Witt vectors. Part 1
Michiel Hazewinkel
Sidenotes by Darij Grinberg

Witt#5e: Generalizing integrality theorems for ghost-Witt vectors
[not completed, not proofread]

In this note, we will generalize most of the results in [4], replacing the Witt poly-
nomials w,, by the more general polynomials wp,, defined for any pseudo-monotonous
map F: P x N — N (the meaning of ”pseudo-monotonous” will soon be explained
below). Whenever possible, the proofs will be done by simply copypasting the corre-
sponding proofs from [4] and doing the necessary changes - which often will be trivial,
though sometimes new thinking will be required. I will even try to keep the numbering
of the results in this note consistent with the numbering of the results in [4], so that
for instance Theorem i in this note will be the generalization of Theorem ¢ in [4] for as
many ¢ as possible. This explains why there are gaps in the numbering: e. g., there is
no numbered result between Theorem 17 and Lemma 19 in this note, because Lemma
18 of [4] was just an auxiliary result and needs not be generalized to the wg,,.

First, let us introduce some notation[}

Definition 1. Let P denote the set of all primes. (A prime means an
integer n > 1 such that the only divisors of n are n and 1. The word
”divisor” means " positive divisor”.)

Definition 2. We denote the set {0, 1,2,...} by N, and we denote the set
{1,2,3,...} by N.. (Note that our notations conflict with the notations
used by Hazewinkel in [1]; in fact, Hazewinkel uses the letter N for the set
{1,2,3, ...}, which we denote by N .)

Definition 3. Let = be a family of symbols. We consider the polynomial
ring Q[Z] (this is the polynomial ring over Q in the indeterminates =; in
other words, we use the symbols from = as variables for the polynomials)
and its subring Z [Z] (this is the polynomial ring over Z in the indetermi-
nates =). E] For any n € N, let =" mean the family of the n-th powers of
all elements of our family = (considered as elements of Z[Z]) P (There-
fore, whenever P € Q=] is a polynomial, then P (2") is the polynomial
obtained from P after replacing every indeterminate by its n-th powerﬁ)

Note that if = is the empty family, then Q [Z] simply is the ring @, and
Z =] simply is the ring Z.

!The first 6 of the following 10 definitions are the same as the corresponding definitions in [4].

2For instance, = can be (Xo,Xi,X>s,...), in which case Z[Z] means Z|[Xg, X1, Xo,...].
Or, Z can be (Xo,X1,X2,..5Y0,Y1,Y,...;20,7Z1,Z2,...), in which case Z[Z] means
Z[Xo,Xl,XQ,...;Yb,yl,yvg,...;ZO,Zl,Zz,...].

3In other words, if 2 = (&),c;, then we define 2" as (£'),.,. For instance, if 2 = (Xo, X1, Xa, ...),
then 2" = (Xg,X?,XS,) If = = (Xo,Xl,Xg,...;Y(),Yl,YQ,...;Zo,Zl,ZQ,...), then 2" =
(X, X7, Xy, Y, Y Y, s 280, 20, 28 ).

4For instance, if 2 = (Xo,X1,Xs,..) and P(Z) = (Xo+X1)> — 2X3 4+ 1, then P(E") =
(Xp+ X1 —2X7 4+ 1.



Definition 4. If m and n are two integers, then we write m L n if and
only if m is coprime to n. If m is an integer and S is a set, then we write
m L S if and only if (m L n for every n € S).

Definition 5. A nest means a nonempty subset N of N, such that for
every element d € N, every divisor of d lies in N.

Here are some examples of nests: For instance, N itself is a nest. For every
prime p, the set {1,p,p? p?, ...} is a nest; we denote this nest by p~. For
any integer m, the set {n € N, | n L m} is a nest; we denote this nest by
N,,,. For any positive integer m, the set {n € Ny | n < m} is a nest; we
denote this nest by N<,,. For any integer m, the set {n € N | (n | m)} is
a nest; we denote this nest by Nj,,. Another example of a nest is the set
{1,2,3,5,6,10}.

Clearly, every nest N contains the element 1 |E|

Definition 6. If N is a seﬁ, we shall denote by Xy the family (X,), .y
of distinct symbols. Hence, Z[Xy] is the ring Z [(X,),cy] (this is the
polynomial ring over Z in |N| indeterminates, where the indeterminates are
labelled X,,, where n runs through the elements of the set V). For instance,
Z [XN+] is the polynomial ring Z [ X7, X, X3, ...] (since N, = {1,2,3,...}),
and Z [X{1,273’576710}} is the polynomial ring Z [ X, Xo, X3, X5, Xg, Xi0].

If Ais a commutative ring with unity, if N is a set, if (z4),cy € AV is a
family of elements of A indexed by elements of N, and if P € Z [Xy], then
we denote by P ((azd) de N) the element of A that we obtain if we substitute x4
for X, for every d € N into the polynomial P. (For instance, if N = {1,2,5}
and P = X? + XoX5 — X5, and if z; = 13, 75 = 37 and x5 = 666, then
P ((za)gen) = 132 + 37 - 666 — 666.)

We notice that whenever N and M are two sets satisfying N C M, then
we canonically identify Z[Xy] with a subring of Z [Xj]. In particular,
when P € Z[Xy] is a polynomial, and A is a commutative ring with
unity, and (z,,),,c,r € A is a family of elements of A, then P ((z),,car)
means P ((Zm),,cn)- (Thus, the elements z,, for m € M \ N are simply
ignored when evaluating P ((#m),,c5;).) In particular, if N C Ny, and
(21,22, 33,...) € AN+ then P (z1, 22, 3,...) means P ((z),,cy)-

Definition 7. Let n € Z\ {0}. Let p € P. We denote by v, (n) the largest
nonnegative integer m satisfying p™ | n. Clearly, p*»™ | n and v, (n) > 0.
Besides, v, (n) = 0 if and only if p { n.

We also set v, (0) = oo; this way, our definition of v, (n) extends to all
n € Z (and not only to n € Z \ {0}).

Definition 8. Let n € N,. We denote by PF n the set of all prime divisors
of n. By the unique factorization theorem, the set PF n is finite and satisfies

n = H p”p(n)‘
pePFn

°In fact, there exists some n € N (since N is a nest and thus nonempty), and thus 1 € N (since 1
is a divisor of n, and every divisor of n must lie in N because N is a nest).

6We will use this notation only for the case of N being a nest. However, it equally makes sense for
any arbitrary set N.



Definition 9. A map F': P x N — N is said to be pseudo-monotonous if
it satisfies

(F (p,0) =0 for every p € P) and (1)
(F (p,a) —a < F(p,b)—b for every p € P, a € N and b € N satisfying a > b) .

(2)

If F:PxN — N is a pseudo-monotonous map, then we denote by F:
N, — N, the map defined by

F(n) = H ptPee() for every n € N,.
pePFn

[

We note that

Vp (ﬁ (n)) = F (p,v, (n)) for every n € N and every p € PFn (3)
(since F (n)= J[ p"®v™)). Besides,
pePFn
F(n)| (n/d)F(d) for every n € N, and every d € N,  (4)

Bl

"Note that F is always a multiplicative function, but not every multiplicative function from N to
N, can be written as F' for some pseudo-monotonous map F : P x N — N.
8Tn fact, we have

[T "o = ] p"ew@. ] pf®oe(d) (since d | n yields PFd C PFn)
pEPFn pEPF d pEPFn\PFd _, F(p.0)
_ sin ePFn\PFd
=F(d) (by the yigldscf)é)PFd aI\ld thus
definition of F') vy (d)=0)
=F@d)- ] pF®0 =F@)- J] 1=F(@
pEPFn\PFd _, (Since” vields pEPF n\PFd
(

p,0)=0 and thus
pF(an):pf):l)

and
H p'up(n/d) _ H p'up(n/d) . H pv,,(n/d)
pEPFn peEPF(n/d) pePF n\PF(n/d) -1
(since pePF n\PF(n/d)
=n/d yields p¢PF(n,/d) and thus
vp(n,/ d)=0, so that pUp (/D —p0—_1)
(since (n,/d) | n yields PF (n/d) C PFn)
=n/d-1=n/d.

Now, for every p € PFn, we have v, (n) = v, ((n,/d) - d) = v, (n,/d) +v, (d) > v, (d), and thus (2)

—_——
>0



Definition 10. Let F' : P x N — N be a pseudo-monotonous map. For
any n € Ny, we define a polynomial wg,, € Z [XNIH} by

=Y F(d) X}
din

Hence, for every commutative ring A with unity, and for any family (zy,) ken,, €

ANim of elements of A, we have

d
WEy, < Tk) keN|, ) ZF "/ )

As explained in Definition 6, if N is a set containing Ny,, if A is a commu-
tative ring with unity, and (7). y € AYN is a family of elements of A, then

W (k) pe ) means wp, ((:Ek)keNl ); in other words,

n/d
wF,n (zx) keN E,F Ly -
dn

The polynomials wg1, wra2, wrs, ... will be called the big F-Witt polyno-
maals or, simply, the F'-Witt polynomials.

First, here are two examples of pseudo-monotonous maps:
Ezample 1: Define the map pry : P x N = N by

pry (p, k) =k for every p € P and k € N.
Then, pry is a pseudo-monotonous map, and pry = id (since every n € N, satisfies
pig(n) = JI  pPweee®™)  — T p*»™ = pn). Hence, every n € N, satisfies
N pePFn S~ pePFn

=p?»(") (since
pry(p,vp(n))=vp(n))
Wprym Z pry (d )X;‘/ d = ZdXC’Z/ 4 Therefore, for every n € N, , the polynomial

dn
" Sid(d)=d

(applied to a = v, (n) and b = v, (d)) yields

F (p,vy (n) = vy () < F (p,v, (d)) — v, (d), so that
F(poy(n) S F(pooy @)+ vp(n)  —vp(d) = F(p,vy () + v, (n/d),
——

=vp(n/ d)+vp(d)

and consequently pf ®:v»()) | pF@vp(d)tvp(n/d) Hence,

ﬁ(n) — H pPvp(n) H pf®vp(d)tvp(n/d) — H pf®vp(d) H ptr(n/d) — ( Yn,/d = (n,/d)
peEPFn peEPFn peEPFn peEPFn
|pF(PaUP(d))+'Up(7L/ d) zpF(p,vp(d))p‘up(n/ d)
=F(d) =n/d

F(d).



Wpry,n 15 identic with the polynomial w, defined in [4]. Because of this, all the theo-
rems that we will prove about the polynomials wg;, wrsa, wgs, ... will generalize the
corresponding theorems about the polynomials wy, ws, ws, ... in [4].

Ezxample 2: Define the map prad : P x N — N by

0, if k =0;
prad(p,k)—{ it k>0 for every p € P and k € N.
Then, prad is a pseudo-monotonous mapﬂ and the map p/r\/ad is identic with the map
rad : Ny — N, defined by radn = ][] p for every n € N, (since every n € N,
pePFn

9 Proof. By the definition of ”pseudo-monotonous”, the map prad is pseudo-monotonous if and
only if it satisfies

(prad (p,0) =0 for every p € P) and (5)
(prad (p,a) —a < prad (p,b) — b for every p € P, a € N and b € N satisfying a > b).  (6)

We will now prove that it indeed satisfies these relations and @
First of all, every p € P satisfies

prad (p,0) = { 01’ liff(()):>(()); (by the definition of prad)

=0 (since 0 =0).

Thus, is proven.
Next, let p € P, a € N and b € N be given such that a > b. We distinguish between two cases:
Case 1: We have b = 0.
Case 2: We have b > 0.
Let us consider Case 1 first. In this case, b = 0. By the definition of prad, we have

0, if a =0; < { 0, if a=0; (because 1 < a in the case when a > 0)

prad(p,a):{ 1, ifa>0 a, ifa >0

{ C;’ liffZi%; (since 0 = a in the case when a = 0)

a,

so that prad (p,a) — a < 0. Since b = 0, we have prad (p,b) — b = prad(p,0) =0 = 0. Thus,
0

prad (p,a) — a < 0 = prad (p,b) — b. We have thus proven prad (p,a) — a < prad (p,b) — b in Case 1.

