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This note is about something I call ”radical Witt polynomials” ∞
√
wn. These poly-

nomials are somewhat similar to the Witt polynomials wn, and many of the theorems
proven in [4] about the Witt polynomials wn have analogues concerning these ”radi-
cal Witt polynomials” ∞

√
wn. We will formulate some of these analogues in this note.

Most of these analogues (as well as the corresponding theorems about wn) are par-
ticular cases of the corresponding properties of the so-called ”F -Witt polynomials” (a
common generalization of Witt polynomials wn and ”radical Witt polynomials” ∞

√
wn)

proven in [6], so the proofs will be simply references to [6]. However, some theorems
about ∞

√
wn doesn’t have an F -Witt counterpart and thus requires a separate proof;

two such examples are Theorems 4’ and 9’ in this note.
I will keep the numbering of the results in this note consistent with the numbering

of the results in [4] and [6], so that for instance Theorem i in this note will be the
analogue of Theorem i in [4] and a particular case of Theorem i in [6] for as many i as
possible.

First, let us introduce some notation1:

Definition 1. Let P denote the set of all primes. (A prime means an
integer n > 1 such that the only divisors of n are n and 1. The word
”divisor” means ”positive divisor”.)

Definition 2. We denote the set {0, 1, 2, ...} by N, and we denote the set
{1, 2, 3, ...} by N+. (Note that our notations conflict with the notations
used by Hazewinkel in [1]; in fact, Hazewinkel uses the letter N for the set
{1, 2, 3, ...}, which we denote by N+.)

Definition 3. Let Ξ be a family of symbols. We consider the polynomial
ring Q [Ξ] (this is the polynomial ring over Q in the indeterminates Ξ; in
other words, we use the symbols from Ξ as variables for the polynomials)
and its subring Z [Ξ] (this is the polynomial ring over Z in the indetermi-
nates Ξ). 2. For any n ∈ N, let Ξn mean the family of the n-th powers of
all elements of our family Ξ (considered as elements of Z [Ξ]) 3. (There-
fore, whenever P ∈ Q [Ξ] is a polynomial, then P (Ξn) is the polynomial
obtained from P after replacing every indeterminate by its n-th power.4)

1All of the following nine definitions, except of Definitions 7, 8 and 9, are the same as the corre-
sponding definitions in [4].

2For instance, Ξ can be (X0, X1, X2, ...), in which case Z [Ξ] means Z [X0, X1, X2, ...].
Or, Ξ can be (X0, X1, X2, ...;Y0, Y1, Y2, ...;Z0, Z1, Z2, ...), in which case Z [Ξ] means
Z [X0, X1, X2, ...;Y0, Y1, Y2, ...;Z0, Z1, Z2, ...].

3In other words, if Ξ = (ξi)i∈I , then we define Ξn as (ξni )i∈I . For instance, if Ξ = (X0, X1, X2, ...),
then Ξn = (Xn

0 , X
n
1 , X

n
2 , ...). If Ξ = (X0, X1, X2, ...;Y0, Y1, Y2, ...;Z0, Z1, Z2, ...), then Ξn =

(Xn
0 , X

n
1 , X

n
2 , ...;Y

n
0 , Y

n
1 , Y

n
2 , ...;Z

n
0 , Z

n
1 , Z

n
2 , ...).

4For instance, if Ξ = (X0, X1, X2, ...) and P (Ξ) = (X0 +X1)
2 − 2X3 + 1, then P (Ξn) =

(Xn
0 +Xn

1 )
2 − 2Xn

3 + 1.
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Note that if Ξ is the empty family, then Q [Ξ] simply is the ring Q, and
Z [Ξ] simply is the ring Z.

Definition 4. If m and n are two integers, then we write m ⊥ n if and
only if m is coprime to n. If m is an integer and S is a set, then we write
m ⊥ S if and only if (m ⊥ n for every n ∈ S).

Definition 5. A nest means a nonempty subset N of N+ such that for
every element d ∈ N , every divisor of d lies in N .

