to prove that (1+ X?)"7 =
(1+ X)* mod p*»™ A [[X]].

We defined v, (n) as the largest nonnegative integer m satisfying p™ | n. Thus,
p’™ | n. Hence, there exists a z € Z such that n = zp*(™. Consider this z.
Since zp*»(™ =n € pN, C N, we have z € N,.

Since n € pN;, we have n/p € N4, so that v, (np) > 0. Thus, v, (np)
is a nonnegative integer. Denote this nonnegative integer v, (n,/p) by ¢. Then,
0=, (n,/p) > 0.

Applying Proposition 10 to A[[X]], 1 and X instead of A, a and b, we ob-
tain (14 X)” = 17 + XPmod pA[[X]]. Since 1?7 = 1 and p = p', this rewrites
as (1+ X)” = 1+ X?modp'A[[X]]. Hence, Lemma 11 (applied to A[[X]], 1,
(1+ X)” and 1+ X? instead of A, k, a and b) yields that

(1+ X" = (1+ X7 mod p"HA[[X]] .

15



Since ((1+ X)) = (1+X)" = (1+X)"" (because pp’ = p'p’ = p'**), this
rewrites as
1+ X" = (1 + X7 mod p A [[X]]. 12
p

Let = be the one-element family (X) of indeterminates. Then, A[[Z]] =
A[[X]]. Hence, rewrites as
1+X)"" =1+ X7 modpA[[=]].

1
p'te

Hence, Lemma 13 (applied to ¢z, p'*¢, (1 + X) and (1 + Xp)pé instead of wu,

n, P and Q) yields
(042"

Since ((1+X)P1”>qz ~ (14 X and <(1 N Xp)pe>

rewrites as

((1 + XP)P‘)‘” mod p**+A [[Z].