Let us now consider Case 2. In this case, b > 0. Thus, the definition of prad yields prad (p,b) =

{ (i’ li,l;)i %; =1 (since b > 0). On the other hand, a > b > 0. Hence, the definition of prad yields

prad (p,a) = { 01’7 liffi;%’ =1 (since a > 0). Now prad (p,a) - < prad (p,b) — b. Thus, we
=1=prad(p,b) >b

have proven prad (p,a) —a < prad (p,b) — b in Case 2.

Hence, we have proven prad (p,a) —a < prad (p,b) — b in each of the cases 1 and 2. Since these two
cases cover all possibilities, this yields that prad (p,a) — a < prad (p, b) — b always holds.

Now, forget that we fixed p, @ and b. We thus have proven that prad (p,a) — a < prad (p,b) — b for
every p € P, a € N and b € N satisfying a > b. In other words, we have proven @

Recall that the map prad is pseudo-monotonous if and only if it satisfies the relations and @
Since we have proven that it satisfies the relations and (@, we thus conclude that the map prad
is pseudo-monotonous, ged.



satisfies

—_——
pePFn =p (since pePF n yields pEPE R
p|n and thus vp(n)>0,
so that prad(p,vp(n))=1

and thus pprad(p’vlﬂ(")):pl =p)

). Hence, every n € N, satisfies wpraqn = Z[;;&i (d) X7 =" (radd) X}”*. There-

djn =~ din
=radd

fore, for every n € Ny, the polynomial wpraa ., is identic with the polynomial /w,,
defined in [6]. Because of this, all the theorems that we will prove about the polynomi-
als wg 1, Wra, Wrga, ... will generalize the corresponding theorems about the polynomials
/Wy, ¥ wy, /w,, ... in [6]. This is not to say that we will be able to generalize all
results from [6] to our polynomials wg1, Wra, Wrs, .... In fact, Theorem 4’ in [6] doesn’t
follow from any of the theorems below.

Now, we start by recalling some properties of primes and commutative rings:

Theorem 1. Let A be a commutative ring with unity. Let M be an
A-module. Let N € N. Let I;, Is, ..., In be N ideals of A such that
I; + I; = A for any two elements ¢ and j of {1,2,..., N} satisfying i < j.
Then, I1Io..In - M =I1MNLMnN..NIyM.

We will not prove this Theorem 1 here, since it is identic with Theorem 1 in [4] and
was proven in [4].
A trivial corollary from Theorem 1 that we will use is:

Corollary 2.@ Let A be an Abelian group (written additively). Let n €
N;. Let F': P x N — N be a pseudo-monotonous map. Then, F'(n) A =

N (pFeee ).

pePFn

Proof of Corollary 2. Since PF n is a finite set, there exist N € N and some pairwise

F(pisop; (n) _

N
distinct primes py, po, ..., py such that PFn = {py,ps,...,pn}. Thus, [[p
i=1
[T pr®er®) = F ().

pePFn

Define an ideal [; of Z by I; = pf(pi’vpi(n))Z for every i € {1,2,...,N}. Then,

I; 4+ I; = Z for any two elements ¢ and j of {1,2,..., N} satisfying ¢ < j (in fact, the

iy Up,; (T F jsUp; (T .
integers pf(p () and p; (pivon, () are coprimg'!| and thus, by Bezout’s theorem, there
F(p;ivp. (n F(pjvp. (n .
exist integers o and 3 such that 1 = p, (pisons ))a +p; (bi0r; () B in Z, and therefore
F(pi,vp. (n F(p;,vp.(n .
= )y P, (i) g ¢ [ [ in 7, and thus T + I; — Z). Hence,

N e’ ﬁ_/
F(Piv”mm)) 7. F(p;,op,(n)
€p; 7=1I; en, (P] D )Z:Ij

10This is an analogue of Corollary 2 in [4] (and can actually be easily derived from that Corollary
2 in [4], but here we will prove it differently).

Hsince p; and p; are distinct primes (because i < j and since the primes p1, p, ..., py are pairwise
distinct)



Theorem 1 (applied to Z and A instead of A and M, respectively) yields I1 I5...Iy - A =
IlA N ]214 n...N INA Since

N N
L. H \I/ A= H( (pr.ems () >.A

=1 1
t 717?(171 Yp; (n)) t

(pr“”“ ) A=F(n)2-A=F(n)A

i=1

N

(.

and

N

N N
IlAﬂIQAﬂﬂ]NA = m (]ZA) = m (pf(pi’vpi(n))z . A) — m
=1 =1

=1

(pf(pi,vpi(n))A) _ ﬂ (pF(p,vp(n))A)

pePFn

(since PFn = {p1,p2,...,pn}), this becomes ﬁ(n)A =

D)

(pF(p,vp(”)) A) . Corollary
pePFn

2 is thus proven.
Another fact we will use:

Lemma 3. Let A be a commutative ring with unity, and p € N be a
nonnegative integerl 2} Let k € N and (e N be such that £ > 0. Let a € A
and b € A. If ¢ = bmod p* A, then a?' = v mod pF+ A.

This lemma was proven in [3], Lemma 3.
The following result generalizes Theorem 4 in [4]:

Theorem 4. Let N be a nest. Let F': PxN — N be a pseudo-monotonous
map. Let A be a commutative ring with unity. For every p € PN N, let
¢p : A — A be an endomorphism of the ring A such that

(pp (@) = a”? mod pA holds for every a € Aand p e PN N). (7)

Let (by),cn € AY be a family of elements of A. Then, the following two
assertions C and D are equivalent:

Assertion C: Every n € N and every p € PF n satisfies

©p (b ) = b, mod pf' (M) A (8)

Assertion D: There exists a family (z,),.y € AV of elements of A such
that
(bn = Wy, ((xk)keN) for every n € N) )

2Though we call it p, we do not require it to be a prime in this lemma.



Proof of Theorem 4. Our goal is to show that Assertion C is equivalent to Assertion
D. We will achieve this by proving the implications D = C and C = D.

Proof of the implication D = C: Assume that Assertion D holds. That is, there
exists a family (), .y € A" of elements of A such that

(bn = wpn ((2)4ey) for every n € N). 9)

We want to prove that Assertion C holds, i. e., that every n € N and every
p € PFn satisfies . Let n € N and p € PFn. Then, p | n, so that n/p € N,
and thus n/p € N (since np is a divisor of n, and every divisor of n lies in N

. Thus, applying @ to n/p instead of n yields b,,, = wgyp ((Ik)keN) But
(n d - n,
Wrnp (Tk)gey) = 2 F( )z, /P4 and Wy ((Th)pen) = %F(d) xd/d. Now,

d|(n/p)
yields
n d n d n/d
bn :’LUFJL xk kEN ZF / = Z / + Z d/ . (10)
d|n; d|n;
d|(n/p) df(n,/p)

But for any divisor d of n, the assertions d t (np) and p*™ | d are equiva-
len Hence, every divisor d of n which satisfies d  (n,/p) must satisfy F (d) =
OmodpF(’wP ”))A °| Thus,

Z ﬁ(d) "/d Z Ox"/d = 0mod pF'®vr(m) 4
d|n; I d|n;
di(n,/p) =0mod p" (Pr(m) 4 d(n,/p)

Bhecause n € N and because N is a nest
141n fact, we have the following chain of equivalences:

@) = (Grez) = (L0¢z) (s 2 =121

p
<~ (pt(n/d)) (here we use that n,/d € Z, since d | n)
= (vp(n/d) =0) <= (v, (n,/d) <0) (since v, (n,/d) > 0, because n/d € Z)
= (vp(n) — v, (d) <0) (since v, (n,/d) = v, (n) — vy (d))
= (@) <u @) = (" ]d).

and pU»(™ | d are equivalent), so that v, (d) > v, (n). Together with v, (d) < v, (n) (which is because

15Tn fact, let d be a divisor of n satisfying d { (n,/p). Then, p¥»("™) | d (since the assertions d { (n,/p)
(
d | n yields % € Z, thus v, (g) > 0 and now v, (n) = v, (d%) = v, (d) + vp (%) > v, (d)),
———

>0
this becomes v, (d) = v, (n). Hence, the equality v, (ﬁ (d)) = F (p,v, (d)) (which follows from ,
applied to d instead of n) rewrites as v, (Fv (d)) = F (p,v, (n)), so that p@v»(m) | F(d), and thus
F (d) = 0mod pF'®ve(m) 4,



Thus, becomes

bn: Z n/d+ Z n/d Z F n/d+0

d|n; d|n; d|(n/p)
d|(n/p) df(n,/p)
S—~— N ~~ d
= EOmodpF(p’”P("))A
d|(n/p)
= Z F (d) 2" mod pf'®Pve(m) A, (11)
d|(n/p)

On the other hand,

o n d .
byp = wrnp (@h)gen) = > F(d)zf ™" yields
d|(n,/p)
(n, d n d
oo (bap) =05 | D F(d)adP ") = > F(d) (g, (za))™ P (12)
d|(n/p) dl(n/p)

(since ¢, is a ring endomorphism).
Now, let d be a divisor of np. Then, d | (n/p) | n, so that g € Z and thus

Uy (%) > 0. Let @« = v, ((n/p) /d) and 8 = v, ( (d) ). Clearly, v, (n) = v, (d%) =
0y (@) + vy (5) 2 0y (@) vields F (v, () — v, (n) < F (0, () — v, (d) (b @),
——

>0

applied to a = v, (n) and b = v, (d)), and thus F (p,v, (d)) > F (p,v, (n)) — v, (n) +
v, (d). Since = v, (ﬁ (d)) = F(p,v,(d)) (by , applied to d instead of n), this
becomes

Bz F(pvy(n)) —vy(n)+v,(d).

Adding the equality o = v, ((n,/p) /d) to this inequality, we obtain

a+ B =w,((n/p)/d)+ F(p,vp(n) —uvy(n)+u,(d)

=, ((n/p) /d) + v, (d) +F (p,v, (n)) = v, (n)
N —~— N——
=vp(((n/p)/d)-d)=vp(n/p) =vp(p(n,/p))
=vp(p)+vp(n/p)

= F<pa Up (TL)) _e;i@: F(p>vp (n)) -1,

=1

sothat 1 +a+ 5 > F (p,v, (n)).
Besides, a = v, ((n,/p) /d) yields p* | (n/p) /d, so that there exists some v € N

such that (n/p) /d = p*v. Finally, § = v, (F (d)) yields p° | F( ), so that there
exists some x € N such that F (d) = kp®. Applying Lemma 3 to the values k = 1,
{=a,a=p,(ry) and b = ¥, (which satisfy a = bmod p* A because of , applied to
a = x4) yields (@, (z4))"" = (29)”" modp'**A. Using the equation (n,/p) /d = p*v,



we get

(o ()™ P = (0 (wa)”

(o3

= (o))

= ((:L'Z)pa> (since (op (xd))pa = (:EZ)pa modeO‘A)
= (ah)"" = ()P (since p°v = (n/p) /d)
— (mz)(n/d)/p _ xs/d mod p'+eA.

Multiplying this congruence with p®, we obtain

P’ (p (2a))
As a consequence of this,

P’ (p (2a))™ 77 = PP mod p" () A

(since 1 +a+ 8 > F (p,v, (n)) and hence p'to+8A C pF'®Pur() A). Now, multiplying
this congruence with x, we get

5 (0 ()P4 = mpay mod pF P D A,

(n/p)/d — pﬁxg/d modp1+°‘+5A.

which rewrites as
ﬁ (d) ((pp (:Cd))(n/p)/d = ﬁ (d) Z’Z/d mod pF(p’”p(”))A
(since Hpﬁ - ﬁ<d>) Hence, " becomes

er (i) = 3 F(d) (o ()" = 3 F(d)ay " = bymodp" 0 A

d|(n/p) P mod pF (p-o0(m) 4 d|(n/p)

(by ) This proves , and thus Assertion C is proven. We have therefore shown
the implication D = C.