Here are some examples of nests: For instance, N+ itself is a nest. For every
prime p, the set {1, p, p2, p3, ...} is a nest; we denote this nest by pN. For
any integer m, the set {n ∈ N+ | n ⊥ m} is a nest; we denote this nest by
N⊥m. For any positive integer m, the set {n ∈ N+ | n ≤ m} is a nest; we
denote this nest by N≤m. For any integer m, the set {n ∈ N+ | (n | m)} is
a nest; we denote this nest by N|m. Another example of a nest is the set
{1, 2, 3, 5, 6, 10}.
Clearly, every nest N contains the element 1 5.

Definition 6. If N is a set6, we shall denote by XN the family (Xn)n∈N
of distinct symbols. Hence, Z [XN ] is the ring Z

[
(Xn)n∈N

]
(this is the

polynomial ring over Z in |N | indeterminates, where the indeterminates are
labelled Xn, where n runs through the elements of the set N). For instance,
Z
[
XN+

]
is the polynomial ring Z [X1, X2, X3, ...] (since N+ = {1, 2, 3, ...}),

and Z
[
X{1,2,3,5,6,10}

]
is the polynomial ring Z [X1, X2, X3, X5, X6, X10].

If A is a commutative ring with unity, if N is a set, if (xd)d∈N ∈ AN is a
family of elements of A indexed by elements of N , and if P ∈ Z [XN ], then
we denote by P

(
(xd)d∈N

)
the element of A that we obtain if we substitute xd

for Xd for every d ∈ N into the polynomial P . (For instance, if N = {1, 2, 5}
and P = X2

1 + X2X5 − X5, and if x1 = 13, x2 = 37 and x5 = 666, then
P
(
(xd)d∈N

)
= 132 + 37 · 666− 666.)

We notice that whenever N and M are two sets satisfying N ⊆ M , then
we canonically identify Z [XN ] with a subring of Z [XM ]. In particular,
when P ∈ Z [XN ] is a polynomial, and A is a commutative ring with
unity, and (xm)m∈M ∈ AM is a family of elements of A, then P

(
(xm)m∈M

)
means P

(
(xm)m∈N

)
. (Thus, the elements xm for m ∈ M \ N are simply

ignored when evaluating P
(
(xm)m∈M

)
.) In particular, if N ⊆ N+, and

(x1, x2, x3, ...) ∈ AN+ , then P (x1, x2, x3, ...) means P
(
(xm)m∈N

)
.

Definition 7. Let n ∈ Z \ {0}. Let p ∈ P. We denote by vp (n) the largest
nonnegative integer m satisfying pm | n. Clearly, pvp(n) | n and vp (n) ≥ 0.
Besides, vp (n) = 0 if and only if p - n.
We also set vp (0) = ∞; this way, our definition of vp (n) extends to all
n ∈ Z (and not only to n ∈ Z \ {0}).

5In fact, there exists some n ∈ N (since N is a nest and thus nonempty), and thus 1 ∈ N (since 1
is a divisor of n, and every divisor of n must lie in N because N is a nest).

6We will use this notation only for the case of N being a nest. However, it equally makes sense for
any arbitrary set N .
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Definition 8. Let n ∈ N+. We denote by PFn the set of all prime divisors
of n. By the unique factorization theorem, the set PFn is finite and satisfies
n =

∏
p∈PFn

pvp(n).

We define a function rad : N+ → N+ by

radn =
∏

p∈PFn

p for any n ∈ N+.

For any n ∈ N+, we denote the number radn as the radical of n.

Here are some very basic properties of rad: Clearly, every n ∈ N+ satisfies
radn | n 7. The number radn is the greatest squarefree divisor of n. Also
notice that

p | radn for every n ∈ N+ and every p ∈ PFn. (1)

8

Definition 9. For any n ∈ N+, we define a polynomial ∞
√
wn ∈ Z

[
XN|n

]
(note that ∞

√
w is considered to be a single symbol here; it’s not a ”root of

w” or anything like that) by

∞
√
wn =

∑
d|n

(rad d)Xn�d
d .

Hence, for every commutative ringA with unity, and for any family (xk)k∈N|n ∈
AN|n of elements of A, we have

∞
√
wn

(
(xk)k∈N|n

)
=
∑
d|n

(rad d)xn�d
d .