qz

= (14 X?)"% this

(14 X)P7% = (1 + XP)"% mod p A [[=]]. (13)
But
1L+t =v,(p)+v,(n/D)=v,[p-(n/D) | =v,(n),
=vp(p) =vp(n,/p) =n
so that
p gz = pr Mgz = g 2p™ = ¢gn (14)
~
and thus 1
gz =-ptlqz=qn/p. (15)
~~~ P R_/—’
——pt+l -
p

Due to and , the congruence rewrites as
(14 X)™ = (1+ XP)™ Pmod p'HA[[Z]].

Due to 1 + ¢ = wv,(n) and A[[Z]] = A[[X]], this rewrites as (1+ X)"" =
(1+ XP)? mod p*»(™ A[[X]]. This proves Lemma 14 (b).

Using Lemma 14, we can now show a congruence property of binomial coeffi-
cients with "numerator” in a binomial ring:

Lemma 15. Let A be a binomial ring. Let n € N, and let p € PFn.
Let ¢ € A and r € Q. Then,

(qn/p) _ (qn) mod (™ A, (16)

rn/p rn
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This Lemma 15 is a generalization of Lemma 19 from [5]. In fact, since Z is
a binomial ring, we can apply Lemma 15 to A = Z, and obtain precisely Lemma
19 from [5].

It should be said that Lemma 15 is nothing like a novel result. Indeed, it is
well-known in the case when A = Z, and in the general case it follows from the
known fact that, loosely speaking, any divisibility of a polynomial by an integer
which holds everywhere in Z must hold everywhere in any binomial ring. This
known fact is, e. g., a consequence of the implication (1) = (2) of Theorem 4.1
in Elliott’s paper [3] (to which I also refer the reader for a precise statement).

Also, in most cases, the exponent v, (n) in can be replaced by larger
numbers. Details can be found by searching the internet for ”Jacobsthal’s con-
gruence”. Again, the case A = Z is "the worst case” in the sense that divisibilities
that hold in this case must hold always in binomial rings. We will, however, never
need these stronger results.

Proof of Lemma 15. Since p € PFn, we know that p is a prime and satisfies
p | n. Thus, p € P (since p is a prime). Also, n € pN, (since n € N, and p | n),
so that n/p € N,.

If rn ¢ N, then Lemma 15 is easily seen to be trueﬁ Therefore, we can WLOG
assume that rn € N for the rest of the proof. Assume this.

Since rn € N, we have rn > 0. Combined with n > 0, this yields » > 0.

Set m = qn. Lemma 14 yields (14 X?)™? = (1 + X)" mod p*»™ A [[X]].
Since gn = m, this rewrites as (1 4+ X?)"™? = (1 + X)™ mod p*»(™ A[[X]]. Hence,
for every A € N, we have

(the coefficient of the power series (1 + X?)™® before X A)
= (the coefficient of the power series (1+ X)™ before X*) mod pr™A. (17)

But it is easy to see that

> (-2 0)r 9

AeN AepN

8 Proof. Assume that rn ¢ N. Then, rn/p ¢ N as well (since p € N ). Hence, both sides of
(16) vanish. Thus, holds, i. e., Lemma 15 is true, qed.

17



Pl However, the binomial formula yields

(1 +Xp)m/p
m,/p m,/’p m/p\ o
= XP) — XPH — X
/% \_( “_>, L’L ,% (pu/p> Aezp% (A/p)
:(m/p)
i/ P

(here we substituted A for pu, since the map N — pN, p +— ppu is a bijection)
m,/ p> A
= X by (18)),
> by @)

and thus every A € N satisfies

(the coefficient of the power series (14 X?)™? before XA> = (T;p> (19)
p

Besides, the binomial formula yields

L+X)" =) (T)X&

AeN

Hence, every A € N satisfies

(the coefficient of the power series (1+ X)™ before X*) = (T) (20)

Thus, every A € N satisfies

(m/ p

A ) = (the coefficient of the power series (14 X?)™? before X)‘> (by (19))
p

= (the coefficient of the power series (1 + X)™ before X’\) (by (7))
= (T) mod p*r™ A (by (20)).

9 Proof of (@: Every A € N\ (pN) satisfies A ¢ pN. Hence, every A € N\ (pN) satisfies
A/p ¢ N. Thus, every A € N\ (pN) satisfies

% LY k if \/peN
m - _ :
P! G klgo (m/p—k), ifApel; _
AP
0, if\/p¢N
(since A/p ¢ N). Thus, 5 (m/p> XA = ¥ 0x)=o.
Ael(pn)  \AP AEN\(pN)
(since )\ZG(%\I\(pN))
Now, pN C N, so that the sum (m/p) X decomposes as
xen \A/P
m/l)) A (m/p> A (m/ p) A m/p\ a
> =3 X+ Xr=3Y" X,
AeN<)\/p Yo \AP AN Ap S \ AP
=0
This proves .

18



Since m = ¢n, this becomes

qn/p\ _ (qn vp(n)
= dp'"™ A.
( A/p ) ( A ) neer
Applying this to A = rn, we obtain (16|, and thus Lemma 15 is proven.

Here comes a result similar to, but somewhat more interesting than, Lemma

15:

Lemma 16. Let A be a binomial ring. Let n € N, and let p € PFn.
Let ¢ € A and r € Q. Assume that there exist two integers o and [

with v, (a) > v, (8) and r = %. Then,

qn/p—1 gn—1 (n)
= ) A 21
(rn/p — 1) (rn — 1) mod p (21)

This Lemma 16 is a generalization of Lemma 21 from [5]. In fact, since Z is
a binomial ring, we can apply Lemma 16 to A = Z, and obtain precisely Lemma
21 from [5].

It seems impossible to prove Lemma 16 by generalizing the proof of Lemma
21 in [5]. However, the we can prove Lemma 16 in a different way. It requires two
lemmas. The first one is a very basic one about binomial coefficients in binomial
rings:

Lemma 17. Let A be a binomial ring. Let u € A. Let r € Q. Then,

()-Go)= ()
= —+ .
r r—1 r

When applied to A = Z, Lemma 17 yields the standard recursion of the
binomial coefficients.

Proof of Lemma 17. If r ¢ N, then Lemma 17 is easily proven’} Hence, for
the rest of this proof, we can WLOG assume that » € N. Assume this.

If r = 0, then Lemma 17 is also obviouﬁ. Hence, for the rest of this proof,

we can WLOG assume that r # 0. Assume this.
Since r € N and r # 0, we have r € N, and thus r —1 € N.

10 Proof. Assume that r ¢ N. Then, » — 1 ¢ N as well. This causes the binomial coefficient

-1 -1
(u 1) to vanish, while r ¢ N shows that the binomial coefficients “) and (“ vanish
r— T r

-1 -1
as well. Hence, the equation that needs to be proven ((u) = (u 1) + <u )) reduces to
r r— r
0 = 0+ 0, which is tautological. Thus, Lemma 17 is proven if r ¢ N.

—1
1 Proof. Assume that r = 0. Then, r —1 = —1 ¢ N, so that the binomial coefficient (u 1)
"

-1
vanishes. On the other hand, (g) and <u 0 ) both equal 1, since we have (3) =1 for every

19



By the definition of (u), we have
r

1= r—1
(u): rl 1:[( k) ifrel; 1 H(u—k) (since r € N)
r : 7!
0, ifr¢N k=0
—_——
=(u=0) [ (u—h)
:l(u—O)i—[1 (u—Fk :luH (u—k uH u—(k+1))
rl —— ! W
=u - =(u—1
(here, we substituted k + 1 for k in the product)
r—2
1
:FUH((U—D—@. (22)
" k=0
By the definition of <u ) we have
r
1 =1
u—1 — I ((u—=1) = k), if r € N;
= ! e=o
" 0, ifr¢N
1 r—1
=~ H ((u—1)—k) (since r € N)
k=0 )
((=1)=-1) TT (-1)-b)
r—2
= (=1~ =))[[((w=1)=k)
e k=0
1 r—2
= (w—r)[J((w=1)=k).
k=0

x € A (this follows readily from the definition of (g) ). Now, since r = 0, we have

(-0 ()

Compared with (u B 1) = 0, this yields ( B 1) (u) — (u B r). Thus, <u>
r—1 -1 T T T

u—1
( ) Hence, Lemma 17 is proven in the case when r = 0.
r

()

20



Subtracting this equation from ([22)), we obtain

SR P

e [[@-v-n= L I @-n-n
A A k=0
= 1 ~—~

:(7“— n =

(since rl=r-(r—1)!)

1
Onﬂmodwrhmﬂ,ﬂwddmﬁmnof(u 1)ymMs
.
1 (r—1)-1
u—1\ 7 I ((w—=1)—k), ifr—1eN;
r—1 o (7‘—1). k=0
0, ifr—1¢N
-
= 1) H (u—1)—k) (since r — 1 € N)

—(z)—(“ﬁ) e

—1 —1
so that (u> = (u > + (u ) Thus, Lemma 17 is proven.
r r—1 r

We are not yet completely ready to prove Lemma 16; we still need the following
fact (which we will also use independently):

Lemma 18. Let A be a binomial ring. Let n € N, and let p € PFn.
Let ¢ € A. Then,
¢" = ¢"P mod pr™ A.

Proof of Lemma 18. Since p € PFn, we know that p is a prime and satisfies
p | n. Thus, p € P (since p is a prime). Also, n € pN, (since n € N, and p | n),
so that n/p € N,.

We defined v, (n) as the largest nonnegative integer m satisfying p™ | n. Thus,
pr() | n. Hence, there exists a z € Z such that n = 2p’(™ Consider this z.
Since zp*»(™ =n € pN, C N, we have z € N,

We have n,/p € N, so that v, (n,/p) > 0. Thus, v, (n,p) is a nonnegative
integer. Denote this nonnegative integer v, (n,p) by £. Then, ¢ = v, (np) > 0.

Now, v, (p) + v, (n/p) = v, | p-(n/p) | = vp(n). Since v,(p) = 1 and
=n

v, (n/p) = {, this rewrites as 1 + £ = v, (n). Thus, p'** = p*»™ 5o that

Pty = pry = 2p(W = g, (24)
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Also, p p’=p'p’=p'*’ so that pp’z = p'**2 = n (by ) and thus
~—

—pl

p'z=n/p. (25)
Theorem 8 (applied to a = q) yields ¢ = gmod pA. In other words, ¢¥ =
gqmod p'A (since p = p'). Lemma 11 (applied to k = 1, a = ¢ and b = ¢) thus

vields (¢7)" = ¢ mod p'*A. Since (¢ = ¢" = ¢"""" (because pp = p'p’ =
p'*t), this rewrites as ¢?' " = ¢ mod p'**A. Since 1+ ¢ = v, (n), this rewrites

as qpvp(n) = qu mod pUr(™ A. Taking the z-th power of this congruence, we obtain
(qpvp<n) ) = (qpe> " mod prMA,
But since
(qpvpm))z _ qpvpm)z _ (since () 5 = () n)
and

(qpey — ' =g (since p'z = n,/p (by (7)),

this rewrites as ¢" = ¢"™? mod p*»(™ A. This proves Lemma 18.

Proof of Lemma 16. Since p € PFn, we know that p is a prime and satisfies
p | n. Thus, p € P (since p is a prime). Also, n € pN, (since n € Ny and p | n),
so that n/p € N,.

Lemma 16 is readily seen to hold if rn ¢ N, E Therefore, we can WLOG
assume that rn € N, for the rest of the proof. Assume this.

Since rn € N, we have rn > 0. Combined with n > 0, this yields » > 0.

It is easy to see that there exist two coprime integers o/ and (' such that
/

« .
G Lpandr= ﬁ Consider these o/ and f'.
12 Proof. Assume that rn ¢ N,. Then, rn/p ¢ N,. Hence, neither 7n — 1 nor rn/p — 1 lies

in N. Consequently, both sides of vanish, so that is trivially satisfied. Thus, Lemma
16 is proven if rn ¢ Ny.

13 Proof. By assumption, there exist two integers a and 8 with v, (o) > v, (8) and r = %.
Consider these a and . Since 2_y > 0, both v and § are nonzero. Thus, v, () and v, (5) are
well-defined nonnegative integers (not co). Now, let h = ged (o, 8). Then, h = ged (o, 5) | «,

so that % € Z. Also, h = ged (o, B) | B, so that % € Z. Since a # 0 and 8 # 0, we have
ged (o, B) # 0, so that h = ged (o, B) # 0. Thus, v, (h) is a well-defined nonnegative integer

(not 00).
Since
a B\  ged(a,B) R . B
ged (h’ h) = 5 =7 (since ged (o, B) = h)
the integers % and % are coprime. That is, % 4 % ,
. a a a ,
Since o = 7 h, we have v, (o) = v, (ﬁ . h) = v, (ﬁ) + v, (k). Since § = . h, we have
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/ /

o o
Recall that rn € N, C Z. Since r = —, this rewrites as —n € Z. In other

B/’ ﬁ/
O/n / / !/ / 3 / /
words, —— . words, .
ords 2 € Z. In other words, ' | &/n. But ' L o (since o’ and ' are
coprime).

It is known that if x, y and z are three integers such that =z 1 y and z | yz,
then x| z. Applying this to = ', y = o/ and z = n, we obtain ' | n. Hence,
E is an integer. Denote this integer by g. Then, |g| is a nonnegative integer.
Moreover, g = E # 0 (since n # 0), so that |g| > 0. Thus, |g| is a positive
integer. In other words, |g| € N;.

We have
/ r o .