Proof of the implication C = D: Assume that Assertion C holds. That is, every
n € N and every p € PF n satisfies .

We will now recursively construct a family (z,),.y € AN of elements of A which
satisfies the equation

b = > F(d)z)”" (13)
d|

for every m € N.

In fact, let n € N, and assume that we have already constructed an element z,, € A
for every m € N N{1,2,...,n — 1} in such a way that holds for every m € N N
{1,2,...,n —1}. Now, we must construct an element x, € A such that is also
satisfied for m = n.

Our assumption says that we have already constructed an element z,, € A for every
m € NN{l,2,...,n— 1}. In particular, this yields that we have already constructed
an element x, € A for every divisor d of n satisfying d # n (in fact, every such
divisor d of n must lie in N H and in {1,2,...,n — 1} B, and thus it satisfies
de Nn{l,2,...,n—1}).

Let p € PFn. Then, p | n, so that n,/p € N, and thus n/p € N (since np is
a divisor of n, and every divisor of n lies in N E[) Besides, n/p € {1,2,...,n — 1}.

16hecause n € N and because N is a nest
Thecause d is a divisor of n satisfying d # n
8hecause n € N and because N is a nest
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Hence, n,/p € NN{1,2,....,n — 1}. Since (by our assumption) the equation holds

for every m € NN{1,2,. 1} we can thus conclude that holds for m =n/p.
In other words, b, , = Z F(d ) (/)74 From this equation, we can conclude (by
d|(n/p)

the same reasoning as in the proof of the implication D = C) that

(buyp) = > F(d) 2}y modp" e A,

d|(n/p)
Comparing this with , we obtain
> F(d)a}" = bymod pF e 4 (14)

d|(n,/p)
Now, every divisor d of n which satisfies d 1 (n/p) must satisfy F (d) = 0mod pr'®v»() A

El Thus,

Z ﬁ(d) "/d Z Ox"/d = 0mod pF'®@vr(m) 4
dn; F(p,op(n))
df(n,/p); =0modp” (7P (M)A d«n/p)

d#n d#n
Hence,
YNF(@ay = > Fday'+ > Fday'= > Fday'= > F(day*
d|n; d|n; d|n; d|n; d|n;
d#n df(n/p); d|(n/p); d|(n,/p); d|(n/p)

d#n d#n d#n

N J/
-

=0 modpF(p’”P("))A
since for any divisor d of n, the assertions (d | (n,/p) and d # n) and d | (n,/p)
are equivalent, because if d | (n/p), then d # n (since n{ (n,p))
Z F(d 2" * = b, mod pf'®vr(") A (by (14)).
d|(n/p)

In other words,

by, — Zf (d) /€ pF'eonn) 4,

d|n;
d#n
This relation holds for every p € PFn. Thus,
by, — Z F (d) = ﬂ Flpvn(n) 4 A) = F(n)A (by Corollary 2).
d|n; pePFn
d#n
Hence, there exists an element z, of A that satisfies b, — 3 F (d) 2% = F (n) z,.
d|n;
d;én

Fix such an x,,. We now claim that this element z,, satisfies ) for m = n. In fact,

N F(d)ay =Y F(d)zy '+ > F(d)ay" ZF 24 F (n)x, = b,

din d|n; d|n; d|n;
d#n d=n d#n
~—_————

=F(n)z "=F(n)zl=F(n)zn

19This has already been proven during our proof of the implication D = C.
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(since b, — 3 F (d) g/t = F (n) x,). Hence, (13) is satisfied for m = n. This shows
d|n;
dlén

that we can recursively construct a family (z,,),,.y € AV of elements of A which satisfies

the equation for every m € N. Therefore, this family satisfies

b, = Z F(d) 22 (by (13), applied to m = n)
dn

= Wrn ((xk)keN)

for every n € N. So we have proven that there exists a family (z,), .y € AY which
satisfies b, = wr,, ((mk) ke N) for every n € N. In other words, we have proven Assertion
D. Thus, the implication C = D is proven.
Now that both implications D = C and C = D are verified, Theorem 4 is proven.
Next, we will show a result similar to Theorem 4@:

Theorem 5. Let N be a nest. Let /' : PxN — N be a pseudo-monotonous
map. Let A be an Abelian group (written additively). For every n € N,
let ¢, : A — A be an endomorphism of the group A such that

(p1 =1id) and (15)
(00 © ©m = @nm for every n € N and every m € N satisfying nm € N).
(16)

Let (by),cn € AY be a family of elements of A. Then, the following five
assertions C, £, F, G and H are equivalent:

Assertion C: Every n € N and every p € PF n satisfies
@p (byrp) = by mod pf () A, (17)

Assertion £: There exists a family (y,), .y € AY of elements of A such
that

Z F(d) ¢n,d(ya) for every n € N
dln
Assertion F: Every n € N satisfies

ZM n/d)Eﬁ(n)A.

d|n
Assertion G: Every n € N satisfies

Z¢ a(bna) € F (n) A.

dn

Assertion H: Every n € N satisfies

n
Z n/ sed(in) (Dged(iny) € F (n) A.
=1
20Later, we will unite it with Theorem 4 into one big theorem - whose conditions, however, will
include the conditions of both Theorems 4 and 5, so it does not replace Theorems 4 and 5.
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Remark: Here, 1 denotes the Mobius function p: Ny — Z defined by
(=) if (v, (n) < 1 for every p € PFn)
— : : 1
w(n) { 0, otherwise (18)
Besides, ¢ denotes the Euler phi function ¢ : N, — Z defined by
6(n) = |{m € {1,2, .0} | m Ln}|.
We will need some basic properties of the functions p and ¢:

Theorem 6. Any n € N, satisfies the five identities

I T
w(n) :{ =) pelllnp (19)

0, otherwise

S o) =n; (20)

dln
> n(d) =[n=1]; (21)
din
>z = n): (22)
dn
S du(@o (%) =nn). (23)

dln
Here, for any assertion s, we denote by [s] the truth value of > (defined

1, if s is true;
by [+ = { 0, if s is false )

This Theorem 6 is exactly identical to Theorem 6 in [4], and therefore we will not
prove it here.

Proof of Theorem 5. First, we are going to prove the equivalence of the assertions
C and &. In order to do this, we will prove the implications £ = C and C = €&.

Proof of the implication & = C: Assume that Assertion £ holds. That is, there
exists a family (yn),cy € AV of elements of A such that

Z F(d) ¢n,q(ya) for every ne N | . (24)
dln

We want to prove that Assertion C holds, i. e., that every n € N and every p € PFn
satisfies . Let n € N and p € PFn. Then, p | n, so that n,/p € N, and thus
n,/p € N (since n/p is a divisor of n, and every divisor of n lies in N E[) Thus,
applying to n,/p instead of n yields b,,, = > F (d) ©n,p)sd (Ya). Now,

d|(n/p)
yields
b= F(d)onsalya) = Y F(d)enaa)+ Y, F(d)ensalys). (25
din d|n; d|n;
d|(n/p) df(n/p)

But every divisor d of n which satisfies d 1 (n/p) must satisfy F (d) = 0 mod p"®v»(m) A [22]

2lhecause n € N and because N is a nest
22This has already been proven during our proof of Theorem 4.
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Thus,

d|n; — F(p v, (n)) dlnv
dt(n,/p) =0mod p" \P¥pP A dH(n/p)

Thus, becomes

by = Z F () pna(ya) + Z F (d) ¢nd (ya)

Z F(d) ¢na(ya) +0 = Z F(d) n,a(Ya)

d|n; d|n; d|n; d|n;
d(n./p) di(n/p) dew) d(n./p)
EOmodp;?p’“P("))A
= S F(d) g (a) mod pP0n ) 4. (26)
d|(n/p)

On the other hand, b, , = > F (d) 9(np)d (ya) yields
dl(n/p)

@p (bnp) = ©p Z F(d) e, p),a (Ya)
dl(n/p)

= Z F(d) Pr (Y p),/d (yd))J (since ¢, is a group endomorphism)

d|(n/ v
np) =(<Pp090(n/p)/d)(yd)

= > Fl (00 /) a)  (Ya)

d|(n/p) =@p-(n/p)a (due to (8))

= > F(d)@pnmralya) = > F(d)ena(ya) = by modp” @) 4
dl(n,/p) d|(n/p)

=Pn/d

(by ) In other words, is satisfied, and thus Assertion C is proven. We have
therefore shown the implication £ = C.
Proof of the implication C = £: Assume that Assertion C holds. That is, every
n € N and every p € PF n satisfies .
We will now recursively construct a family (y,), .y € AV of elements of A which
satisfies the equation
b = Z F(d) om,a (ya) (27)

dlm

for every m € N.

In fact, let n € N, and assume that we have already constructed an element y,, € A
for every m € N N{1,2,....,n — 1} in such a way that holds for every m € N N
{1,2,...,n—1}. Now, we must construct an element y, € A such that is also
satisfied for m = n.

Our assumption says that we have already constructed an element y,,, € A for every
m € NN{1,2,...,n—1}. In particular, this yields that we have already constructed
an element y; € A for every divisor d of n satisfying d # n (in fact, every such
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divisor d of n must lie in N @ and in {1,2,...,n— 1} E, and thus it satisfies
de Nn{l,2,...n—1}).

Let p € PFn. Then, p | n, so that n,/p € N, and thus n,/p € N (since n/p is
a divisor of n, and every divisor of n lies in N E[) Besides, n/p € {1,2,...,n — 1}.
Hence, n,/p € NN{1,2,....,n — 1}. Since (by our assumption) the equation holds

for every m € NN{1,2,. 1}, we can thus conclude that holds for m = n_7p.
In other words, b, , = Z F (d) ©(m,p)d (Ya). From this equation, we can conclude

d|(m,p)
(by the same reasoning as in the proof of the implication £ = C) that

n/p = Z F (;Dn/d yd)

d|(n/p)
Comparing this with , we obtain
> F(d)¢na(ya) = bymod p" v A, (28)

d|(n/p)

Now, every divisor d of n which satisfies d § (n,/p) must satisfy F' (d) = 0 mod p¥®:vr(m) A
Thus,

Z F (d) Pnd (Ya) = Z 00y, a (y4) = 0 mod p* (Pop(m) 4
dJ[(n/p); =0modp P A d)((n/p);

d#n dotn
Hence,
Z F SOn/d yd) Z F (d) Pn/d (yd) + Z F (d) Pn,d (yd) = Z F (d) Pnsd (yd)
dln; djn; din; =
d#n df(n/p); d|(n/p) dl(nro);

R d#n ) s

-~

=0mod pF(p’”P(">)A

= 3 F(d)puralya)

d|n;
d|(n/p)

since for any divisor d of n, the assertions (d | (n,/p) and d # n) and d | (n,/p)
are equivalent, because if (d | (n,p)), then d # n (since n{ (n/p))

= > F(d) @nsa(ya) = bymodp” P A (by (28))-
di(n/p)

In other words,

by — ZF nya(ya) € p" P A,
d|n
d;|én

23because n € N and because N is a nest

24because d is a divisor of n satisfying d # n

25because n € N and because N is a nest

26This has already been proven during our proof of Theorem 4.
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This relation holds for every p € PF n. Thus,

by, — Z F(d)on, a(ya) € ﬂ (pF(p’”"(”))A) —F(n)A (by Corollary 2).
dln; pePFn
d#n

Hence, there exists an element y,, of A that satisfies b, — > F (d) ©nd (ya) = F (n) Yn.-
d|n;
d;|én

Fix such a y,. We now claim that this element y,, satisfies for m = n. In fact,

Z F(d) ¢na (ya) Z F(d) o, a(ya) + Z F(d) ¢ q(ya)

dln d|n; d|n;
d#n d=n P
=F(n)@n, n(yn)=F(n )%(yn) F(n)yn,
due to
= ZF ©nd yd) + F (TL) Yn = bn
d|n;
d#n

(since b, — 32 F(d) ¢n a(ya) = F (n)yn). Hence, 1} is satisfied for m = n. This
d|n;

d#n

shows that we can recursively construct a family (yn),.n € AN of elements of A
which satisfies the equation for every m € N. Therefore, this family satisfies

= S F (d) ©nd (ya) for every n € N (by , applied to m = n). So we have

din
proven that there exists a family (y,), .y € AN which satisfies b, = 3 F (d) ¢ a (Y4)
d|n

for every n € N. In other words, we have proven Assertion &£. Thus,‘ the implication
C = & is proven.