As explained in Definition 6, if N is a set containing N|n, if A is a commu-
tative ring with unity, and (xk)k∈N ∈ AN is a family of elements of A, then
∞
√
wn

(
(xk)k∈N

)
means ∞

√
wn

(
(xk)k∈N|n

)
; in other words,

∞
√
wn

(
(xk)k∈N

)
=
∑
d|n

(rad d)xn�d
d .

The polynomials ∞
√
w1,

∞
√
w2,

∞
√
w3, ... will be called the big radical Witt

polynomials or, simply, the radical Witt polynomials.9

We start by recalling a property of primes and commutative rings:

7Proof. Let n ∈ N+. Every p ∈ PFn satisfies p | n and thus vp (n) ≥ 1, so that p | pvp(n). Hence,∏
p∈PFn

p |
∏

p∈PFn

pvp(n). But now, we have radn =
∏

p∈PFn

p |
∏

p∈PFn

pvp(n) = n, qed.

8Proof of (1): Let n ∈ N+. Then, every q ∈ PFn satisfies q |
∏

p∈PFn

p = radn. If we rename q as p

in this result, we obtain the following: Every p ∈ PFn satisfies p | radn. This proves (1).
9These radical Witt polynomials ∞

√
w1,

∞
√
w2,

∞
√
w3, ... are somewhat similar to the big Witt

polynomials w1, w2, w3, ... defined in [4]. Exploiting this similarity is the purpose of this paper.
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Theorem 1. Let A be a commutative ring with unity. Let M be an
A-module. Let N ∈ N. Let I1, I2, ..., IN be N ideals of A such that
Ii + Ij = A for any two elements i and j of {1, 2, ..., N} satisfying i < j.
Then, I1I2...IN ·M = I1M ∩ I2M ∩ ... ∩ INM .

This Theorem 1 is exactly the Theorem 1 of [4], so we are not proving this theorem
here.

A trivial corollary from Theorem 1 that we will use is:

Corollary 2.10 Let A be an Abelian group (written additively). Let n ∈
N+. Then, (radn)A =

⋂
p∈PFn

(pA).

Proof of Corollary 2. Since PFn is a finite set, there exist N ∈ N and some pairwise

distinct primes p1, p2, ..., pN such that PFn = {p1, p2, ..., pN}. Thus,
N∏
i=1

pi =
∏

p∈PFn

p =

radn.
Define an ideal Ii of Z by Ii = piZ for every i ∈ {1, 2, ..., N}. Then, Ii + Ij = Z

for any two elements i and j of {1, 2, ..., N} satisfying i < j (in fact, the integers pi
and pj are coprime11, and thus, by Bezout’s theorem, there exist integers α and β such
that 1 = piα + pjβ in Z, and therefore 1 = piα︸︷︷︸

∈piZ=Ii

+ pjβ︸︷︷︸
∈pjZ=Ij

∈ Ii + Ij in Z, and thus

Ii + Ij = Z). Hence, Theorem 1 (applied to Z and A instead of A and M , respectively)
yields I1I2...IN · A = I1A ∩ I2A ∩ ... ∩ INA. Since

I1I2...IN · A =
N∏
i=1

Ii︸︷︷︸
=piZ

·A =
N∏
i=1

(piZ) · A =

(
N∏
i=1

pi

)
︸ ︷︷ ︸

=radn

Z · A = (radn)Z · A = (radn)A

and

I1A ∩ I2A ∩ ... ∩ INA =
N⋂
i=1

(IiA) =
N⋂
i=1

(piZ · A) =
N⋂
i=1

(piA) =
⋂

p∈PFn

(pA)

(since PFn = {p1, p2, ..., pN}), this becomes (radn)A =
⋂

p∈PFn

(pA). Corollary 2 is

thus proven.
Now comes our first theorem about radical Witt polynomials - the analogue of

Theorem 4 in [4]:

Theorem 4. Let N be a nest. Let A be a commutative ring with unity.
For every p ∈ P ∩ N , let ϕp : A → A be an endomorphism of the ring A
such that

(ϕp (a) ≡ ap mod pA holds for every a ∈ A and p ∈ P ∩N) . (2)

10This is an analogue of Corollary 2 in [4] (and can actually be easily derived from that Corollary
2 in [4], but here we will prove it differently).