|- gl =1a" g | =|a T 7 n| = |rn|=rn (since rn > 0) (26)
~
n —— ~—
:E a/ =r
:Eﬂn

0 (L) + 0 (0) = 05 (@) = 0 () =y (2 ) 4 0 ().
h h

«
Subtracting the nonnegative integer v, (h) from this inequality, we obtain v, (ﬁ) > vy (fz)

Now, assume (for the sake of contradiction) that we don’t have é L p. Then, p | % (since p
. . Ié] a 153 «
is a prime), so that v, o > 1. Consequently, v, (ﬁ) > vp o > 1, and thus p | - Now, p
. .. (o7 . (e . . . . . (07
is a common divisor of o and 7 (since p | o and p | E) Since p is a prime, this yields that —

@
and % have a common prime divisor. But this is clearly absurd (since % and % are coprime).

This contradiction shows that our assumption (that we don’t have g 1 p) was wrong. Hence,
we have % L p.

() ()

Finally, <5) = % =r, so that r = @
h h

Altogether, we know that ﬁ and % are two coprime integers such that % Ll pandr=

—
D‘\Q

=@

)

!
a
Hence, there exist two integers o’ and ' such that 8/ L p and r = 7 (namely, «

B

B = qed.

)
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and

n
Bq-l9l=18-lgla=|8"- 9 |a=|8"-Z|la= Inl q=ng=qn. (27
—— ~ 15} N
=154l :ﬁ —n (Sian”ZL>0)

Since |o/| € Z (because o/ € Z), we can view |o/| as an element of A. Also,
since |3'| € Z (because ' € Z), the element |3'| ¢ of A is well-defined. Hence,
|&'| — || ¢ is an element of A.

It is known that if z, y and z are three integers such that x L y, z | z and
y | z, then zy | z. Applying this to z = ', y = p and z = n, we obtain 3'p | n.
Thus, 5;}3
9/p = E
equals either g or —g), this yields p | g | |g|. Since p is a prime, this means that
p is a prime divisor of |g|. In other words, p € PF (|g]).

Now, we can apply Lemma 15 to |o/| — |5'] q, |¢/| and |g| instead of ¢, r and
n (because |g| € Ny and p € PF (]g|)). As a result, we obtain

((\0/\ ~18'q)- \g\/p) _ ((]o/] —18'4)- !9!) mod por(le) 4
/| - lgl./p '] - 191

(/[ =18Ta) - lgl = |o/| - lg] = |81 ¢ - |g| = rn — qn
=rn =qn
(by ) (by )
and |o/| - |g| = rn (by (26)), this congruence rewrites as

ot R ot IR

Since ' L p, we have p { / (because p is prime), so that v, (5') = 0. But

g= %, so that n = ¢’ and thus

€ Z. Hence, g is divisible by p (since g is an integer and satisfies

/p = % € Z). That is, p | g. Combined with ¢ | |g| (because |g|
p

Since

vy (n) = vy, (98') = v, (9) + v, (B') = v, (9) -
—

Since v, (9) = v, (lg|) [} this rewrites as

vp (1) = vy (l9]) - (29)

14 Proof. If g > 0, then g = |g|, so that v, (g) = v, (|g|). Hence, for the rest of the proof of
vp (9) = vp (lg]), we can WLOG assume that we don’t have g > 0. Assume this. Then, g < 0,

so that |g| = —g = (=1) g. Hence, v, (|9]) = vp (=1) 9) = vp (1) +0vp (9) = vp (9), ged.

=0
(since pt—1)
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Hence, (28] rewrites as

(rn—qn) /p\ _ (rn—qn up(n)
< n/p )_( . >modp A. (30)

On the other hand, recall that rn € N, so that rn—1 € N. Thus, (—1)"™ " is
well-defined. Moreover, p | |g| | |&/| - |g| = rn, so that rn/p is an integer. Thus,
(=1)™ P~ is well-defined. Now, it is easy to see that

(—=1)™ = (=1)" mod p*(™ A. (31)
[

We have rn € N, C Z. Thus, Proposition 6 (applied to gn — 1 and rn instead
of u and ) yields

<an; 1) _ ey (m = (qzn_ 1) — 1) _ ey (mr_nqn>

(since rn — (gn — 1) =1 =rn —qn). (32)

On the other hand, rn,p € Z (since p | rn). Hence, Proposition 6 (applied to

15 Proof of : Recall that |g| € Ny and p € PF (|g|). Thus, applying Lemma 18 to |g| and
—1 instead of n and ¢, we obtain

(—1)19 = (1)1 mod prrllad 4,
Since vy, (|g]) = vp (n) (according to (29)), this rewrites as
(_1)|9| = (_1)|g|/p modpvp(n)A

Taking the |o/|-th power of this congruence, we obtain

((_1)\9\)|a/‘ = ((_1)\gl/p)|a/| mod p® (™ A.
Since
((_1)|9|> o] _ (_1)|9\'|a'| =(-n)™
(because |g| - [o/| = |a’| - |g] = rn (by (26)))

and

((_1)|g|/p>|al| _ (_1)(|9|/p)'|0/| — (_1)Tn/p

. 1 1
since (|g| /p) || ==1d/|-|g|==-rmn=mrn/p|,
P~~~ p
=rn
(by (20))

this rewrites as

(=)™ = (=1)"™"P mod p*»(™ A.

This proves .
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gn,/p — 1 and rn/p instead of u and ) yields

rn/p rn,/p
— (_1)7‘n/p (rn - qn) /p
rn/p
=(—=1)"" mod p"P(™ A ~~
rn —qn
= mod p¥»(™) A
™
(by @0)

(since rn/p — (qn/p—1) =1 =rn/p—qn/p= (rn —qn) /p)

m [T — QN qgn — 1
-1 = dpr™ A due to (32)).
( >(n) (n)mp (due to (£2))
(33)

Finally, Lemma 17 (applied to gnp and rnp instead of u and r) yields

qn/p\ _ (qn/p—1 n qn/p—1
rmn/p)  \rn/p—1 m/p )’

so that

qn/p—1\ _ qn/p B qn/p—1
rn/p—1 rn/p rn/p

——— —_—

qn gn — 1

= mod pvp(")A = modp”l’(”)A
™m ™
(by (18)) (by (3))
-1
= (qn) — (qn ) mod p**™ A. (34)
rn ™

But Lemma 17 (applied to gn and rn instead of u and r) yields

()= () + ()

rn rn—1 rn

() 02 (e
rn—1 rn rn rn/p—1

(by (34)). This proves (21). Thus, Lemma 16 is proven.
Here is an obvious corollary of Lemma 16:

so that

Corollary 19. Let A be a binomial ring. Let n € N, and let p €
PFn. Let g € A and r € Z. Then,

qn,/p—1 qn — 1 (n)
= dprA.
<rn/p— 1) (TTL— 1> moap
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Proof of Corollary 19. There exist two integers a and  with v, (o) > v, (5)

-1 -1
andr =2 9 Thus, Lemma 16 yields an/p = (" mod p*»(M A,
B rn,/p—1 rn — 1

This proves Corollary 19.
Here is a further property of binomial coefficients, which we won’t need until
much later:

Proposition 20. Let A be a binomial ring. Let a € Aand b € Q\{0}.

Then,
ay _afa—1
b)  b\b-1)
Proof of Proposition 20. In the case when b ¢ N, the equality (Z) =

afa—1
b\b—1
20 is true in this case. Hence, for the rest of this proof, we can WLOG assume
that b € N. Assume this.

Combining b € N with b € Q \ {0}, we obtain b € N\ {0} = N, so that

—1
b — 1 € N. Hence, the definition of <Z 1) yields

holds (by virtue of both of its sides being 0), so that Proposition

(b-1)-1
<Z:i):(b_11)! I[[ (@-1-k. (35)

vp (1). Also, r = g

16 Proof. Since r € Z, we know that r is an integer. Thus, v, (r) > 0 =
«
Hence, there exist two integers o and S with v, (@) > v, (8) and r = — (namely, o = r and

B
B =1), ged.
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But the definition of (Z) yields

a =
(b) = (a —k) (since b € N)
" k=0
1 b—1
= (a—0) H (a — k)
b-(b—1)! ——5
b—1 b—1
(since H(a—k) = (a—O)H(a—k) and bl = b - (b—l)!)
k=0 k=1
b—1 b—1
1 a 1
= —k)=—"- —k
otk =7 (b—l)'H<a )
k=1 k=1
(b—1)—1
a 1 . .
=— H (a —(k+1)) (here we substituted k for £ — 1 in the product)
R
B =(a—1)—
(b—1)—1
a 1 afa—1
b (b—1) kl:[O (la=1)=k) = Z(b—1)'
B at 1
-1
(by @5)

This proves Proposition 20.
83. The ghost-Witt equivalence theorem for binomial rings

We will now state our main theorem:

Theorem 30. Let N be a nest. Let A be a binomial ring. Let
(bn)pey € AN be a family of elements of A. Then, the following

. / expl expl/ /
assertions Cbim Dbim Dbin? Dbin ) Dbin ) gbin? gbim ‘Fbina gbim Hbin,
Thin and I}, are equivalent:

Assertion Cry,: Every n € N and every p € PF n satisfies

by p = by mod p™ A,

Assertion Dy, : There exists a family (2,,),cy € AV of elements of A
such that
(bn = w, ((xk)keN) for every n € N) )

Assertion Dy There exists one and only one family (2,,),.y € AY
of elements of A such that

(bn =w, ((xk)keN) for every n € N) )
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Assertion DiP': There exists a family (z,), .y € AV of elements of
A such that

b, = Z dxg/ “ for every n € N
dln

Assertion DI : There exists one and only one family (zn),en € AY
of elements of A such that

b, = Z dxz/ “ for every n € N
dln

Assertion Eyiy: There exists a family (y,),cy € AV of elements of A
such that

b, = Z dyy for every n € N

dln
Assertion &l - There exists one and only one family (yn),cy € AY
of elements of A such that
b, = Z dy, for every n € N
din

Assertion Fyin: Every n € N satisfies
Z ol (d) bn/d € nA.
d

Assertion Gy, Every n € N satisfies

> ¢ (d)byya € nA.

dln

Assertion Hyy: Every n € N satisfies

Z bgcd(i,n) € nA.

=1

Assertion Ty, : There exists a family (g,),, .y € AV of elements of A
such that

d
b, = dzlnj d(q;in//d ) for every n € N

Assertion Z], - There exists one and only one family (g,), .y € AY
of elements of A such that

d
b, = dlzn d(q;iln//d ) for every n € N
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As the reader will readily notice, most parts of Theorem 30 are particular
cases of corresponding parts of Theorem 4. We will explain this in detail when
we come to the proof of Theorem 30. However, Assertions Zy,;, and Z, don’t
seem to be extendable to the general case of Theorem 4, so we will have to prove
them from scratch.

Most of Theorem 30 is not new and goes back to Dwork, Dress, Siebeneicher,
Hazewinkel and many others (e. g., see the equivalence D}iﬁ’l — Fpin =
Gpbin <= Hpin in the case A = Z and N = N, appear in [2 Corollary on page
10]), although they rarely worked in the setting of binomial rings. Some of the
underlying ideas go back to Schur and even earlier. Only Assertions Zy;, and Zj |
seem to never have been studied before.

Before we start proving Theorem 30, let us quote a lemma (which is a conse-
quence of the Chinese Remainder Theorem for modules):

Lemma 31. Let A be an Abelian group (written additively). Let
n € Ny. Then, nA= [\ (p*»™A).

pePFn

Lemma 31 is Corollary 2 in [5]; thus we are not going to prove it here.
Let us also isolate as a lemma a very simple arithmetical argument which will
be used several times:

Lemma 32. Let n € N;. Let p € PFn. For any divisor d of n, the
assertions d { (n/p) and p*(™ | d are equivalent (that is, d { (n/p)
holds if and only if p*»™ | d holds).

Proof of Lemma 32. Let d be a divisor of n. Then, n/d € 7Z. Thus, we can
define an integer e € Z by e = n,d. Consider this e. Then, e = nd, so that
de = n.

Since e is an integer, we have v, (e) > 0.

We will prove the following assertions:

Assertion Pf32.1: If d{ (n/p), then p*™ | d.

Assertion Pf32.2: If p»™ | d, then d t (n/p).

Proof of Assertion Pf32.1: Assume that d t (n/p).

We have defined v, (d) to be the largest nonnegative integer m satisfying
p™ | d. Thus, p*@ | d.

Since e = n,/d, we have ]Ej = %1 = ;—d = % ¢ Z (since d 1 (n/p)), so
that p { e. Thus, v, (e) = 0. But v, (d) + v, (e) = v, (\dﬁ/) = v, (n), so that

v, (n) = v, (d) + v, (€) = v, (d). Hence, p*»™ = p*»(@ | d. This proves Assertion
—0
Pf32.1. B

Proof of Assertion Pf32.2: Assume that p*»(™ | d.

We have defined v, (d) to be the largest nonnegative integer m satisfying
p™ | d. Thus, v, (d) = (the largest nonnegative integer m satisfying p™ | d). But
since p*»™ | d, we have

v, (n) < (the largest nonnegative integer m satisfying p™ | d) = v, (d),