Since both implications C = £ and £ = C are proven now, we can conclude that
C < £. Next we are going to show that £ «— F.

Proof of the implication & = F: Assume that Assertion £ holds. That is, there
exists a family (y,),cx € A" of elements of A such that holds. Then, every n € N
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satisfies
Z p(d) oa (bna) Z (e bne) (here we substituted e for d in the sum)
dln eln

since b, e = > F( )SO(n/e)/d (Ya)

:Z“(e) Pe Z F (d) tn,/e)a (ya) d|(n/e)
eln

d|(n/e) by (applied to n e instead of n)
= X ﬁ(d)%(@(n/e)/d(yd))
dl(ne)

(since e is a group endomorphism)

Z Z F d) p. 90(n/e )/d yd ZM Z F (ve 0 Pme)/a) (Ya)

eln d|(n/€) eln d|n;
—— (soeown/e)/d)(yd) d|(n/e)
= X
d|n;
d|(n/e)

= Z Z M(e)ﬁ(d) De O P(nye)sd | (Ya) = Z Z M(e)ﬁ(d) Pe-(nye) /d (Yd)

eln  dln; =Pe(n/e)/d din  eln; —on
d|(n/¢) (by (18); d|(n/) 74
=2 X
din  e|n;
d|(n/e)
= Z Z d) ona (Ya) Z Z d) ona (Ya)
eln; e|n;
d\(n/E) el(n/d)
——
= >
el(n/d)

(since for any d | n and any integer e, the assertion d | (n,e) is equivalent to e | (n/d))

=3 W@ F @ sty =S [n=d F(d) ¢ (ya)

din e|(n,/d) din

since (with n and d replaced by nd and e) yields Z ple)=[n/d=1]=[n=d
e|(n,/d)

Z ( Pnd (Ya +Z d) pn,a (Ya)

dln; =0 (smce d#n)

d#n dn

-~

=[n=n]F(n)¢gn, n(yn)

(since any divisor d of n satisfies either d # n or d = n)

= Z 0F () ¢na (Ya) + [0 = n] F (n) @nyn () = [0 = 0] F (n) @nyn () = F (1) onm (yn) € F (n) A.

=1
d;én

-~

=0

Thus, Assertion F is satisfied. Consequently, the implication £ = F is proven.
Proof of the implication F = £: Assume that Assertion F holds. That is, every

17



n € N satisfies

ZM n/d Eﬁ(n)A

dn
Thus, for every n € N, there exists some y, € A such that
= p(d)¢a (bnya) (29)
din

Fix such a vy, for every n € N. Then, every n € N satisfies

E F ) nsa (Ya) = g F (€) @n e (Ye) (here we substituted e for d in the sum)
—_—
dln eln :@n/e(ﬁ(e)ye)> since Pn/e
is a group endomorphism

= Z On e (ﬁ (e) ye) = Z One ZN (d) ¢a (be,a)
eln

:%: N(d)SDn/e(SDd (be/d>), since ¢, /¢
e

is a group endomorphism

since F (e Z 1 (d) o4 (besa) by ([29) (applied to e instead of n)
dle

_ZZ’M (pn/e e/d ZZ/JJ Pn,e © Pd €/d ZZN P(ne)-d be/d)

eln dle

eln dln; =0(n o). din e|n;
:\g; =(<Pn/e0<ﬂd>(be/d) dle (]f; )d dle
d|n; =2 X
dle dn e|n;
dle
= 1(d)Y p@mserd(besa) (30)
din eln;

dle

Now, for any divisor d of n, we have

Z Sp(n/e e/d Z ‘;On/(e/d e/d Z (pn/h bh

e|n _ 66N|n h€N|(n/d)
d‘ Wn/(e/d) d\e
~—
= X
e€N|,;
dle

(here we substituted h for e, /d in the sum, since the map

{e€N|n| (d]e }_>N|(n/d e e/d
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is a bijection). Thus, becomes

)

S F(d)¢na(ya) = > 1(d)D> @urealbesa) = pld) D s (br)
dln din ed\ln; din heN|(n  a)
~- g - » 2 %
= X ¢nnbn) hl(n/d)  hln;
heN|(n, d) hl(n,/d)
=2 n(d Z onn) =3 > ndenmbn) =3 > nid)enm(bn)
dln dln  h|n; d|n;
hl(n/d) h|(n,/d) h|(n,/d)
=2 X
hln  d|n;
h|(n,/d)
B since for any integer d, the assertion h | (n/d) is
N hZ ; () @n 1 (bn) ( equivalent to d | (n/h)
d|(n/h)
~——
_dun/h)
=303 (@) pnn (br) =Y [n="h] @ n(br)
hln d|(n/h) h|n
since (applied to nh instead of n) yields Z p(d)=[n/h=1=[n=

d|(n/h)

= Z [n="h]  ©nmn(bn)+ Z [n = h] enn(br)

hln; _ o o h|n;
hatn =0 (since h#n) h=n

J/

—{n=nln/n(bn)
(since any divisor h of n satisfies either h # n or h = n)

= 0 n (bn) + n—n] Onm (bp) =0+ 1id (b,) = id (by) = by.
hln; 71 =p1=id
h#n (by )

=0

Therefore, Assertion £ is satisfied. We have thus shown the implication F = £.
Now we have proven both implications £ = F and F = £. As a consequence,
we now know that £ <= F. Our next step will be to prove that £ <= G.
Proof of the implication € = G: Assume that Assertion £ holds. Then, we can
prove that every n € N satisfies

> 6(d) ¢a

din

n/d <Pn/d (yd)

P IPI

din e|(n/d)

(this equation is proven in exactly the same way as we have shown the equation

dSou(d)pa(bnya) =, >, w(e)F(d)en,a(ya) in the proof of the implication & =
dn dln e|(n,/d)

F, only with u replaced by ¢ throughout the proof). Since every divisor d of n satisfies
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> ¢(e) =n,d (by , with n and d replaced by nd and e), this becomes
e|(n/d)

Z ¢ (d) n/d Z Z ¢ (zpn/d (yd) = Z (n/d) ﬁ (d) ¥n,d (yd)
dln din e|(n/d) din eF(n)z
=n/d (due to )
€Y F(n)Zonsa(ya) = F ()Y Zpna(ya) C F (n) A,
dln din
CA

Thus, Assertion G is satisfied. Consequently, the implication £ = G is proven.
Proof of the implication G = £: Assume that Assertion G holds. That is, every

n € N satisfies B
Z ¢ n/d el (n) A.
din

Thus, for every n € N, there exists some z, € A such that

Z ¢ (d) a (bna) (31)

Fix such a z, for every n € N. For every n € N, we define an element y, € A by

B hE (n,/h)
=2 F (n)

this is an integer, since F(n)|hF(n,/h)
(in fact, , applied to d=nh,

yields F(n)|(n/(n,/h))F(n,/h)=hF(n/h))

p(h) @n (zn,m) -
h|n
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Fnyun=Fm) S My o () = ST F () 271y o ()

e () hln F(n)
=hF(n,/h)
= Z hy (h) F (n/h) oy (2n,n) Z hu (h ( (n/h) Zn/h)

h|n
*zph( (n/h)zn/h) since
n,/ h€Z and since py, is
a group endomorphism

=> huyon | Y- ¢(d)@a (b ma)
h|n

d|(n/h)

~
= X ¢(d)¢h(¢d(b(n/h)/d)), since
d|(n/h)
pp is a group endomorphism

since the equation ([31]), applied to n,/h instead of n,
yields F (n,/h) 2,1 = Z ¢( )@ (b))

=S hu(h) D o) on (v b(n/h = b)Y ol || @nova || bwma
h d|(n/h) hin d|(n/h) hd =¢na (by (I6))
7(gphogpd)(b(n/h)/d) —— e =@na (by =bn/ (hd)
= 3 h
4€N|(n/ 1)

=> hu(h) > ¢ <%d> ha (bn/(ha)) -
h|n

deN|(n,/ )

Since every divisor h of n satisfies

> 0 (%) ena (bnsa) = Y ¢ (%) e (bne)

dEN|(n/h) GGN‘n;
hle

(here, we have substituted e for hd in the sum, since the map

N, n) — {eeNm | (h | e)}, dw— hd
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is a bijection, because h | n), this becomes

F(n)yn
hd
=> hu(h) > ¢ m ona (b hay) = D i (h) ¢< ) Pe (bne)
h|n dEN| (/1) h|n e€EN;
" -_ s hle
g, (a)e) '
7€€N‘n§ ’ h pelonse :e|zn;
hle hle
=S )6 (5) e o) = D23 )6 (5) e b = Db (5) e lbase)
hln eln; eln  hln; eln h|e
hle hle ~ -
N—— ~—~— =p(e) (by [23), with
=3 =3 d and n replaced by h and e)
eln h|n; hle
hle
= Z (e (e) e (bne) Z w1 (d) pa (bna) (here we substituted d for e in the sum).

In other words, we have proven . From this point, we can proceed as in the proof
of the implication F = £, and we arrive at Assertion £. Hence, we have shown the
implication G = &.

Now we have shown both implications £ = G and G = £. Thus, the equivalence
& <= G must hold.

Finally, let us prove the equivalence between the assertions G and H. This is very
easy, since every n € N satisfies

Z ¢ n/d Z Pn, ged(i,n) (bgcd(i,n))

dn i=1

E} Therefore, it is clear that G <— H.

Altogether, we have now proven the equivalences C <= &, £ <— F, £ < G,
and G <= H. Thus, the five assertions C, £, F, G and H are equivalent. This proves
Theorem 5.

We can slightly extend Theorem 5 if we require our group A to be torsionfree. First,
the definition:

Definition 11. An Abelian group A is called torsionfree if and only if
every element a € A and every n € N, such that na = 0 satisfy a = 0.

A ring R is called torsionfree if and only if the Abelian group (R, +) is
torsionfree.

(Note that in [1], Hazewinkel calls torsionfree rings "rings of characteristic zero” -
at least, if I understand him right, because he never defines what he means by ”ring of
characteristic zero”.)

Now, here comes the extension of Theorem b5:

2TA proof of this equality can be found in [4] (more precisely, in the proof of G <= H during the
proof of Theorem 5 in [4]).
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Theorem 7. Let F': P x N — N be a pseudo-monotonous map. Let N
be a nest. Let A be a torsionfree Abelian group (written additively). For
every n € N, let ¢, : A — A be an endomorphism of the group A such

that and hold.

Let (by),cn € AY be a family of elements of A. Then, the six assertions C,
E, &, F, G and H are equivalent, where the assertions C, £, F, G and H
are the ones stated in Theorem 5, and the assertion £ is the following one:

Assertion E': There exists one and only one family (y,), .y € AN of ele-
ments of A such that

Z F(d) vn,d(ya) for every ne N | . (32)
din

Obviously, most of Theorem 7 is already proven. The only thing we have to add is
the following easy observation:

Lemma 8. Under the conditions of Theorem 7, there exists at most one

family (yn),cn € AV of elements of A satisfying .