11since pi and pj are distinct primes (because i < j and since the primes p1, p2, ..., pN are pairwise
distinct)
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Let (bn)n∈N ∈ AN be a family of elements of A. Then, the following two
assertions C and D are equivalent:

Assertion C: Every n ∈ N and every p ∈ PFn satisfies

ϕp (bn�p) ≡ bn mod pA. (3)

Assertion D: There exists a family (xn)n∈N ∈ AN of elements of A such
that (

bn = ∞
√
wn

(
(xk)k∈N

)
for every n ∈ N

)
.

We will give two proofs of this theorem. First, let us make a definition that we will
use in the first proof:

Definition 10. (a) We are going to use the notion of pseudo-monotonous
maps. For the definition of these maps, we refer to Definition 9 in [6]. All
we need to know is that pseudo-monotonous maps are a particular kind of
maps from P×N to N, and each such map leads to a certain generalization
of Witt polynomials. Some properties of these maps were studied in [6].

(b) For any pseudo-monotonous map F : P × N → N, we define a map

F̃ : N+ → N+ by (
F̃ (n) =

∏
p∈PFn

pF (p,vp(n))

)
.

(c) We define a map prad : P× N→ N by

prad (p, k) =

{
0, if k = 0;
1, if k > 0

for every p ∈ P and k ∈ N.

Then, prad is a pseudo-monotonous map (as proven in [6], Example 2) and

satisfies p̃rad = rad (again, this is proven in [6], Example 2).

Notice that

pprad(p,vp(n)) = p for every n ∈ N+ and every p ∈ PFn. (4)

12

(d) Let F : P×N→ N be a pseudo-monotonous map. For any n ∈ N+, we

define a polynomial wF,n ∈ Z
[
XN|n

]
by

wF,n =
∑
d|n

F̃ (d)Xn�d
d .

12Proof of (4): Let n ∈ N+ and let p ∈ PFn. Since p ∈ PFn, we have p | n and thus vp (n) > 0. By

the definition of prad (p, vp (n)), we have prad (p, vp (n)) =

{
0, if vp (n) = 0;
1, if vp (n) > 0

= 1 (since vp (n) > 0).

Thus, pprad(p,vp(n)) = p1 = p. This proves (4).
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The polynomials wF,1, wF,2, wF,3, ... will be called the big F -Witt polyno-
mials or, simply, the F -Witt polynomials.

We have
wprad,n = ∞

√
wn for every n ∈ N+. (5)

(This is proven in [6], Example 2.)

Note that Definition 10 will never be used in stating theorems, but only in proving
them (or, more precisely, in deducing them from results in [6]).

Proof of Theorem 4. Let us use the conventions of Definition 10. We know that
prad is a pseudo-monotonous map. Hence, applying Theorem 4 in [6] to F = prad, we
conclude13 that the following two assertions Cprad and Dprad are equivalent:

Assertion Cprad: Every n ∈ N and every p ∈ PFn satisfies

ϕp (bn�p) ≡ bn mod pprad(p,vp(n))A.

Assertion Dprad: There exists a family (xn)n∈N ∈ AN of elements of A such
that (

bn = wprad,n

(
(xk)k∈N

)
for every n ∈ N

)
.

But Assertion Cprad is equivalent to Assertion C (since (4) yields pprad(p,vp(n)) = p
for every n ∈ N and every p ∈ PFn). Also, Assertion Dprad is equivalent to Assertion
D (because (5) yields wprad,n = ∞

√
wn for every n ∈ N). So altogether we have proven

the equivalences Cprad ⇐⇒ C, Cprad ⇐⇒ Dprad and Dprad ⇐⇒ D. Consequently, all four
assertions C, Cprad, Dprad and D are equivalent, so that, in particular, C ⇐⇒ D. Thus,
Theorem 4 is proven.