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so that

vp (d) = vy <\ n /) = vp (de) = vy (d) + vy (e) .
=de

Subtracting v, (d) from this inequality yields 0 > v, (e) (because v, (d) is a non-

negative integer, not oo). Combined with v, (e) > 0, this results in v, (e) = 0.

d
Thus, p 1 e. In other words, £ ¢ 7. Since e = n/d, this rewrites as n/ ¢ 7.
p

p

ngp = pﬁd = %l ¢ Z, so that d 1 (n,p). This proves Assertion Pf32.2.

Now, the assertions d { (n/p) and p*™ | d are equivalent. This is because the
former of these assertions implies the latter (according to Assertion P£32.1), and
because the latter of these assertions implies the former (according to Assertion
P£32.2). Thus, Lemma 32 is proven.

Proof of Theorem 30. By the definition of a ”binomial ring”, every binomial
ring is torsionfree. Since A is a binomial ring, this yields that A is torsionfree.

For every n € N, define a map ¢, : A — A by ¢, = id. Clearly, ¢, is
an endomorphism of the ring A for every a € A. Moreover, every a € A and
p € PN N satisfy ¢, (a) = a”? mod pA m In other words, the condition is
satisfied. Moreover, the condition is satisfied (since ¢1 = id by the definition
of ¢1), and the condition is also satisfied (since ¢, © ¥ = @pm for every
n € N and every m € N satisfying nm € N E[) Hence, the three conditions
, and are satisfied. Therefore, Theorem 4 yields that the assertions C,
D, D', D=P, DPl/ g &' F, G and H are equivalent, where:

Hence,

the assertions C, D and D' are the ones stated in Theorem 1,

the assertions D’ and D*P! are the ones stated in Theorem 2,

the assertions £, F, G and H are the ones stated in Theorem 3, and

e the assertion &' is the one stated in Theorem 4.

Now, comparing the assertions C, D, D', D*P!, DPV £ &' F G and H with
: : / expl expl/ /
the respective assertions Ciin, Doins Diins Drin » Phin > Ebins Enins Fbin, Gbin and
Hyin, We notice that:

e we have C <= Cp, (since ©p (b, p) =1d (bnp) = b p);
—~—

=id
(by the definition
of ¢p)

e we have D <= Dy, (because Assertions D and Dy, are identical);

e we have D' <= Dj, (because Assertions D' and Dy, are identical);

17Proof. Let a € A and p € PN N. By the definition of ¢,, we have ¢, = id, so that
¢p (@) =id (a) = a = a? mod pA (since Theorem 8 yields a? = amod pA), qed.

18 Proof. Let n € N and m € N be such that nm € N. By the definition of ¢,, we have
pn = id. By the definition of ¢,,, we have ¢,, = id. By the definition of ¢,,,, we have
Ynm = id. Since ¢, =id and ¢, = id, we have ¢,, 0 v, =idoid = id = @Y,m, qed.
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1 . 1 . .

e we have D™P! <= D" (because Assertions D*P! and Dy;>" are identical);

1/ . 1/ . .

e we have D*P! <« DJIP"’ (because Assertions D™P! and Df;>" are identi-
cal);

e we have £ <= &, (since Ond (ya) = id (yq) = va);
——

=id
(by the definition
of Son/d)

e we have & <= &/, (since ¢, a0  (ya) =1d (ya) = ya);
——

=id
(by the definition
of Son/d)

e we have F <= F;, (since ©d (bnq) = id (by sa) = by a);

=id
(by the definition
of ¢q)

e we have G <= G, (since ©d (bya) = 1id (b q) = by a);

=id
(by the definition
of ¢q)

o wehave H <= My, (since ¢, gea(in)  (bged(iny) = id (bged(in)) = bged(in))-
——

=id
(by the definition
of Pn,/ gcd(i,n))

Hence, the (already proven) equivalence of the assertions C, D, D', DP!,
DPl g & F, G and H yields the equivalence of the assertions Cpin, Dhin, Disys
Dg?fl, D]?i?:l/y gbin; {)irn fbiny gbin and Hbin‘

Now let us prove the equivalence of these assertions with the remaining two
assertions Zy;, and Zj, . We will do this by proving the implications Chiy, = Zpin,
Ibin — Cbina Ibin — I‘éin and ‘,Z’.{)in — Ibin-

Proof of the implication Ly, = Cpin: Assume that Assertion Zy;, holds. In
other words, there exists a family (¢,), .y € A" of elements of A such that

d
b, = dlzn d(q;iln//d ) for every n € N | . (36)

Consider this family (g,),c. We are going to prove that Assertion Cyi, holds as
well.
Let n € N and p € PFn. We are going to show that b, , = b, mod pUr(™ A,
Since n € N, every divisor of n lies in N (because N is a nest). Since p € PF n,
we know that p is a prime divisor of n. Thus, p is a prime and satisfies p | n.
Since p | n and n € N, we have n,/p € N, and thus np is a divisor of n.
Therefore, n,/p € N (since every divisor of n lies in N). Hence, we can apply
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to n/p instead of n. Thus we obtain

_ qa(n/p) /d . qq (n/d) /p
o= dlm;p)d( WAV WZ/p)d( ) 0

(since (n,/p),/d= (n/d) p for every divisor d of np).
On the other hand, applying directly, we obtain

B qan,/d
b"‘zd< n/d)

dln

— an/d qdn/d
- 2 d( n/d>+ 2 d< n/d)

dln; d|n;
d|(n/p) df(n,/p)
—— ——
= ¥ = 3
d|(n/p) d|n;
(since the divisors d of n pr(M)|d

satisfying d|(np) are exactly

the divisors of n/p) (because for every divisor d of n,

the assertions df(n,/p) and pv»(")|d
are equivalent (by Lemma 32))

d d
X ) ()
d|(n/p) " d|” =0mod p?»(™) A "
pr(™|d (since p“P(")|d)

qan,/ d) (qu/ d) (qdn/ d)
= E d( + E 0 = E d mod p*»™ A.
dimm N4 s n/d a4

pvr(M|d

J/

-~

=0

(38)

But every divisor d of n/p satisfies n,/d € N, and p € PF (nd) H Hence,
every s € A and every divisor d of n/p satisfy

(S (n/d) /p) = (Sn/d) modpvp(n/d)A

1(n/d)/p In/d
(by Lemma 15, applied to n,/d, s and 1 instead of n, ¢ and r). This rewrites as
s(n/d) /p) (Sn/d) (n/d)
= mod p?'" Y A 39
Coiar ) = (o 39

(since 1(n/d) /p = (n/d),/p and 1n/d = n,/d). From this, it is easy to
conclude that every s € A and every divisor d of n/p satisfy

s(n,/d sn,/d
d( (n/ )/p) Ed( / )modp”?’(")A (40)
(n/d) /p n/d
19 Proof. Let d be a divisor of n/p. Then, gp € N, (since n/p € N} and since d is a
divisor of n,p), so that n/d = n/p € Ny. Thus, n/d= p n/d € NyN; C Ny.
P pd d ~~ D
eNy S—~—
eNy

. n
Moreover, since

d
€ Ny, we know that p | (n,/d), so that p is a prime divisor of n/d (since
p
p is a prime). In other words, p € PF (n,/d), qed.
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Pl Thus,

(n/d) /p\  _ qan/d
Z d (qd ) = Z d( ) mod p** "™ A. (42)
drn D) o,y Al

n/d
=d (q;;//d ) mod pvp(™) A

(by , applied to s=qq)

Now, becomes

(n/d) /p qan/d
o= S = a0 @
d|(n,/p) (n/d) /p d|(n,/p) n/d
= b, mod p*"™ A (by (B9))-

Now forget that we fixed n and p. We thus have shown that every n € N and
every p € PF n satisfies

by, p = b, mod pr(™A.

In other words, Assertion Cp;, holds. We have thus proven Assertion Cy;, under
the assumption of Assertion Zy;,. In other words, the implication Zy;, = Cp;y, i8
proven.

20 Proof of (@) Let s € A. Let d be a divisor of n/p. Then, (39) yields
s(n/d) /P) <5”/d> (n/ d)
= mod p?»\" Y A,
( (nsd)p) = \nsa)

In other words,

s(n/d) /p\ (sn/d vp(n,/ d)
((n/d) /p> (n/d) eprA “

On the other hand, we defined v, (d) as the largest nonnegative integer m satisfying p™ | d.
Thus, pU»(® | d. Thus, there exists an e € Z such that d = pr(@e. Consider this e.
Now,

(o) -(2)

-+ () -CA)

:p”P(d)e
_ @, (/D) D\ _ (snsd vp(d) oy op(n/d) 4 — o op(d), op(n/d)
p e<<(n/d)/p nod)) PP A=prTprT T A
—pvp(Dtvp(n/d) CA
epvp("/d)A

C prr(@+up(n/d) 4

Since
vp (d) +vp (n/d) = vp <d~ (n/d)) =vp(n),

I
this simplifies to d(

sn,/d
d(n/d

s(n/d)/p) 4 sn,/d
(n/d) /p n/d
) mod p¥»(") A. This proves 1D

) € p*»(MA. In other words, d(s (n,/d) /p) =

(n/d) /p
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Proof of the implication Cyny,, = Ty, Assume that Assertion Cpy, holds. In
other words, every n € N and every p € PF n satisfies

by p = by mod p™ A, (43)

We will now show that Assertion Zy;, holds.
Indeed, we are going to construct a family (r,,),.y € AN of elements of A
such that every m € N satisfies

b= d(r;m//dd) . (44)

dlm

Indeed, we will construct this family (r,),. recursively. Here is the recursion
step: Let n € N be arbitrary. Assume that we have already constructed an
element r,, of A for every m € N N{1,2,....,n— 1} in such a way that is
satisfied for every m € NN{1,2,...,n — 1}. We now need to construct an element
ry of A such that is satisfied for every m € NN{1,2,...,n}. Once such an r,
is constructed, our recursive step will be complete, and the family will be defined.

According to our assumption, we have already constructed an element r,, of A
for every m € NN{1,2,...,n — 1}. As a consequence, we have already constructed
an element r4 € A for every divisor d of n satisfying d # n (because every such d
liesin NN {1,2,...,n —1}).

Let p € PFn. Then, p is a prime divisor of n. In other words, p is a prime and
satisfies p | n. Hence, n,/p € N, (since n € N ), so that np is a divisor of n.
But since N is a nest, every divisor of n lies in N (because n € N). Thus, n/p
lies in N (since n,/p is a divisor of n). Combined with np € {1,2,...,n — 1}
(this is clear because n,/p € N, and n/\p;/ < n,/1 =mn), this yields np €

>1
NN{1,2,...,n— 1}. Hence, we can apply to m = n,/p (since we know that
(44])) is satisfied for every m € NN{1,2,...,n — 1}). As a result of this, we obtain

(n/p) /d ra(n/d) /p
b= 3 a(” )= o ) (49
aey \ () /d a4 /D
(since (n/p),/d= (n,/d) /p for every divisor d of np).

Recall that every s € A and every divisor d of n/p satisfy

s(n/d) /p\ _ (sn/d uplo)
d< (nd) /p ) = d( n/d) mod p"*'"™ A. (46)

(This is proven exactly in the same way as we have proven during the proof
of the implication Zyy,, = Cpin.)
But recall that we have already constructed an element r;, € A for every
ran,/d
divisor d of n satisfying d # n. Thus, the sum »_ d < an/ ) makes sense. This

d|n; TL/d
d#n
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sum satisfies

rgn/d
Zd( n/d)

dn;
d#n
rgn,/d rgn,/d
= > d + > d
n,/d n,/d
d|n; d|n;
d#n,; d#n
dl(n/p) df(n,/p)
S—~— S~
= X = X
dl(n/p) dln;
(since the divisors d of n d#n;
satisfying d#n and d|(np) are p?r(M)|d
exactly the divisors of n,/p) (because for every divisor d of n,

the assertions df(n,/p) and p¥»(™)|d
are equivalent (by Lemma 32))

_ rdn/d ’f‘dn/d
= 2. d(n/d) LD DN (n/d)

d|(n/p) | S j;‘én; =0 modpvp(n)A
n; : vp(n
- (rd Y /p> mod (™ A prpmq e P p(]d)
(n/d) /p

(because (applied to s=rq) yields

d<7’d (n/d) /p) » (rdn/d) ot gt 4

(n/d) /p n,/d
ra(n/d) /p rqn,/d
= 0
P ( n/d/p)+ 2 (n/d)
d#n;
pr(™d
-0
= > d<r‘zr(zn//d;l)//pp) = by, pmod p A

d|(n/p)

(by (45)) .

Now forget that we fixed p. We have thus shown that every p € PF n satisfies

Zd(rd"/ d) P A,

d|n;
d#n

In other words,
d
S € 0 oy <
d|n; pEPFn
d#n
Hence, there exists some element ( of A such that

b, —Zd(“"/d) — n(.

d|n;
d#n

Fix such a (. Now define an element r,, of A by r,, = (.