Proof of Lemma 8. In order to prove Lemma 8, it is enough to show that if (y,,),.cy €
AN and (y),),,cy € AN are two families of elements of A satisfying

b, = Z F(d) vn,a(ya) for every n € N and (33)
din
b, = Z F(d)n a(y,) for every n € N |, (34)
dn
then (Yn),cn = Wh)nen- S0 let us show this. Actually, let us prove that y,, = v,

for every m € N. We will prove this by strong induction over m; so, we fix some
n € N, and try to prove that y, = y,,, assuming that y,, = v/, is already proven for

every m € N such that m < n. But this is easy to do: We have ) F (d) ¢y a (va) =
d|n;
d#n

> F (d) on,a(y,) (because y; =y, holds for every divisor d of n satisfying d # n .

d+n
But yields

bo = F(d) nsa(ya) = F(d) pnya(Wa)+Y_ F(d)na(ya) ZF nsa (Ya)+F (n) yn

dln d|n; d|n;
d#n ii:n d;én

~~

~:Fv(n)§0n/n@n)

=F(n)e1(yn)=F(n)yn
(due to (I8))

28 Proof. Let d be a divisor of n satisfying d # n. Then, d < n. Moreover, every divisor of n lies in
N (since n € N and since N is a nest), so that d € N (since d is a divisor of n).

Now recall our assumption that y,, = g/, is already proven for every m € N such that m < n.
Applied to m = d, this yields yq = v/, (since d € N and d < n).

23



and similarly leads to

b= F(d) g a(yy) +F (n)y,

d|n;
d#n
Thus, 3> F(d) @asa (ya) + F (n) yn = by = 3 F (d) pusa () + F (n)y,. Subtract-
o ) i
ing the equality > F(d)n da(ya) = > F(d)n,a(y,) from this equality, we ob-
d|n; din;
d;én d#n

tain F (n)y, = F (n)y., so that F (n) (ya — 1) = F(n)y,—F (n)y,, = 0 and thus
——

=F(n)y,
Yn — Y, = 0 (since the group A is torsionfree), so that y, = y/,. This completes our
induction. Thus, we have proven that y,, = v/, for every m € N. In other words,
(Un)nen = (Un)pen- This completes the proof of Lemma 8.

Now the proof of Theorem 7 is trivial:

Proof of Theorem 7. Theorem 5 yields that the five assertions C, £, F, G and H
are equivalent. In other words, C <= £ <= F <= G <= H. Besides, it is obvious
that & = £. It remains to prove the implication £ = &'.

Assume that Assertion £ holds. In other WOI‘dS assume that there exists a family
(Yn) ey € AN of elements of A satisfying (32). According to Lemma 8, there exists
at most one such family. Hence there ex1sts one and only one family (yn)neN € AN
of elements of A satisfying (32)). In other words, Assertion £ holds. Hence, we have
proven the implication £ = 5’ . Together with & = &, this yields £ «— &'
Combining this with C <= £ <= F <= G <= H, we see that all six assertions C,
E, &, F, Gand H are equivalent. This proves Theorem 7.

Just as Theorem 7 strengthened Theorem 5 in the case of a torsionfree A, we can
strengthen Theorem 4 in this case as well:

Theorem 9. Let F': P x N — N be a pseudo-monotonous map. Let N
be a nest. Let A be a torsionfree commutative ring with unity. For every
p € PNN,let ¢, : A = A be an endomorphism of the ring A such that
holds.

Let (by),cn € AY be a family of elements of A. Then, the three assertions
C, D and D’ are equivalent, where the assertions C and D are the ones
stated in Theorem 4, and the assertion D’ is the following one:

Assertion D': There exists one and only one family (z,),.y € AN of
elements of A such that

(bn = wpn ((2)4ey) for every n € N). (35)

Again, having proven Theorem 4, the only thing we need to do here is checking the
following fact:

Lemma 10. Let FF : P x N — N be a pseudo-monotonous map. Let
N be a nest. Let A be a torsionfree commutative ring with unity. Let
(bn),en € AN be a family of elements of A. Then, there exists at most one

family (z,,),cy € AV of elements of A satisfying .
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Proof of Lemma 10. In order to prove Lemma 10, it is enough to show that if
(2n)pen € AN and () € AN are two families of elements of A satisfying

neN
(bn = Wpp ((:L‘k)keN) for every n € N) and (36)
(b = wrn ((2))4en) for every n € N), (37)

then (2,),.ny = (2),),en- SO0 let us show this. Actually, let us prove that x,, = x;, for
every m € N. We will prove this by strong induction over m; so, we fix some n € N, and
try to prove that z,, = x}, assuming that x,, = x/ is already proven for every m € N

such that m < n. But this is easy to prove: We have S F (d) 2t = Z F (d) ()"
d|n;
d;‘én d;ﬁn

(because x4 = x;, holds for every divisor d of n satisfying d # n E[) But yields

by = wrn (@)gen) = D F (@) g =) F(d) "/d+ZF ) = ZF 2y

dln d|n;
d#n d n d;én
~—_———

—F(n)mn/”
=F(n)zl=F(n)zn

and similarly leads to

Thus, Y, F(d) 2 + F(n)z, = b, = 3. F(d) (2/)"™* + F (n)z/,. Subtracting the

d|n d|n;
d;|£n _ _ d;‘én _
equality 2 F(d)z?* = S F(d) (z/)™ from this equality, we obtain F (n)z, =
d|n; d|n;
B d;‘én _ d7|£n _ _
F(n) !, so that F' (n) (x, — ) = F (n) z, —F (n) z,, = 0 and thus z,, — 2/, = 0 (since
%/—/
=F(n)z!,

the ring A is torsionfree), so that z, = z/,. This completes our induction. Thus, we
have proven that x,, = x;, for every m € N. In other words, (2,),.n = (#},),cn- This
completes the proof of Lemma 10.

Proving Theorem 9 now is immediate:

Proof of Theorem 9. Theorem 4 yields that the two assertions C and D are equiv-
alent. In other words, C <= D. Besides, it is obvious that D' = D. It remains to
prove the implication D = D’.

Assume that Assertion D holds. In other Words assume that there exists a family
(zn),en € AN of elements of A satisfying (35)). According to Lemma 10, there exists
at most one such family. Hence there ex1sts one and only one family (z,),.y € AN
of elements of A satisfying (35)). In other words, Assertion D’ holds. Hence, we have
proven the implication D = D’ . Together with D' = D, this yields D < D'.

29 Proof. Let d be a divisor of n satisfying d # n. Then, d < n. Moreover, every divisor of n lies in
N (since n € N and since N is a nest), so that d € N (since d is a divisor of n).

Now recall our assumption that x,, = a7, is already proven for every m € N such that m < n.
Applied to m = d, this yields z4 = z; (since d € N and d < n).
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Combining this with C <= D, we see that all three assertions C, D and D’ are
equivalent. This proves Theorem 9.

Let us record, for the sake of application, the following result, which is a trivial
consequence of Theorems 4 and 5:

Theorem 11. Let F': P x N — N be a pseudo-monotonous map. Let N
be a nest. Let A be a commutative ring with unity. For every n € N, let
Yn : A — A be an endomorphism of the ring A such that the conditions

@, and are satisfied.

Let (b,),cn € AN be a family of elements of A. Then, the assertions C, D,
E, F, G and H are equivalent, where the assertions C and D are the ones
stated in Theorem 4, and the assertions £, F, G and H are the ones stated
in Theorem 5.

Proof of Theorem 11. According to Theorem 4, the assertions C and D are equiv-
alent. According to Theorem 5, the assertions C, £, F, G and H are equivalent.
Combining these two observations, we conclude that the assertions C, D, £, F, G and
‘H are equivalenﬂ, and thus Theorem 11 is proven.

And here comes the strengthening of Theorem 11 for torsionfree rings A:

Theorem 12. Let F': P x N — N be a pseudo-monotonous map. Let N
be a nest. Let A be a torsionfree commutative ring with unity. For every
n € N, let ¢, : A — A be an endomorphism of the ring A such that the

conditions , and are satisfied.

Let (by),cn € AY be a family of elements of A. Then, the assertions C, D,
D, &£, E, F,G and H are equivalent, where:

the assertions C and D are the ones stated in Theorem 4,

the assertions &£, F, G and H are the ones stated in Theorem 5,

the assertion D’ is the one stated in Theorem 9, and

the assertion &’ is the one stated in Theorem 7.

Proof of Theorem 12. According to Theorem 9, the assertions C, D and D’ are
equivalent. According to Theorem 7, the assertions C, £, €', F, G and H are equivalent.
Combining these two observations, we conclude that the assertions C, D, D', £, &', F,
G and H are equivalentiﬂ, and thus Theorem 12 is proven.

We are now going to formulate the most important particular case of Theorem 12,
namely the one where A is a ring of polynomials over Z:

30Here, of course, we have used that the assertion C from Theorem 5 is identic with the assertion C
from Theorem 4.

31Here, of course, we have used that the assertion C from Theorem 5 is identic with the assertion C
from Theorem 4.
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Theorem 13. Let F' : P x N — N be a pseudo-monotonous map. Let
Z be a family of symbols. Let N be a nest, and let (b,),.y € (Z =)Y
be a family of polynomials in the indeterminates Z. Then, the following
assertions Cz, Dz, DL, &=, L, Fz, G= and Hz are equivalent:

Assertion Cz: Every n € N and every p € PF n satisfies
by p (EP) = b, mod p @7 (2]
Assertion Dz: There exists a family (z,,),,cy € (Z =)™ of elements of Z [2]

such that
(bn = Wpy, ((wk)keN) for every n € N) )

—

Assertion Dz : There exists one and only one family (x,),, .y € (Z =) of
elements of Z [Z] such that

(bn = Wy, ((xk)keN) for every n € N) )

Assertion Ez: There exists a family (yn),cy € (Z [Z])" of elements of Z [Z]
such that

b, = Z F (d) yq (E) for every n € N
dln

Assertion EL: There exists one and only one family (yn),cy € (Z =)Y of
elements of Z [Z] such that

b, = Z F (d) yq (E) for every n € N
dln

Assertion F=: Every n € N satisfies

> u(d)bna (EY) € F (n) Z[Z] .

dn

Assertion G=: Every n € N satisfies

> ¢ (d)ba,q (E7) € F(n)Z[2].

dln

Assertion Hz=: Every n € N satisfies

> becdi (57510) € F (n) Z[E].

i=1
Before we prove this result, we need a lemma:

Lemma 14. Let a € Z[Z] be a polynomial. Let p be a prime. Then,
a (ZP) = a” mod pZ [Z]
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This lemma is Lemma 4 (a) in [3] (with ¢ renamed as a), so we don’t need to prove
this lemma here.

Proof of Theorem 13. Let A be the ring Z =] (this is the ring of all polynomials
over Z in the indeterminates =). Then, A is a torsionfree commutative ring with unity
(torsionfree because every element a € Z [=] and every n € N such that na = 0 satisfy
a=0).

For every n € N, define a map ¢, : Z[Z] — Z[Z] by ¢, (P) = P (2") for every
polynomial P € Z [Z]. It is clear that ¢, is an endomorphism of the ring Z [Z] [ The
condition (7)) is satisfied, since ¢, (a) = a (2P) = a” mod pZ [Z] (by Lemma 14) holds for
every a € A. The condition is satisfied as well (since ¢, (P) = P(E')=P(E)=P
for every P € Z[=]), and the condition is also satisfied (since @, 0 ¥, = @pm for
every n € N and every m € N satisfying nm € N E[) Hence, the three conditions
, and are satisfied. Therefore, Theorem 12 yields that the assertions C, D,
D, E,E, F,G and H are equivalent, where:

e the assertions C and D are the ones stated in Theorem 4,
e the assertions &£, F, G and H are the ones stated in Theorem 5,
e the assertion D’ is the one stated in Theorem 9, and

e the assertion &’ is the one stated in Theorem 7.