We are going to prove many more theorems similarly to how we just verified The-
orem 4. However, in the case of Theorem 4, we can actually do better: The following
generalization of Theorem 4 provides a conclusion which is easily seen to be equivalent
to that of Theorem 4, without requiring the endomorphisms ϕp to exist:

Theorem 4’. Let N be a nest. Let A be a commutative ring with unity.

Let (bn)n∈N ∈ AN be a family of elements of A. Then, the following two
assertions C4′ and D are equivalent:

Assertion C4′: Every n ∈ N and every p ∈ PFn satisfies

bpn�p ≡ bn mod pA. (6)

Assertion D: There exists a family (xn)n∈N ∈ AN of elements of A such
that (

bn = ∞
√
wn

(
(xk)k∈N

)
for every n ∈ N

)
.

13We rename the assertions C and D of Theorem 4 in [6] as Cprad and Dprad, respectively, because
we have already used up the letters C and D for two slightly different (even if equivalent) assertions.
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Note that the Assertion D of Theorem 4’ is identical with the Assertion D of
Theorem 4; this is why we labelled both assertions by the same letter.

Of course, Theorem 4’ yields Theorem 4, because if endomorphisms ϕp : A → A
satisfying (2) exist, then ϕp (bn�p) can be replaced by bpn�p in Assertion C (since (2)
(applied to a = bn�p) yields ϕp (bn�p) ≡ bpn�p mod pA), and therefore Assertion C is
equivalent to Assertion C4′ .

Proof of Theorem 4’. Our goal is to show that Assertion C4′ is equivalent to Asser-
tion D. We will achieve this by proving the implications D =⇒ C4′ and C4′ =⇒ D.

Proof of the implication D =⇒ C4′: Assume that Assertion D holds. That is, there
exists a family (xn)n∈N ∈ AN of elements of A such that(

bn = ∞
√
wn

(
(xk)k∈N

)
for every n ∈ N

)
. (7)

We want to prove that Assertion C4′ holds, i. e., that every n ∈ N and every
p ∈ PFn satisfies (6). Let n ∈ N and p ∈ PFn. Then, p | n, so that n�p ∈
N+, and thus n�p ∈ N (since n�p is a divisor of n, and every divisor of n lies in
N 14). Thus, applying (7) to n�p instead of n yields bn�p = ∞

√
wn�p

(
(xk)k∈N

)
.

But ∞
√
wn�p

(
(xk)k∈N

)
=

∑
d|(n�p)

(rad d)x
(n�p)�d
d and ∞

√
wn

(
(xk)k∈N

)
=
∑
d|n

(rad d)xn�d
d .

Now, (7) yields

bn = ∞
√
wn

(
(xk)k∈N

)
=
∑
d|n

(rad d)xn�d
d =

∑
d|n;

d|(n�p)

(rad d)xn�d
d +

∑
d|n;

d-(n�p)

(rad d)xn�d
d .

(8)
But for any divisor d of n, the assertions d - (n�p) and pvp(n) | d are equivalent15.
Hence, every divisor d of n which satisfies d - (n�p) must satisfy rad d ≡ 0 mod pA
16. Thus, ∑

d|n;
d-(n�p)

(rad d)︸ ︷︷ ︸
≡0 mod pA

xn�d
d ≡

∑
d|n;

d-(n�p)

0xn�d
d = 0 mod pA.

14because n ∈ N and because N is a nest
15In fact, we have the following chain of equivalences:

(d - (n�p)) ⇐⇒
(
n�p
d

/∈ Z
)
⇐⇒

(
n�d
p

/∈ Z
) (

since
n�p
d

=
n�d
p

)
⇐⇒ (p - (n�d)) (here we use that n�d ∈ Z, since d | n)

⇐⇒ (vp (n�d) = 0)⇐⇒ (vp (n�d) ≤ 0) (since vp (n�d) ≥ 0, because n�d ∈ Z)

⇐⇒ (vp (n)− vp (d) ≤ 0) (since vp (n�d) = vp (n)− vp (d))

⇐⇒ (vp (n) ≤ vp (d)) ⇐⇒
(
pvp(n) | d

)
.