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We are now going to show that is satisfied for every m € NN{1,2,...,n}.
Indeed, this is known to hold for every m € NN {1,2,...,n — 1} (by the induc-
tion hypothesis), so we only need to check it for every m € (N N{1,2,...,n})\
(Nn{L,2,...,n —1}). But the only such m is n. So we only need to prove that

(44)) is satisfied for m = n. Let us do this now: Since every x € A satisfies
x

)= (this follows readily from the definition of binomial coefficients), we

Tn . . ..
have ( ! ) =r,. Since n is a divisor of n, we have

ran,/'d ran,/n rqgn/d
d = d
Z(n/d) n(n/n>+z(n/d
- i
Ty 1
B 1
(since n,/n=1)

B Ty - 1 rgn,/d
= (") vz
—_—— dln;

. d#n
= 1 =rn _C

=n( + Z d(r;;n/d) =b, (owing to (7)) .

In other words, is satisfied for m = n.

We have thus shown that is satisfied for every m € N N {1,2,...,n}.
Thus, we have constructed an element r,, of A such that is satisfied for every
m € NN{1,2,...,n}. This completes the recursion step of the recursive definition
of the family (r,), 5. Due to its construction, this family (r,),, satisfies
for every m € N. Hence, for every n € N, we have

d
by, = % d(r;;n//d ) (by , applied to m =n) .

Hence, there exists a family (g,),,.y € A" of elements of A such that

qan/d
by, ;d( n/d) for every n € N
(namely, the family (7,,),cy). In other words, Assertion Zy;, is satisfied. We
have thus proven Assertion Zy;, under the assumption of Assertion Cy;,. In other
words, the implication Cy;,, = Zypi, is proven.

Proof of the implication Ly, => Z;,,: Assume that Assertion Z,;, holds. In
other words, there exists a family (¢,),.y € A" of elements of A such that

d
b, = dlzn d(q;iln//d ) for every n € N
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Let (Qn),cn be such a family. Thus, (Q,), .y € AV is a family of elements of A
such that

Z d( ;ZZ/d ) for every n € N | . (48)

We are now going to prove that Assertion Zj; holds.
Let (¢n),cn € AY be any family of elements of A such that

b, = %n: d(qu//dd) for every n € N | . (49)

We are going to show that this family (¢n),cy equals (Qn),cy- Indeed, let us
show that
Gn = Qn for every n € N. (50)

Proof of (@) We are going to prove by strong induction over n.

Induction step.ﬂ Let m € N. Assume that holds for every n € N
satisfying n < m. We will now show that holds for n = m.

Applying (49) to n = m, we obtain

qam,/ d gmm,/m qam,/d
d d
Z (m/d) (m/m) > (m/d
—_— d|m;
d#m
([
(since gmm,/m=gm and m,/m=1)

(since m is a divisor of m)

(1) A

=m
N—— dlm;
i A satisfi v
(since every €A satisfies 1 =x)
qam,/d
= m d ’
it 2 ()
d#m
so that p
- a4y (51)
e m,/d
d#m

The same argument, using in lieu of , reveals that

B Qam,/d
%d( o d > (52)
d#m

2L A strong induction needs no induction base.
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But we have assumed that holds for every n € N satisfying n < m. Thus,
in particular, for any divisor d of m satisfying d # m, we have ¢; = Q4 (because
d € N and d < m). Hence, the right hand side of equals the right hand side
of . As a consequence, the left hand sides of these two equalities must also
be equal. That is, we have mq,, = m@Q,,. In other words, m (¢,, — Q) = 0.

Now, A is a binomial ring. By the definition of a binomial ring, this yields
that A is torsionfree. Thus, we have ¢,, — @,, = 0 (since m is a positive integer,
and since m (¢, — Q) = 0). In other words, ¢,, = Q,,. In other words,
holds for n = m. This completes the induction step. Thus, the induction proof

of is complete.
Now we know that holds. In other words, the family (g,), .y equals

(Q”>n€N .
Now forget that we fixed (¢y),,c - We thus have shown that whenever (¢, ),,cy €
AN is any family of elements of A such that

b, = %n: d(qin//dd) for every n € N |,

this family (¢y),,c y must equal (Q),,cy- Hence, there exists at most one family
(gn),en € AN of elements of A such that

d
b, = dZn: d(q;in//d ) for every n € N

(because every such family must equal (Qy),cy). Combined with the fact that
there exists at least one such family (because Assertion Zy,;, holds), this yields
that there exists one and only one such family. In other words, Assertion 7,
holds. We have thus proven Assertion Zj, under the assumption of Assertion
Thin- In other words, the implication Zy;, = Z;,, is proven.

Proof of the implication I{;, == Ty,: The implication I}, == Ty, obviously
holds, because if there exists one and only one family with a certain property,
then there clearly exists at least one family with this property.

Now we have proven the implications Zy;, = Z{,, and I}, = Ty;,. Com-
bining these two implications, we obtain the equivalence Z}, <= Zy,.

We also have proven the implications Cpy, = Zyi, and Zy;,, = Cpin. Com-
bining these two implications, we obtain the equivalence Cy;, <= Zyy.

Combining the equivalences Cpiy, <= Zpin and I, <= Ty;,, we obtain the
equivalence Cpin <= Tpin <= 1},

Now recall that the assertions Cuin, Dpin, Dy, foifl? Dﬁ’ffl/, Evins Eins Fhins
Obin and Hyi, are equivalent. Combining this with the equivalence Cy;, <=
Thin <= T, we conclude that the assertions Cpin, Dhyin, Dy Dﬁﬁ’l, Dy Y Eoimns
b s Fbins Obiny Hbins Zoin and Zj, - are equivalent. Theorem 30 is thus proven.

84. Applications in binomial rings
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We can obtain several concrete divisibilities by applying Theorem 30 to par-
ticular families (b,,), .. Here is probably the simplest one:
Theorem 41. Let A be a binomial ring. Let ¢ € A. Then:

(a) There exists one and only one family (2,),,cy, € AN+ of elements
of A such that

(q” = wy, ((xk)k€N+> for every n € N+> )

(b) There exists one and only one family (yn)n6N+ € AN+ of elements
of A such that

q" = Z dyq for every n € N
din

(c) Every n € N, satisfies

Zu(d) "% € nA.

dln

(d) Every n € N, satisfies
> o(d) g e nA.
d|

(e) Every n € N, satisfies

n

3 g € A

i=1

(f) There exists one and only one family (¢,),.y € AN of elements
of A such that

d
q" = ;d(qzn//d ) for every n € N,

This Theorem 41 generalizes Theorem 16 from [5]. Indeed, Theorem 16 from
[5] can be proven by applying Theorem 41 (more precisely, parts (a), (b), (c),
(d) and (e) of Theorem 41) to A = 7Z (since Z is a binomial ring).

Proof of Theorem 41. Let N be the nest N, Define a family (b,),.y € AY by
(b, = q" for every n € N). According to Theorem 30, the assertions Cpin, Dpin,
Dy, Dol b Dy Y i, Etins Foins Obins Hbin, Zpin and Zj, are equivalent (these
assertions were stated in Theorem 30). Since the assertion Cp, is true for our
family (by,),cn € AN (because every n € N and every p € PF n satisfies

by p =P (by the definition of b, )
=q" (since Lemma 18 yields ¢" = ¢"/” mod pr™ A)
= b, mod p»™ A
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), this yields that the assertions Dy, Di;,, Dﬁ’i‘fl, Dﬁ’if“, Eviny €l Foins Gbin,
Hiin, Loin and I must also be true for our family (b,), .y € AN But for the
family (b,),,cn € AV,

assertion Dy, is equivalent to Theorem 41 (a) (since N = N, and b,, = ¢");
assertion &/ is equivalent to Theorem 41 (b) (since N = N, and b, = ¢");

assertion JFy, is equivalent to Theorem 41 (c) (since N = Ny and b, 4 =

7);

assertion Gy, is equivalent to Theorem 41 (d) (since N = N, and b, 4 =

7");

assertion My, is equivalent to Theorem 41 (e) (since N = N, and bgeq(i,n) =
cd(i,n)

&)

Y

assertion Z;, is equivalent to Theorem 41 (f) (since N = N, and b,, = ¢").

Hence, Theorem 41 (a), Theorem 41 (b), Theorem 41 (c), Theorem 41 (d),

Theorem 41 (e) and Theorem 41 (f) must be true (since the assertions Dj

g/

bin»

bin»

Fbin, Gbin, Hoim and Zj; are true for the family (by,), .y € AN). This proves

Theorem 41.
Here is a more interesting corollary:

Theorem 42. Let A be a binomial ring. Let ¢ € A and r € Q. Then:

(a) There exists one and only one family (2,),,cy, € AN+ of elements
of A such that

qn
((TTL) = Wy, <($k>k€N+> for every n € N+) .

(b) There exists one and only one family (y,),,oy, € A" of elements
of A such that

qan
= E dyy fi eN
(Tn) Yq IOr every n +

dln

(c) Every n € N, satisfies
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(e) Every n € N, satisfies

> (150 ena

=1

(f) There exists one and only one family (¢,),cn € AN of elements

of A such that
qn qan/d
(rn) = d§|n d( jz/d ) for every n € N,

This Theorem 42 generalizes Theorem 17 from [5]. Indeed, Theorem 17 from
[5] can be proven by applying Theorem 42 (more precisely, parts (a), (b), (c),
(d) and (e) of Theorem 42) to A = Z (since Z is a binomial ring).

Proof of Theorem 42. Let N be the nest N,.. Define a family (b,),.y € AY

by <bn = (qn) for every n € N ) According to Theorem 30, the assertions Cp;y,
™m

/ expl expl/ / , .
Dyin, D D D Ebiny Epins Fbiny Gbins Hoins Loin and Zy;, are equivalent

bin» bin > bin
(these assertions were stated in Theorem 30). Since the assertion C;, is true for

our family (b,),.n € AV (because every n € N and every p € PF n satisfies

q(n/p) "
bo,p = (r (n/p)) (by the definition of b, )
qn/p qn
(rn/p) (rn) (by Lemma 15)
= b,, mod p*»™ A

), this yields that the assertions Dy, Di;,, Dﬁ)ffl, Dﬁ’i‘f“, Eviny Ebyns Foins Gbin,
Hbin, Loin and Z; must also be true for our family (b,), .y € AN But for the
family (b,),cn € AV,
e assertion Dy is equivalent to Theorem 42 (a) (since N = N, and b, =
an );
rn)’’
e assertion &, is equivalent to Theorem 42 (b) (since N = N and b, =
qan );
rn)”’
e assertion F, is equivalent to Theorem 42 (c) (since N = N, and b, 4 =
q(n/d)\ _ (qn/d )
r(n,/d) rn/d)”’
e assertion Gy, is equivalent to Theorem 42 (d) (since N = N, and b, 4 =

(Fora) = ()
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e assertion My, is equivalent to Theorem 42 (e) (since N = N and bged(in) =
qged (i,n) )
rged(i,n))”’
e assertion Zi. is equivalent to Theorem 42 (f) (since N = N, and b, =
q(n/d)\ _ (qn/d )
r(n,/d) rn/d)’"
Hence, Theorem 42 (a), Theorem 42 (b), Theorem 42 (c), Theorem 42 (d),
Theorem 42 (e) and Theorem 42 (f) must be true (since the assertions Dj

bin»
Eins Foin, Gbin, Ho and I, are true for the family (b,), . € AY). This proves
Theorem 42.

Furthermore, we have:

Theorem 43. Let A be a binomial ring. Let ¢ € A and r € Z. Then:

(a) There exists one and only one family (2,),,cy, € AN+ of elements
of A such that

n—1
<(in B 1) = w, ((Ik)k€N+) for every n € N+> .

(b) There exists one and only one family (yn),cn, € AN+ of elements
of A such that

—1
(gZ B 1) = dz: dyq for every n € N

(c) Every n € N, satisfies