Now, comparing the assertions C, D, D', £, &', F, G and H with the respective
assertions Cz, D=, DL, &=, L, F=, G= and Hz=, we notice that:

e we have C <= Cz (since A =Z[=] and ¢, (b, ) = by, (EP));
e we have D <= D= (since A = Z[=F)]);
e we have D' <= DL (since A = Z [=]);

e we have £ <= &= (since A =Z[Z] and ¢, 4 (Ya) = ya (E?));

32hecause ¢, (0) = 0(E") = 0, ¢, (1) = 1(2") = 1, and any two polynomials P € Z[Z] and
Q € Z[=] satisfy

en(P+Q)=(P+Q)(E")=P(E")+QE")=¢n(P)+¢n(Q) and
pn(P-Q)=(P-Q)(E") = P(E")-Q(E") = ¢un(P) ¢n(Q)

33 Proof. Let n € N and m € N be such that nm € N. Then, every P € Z[Z] satisfies

——

—=nm

(‘pn o <pm) (P) =$n | Pm (P) = ¥n (P (Em)) =P ((En)m)

here, (E")™ means the family of the m-th powers of all elements of
the family =™ (considered as elements of Z [Z] )

— P (ETL'HL) — Sp'n,m (P) .

Thus, ©n © Ym = ©nm, qed.
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we have & <= &L (since A = Z[E] and ¢, q (ya) = ya (E™));

we have F <— F= (Since A=7 [E] and ©Yd (bn/d) = bn/d (Ed)),

we have G <= Gz (since A = Z =] and ¢4 (b, q) = by a (Ed));

we have H <= Hz (since A = Z [Z] and ¢,/ geda(i,n) (Decd(in)) = bgea(iny (2™ ged(tn))),

Hence, the equivalence of the assertions C, D, D', &, &', F, G and H yields the
equivalence of the assertions Cz, D=, D%, &=, &L, F=, G= and H=. Thus, Theorem 13
is proven.

Theorem 13 has a number of applications, including the existence of the Witt
addition and multiplication polynomials. But first we notice the simplest particular
case of Theorem 13:

Theorem 15. Let F': P x N — N be a pseudo-monotonous map. Let N
be a nest, and let (b,), .y € Z" be a family of integers. Then, the following
assertions Cy, Dy, Dy, €y, EL, Fu, G» and Hy are equivalent:

Assertion Cy: Every n € N and every p € PF n satisfies

by, p = by modpF(p’”P("))Z.
Assertion Dy: There exists a family (), .y € Z" of integers such that
(bn = Wy, ((mk)keN) for every n € N) )

Assertion D), There exists one and only one family (z,),.y € Z" of
integers such that

(bn = Wy, ((l‘k)keN) for every n € N) )

Assertion Ez: There exists a family (yn),cy € Z" of integers such that
b, = Zﬁ (d) yq for every n € N
dln

Assertion EJ,: There exists one and only one family (y,),.y € ZY of
integers such that

b, = Zﬁ (d) yq for every n € N
dln

Assertion Fy: Every n € N satisfies

> p(d)by, g € F(n)Z.
dn
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Assertion Gg: Every n € N satisfies

Z¢(d) b, a € ﬁ(n) 7.

din

Assertion Hg: Every n € N satisfies
Zbgcd(i,n) S ﬁ (n) 7.
i=1

Proof of Theorem 15. We let = be the empty family. Then, Z[Z] = Z (because
the ring of polynomials in an empty set of indeterminates over Z is simply the ring Z
itself). Every "polynomial” a € Z satisfies a (Z") = a for every n € N E Theorem
13 yields that the assertions Cz, Dz, D%, &=, EL, F=, G= and Hz are equivalent (these
assertions were stated in Theorem 13).

Now, comparing the assertions Cz, D=, D%, &=, L, F=, G= and Hg with the respec-
tive assertions Cy, Dy, Dy, £y, £, Fu, Gz and Hy, we notice that:

e we have Cz <= Cy (since Z[Z]| =Z and b, , (EP) = by, );
e we have Dz <= D, (since Z [Z] = Z);

e we have DL <= D, (since Z [E] = Z);

e we have &= <= &, (since Z[Z] = Z and yq (2?) = ya);

e we have &L <= &/, (since Z[Z] = Z and yq (2?) = ya);

e we have Fz <= Fy (since Z [E] = Z and b, /4 (E%) = b, 1a);
e we have G= <= G, (since Z [Z] = Z and b, .4 () = b, 4);

e we have Hz <= Hy (since Z [E] = Z and bgeq(in) (2 ng(i’”)) = bgcd(in))-

Hence, the equivalence of the assertions Cz, D=, D%, &=, £, F=, G= and Hz yields
the equivalence of the assertions Cy, Dy, Dy, €y, £, Fu, G and Hy. Thus, Theorem
15 is proven.

We notice a simple corollary of Theorem 15:

Theorem 16. Let F' : P x N — N be a pseudo-monotonous map. Let
q € Z be an integer. Then:

(a) There exists one and only one family (z,),,cy, € ZN+ of integers such
that

(q” = Wpy, ((xk)kem) for every n € N+> :

341n fact, a (2") is defined as the result of replacing every indeterminate by its n-th power in the
polynomial a. But since there are no indeterminates, ”replacing” them by their n-th powers doesn’t
change anything, and thus a (2") = a.
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(b) There exists one and only one family (yn),cn, € ZN+ of integers such
that

q" = Z F (d) yq for every n € N,

dn
(c) Every n € N, satisfies

> u(d) g € F(n)Z.
din

(d) Every n € N satisfies
> o(d) g € F(n) 2.

din

(e) Every n € N, satisfies
> ¢dtm € F(n) Z.
i=1

Note that this Theorem 16 is a generalization of Theorem 16 in [4], but the parts
(c), (d) and (e) of our Theorem 16 are not stronger than the corresponding parts of
Theorem 16 in [4], because F (n) | n (as quickly follows from , applied to d = n).
Still, we are going to prove the whole Theorem 16 here for the sake of completeness.

Proof of Theorem 16. First we note that every n € N, and every p € PF n satisfies
¢"'? = ¢" mod p»™Z . Since F (p,v, (n)) < v,(n) (because , applied to a =
v, (n) and b = 0, yields F (p, v, (n)) —v, (n) < F(p,0) —0 = 0) yields pF'®»() | pre(m)

——
=0 (by (1)
and thus p*»™Z C pF®v()7Z  this becomes

¢V = ¢" mod pF o)z, (38)

Now let N be the nest N;. Define a family (b,), .y € Z" by b, = ¢" for every
n € N. According to Theorem 15, the assertions Cy, Dy, Dy, €y, £, Fu, Go and Hy
are equivalent (these assertions were stated in Theorem 15). Since the assertion Cy is
true for our family (by),cn € ZN (because every n € N and every p € PF n satisfies

bn/p - qn/p = qn (by )
= b, modpF(p’”p(”))Z

), this yields that the assertions Dy, D, £, £, Fu, Gz and Hg must also be true for
our family (b,),.y € Z". But for the family (b,), .y € Z",

1In fact, p*»(™ | n, and thus there exists some u € N, such that n = p*»Mu. Since v, (n) > 1
(because p € PFn), we have v, (n) — 1 € N, and thus can define an element ¢ € N by £ = v, (n) — 1.

Now, Fermat’s little theorem yields ¢* = (¢*)” = ¢“? mod pZ, and thus (q“)p/Z = (qup)pf mod p' HZ
(by Lemma 3, applied to k = 1, a = ¢*, b = ¢"? and A = Z). But n,/p = p*»Mu,/p = pr -1y =

plu = up’ yields ¢"/'P = g = (q“)pe7 and n=n,/p-p=up-p’ yields ¢" = g = (q"p)pz. Finally,
14+4=1+ (v, (n) —1) = v, (n). Hence, (q“)pe = (q“p)pe mod p' *Z becomes ¢"P = ¢™ mod p’r(MZ
(since ¢"/'P = (q“)pa, " = (q“p)pz and 14 ¢ =wv,(n)), qed.
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e assertion D, is equivalent to Theorem 16 (a) (since N = N, and b, = ¢");
e assertion & is equivalent to Theorem 16 (b) (since N = N, and b,, = ¢");
e assertion JF is equivalent to Theorem 16 (c) (since N = N, and b, 4 = ¢"7%);
e assertion G, is equivalent to Theorem 16 (d) (since N = N, and b, 4 = ¢"/%);

e assertion Hy is equivalent to Theorem 16 (e) (since N = Ny and bgea(in) =
qgcd(i,n))'

Hence, Theorem 16 (a), Theorem 16 (b), Theorem 16 (c), Theorem 16 (d) and
Theorem 16 (e) must be true (since the assertions D, &, Fu, Gy and Hy are true
for the family (b,),,.y € Z"). This proves Theorem 16.

Now here is a less-known analogue of Theorem 16:

Theorem 17. In the following, for any v € Z and any r € Q, we define
the binomial coefficient <u) by
r

(u)_ —I1 (u—k), if r e N;
0, ifr¢ N
In particular, if r € Q \ Z, then <u) is supposed to mean 0.
r

Let F': P x N — N be a pseudo-monotonous map. Let ¢ € Z and r € Q.
Then:

a) There exists one and only one family (z, € 7N+ of integers such
neNL

that
((ZZ) = Wpy, ((xk)k€N+> for every n € N+> .

(b) There exists one and only one family (yn),cn, € ZN+ of integers such
that

(32) = ; F (d) yq for every n € N,

(c) Every n € N, satisfies

(d) Every n € N, satisfies
qn/d\ _
F(n)Z.
>ow (7)€ Flw
(e) Every n € N, satisfies
~ (qged (i,n)) _ =
; (7“ ged (M)) S Fin)Z
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This is the analogue of Theorem 17 of [4]. In order to prove it, we quote Lemma
19 from [4]:

Lemma 19. Let n € N, and let p € PFn. Let ¢ € Z and r € Q. Then,

qn,/’p _ (4qn vp(n)
(Tn/p> = ( )modp Z. (39)

For the proof of this lemma, see [4].
Proof of Theorem 17. Let N be the nest N,. Define a family (b,), .y € Z" by

n
b, = (q ) for every n € N. According to Theorem 15, the assertions Cy, Dy, D, Eg,
™m
&L, Fu, Gy and Hy are equivalent (these assertions were stated in Theorem 15). Since
the assertion Cy is true for our family (b,), .y € Z" (because every n € N and every

p € PF n satisfies

n
= b, mod p™Z,

=)= (m) - @

and thus b, , = b, mod p”’ (pop(n)7, because we can prove p»(MZ C pF®er()7, just as
in the proof of Theorem 16), this yields that the assertions Dy, Dy, £y, £, Fu, G and
Ho must also be true for our family (b,),, .y € Z". But for the family (b,), 5 € Z",

e assertion D, is equivalent to Theorem 17 (a) (since N = N, and b,, = (qn) );
™

e assertion & is equivalent to Theorem 17 (b) (since N = N, and b, = (qn) );

n
e assertion Fj is equivalent to Theorem 17 (c) (since N = Ny and b, 4 =
qn/d\
<Tn/ d))’
e assertion Gy is equivalent to Theorem 17 (d) (since N = Ny and b, 4 =
qn/d\
()

e assertion Hy is equivalent to Theorem 17 (e) (since N = Ny and bgeq(in) =
qged (i, n) )
rged(i,n))”