(d) Every n € N, satisfies
; & (d) (:{Z;Z - D € nA.
(e) Every n € N, satisfies

> (M) =

(f) If r # 0, then every n € N, satisfies
qn/d\ _4q
dlzn,u(d) (Tﬂ/d) € rnA.
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(g) If r # 0, then every n € N, satisfies
qn/dy\ _q
dZ ¢(d) (Tn/d) < rnA'
(h) If r # 0, then every n € N, satisfies

> () < fa

i=1

(i) There exists one and only one family (gn),cn € AN of elements
of A such that

qgn — 1 qan,/d
<rn—1) :dzn:d< jz/d) for every n € N

This Theorem 43 generalizes Theorem 20 from [5]. Indeed, Theorem 20 from
[5] can be proven by applying Theorem 43 (more precisely, parts (a), (b), (c),
(d), (e), (f), (g) and (h) of Theorem 43) to A = Z (since Z is a binomial ring).
Proof of Theorem 43. Let N be the nest N.. Define a family (b,),.y € AY

-1
by <bn = (qn 1) for every n € N ) According to Theorem 30, the assertions

rn —
/ expl expl/ / / .
Cbins Doin, Diins Pri > P > Ebins Ebins Fbiny bin, Hbins Zbin and Zy;, are equivalent
(these assertions were stated in Theorem 30). Since the assertion C;, is true for

our family (b,,),,cy € AV (because every n € N and every p € PF n satisfies

q(n/p)—1 N
busn = (7" (n/p) —1 (by the definition of b, )
— qn/p —1 _fqn — 1
a (Tn/p — 1) o (Tn _ 1) (by Corollary 19)
= b,, mod p”p(”)A

), this yields that the assertions Dy, Di,, Dﬁﬁl’l, Df)’ifl/, Evins Ebyns Foins Gbin,
Hbin, Loin and Z; must also be true for our family (b,), .y € AN But for the
family (b,),cn € AV,

e assertion Dy, is equivalent to Theorem 43 (a) (since N = N and b, =
qgn — 1 )
rm—1)"

e assertion &, is equivalent to Theorem 43 (b) (since N = N and b, =
qn — 1 )
rm—1)"

e assertion Fy;, is equivalent to Theorem 43 (c) (since N = N, and b, 4 =
q(n/d)—1\ (qn/d—1 )
r(n/d)—1) \en/d—1)"
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e assertion Gy, is equivalent to Theorem 43 (d) (since N = N, and b, 4 =
q(n/d)—1\ (qn/d—1 )
r(n/d)—1) \on/d—1)"

e assertion Hyy is equivalent to Theorem 43 (e) (since N = N and bgea(in) =

(1 =)

e assertion Zj. is equivalent to Theorem 43 (i) (since N = N and b, =
q(n/d)—1\  [(qn/d—1
<r (n/d) — 1) B (rn/d— 1>)

Hence, Theorem 43 (a), Theorem 43 (b), Theorem 43 (c), Theorem 43 (d),
Theorem 43 (e) and Theorem 43 (i) must be true (since the assertions Dy, &,
Foin, Gpin, Hoin and I are true for the family (b,), .y € AV).

In order to complete the proof of Theorem 43, it now remains to verify parts
(f), (g) and (h) of Theorem 43.

Assume that r # 0. Thus, every m € N satisfies rm # 0.
Theorem 43 (f) follows from Theorem 43 (c), since

qn,/d B qn/d (gqn,/d — 1 g qn,/d —1
dzln:'u(d) (rn/d) _dznju(d)rn/d (rn/d—l)_rdznju(d) (rn/d—l
qn/d (qn/d—1 g ) ot
:’rn/d (T?’L/d B 1) r (by Theorem 43 (c))

(by Proposition 20, applied to
a=qn/d and b=rn_/d)

€ gnA.
r

Theorem 43 (g) follows from Theorem 43 (d), because

qn/d B gn/d (gqn,/d —1 g qn,/d — 1
dZm:(b(d) (’r’n/d) _%é(d)rn/d (rn/d—l)—r%;(b(d) (rn/d—l
gn/d (qn/d -1 4 e
:m (rn/d B 1) r (by Theorem 43 (d))

(by Proposition 20, applied to
a=qn,/d and b=rn/d)

S gnA.
r
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Theorem 43 (h) follows from Theorem 43 (e), since

— rged (i,m) — rged (i,n) \rged(i,n) —1
i= \ , i=1 \ ,

7ngd (Zun) ngd (Z’n) -1 :g

“rged (i,n) \rged (i,n) — 1 "

(by Proposition 20, applied to
a=qgecd(i,n) and b=r gcd(i,n))

€EnA
(by Theorem 43 (e))

Now, all parts of Theorem 43 are proven. The proof of Theorem 43 is thus
complete.

§5. The integer case

Since 7Z is a binomial ring, we can apply Theorem 30 to A = Z and obtain
a result about families of integers. This alone is not very interesting. What is
interesting is that we can add a further equivalent assertion to this result:

Theorem 60. Let N be a nest. Let (b,), .y € Z" be a family of
integers. Then, the following assertions Cg, Dy, DL, Dol perll e
EL Fo, G, Ha, Iy, I, Ky and KV are equivalent:

Assertion Cy: Every n € N and every p € PF n satisfies

b, p = by modp””(”)Z.

Assertion Dg: There exists a family (2,),.y € Z" of integers such
that
(bn = w, ((wk)keN) for every n € N) )

Assertion Dl,: There exists one and only one family (), 5 € ZV
of integers such that

(bn =w, ((mk)keN) for every n € N) )

Assertion DEP': There exists a family (Zn)pen € ZN of integers such
that

b, = Z d:pZ/ “ for every n € N
dln
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Assertion DEP: There exists one and only one family (Tn)pen € ZN
of integers such that

b, = Z dz? for every n € N
dln

Assertion Ey: There exists a family (yn),cn € Z" of integers such
that

b, = Z dy, for every n € N
din

Assertion EJ;: There exists one and only one family (y,), .y € Z" of
integers such that

b, = Z dy, for every n € N
dln

Assertion Fy: Every n € N satisfies

> 1w (d) by a € L.
dn

Assertion Gy Every n € N satisfies

> ¢ (d)bya € nZ.
din

Assertion Hy: Every n € N satisfies
Z bgcd(z’,n) € nZ.
i=1

Assertion Iy: There exists a family (g,),.n € Z" of integers such
that

b, = dzl: d(qin//dd) for every n € N

Assertion Z[,: There exists one and only one family (g,), . € Z" of
integers such that

d
b, = ; d(q;n//d ) for every n € N

47



Assertion Kg: There exist two sets U and V' and two maps f : U — U
and g : V — V such that every n € N satisfies

Fix(f)] < oo,  [Fix(¢")| <oco  and  [Fix(f")|—|Fix(g")] = bu.

Here, whenever S is a set and h : S — S is a map, we denote by
Fix (h) the set of fixed points of the map h.

Assertion K2V : There exist two sets U and V and two invertible maps
f:U —Uand g:V — V such that every n € N satisfies

Fix(f")| <o,  [Fix(¢")<oo  and  [Fix(f")|~|Fix(g")| = b,.

Here, whenever S is a set and h : S — S is a map, we denote by
Fix (h) the set of fixed points of the map h.

Assertions Ky and KV appear to be of a totally different nature than the
assertions preceding them, although in the proof we will see that they are actually
very close to Assertion £;. Note that the equivalence Dy <= F, <— Gy <~
Hy (at least in the case when N = N, ) appears as the Corollary on page 10 of the
paper [2] by Dress and Siebeneicher; they also more or less state the equivalence
Fy & Gy < Hy < KV (again, only in the case when N = N, ) on page 3
(in the sentence encompassing formulas (1.5) and (1.6)).

” Almost” all of Theorem 60 follows from Theorem 30 just by setting A = Z;
the only thing that needs to be proven is the equivalence of Assertions Kz and
KV to the other assertions. While the proof of this is rather easy, it will be long
because of lots of notations which we will need to introduce. Before we start with
this proof, let us make a definition which has already been made in Theorem 60:

Definition 60. Whenever S is a set and h : S — S is a map, we
denote by Fix (h) the set of fixed points of the map h.

We start with the following lemma, which will aid us in proving the implication
&y = Kiv:

Lemma 61. Let N be a nest. Let (s,),.n € NV be a family of
nonnegative integers. Then, there exists a set P and an invertible
map j : P — P such that every n € N satisfies

Fix (j")| = > dsq.

dn

In order to prove this lemma, let us define the notion of a ”disjoint union” of
sets which are not necessarily a-priori disjoint:

Definition 61. Let [ be a set. For every ¢ € I, let U; be a set. Then,

we define | | U; (where i is a symbol used for indexing) to be the set
i€l

U {é} x U; (which is a subset of I x (U Ui) ). This set | | U; is called

el el el
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the disjoint union of the sets U; over all ¢ € I. (Notice that each
i € I satisfies {i} x U; = U; as sets, and the sets {i} x U; for distinct
i € I are pairwise disjoint. Hence, | |U; = |J {i¢} x U; is a union of
iel il
pairwise disjoint sets which are isomorphic to the respective sets U;.
This should not be confused with the union |J U;, which can be much
i€l
smaller than | | U; when the sets U; are not pairwise disjoint.)
iel
Definition 62. Let [ be a set. For every i € I, let U; and V; be
two sets and f; : U; — V; a map. Then, we define | | f; (where i is

i€l
a symbol used for indexing) to be the map F : | | U; — || V; which
i€l i€l
satisfies
(F (i,a) = (4, f; (a)) for every ¢ € I and every a € U;).

This map | | f; is called the disjoint union of the maps f; over all
i€l
1€ 1.

The disjoint union of maps has the following properties:

Proposition 62. Let [ be a set. For every ¢ € I, let U;, V; and W;
be three sets and f; : U; — V; and g; : V; — W, be two maps. Then,

('_l%) 0 <|_| fi) = [(giofi)

iel iel iel
as maps from | | U; to | | W;.

iel i€l
Proposition 63. Let I be a set. For every ¢ € I, let U; be a set.
Then, the map | |idy, : | | U; — || U; is the identity map.

iel iel i€l

Proposition 64. Let I be a set. For every i« € I, let U; and V;
be two sets and f; : U; — V; an invertible map. Then, the map
L] fi: |J Ui — || Vi is also invertible and satisfies

iel i€l iel

Propositions 62, 63 and 64 belong to the very fundaments of mathematics and

will not be proven here.

Proof of Lemma 61 (sketched). Let J be the set | | {1,2,...,s,}. Then, J =

neN

U {n}x{1,2,...,s,} (by the definition of | | {1,2,...,s,}), so that J C N xN,.

nenN neN
Define a map r: N x N, — N by

(r(n,i) =n for every (n,i) € N x N;).
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Since J C N x N, , it is clear that r (j) is defined for every j € J.
Let us notice that every d € N satisfies

{jeJ | r(j)=d}={d} x{1,2,...,s4} (53)

and therefore

{sed | r(i)=dt =[{d} x{1,2,....;sq}| = {d}]- {1,2, ..., sa}| = sa.  (54)

=1 =S4

Let us now introduce some notations:

e For every positive integer d, we denote by Z; the ring Z (dZ). This is a
finite commutative ring with size

| Za| = d. (55)

e For every i € N and every positive integer d, let i4 denote the residue class
of i modulo d. This residue class is an element of Z (dZ) = Z,;. Note
that the map Z — Z, (dZ) which sends every integer w to wy is a ring
homomorphism. Thus, 0; = 0, 14 = 1, and any two integers u and v satisfy
ﬂd +6d :u——i—vd and ﬂd '@d :Wd.

e For every positive integer d and every integer u, define a map Py, : Zqg — Z4
by
(Piy () =2 + 1y for every x € Z,) .

It is easy to see that

Py =idg, for every positive integer d. (56)
Moreover,
PiwoPiy = Piyto for every positive integer d and any u € Z and v € Z.
(57)
Finally,
Piu = Py for every positive integer d, any u € Z and any ¢ € N.
(58)

Also, for every positive integer d and every u € 7Z,

the map Py, : Z4 — Zg4 is invertible. (59)

Now, let @ be the set | | Z,(j). Then, @ = || Z,;y = U {4} x Z,(j) (by the

jet jeJ jeJ
definition of | | Z,(;).
jeJ
Now, let a be the map || Pry1 ¢ || Zrjy = | Zrj)- This map is well-
jet jE€J jeJ

defined since for every j € J, the map P.(j)1 : Z,;) — Zr(j) is well-defined.
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We know that the map « is a map from | | Z,(;) to |_| Zn(j)- Since || Z,;) =
jed jeJ
(), this rewrites as follows: The map « is a map from Q to Q.

We know that P,y1: Z.(j) — Zr(j) is an invertible map for every j € J (due
to , applied to r (j) and 1 instead of d and u). Thus, Proposition 64 (applied
to J Js Zr(j), Zrij) and Py 1 instead of I, 4, U;, V; and f;) yields that the map

-1
Ll Py |_| Zyjy — | Zy) is also invertible and satisfies <|_| Pr(j),1> =

jeJ jeJ jeJ

L (Pr_(;),1>'

j€J

So we know that the map || P.jy1: | Zvj) = | Zn() is invertible. Since

JjeJ jeJ jeJ
this map || P has been called «, this rewrites as follows: The map « is
jeJ

invertible.

Also, every n € N satisfies

o" = | | Py (60)
jes

(Indeed, this is easy to see by induction over n, using the fact that o = ]_|J P.()a
JE
as well as and (56)).)

Now fix an n € N. It is easy to see that

Fix (« U {7} x Z¢5

jeJ;

r(3)In
(since shows that an element of {j} x Z,(;) is fixed under o™ if and only if
r(j) | n). Hence,

Fix (") = | | {7} x Ziy| = D {5} x Zo)]
JEJ; JeJ; Y
r()ln r(@in =1 | Z)|
(since the sets {j} x Z,() are clearly pairwise disjoint for distinct j)
=D - |Zel =D r6)
Jjeds 4 . VISOR
=rU) r()in

r(G)n (by , applied to
r(j) instead of d)

IE W
deN; jed,
dn r(j)= d(slnce 7’(]) d)

(since every j € J such that r (j) = d satisfies 7 (j) € N and r (j) | n)

= Z d - the number of all j € J satisfying r (j) = d)
dEN;

; —1{jeJ | rj)=d}=s4
i (by (54))
= E de = E de = E de
deN; d|n; dln
d|n deN

o1



(since every divisor d of n satisfies d € N anyway).
Now forget that we fixed n. We thus have shown that every n € N satisfies

|Fix (a™)] = >_ dsq. Moreover, we know that a : Q — @ is invertible.
din
Hence, there exists a set P and an invertible map j : P — P such that every

n € N satisfies
Fix (j")| = dsq
din

(namely, we can take P = @ and j = «). Lemma 61 is thus proven.

Lemma 61 almost completely takes care of the implication &5 = KV (we
will show this argument in details later). Let us now state a fact to which the
implication K, = &4 boils down to:

Proposition 65. Let N be a nest. Let P be a set, and j : P — P
be a map. Assume that every n € N satisfies |Fix (j™)| < co. Then,
there exists a family (s,),.n € N¥ of nonnegative integers such
that every n € N satisfies

Fix (j")| = > dsq.

dn
Before we start proving this, let us state a simple lemma:

Lemma 66. Let P be a set. Let j : P — P be a map. Let n and m
be nonnegative integers such that m | n. Then, Fix (™) C Fix (j").

The proof of this is a well-known induction argument and left to the reader.
We record another lemma:

Lemma 67. Let X be a finite set. Let 7 : X — X be a map. Let
n € N, . Assume that

every x € X satisfies j" (z) = z. (61)
Assume also that
every z € X and k € {1,2,....,n — 1} satisfy j* (z) # 2. (62)
Then, |X| is a nonnegative integer divisible by n.

Again, this is a well-known fact. Here is a very brief sketch of its proof:

Proof of Lemma 67 (sketched). Clearly, | X| is a nonnegative integer (since X
is finite). Let Z, be the cyclic group with n elements, and ( a generator of Z,.
Then, the group Z, can be presented by its generator ¢ with the only relation
being (" = 1. But from , we know that j” = idx. Hence, we can define
a group action of the group Z, on the set X by letting ¢ - = = j (x) for every
x € X. This action is free (due to (62))). Hence, every orbit under this action has
size |Z,| = n. But the set X is the disjoint union of all orbits under the action.
Hence, | X| is the sum of the sizes of these orbits. Since the size of each orbit is
n, this yields that | X| is the sum of several n’s. Thus, |X| is divisible by n. This
proves Lemma 67.

Finally, one more classical lemma:
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Lemma 68. Let X be a set. Let 7 : X — X be a map. Let
r € X. Assume that the set {m € N, | j™ (z) =z} is nonempty.
Then, there exists an f € N, such that

{meNy | j"(x) =z} =[Ny

Lemma 68 is a well-known fact (even if not usually written in this form). It is
(more or less) the reason why every element of a finite group has a well-defined or-
der. The proof proceeds by letting f be the smallest element of {m € N, | j™(z) =z}
(indeed, such an element exists because {m € N | j™ (x) = x} is a nonempty
subset of N, ), and showing that {m € N, | 7™ (x) =z} = f- N, (this uses
division with remainder). We will not give any more details on this proof.

Proof of Proposition 65. For every n € N, define a subset §, of Fix (") by

Sn = (Fix (jM)) \ U (Fix (5 (63)

e€EN;
e<n

Since §, is a subset of Fix (5™), we have
15| < |Fix (57)] < 0o for every n € N.

That is, §, is a finite set for every n € N.
Now, we are going to show the following assertions:
Assertion 1: Every n € N satisfies

Fix (] U 3.

deN;

din
Assertion 2: The sets §4 for distinct d € N are pairwise disjoint.
Assertion 3: For every n € N, we have

[Fix (") = ) 13l

deN;
din
Assertion 4: For every n € N, the number |§,| is a nonnegative integer
divisible by n.
Proof of Assertion 1: Let n € N. Since N is a nest, this yields that every
divisor of n lies in N (because every divisor of an element of a nest must lie in

that nest).
Let z € Fix (j") be arbitrary. We are going to show that x € |J Fa.
deN;
dln

Indeed, we know that = € Fix (j™). That is, x is a fixed point of the map j".
Thus j" (z) = x.

Now, n € N C N, and 5" (z) = x. Hence, there exists an m € N, such that
J™ (z) = x (namely, m = n). In other words, the set {m € N, | j™(z) =z} is
nonempty. Hence, Lemma 68 (applied to P instead of X) yields that there exists
an f € Nj such that

{meNy | j" (@) ==z} =f N (64)
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Consider this f.

Since n € Ny and j" (z) = x, we have n € {m € Ny | j™(z) =2} = f- N,
(by (64)). Thus, f | n. Since f € N, this yields that f is a divisor of n. Since
every divisor of n lies in NN, this yields that f lies in N. Thus, f € N. On the
other hand,

=1 €f Ne={meN, | j"(x) =z} (by 69) .
eNy

so that f € Ny and j/ (2) = 2. We can rewrite j/ (z) = x as « € Fix (j7).
On the other hand, it is easy to see (using (64))) that

v ¢ |J Fix(j)

eeN;

e<f
Combining this with z € Fix (jf), we obtain
(Fix (7)) \ | (Fix (59) = 3y
eEN;
e<f
(since §; = (Fix (7)) \ U (Fix(j°)) by the definition of §). Thus, z € §; C
eeN;
e<f
|J §a (since f is an element of N satisfying f | n).
deN;
dln

Now, forget that we have fixed 2. We thus have shown that every z € Fix (j")
satisfies x € |J Fq. In other words,

deN;
dn
Fix (j U Sa- (65)
deN;
dln

Now, let y be any element of | F4. We are going to prove that y € Fix (5).

deN;
dn
Since y € |J Ja, there exists a g € N satisfying g | n satisfying y € §,.
deN;
din

Consider this g. Since g € N C N, we know that ¢ is a nonnegative integer.
Now,

yeF, = (Fix(59))\ U Fix (j (by the definition of )
eEN;
e<g
C Fix (j9) C Fix (j") (by Lemma 66, applied to g instead of m (since g | n)).

22 Proof: Assume (for the sake of contradiction) that x € |J (Fix (j¢)). Then, there exists
ecEN;
e<f

an element e € N satisfying e < f such that z € Fix (j¢). Consider this e.

We have z € Fix (j¢). This means that j¢ (x) = x. Also, e € N C Ny. Since e € Ny and
j¢(z) = x, we have e € {m € N} | j™(2) =a} = f-Ny (by (64)). Since every element of
f-Nyis > f, this shows that e > f. But this contradicts e < f. This contradiction shows that

our assumption (that x € Fix (4¢))) was wrong. Hence, we have = Fix (5¢ ed.
ption ( J g : i), a
eEN; eEN;
e<f e<f
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Now, forget that we fixed y. We thus have proven that every y € J Fa

deN;
dln

satisfies y € Fix (™). In other words,

| S S Fix (7).
deN;
dn

deN;
din

Proof of Assertion 2: Let dy and dy be two distinct elements of N. We are
going to prove that the sets §4, and §4, are disjoint.

Indeed, since d; and dy are distinct, we have either d; < dy or dy < d;. Since
the situation is symmetric with respect to d; and ds, we can WLOG assume that
d; < dy. So assume this.

Let © € T, N Sds-

By the definition of §4,, we have

Fa = (Fix (j)) \ | (Fix () € Fix (%) .

Combined with , this yields Fix (j”) = |J 4. This proves Assertion 1.

Now, z € Fa, NFa, C T, C Fix () € U (Fix (j%)) (since d; € N and d;y < dy).
ecN;
e<ds

But by the definition of §4,, we have

Fa, = (Fix () \ | (Fix (59) .

ecN;
e<ds
Thus, z € Fa, N Fa, C Fa, = (Fix (%)) \ U (Fix(j%). Consequently, = ¢
eEN;
e<ds
U (Fix(j¢)). This contradicts the fact that z € |J (Fix (5¢)).
eeN; eEN;
e<ds e<dy

Now forget that we fixed . We thus have found a contradiction for every
x € Fa, NFa,- In other words, there exists no x € F4, N Fa,. In other words,
Sa, N Ta, = . We thus have shown that the sets §4, and §,4, are disjoint.

Now forget that we fixed d; and d;. We thus have proven that for any two
distinct elements d; and ds of N, the sets §4, and §4, are disjoint. In other words:
The sets §y for distinct d € N are pairwise disjoint. This proves Assertion 2.

Proof of Assertion 3: Let n € N. Assertion 2 says that the sets §, for distinct
d € N are pairwise disjoint. In particular, this yields that the sets §4 for distinct

d € N satisfying d | n are pairwise disjoint. Hence, the union |J §, is a union

deN;
dn

of pairwise disjoint sets, so that we have | |J §4| = D_ |Fa|- But Assertion 1
deN; deN;
dn din

95



yields Fix () = |J Fa, and thus
deN;
dn

|Fix (j U Sd| = Z 1Tal -

deN; deN;
dn dn

This proves Assertion 3.

Proof of Assertion 4: Let n € N. Since N is a nest, this yields that every
divisor of n lies in N (because every divisor of an element of a nest must lie in
that nest).

Clearly, n € N C N,. It is now easy to see that

every = € §, satisfies j" (z) = x. (66)

]

Furthermore,
every x € §, and k € {1,2,...,n — 1} satisfy j* (z) # =. (67)
&

23 Proof of (@) Let z € §,. Then,

x € Fn = (Fix(j \U (Fix (%)) C Fix (™).
ecN;
e<n
Hence, z is a fixed point of the map j”. In other words, j” (z) = . This proves .
24 Proof of (@ Let z € §, and k € {1,2,...,n — 1}. Assume (for the sake of contradiction)
that j* (z) = =.
So we have k € {1,2,...,n — 1} C N and j* (r) = . Hence, there exists an m € N, such
that 7™ () = x (namely, m = k). In other words, the set {m € N, | j™ (z) = z} is nonempty.