Hence, Theorem 17 (a), Theorem 17 (b), Theorem 17 (c), Theorem 17 (d) and

Theorem 17 (e) must be true (since the assertions D, £, Fy, Gy and Hy are true
for the family (b,), . € Z"). This proves Theorem 17.
Actually, we can do better than Theorem 17 in the case when r is an integer:
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Theorem 20. In the following, for any v € Z and any r € Q, we define
the binomial coefficient <u) by
r

1=t : '
O

u
In particular, if r € Z \ N, then ( ) is supposed to mean 0.
r

Let F': P x N — N be a pseudo-monotonous map. Let ¢ € Z and r € Z.
Then:

(a) There exists one and only one family (z,),,cy, € ZN+ of integers such

that !
qn —
((rn _ 1) = Wpy, ((.Tk)keN+> for every n € N+) _

(b) There exists one and only one family (yn)nem € ZN+ of integers such
that

rm—1

-1 ~
(qn ) = Z F (d) yq for every n € N
d|n
(c) Every n € N, satisfies

S u(d) (i;’;g - 1) cFn)Z.

din

(d) Every n € N, satisfies

d; ¢ (d) (zZ;Z - D e F(n)Z.
(e) Every n € N, satisfies

> (Tt ) €702

(f) Every n € N, satisfies



(h) Every n € N, satisfies

> (1) e

i=1
The proof of this fact will use an analogue (and corollary) of Lemma 19:

Lemma 21. Let n € N, and let p € PFn. Let ¢ € Z and r € Q. Assume
that there exist two integers a and § with v, (o) > v, (5) and r = iy Then,

g

qn/p —1 qn —1
= dpr™7. 4
<rn/p—1> (rn—l) moep (40)

This lemma is identic with Lemma 21 in [4], so we won’t prove it here.
Proof of Theorem 20. We will use the formula

a afa—1

= — 41

(5)=56) )

for any a € Q and b € Q\ {0}. (This formula was proven during the proof of Lemma
21 in [4].)

-1
Let N be the nest Ny. Define a family (b,), .y € Z" by b, = (qn 1) for every
rn —

n € N. According to Theorem 15, the assertions Cy, Dy, DL, €y, €4, Fu, Gz and Hy
are equivalent (these assertions were stated in Theorem 15). Since the assertion Cy is
true for our family (b,), .y € Z" (because every n € N and every p € PF n satisfies

by , because there exist two integers o and [ with
b sy = qn/p—1 _ (97— 1 vy (@) > v, (B) and r = % (namely, & = r and § = 1, since
P rn,/p—1 rn — 1 r
1= Land v, (r) > 0=1v,(1))
= b,, mod p»™Z,
and thus b, -, = b, mod p'®v»(")Z because we can prove pr™Z C pF'Pu»()7 just as

in the proof of Theorem 16), this yields that the assertions Dy, D, £y, £, Fu, G and
H must also be true for our family (b,), .y € Z". But for the family (b,),,cx € Z",

—1
e assertion D, is equivalent to Theorem 20 (a) (since N = N, and b, = <qn 1) );
rn —

-1
e assertion & is equivalent to Theorem 20 (b) (since N = N, and b, = (qn 1) );
rn —

e assertion Fy is equivalent to Theorem 20 (c) (since N = Ny and b, 4 =
qn,/d — 1 )
rn/d—1)"
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e assertion Gy is equivalent to Theorem 20 (d) (since N = Ny and b,,4 =
qn,/d —1 )
rn/d—1)"
e assertion Hy is equivalent to Theorem 20 (e) (since N = Ni and bgea(in) =
qgged (i,m) — 1 )
reged (i,n) —1)"
Hence, Theorem 20 (a), Theorem 20 (b), Theorem 20 (c), Theorem 20 (d) and
Theorem 20 (e) must be true (since the assertions D, &, Fu, Gz and Hy are true

for the family (b,),cn € Z").
Theorem 20 (f) follows from Theorem 20 (c), since

qn,/d qn,/d (gqn,/d — 1 q qn,/d — 1
ZM(> (Tn/d) Z'u()rn/d rn/d—1 rz'u() rn/d—1
dn —— dln ~—S— \d|n )
:qn/d qgn,/d —1 4 GF?(:Z)Z
rn/d\rn/d—1 r (by Theorem 20 (c))

(by , applied to
a=qn/d and b=rn/d)

q ~
=F(n)Z.
e 1F (n)
Theorem 20 (g) follows from Theorem 20 (d), because
qn/d qn/d (gqn,/d — 1 q qn,/d — 1
Z¢() (7’n/d> Zgb()rn/d rn/d—1 rz(b() rn/d—1
dln —_— dn ~—~— \d\n 5
:qn/d qn,/d — 1 4 eF\(;)Z
Tn/d ?”n/d -1 r (by Theorem 20 (d))

(by , applied to
a=qn,/d and b=rn/d)

q ~
=F(n)Z.
e 17 (n)

Theorem 20 (h) follows from Theorem 20 (e), since

zn: qged (i,n) _ Zn: qgged (i,n) (qged (i,n) — 1
— rged (i,m) — rged (i,n) \rged (i,n) — 1
1= N e e =1 N ———

_ngd (Z,TL) ngd (Z,TL) —1 :g

“rged (i,n) \rged (i,n) — 1 r

(by (@), applied to
a=qgecd(i,n) and b=r gcd(i,n))

- d —1 ~
_q (qgc (i,n) ) e 9F (n)Z
r<=\rged(i,n) =1 r
e};(;)z

(by Theorem 20 (e))

Thus, altogether we have now proven Theorem 20 completely.

So much for applications of Theorem 13 for the case when = is the empty family (i.
e. for polynomials in zero variables). We now aim to apply Theorem 13 to nonempty
=. However, at first, let us make a part of Theorem 13 stronger.
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Theorem 22. Let F' : P x N — N be a pseudo-monotonous map.

Let Z be a family of symbols. Let NV be a nest, and let (b,,),,.y € (Q [E])N
be a family of polynomials in the indeterminates =.

(a) There exists one and only one family (z,),.y € (Q [Z)" of elements
of Q[Z] such that

(bn = Wy, ((xk)keN) for every n € N) )

We denote this family (z,,),cy by (Zn),cn- Then, we have (), .y €

(Q[E)™ and

(bn = Wp, ((fk)keN) for every n € N) )

(b) The family (7,),.y € (Q[Z])" defined in Theorem 22 (a) satisfies
T, €Q [bN\n] (where Q [bN‘n] means the sub-Q-algebra of Q [Z] generated
by the polynomials by for all d € Nj,,) for every n € N.

(c) Assume that (by),.y € (Z [Z])™. Then, the family (Tn),en € (Q =)Y

defined in Theorem 22 (a) satisfies (Z,,),,cy € (Z =)™ if and only if every
n € N and every p € PF n satisfies

byp (ZF) = b, mod pf' ®r(M)7, =] (42)

The proof of Theorem 22 is easy using Theorem 13; in order to formulate it, we
will use a trick:
Let us replace Z by Q throughout Theorem 13. We obtain the following resultiﬂ:

Lemma 23. Let ' : P x N — N be a pseudo-monotonous map. Let = be a
family of symbols. Let N be a nest, and let (by),,.ny € (Q [E])N be a family

of polynomials in the indeterminates =. Then, the following assertions Cg ,
Dg, Dg, 58, 5’5@, fg, gg and 7—[8 are equivalent:

Assertion Cg . Every n € N and every p € PF n satisfies

by p (EP) = b, mod pF @ Q (=] .

Assertion D2: There exists a family (Tn)pey € (Q [Z)" of elements of
Q [ZE] such that

(bn = Wy, ((xk)keN) for every n € N) )

Assertion D2 : There exists one and only one family (70),en € (Q E
of elements of Q [Z] such that

(bn = Wy, ((xk)keN) for every n € N) )

36Don’t be surprised that the assertions Cg, }-g, Qg and 'Hg are always fulfilled. I have only
included them to make the similarity between Lemma 23 and Theorem 13 more evident.
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Assertion £2: There exists a family (y,,), .y € (Q [Z])" of elements of Q [Z]
such that

b, = Zﬁ (d)yq () for every n € N
dln

Assertion EE: There exists one and only one family (Un)nen € (Q =ED)Y of
elements of Q [Z] such that

b, = Zﬁ (d) ya (E™Y) for every n € N

dln

Assertion F2: Every n € N satisfies

ZM busa (E') € F(n)Q[E].

Assertion gg- Every n € N satisfies

> ¢ (d)by,a (E) € F(n)Q[E].

dn

Assertion H2: Every n € N satisfies

Z bgcd(i,n) (En/gcd(i,n)> er (n) @ [E] .

=1

Of course, it is obvious that the assertions C2, F2, G2 and H2 are always fulfilled
(since p"®rMQ[Z] = Q[Z] for every n € N and every p € PFn, and F (n) Q[Z] =
Q [Z] for every n € N), so the actual meaning of Lemma 23 is that the assertions Dg ,
DL, 2 and EX are always fulfilled as well.

Proof of Lemma 23. In order to prove Lemma 23, it is almost enough to replace
every appearance of Z by Q (and, of course, every appearance of Cz, D=, D%, &=, &L,
F=, G= and H= by Cg, Dg, Dg@, Sg, 7Q fiQ QQ and ’H@, respectively) in the proof
of Theorem 13. The only difference is that now, instead of Lemma 14, we need the
following fact:

Lemma 24. Let a € Q[Z] be a polynomial. Let p be a prime. Then,
a (ZP) = a? mod pQ [=Z].

But this lemma is trivial, since pQ [Z] = Q [Z]. Hence, Lemma 23 is proven.
Proof of Theorem 22. (a) The family (b,),.y € (Q [E])"Y satisfies the Asser-

tion C2 of Lemma 23 (since every n € N and every p € PFn satisfies b, , (Z°) =
b, mod p""®»(M)Q [Z], because pP'P»)Q[Z] = Q[Z]). Thus, it also satisfies the As-
sertion D~ of Lemma 23 (since Lemma 23 yields that the assertions CQ and D~ are
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equivalent). In other words, there exists one and only one family (z,), .y € (Q[Z])"

of elements of Q[Z] such that
(bn = Wy, ((xk)keN) for every n € N) )

This proves Theorem 22 (a).
(b) We want to prove that z,, € Q [len} for every n € N.

We are going to prove this by strong induction over n: Fix some m € N. Assume
that
T, €Q [len} is already proven for every n € N satisfying n < m. (43)

We want to show that z,, € Q [len} also holds for n = m.

According to Theorem 22 (a), we have b, = wg,, ((fk)keN) for every n € N. In
particular, for n = m, this yields

b = W (F)pen) = D F (@) T3 =Y " F ()7 "+ Y F(d)7"" => F(d)

dlm d|m; d|m; d|m;
d#m d=m d#m
A\ -~ >

=F(m)a" ™ =F(m)Zm

~ 1 ~
so that Ty, = = | b — 3. F(d)377? | . Now, every divisor d of m satisfying
F m) d|m;
d#m

d # m must satisfy F (d) 777" € Q [lem] (in fact, d | m and d # m yield d < m, and
thus (applied to n = d) yields 74 € Q [bN‘d} and thus 7, € Q [bN‘m} (since d | m
yields Njg € N, and thus Q [bN‘d] cCQ [bN‘m}), so that F (d) 2" A=N0) [bN‘m}), and

clearly b,, € Q [bN‘m]. Hence, T, = ﬁ — Z F(d)z7""| e Q [lem].
m v iy
€af,, ] i eafo,,]

Thus, =, € Q [bN‘n] holds for n = m. This completes the induction step, and thus we

have proven that z,, € Q [bN‘n] for every n € N. This completes the proof of Theorem
22 (b).

(c) Assume that (by,),.y € (Z [Z)™. Then, we must prove that the family (Tn)pen €
(Q[E])" defined in Theorem 22 (a) satisfies (Th)pen € (Z [Z)" if and only if every
n € N and every p € PF n satisfies .