Thus, Lemma 68 yields that there exists an f € Ny such that

fmeN; | j™(a)=a} = f-Na. (63)

Consider this f.

Since n € Ny and j" (z) = x (by (66))), we have n € {m € Ny | j™ (z) =a} = f- N (by
(68)). Thus, f | n. Since f € N, this shows that f is a divisor of n. Since every divisor of n
lies in N, this shows that f € N.

On the other hand, since k € Ny and j* (v) = 2, we have k € {m e N, | j™ (z) =2} =
f+Ni (by (68)). Thus, f | k. Since k € Ny, this yields that f < k. But k < n (since
ke{l,2,..,n—1}). Thus, f <k <n.

Now,

f=f-l efNo={meN, | j"(@)=2} (v @)
eNy
so that f € Ny and j/ () = 2. In other words, z is a fixed point of the map j7, so that
r € Fix (/) € | (Fix(j%)) (69)
ecEN;

e<n

(since f € N and f < n).

o6



Now we know that and hold, and that §, is a finite set. Thus we
can almost apply Lemma 67 to §, instead of X; the only thing that prevents us
from doing so is the fact that j is a map P — P rather than a map §, — §n.
But we can easily see that j (§,) € §, (mainly using (66]), which means that
j restricts to a map §, — §.. Applying Lemma 67 to §, and this restriction
instead of X and j, we conclude that |§,| is a nonnegative integer divisible by n.
This proves Assertion 4.

We have now proven all four assertions 1, 2, 3 and 4. It is now very easy
|8l
n
of nonnegative integers (since, for every n € N, Assertion 4 yields that |§,| is a

to conclude the proof of Proposition 65: We know that ( ) is a family
neN

nonnegative integer divisible by n, so that M is a nonnegative integer). That

, (@> € NV. Moreover, for every n € N, we have
neN

n
Fix ()] = Z |§d| (by Assertion 3)
deN;
dn’__ |3d|
j{: d - Hgdy
deN;
dln

Hence, there exists a family (s,),cy € N¥ of nonnegative integers such that

every n € N satisfies
Fix ()] = 3 dsq
dln

5|

(namely, is such a family). Proposition 65 is thus proven.

Proof of Theo?’g\?[z 60. Set A = Z. Thus, elements of A are the same thing as
integers. From Proposition 5, we know that Z is a binomial ring. In other words,
A is a binomial ring (since A = 7).

By Theorem 30, the assertions Chin, Duvin, Dpyns Doy ''D DyrP Y Ein, Els Foins
Gbins Hbin, Lbin and Zj . listed in Theorem 30 are equivalent.

Now, comparing the assertions Cpin, Dpin, Diins Di b Dﬁﬁ’l', Eviny Ebins Fbin,
Gbin, Hoin, Zoin and Zy, with the respective assertions Cg, Dy, D), , DePl poRl’,
Esy €y Fu, Go, Hy, Iy and I, we notice that:

e we have Cpy, <= Cy (since A = Z);

But
z €%, = (Fix(§™))\ U (Fix (j

eEN;
e<n

(by the definition of §,). Hence, x ¢ |J (Fix(j¢)). This contradicts 1?} This contradiction

ecN;
e<n

shows that our assumption (that j* (x) = ) was wrong. Thus, j* (x) # 2. This proves .
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e we have Dy, <= Dy (because A = Z and because elements of A are the
same thing as integers);

e we have Df, <= D, (because A = Z and because elements of A are the
same thing as integers);

e we have DI = DI (because A = Z and because elements of A are the
same thing as integers);

e we have D «= DI*" (because A = Z and because elements of A are
the same thing as integers);

e we have &, <= & (because A = Z and because elements of A are the
same thing as integers

I

)
e we have &, <= &/ (because A = Z and because elements of A are the

same thing as integers);
(

e we have Fy, <= Fy (since A = Z);
e we have Gy, <= Gy (since A = 7Z);
e we have Hyy, <= Hy (since A = Z);

because A = Z and because elements of A are the

)

e we have 1y, <— 1,
same thing as integers

(
)
e we have Z]. <= T/ (because A = Z and because elements of A are the

same thing as integers).

Hence, the (already proven) equivalence of the assertions Cpin, Duin, Diyys
DpiP b DyP Y i, Els Foiny Obins Hbin, Zoin and Zj . yields the equivalence of the
assertions Cy, Dy, DLy, DI, DEP &, &L, Fu, Go, Ha, Iy and T,.

Now let us prove the equivalence of these assertions with the remaining two
assertions Ky and KV, We will do this by proving the implications £, = KV,
K — Ky and Ky = &,.

Proof of the implication £, = K2V: Assume that Assertion & holds. In
other words, there exists a family (y,), .y € Z" of integers such that

b, = Z dyg for every n € N | . (70)

din

Consider such a family (y,),.y. For every n € N, define an integer y;, by y;, =
max {0, y,}. For every n € N, define an integer y/! by 3/ = max {0, —y,}.
It is completely straightforward to see that

Y — Yn = Un for every n € N (71)

(since every a € Z satisfies max {0, a} — max {0, —a} = a).
For every n € N, the integer ¥/, is nonnegative (since y/, = max{0,y,} > 0).
Thus, (y,),cy is a family of nonnegative integers. That is, (y},),cx € NV. Hence,
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Lemma 61 (applied to (sn),cny = (¥n),en) Vields that there exists a set P" and
an invertible map j' : P’ — P’ such that every n € N satisfies

[Fix ()] = ) _ dy).

dn

Consider this P’ and this j'.
For every n € N, the integer ! is nonnegative (since y/, = max {0, —y, } > 0).

Thus, (y1),.cx is a family of nonnegative integers. That is, (y)),y € NV. Hence,

Lemma 61 (applied to (sn),cn = (Un),en) Yields that there exists a set P” and
an invertible map j” : P” — P” such that every n € N satisfies

Fic (7)) = 3 dyl.
din

Consider this P” and this j”.
Now, every n € N satisfies

[Fise ()] = > oy < o0,

din

[Fix (")) = 3 dylf < o
d

and
Fix ()| — [Fix (") = > dyy = > _ dy,
s ovalies v T
d|n dln

=Yd
(by , applied to d instead of n)

= dya=b, (by (T0)) -

din

Hence, there exist two sets U and V' and two invertible maps f : U — U and
g :V — V such that every n € N satisfies

[Fix (f*)] < oo, [Fix (¢")] < o0 and [Fix (f*)] = [Fix (g")] = bn

(namely, we can take U = P, V = P"  f = j' and g = j”). In other words,
Assertion KV holds. We have thus proven Assertion K2V under the assumption
of Assertion €. In other words, the implication £, = KV is proven.

Proof of the implication K™V = Kg: The implication KV = K is ob-
viously valid (because the statement of Assertion Ky is clearly contained in the
statement of Assertion K2V).

Proof of the implication Ky = E5: Assume that Assertion Ky holds. In
other words, there exist two sets U and V and twomaps f : U - Uandg:V =V
such that every n € N satisfies

|Fix (f")| < oo, |Fix (¢")] < o0 and |Fix (f")] —|Fix (¢")| = bn.
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Consider these two sets U and V' and these two maps f and g.

We know that every n € N satisfies |Fix (f")| < oo. Hence, Proposition
65 (applied to U and f instead of P and j) yields that there exists a family
($n)nen € NV of nonnegative integers such that every n € N satisfies

Fix (f")| = dsa.

dn

Denote this family (sy),cny by (an),cny- Thus, (an),cy is a family of nonnega-
tive integers such that every n € N satisfies

Fix (f")| = dag. (72)

dln

We know that every n € N satisfies |Fix (¢")] < oco. Hence, Proposition
65 (applied to V and ¢ instead of P and j) yields that there exists a family
(5n)pen € N¥ of nonnegative integers such that every n € N satisfies

|Fix (¢")| = Z dsq.

dn

Denote this family (s,),cy by (Bn)nen Thus, (B,),cn is a family of nonnega-
tive integers such that every n € N satisfies

[Fix (¢")| = ) dPa. (73)

din

For every n € N, it is clear that a,, — 3, is an integer (since a,, and (3, are
nonnegative integers). Thus, (a, — B),cn is a family of integers, i. e., we have
(v — ﬁn)neN e Z".

Also, recall that every n € N satisfies |Fix (f")| — |Fix (¢")| = b,,. Thus, every
n € N satisfies

bn = |Fix (f")] = [Fix (¢")[ = Y dag— Y dBs=> _d(aq—Ba).
=3 d =y dB dln dn dn
%) g d

dln n
(by ([72)) (by ([73))

Hence, there exists a family (yn),cn € Z" of integers such that

b, = Z dyg for every n € N

din

(namely, the family (o, — f,),,cy)- In other words, Assertion £ holds. We have
thus proven Assertion £, under the assumption of Assertion Cg. In other words,
the implication Ky = &, is proven.

Now we have proven the implications £ = KV, KIV = K and Ky =
&y. Combining these three implications, we obtain the equivalence &5 <=
KbV = K.
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Now recall that the assertions Cy, Dy, DLy, DS, DEP &, &L, Fu, Go, Ho,
T and Z; are equivalent. Combining this with the equivalence £y <= KV <=
Ko, we conclude that the assertions Cy, Dy, D, DS, DIV &, &L Fu, Go,
Hy, Iy, I,,, Ky and KV are equivalent. Theorem 60 is thus proven.

We will not dwell on particular cases and applications of Theorem 60, since
most of them have been already discussed in [5]. While our Theorem 60 is stronger
than Theorem 15 of [5], it seems that Theorem 15 of [5] is enough for most of the
interesting applicationslﬂ so we wouldn’t gain much from applying Theorem 60.

What we will do, however, is formulate and prove a ”finite” version of Theorem
60:

Theorem 70. Let N be a finite nest. Let (b,), .y € Z" be a family
of integers. Then, the assertions Cg, Dy, D, peel perl e &L,
Fo, Go, Ha, Lo, I, Ko, KV, Kin and KBV are equivalent, where
the assertions Cy, Dy, DLy, DI, DI &, &L Fu, Go, Ho, Lo, T,
Kz and KV are the ones stated in Theorem 60, and the assertions
Khin and KoY are the following ones:

Assertion K2 There exist two finite sets U and V and two maps
f:U—Uand g:V — V such that every n € N satisfies

[Fix (f*)] = [Fix (¢")] = bn-

Here, whenever S is a set and h : S — S is a map, we denote by
Fix (h) the set of fixed points of the map h.

Assertion KBV There exist two finite sets U and V and two in-
vertible maps f : U — U and g : V — V such that every n € N
satisfies

|[Fix (f")| = [Fix (9")] = b

Here, whenever S is a set and A : S — S is a map, we denote by
Fix (h) the set of fixed points of the map h.

The proof of this relies on the following ”finite” version of Lemma 61:

Lemma 71. Let N be a finite nest. Let (s,),.y € NV be a family
of nonnegative integers. Then, there exists a finite set P and an
invertible map j : P — P such that every n € N satisfies

Fix (j")| = > dsq.

dln

The proof of Lemma 71 proceeds exactly as the proof of Lemma 61, except
that one also has to notice that () is finite. The trivial details are left to the
reader.

The proof of Theorem 70, too, proceeds exactly as the proof of Theorem 60,
with obvious changes to account for finiteness conditions.

**In particular, applying Assertion KF" to families like (bn),.cry, = (¢"),en, and (bn),cn, =

((qn)) gives results which could be derived in a better way combinatorially.
™) ) e,
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