In order to prove this, we must show the following two assertions:

Assertion 1: If the family (z,), .y € (Q =)™ defined in Theorem 22 (a) satisfies

(Tn),en € (Z [Z])", then every n € N and every p € PFn satisﬁes

Assertion 2: If every n € N and every p € PFn satisfies then the family
(Th),en € (QE 1)V defined in Theorem 22 (a) satisfies (Tn)pen € (Z =)~

Proof of Assertion 1: Assume that the family (z,),.y € (Q[2 1) defined in The-

orem 22 (a) satisfies (z,,),.y € (Z [Z])™. Remember that the family (7)), satisfies
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(by = wrn ((Ty)yey) for every n € N) (according to Theorem 22 (a)). Thus, there

—_

exists a family (z,,),.y € (Z [Z)" satisfying (b = wrpn (%) 4ey) for every n € N)
(namely, the family (2,),cn = (Tn),cy)- In other words, the assertion Dz of Theo-
rem 13 is satisfied. Hence, the assertion Cz of Theorem 13 is also satisfied (since the
assertions Cz and Dz are equivalent, according to Theorem 13). In other words, every
n € N and every p € PF n satisfies . Thus, Assertion 1 is proven.

Proof of Assertion 2: Assume that every n € N and every p € PF n satisfies .
Then, the assertion Cz of Theorem 13 is fulfilled. Hence, the assertion Dz of Theorem
13 is satisfied as well (since the assertions Cz and D=z are equivalent, according to
Theorem 13). In other words, there exists a family (z,,),.y € (Z [Z)" of elements of
Z |=] such that

(bn = Wy, ((.Tk)keN) for every n € N) )

This family (2,),,.y obviously satisfies (), cy € (Q [Z])™ (since it satisfies () pen €

@[2)" € @E)") and
(bn = Wpy, ((xk)keN) for every n € N) )

Hence, this family (x),,.y must be equal to the family (z,),. 5 (because, according to
Theorem 22 (a), the only family (z,),.y € (Q [Z])™ of elements of Q [Z] such that

(bn = Wy, ((xk)keN) for every n € N)

is the family (Z,),cy). Since this family (z,),., satisfies (z,),.y € (Z =)™, this
yields that (2,), .y € (Z [Z])™. This proves Assertion 2.

Thus, both assertions 1 and 2 are proven, and consequently the proof of Theorem
22 (c) is complete.

Now we come to the main application of Theorem 13:

Theorem 25. Let F' : P x N — N be a pseudo-monotonous map. Let
N be a nest. Let m € N. Let = denote the family (ka)(k Wel12, . mIxN

of symbols. This family is clearly the union U X, n of the families
ke{1,2,....,m}

Xpn defined by Xy n = (Xin), ey for each & € {1,2,...,m}. For each

k€ {1,2,..,m}, the family Xy n = (Xgn),cy consists of [N symbols;

their union = is a family consisting of m - |[N| symbols. (Consequently,

LZIZ] = Z [(ka)(k,n)e{l,z ..... mixN
indeterminates which are labelled Xy, for (k,n) € {1,2,...,m} x N.)

is a polynomial ring over Z in m - |N|

Let f € Z[ay, ag, ..., ayy) be a polynomial in m variables.

—_

(a) Then, there exists one and only one family (v,),.y € (Q[E])" of
polynomials such that

(wrn (T)pen) = f (Wen (X1n) s Wen (Xan) s ooy Whn (X)) for every n € N).
(44)
We denote this family (2,),cy by (fu),en- Then, we have (f,),cn €

(Q[=)" and
(wem (f)en) = F (Wrn (Xon) s wan (Xon) s ooy Wi (Xin n)) for every n € N).
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(b) This family (f,),_y € (Q[Z))" satisfies f, € Z [ENM} (where Z [ENIJ
means the sub-Z-algebra of Z [=] generated by the polynomials X 4 for
ke {1,2,..,m} and d € N,,) for every n € N.

Proof of Theorem 25. Define a family (b,),.y € (Q [Z])" of polynomials in the
indeterminates = by

by = f (Wpn (Xin), Wrpn (Xon) s Win (X)) for every n € N. (45)

Then, Theorem 22 (a) yields that there exists one and only one family (z,),.y €
(Q[Z])Y of elements of Q [Z] such that

(bn = Wy, ((xk)keN) for every n € N) )

Since the assertion (b = Wrp ((xk) ke N) for every n € N ) is equivalent to l thls
rewrites as follows: There exists one and only one family (z,),.y € (Q[E])" of ele-
ments of Q [Z] such that

(wpm ((xk)keN) = f(wpn (Xain), Wrn (Xon) ;Wi (Xpn)) for every n e N) .

Thus, Theorem 25 (a) is proven.
Next, we are going to prove Theorem 25 (b).
First, notice that every k € {1,2,...,m} satisfies

Wy, (XgN) €Z [ENM} for every n € N (46)

(becatse wry (Xin) = wrn ((Xem), cy) = §F() X7 == ﬁ(d)X"/dGZ[ }
n €N},

since X4 € Z [ENIJ for every d € N},,). Hence,

wpa (Xpn) € Z [ENM} for every n € N and every d € Ny, (47)

(because , applied to d instead of n, yields wpq (Xkn) € Z [ENW} C Z [ENIn]’

because EN\d C ENln, because Ny C Ny, since d € Np,).
Further, notice that every n € N satisfies

Q|zn,|nZE =2 |3, |. (48)

37In fact, we have got the following chain of equivalences:

(bn = wrn ((Tk)gen) for every n € N)
<— (f (Wrn (Xin) ,wen (XoN) s oo, WEn (Xm,N)) = WEp ((xk)keN) for every n € N) (because of )

< ((44) holds).
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In fact, this follows from a general rule: If U and V' are two sets of symbols such that
UCV,then QUINZV]=Z[U]. [

Now, the family (7,),.y defined in Theorem 22 (a) is the same as the family
(fn)nen defined in Theorem 25 (a) ﬁ

Theorem 22 (b) yields that the family (z,),.y € (Q [Z])"™ defined in Theorem
22 (a) satisfies 7, € Q [len} for every n € N. Since the family (7,),., defined in
Theorem 22 (a) is the same as the family (f,),.y defined in Theorem 25 (a), this

yields that the family (f,),cy defined in Theorem 25 (a) satisfies f, € Q [bN‘n] for

every n € N. Hence, f, € Q [EN\n] (where Q [ENM] means the sub-Q-algebra of
Q[Z] generated by the polynomials X4 for k € {1,2,...,m} and d € N,), because
Q [bN‘n] cCQ [EN‘R] (since Q [len} is the sub-Q-algebra of Q[Z] generated by the

polynomials by for all d € Nj,, and every of these polynomials b; lies in Q [EN\n}
because the definition of b; states

bi = f(wpa (Xin),wra (Xon), .y wpa (XmN)) € Z [ENW] (by (47)), since f € Z|ou, s, ..., i)
cQ [ENM}

Now we are going to prove that f, € Z[=Z]. In fact, for every k € {1,2,...,m}, let
X ,f’  denote the family of the p-th powers of all elements of the family X}, y (considered
as elements of Z[Xj y]). In other words, we let X7 = (X} )

U Xk,N ylelds =P = U X,I;N.
ke{1,2,...,m} ke{1,2,...m}

But for any divisor d of n, the assertions d { (n,/p) and p*»™ | d are equiva-
len Hence, every divisor d of n which satisfies d 1 (n/p) must satisfy F (d) =
Omodp (pyvp(m ))Z[u] 1]

HeN” Clearly, = =

38 Proof. In order to verify this, we need to show that any polynomial P € Q[V] satisfies
(P e QU] and P € Z[V)) if and only if it satisfies P € Z [U].
In fact, any polynomial P € Q[V] has the form P = > X, [[ v*"), where A\, € Q for every
aerli\’n veV
ae V.

e This polynomial P satisfies P € Q[U] if and only if A, = 0 for every a € Vi \ UL .
e This polynomial P satisfies P € Z [V] if and only if A\, € Z for every a € V.

e This polynomial P satisfies P € Z[U] if and only if A\, € Z for every a € UﬁNn and A\, = 0 for
every a € VI \ UR\.

Hence, this polynomial P satisfies (P € Q[U] and P € Z[V]) if and only if it satisfies P € Z [U],
qed.

31n fact, the family (Z,,),,c v defined in Theorem 22 (a) is the only family (z,,), oy € (Q 2" sat-
isfying (b = wpn ((zk)zen) for every n € N), while the family (f,),,cy defined in Theorem 25 (a)
is the only family (z,), .y € (Q [E)" satisfying . Since (b, = wpy ((Tk),ey) for every n € N)
is equivalent to , this yields that the family (z,,) defined in Theorem 22 (a) is the same as
the family (f,),cn defined in Theorem 25 (a).

40We have already proven this during our proof of Theorem 4.

41n fact, let d be a divisor of n satisfying d { (n,/p). Then, p*»(™) | d (since the assertions d { (n/p)

neN
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Obviously,

Wiy (XEx) =y (X))

= 3 F@ (xp)"™ since wr, = Y F(d) X5
—_——
d|(n,/p) :Xﬁéﬂ/m/d:x%d d|(n/p)
= > F@Xxy”
d|(n/p)
and
Wen (Xkn) = Wey ( Xin) neN ZF "/d since wg,, = Zﬁ(d) X;L/d
din d|n
= d) Xy 7"+ F (d) Xpe
% dzh; F(pv (n)) — k7d
\d|(n/p/) d(n/p) (fi?llcléog f)s a (lliiisorzo[f:i
= 3 which satisfies df(n,p))
d|(n/p)
= Y F)Xp '+ Y 0xppt= Y F(d) X7, modp" Pz (=],
d|(n/p) d{(d\z ) d|(n/p)
n/p
=0
so that
Wrn/p (X,f’N) = Wry, (XknN) mod pf' ()7, [=]. (49)

On the other hand, (b,), .y € (Z [Z])™. Hence, Theorem 22 (c) yields that the
family (7,),.y € (Q [Z)" defined in Theorem 22 (a) satisfies (Th) ey € (Z =D if
and only if every n € N and every p € PF n satisfies . Since the family (Z,),,cx
defined in Theorem 22 (a) is the same as the family (f,),cy defined in Theorem 25
(a), this rewrites as follows: The family (f,),.y defined in Theorem 25 (a) satisfies
(Ff)nen € (Z[Z])Y if and only if every n € N and every p € PFn satisfies . But
since every n € N and every p € PFn satisfies (because the definition of b, ,
yields

bnp = J (Wen p (X0n), WEnp (Xon) s ooy WEnp (X N)

and p*»(") | d are equivalent), so that v, (d) > v, (n). Together with v, (d) < v, (n) (which is because
d | n yields g € Z, thus v, (%) > 0 and now v, (n) = vp (d%) = vp (d) + vp (%) > v, (d)),

>0

this becomes v, (d) = v, (n). Hence, the equality v, (ﬁ (d)) = F (p, v, (d)) (which follows from ||
applied to d instead of n) rewrites as v, (IN? (d)) = F (p,v, (n)), so that pf'®vs(m) | F (d), and thus
F (d) = 0mod pF ®v»(m)7, (=],
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and thus

b () = f (wra o (XTn) s wEmp (X5 N) oo wWhin 0 (X7, )
= f(wpn (Xan), Wrn (Xon) s Wpn (X)) (because of ([49))
= b, mod p"'Pr()7 =]

(by the definition of b,)), this yields that the family (f,), .y defined in Theorem 25
(a) satisfies (f),cn € (Z )Y, Hence, f, € Z[Z] for every n € N. Combining this

with f, € Q [ENIJ (which also holds for every n € N), we obtain

£ eQ [EN‘R] NZ[E =7 [ENW]
(by (48))). This proves Theorem 25 (b).
b'e]ﬁne +w and -y maybe]
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