16In fact, let d be a divisor of n satisfying d - (n�p). We have already proven that the assertions
d - (n�p) and pvp(n) | d are equivalent. Since we know that d - (n�p), we thus have pvp(n) | d.
Since p ∈ PFn, we have p | n and thus vp (n) ≥ 1, so that p | pvp(n) | d, so that p ∈ PF d (because
p ∈ PFn, and thus p is a prime). Hence, (1) (applied to d instead of n) yields p | rad d, and thus
rad d ≡ 0 mod pA.
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Thus, (8) becomes

bn =
∑
d|n;

d|(n�p)︸ ︷︷ ︸
=

∑
d|(n�p)

(rad d)xn�d
d +

∑
d|n;

d-(n�p)

(rad d)xn�d
d

︸ ︷︷ ︸
≡0 mod pA

≡
∑

d|(n�p)

(rad d)xn�d
d + 0

=
∑

d|(n�p)

(rad d)xn�d
d mod pA. (9)

On the other hand,

bn�p = ∞
√
wn�p

(
(xk)k∈N

)
=
∑

d|(n�p)

(rad d)x
(n�p)�d
d yields

bpn�p =

 ∑
d|(n�p)

(rad d)x
(n�p)�d
d

p

≡
∑

d|(n�p)

(
(rad d)x

(n�p)�d
d

)p
(

since

(∑
s∈S

as

)p

≡
∑
s∈S

aps mod pA for any family (as)s∈S ∈ A
S of ring elements

)
=
∑

d|(n�p)

(rad d)p︸ ︷︷ ︸
≡rad dmod pA

(since (rad d)p≡rad dmod pZ
by Fermat’s Little Theorem)

(
x

(n�p)�d
d

)p
︸ ︷︷ ︸

=x
(n�p)�d·p
d =xn�d

d

≡
∑

d|(n�p)

(rad d)xn�d
d ≡ bn mod pA

(by (9)). This proves (6), and thus Assertion C4′ is proven. We have therefore shown
the implication D =⇒ C4′ .

Proof of the implication C4′ =⇒ D: Assume that Assertion C4′ holds. That is, every
n ∈ N and every p ∈ PFn satisfies (6).

We will now recursively construct a family (xn)n∈N ∈ AN of elements of A which
satisfies the equation

bm =
∑
d|m

(rad d)xm�d
d (10)

for every m ∈ N .
In fact, let n ∈ N , and assume that we have already constructed an element xm ∈ A

for every m ∈ N ∩ {1, 2, ..., n− 1} in such a way that (10) holds for every m ∈ N ∩
{1, 2, ..., n− 1}. Now, we must construct an element xn ∈ A such that (10) is also
satisfied for m = n.

Our assumption says that we have already constructed an element xm ∈ A for every
m ∈ N ∩ {1, 2, ..., n− 1}. In particular, this yields that we have already constructed
an element xd ∈ A for every divisor d of n satisfying d 6= n (in fact, every such
divisor d of n must lie in N 17 and in {1, 2, ..., n− 1} 18, and thus it satisfies
d ∈ N ∩ {1, 2, ..., n− 1}).

Let p ∈ PFn. Then, p | n, so that n�p ∈ N+, and thus n�p ∈ N (since n�p is
a divisor of n, and every divisor of n lies in N 19). Besides, n�p ∈ {1, 2, ..., n− 1}.

17because n ∈ N and because N is a nest
18because d is a divisor of n satisfying d 6= n
19because n ∈ N and because N is a nest

8



Hence, n�p ∈ N ∩{1, 2, ..., n− 1}. Since (by our assumption) the equation (10) holds
for every m ∈ N ∩{1, 2, ..., n− 1}, we can thus conclude that (10) holds for m = n�p.
In other words, bn�p =

∑
d|(n�p)

(rad d)x
(n�p)�d
d . From this equation, we can conclude

(by the same reasoning as in the proof of the implication D =⇒ C4′) that

bpn�p ≡
∑

d|(n�p)

(rad d)xn�d
d mod pA.

Comparing this with (6), we obtain∑
d|(n�p)

(rad d)xn�d
d ≡ bn mod pA. (11)

However, every divisor d of n which satisfies d - (n�p) must satisfy rad d ≡ 0 mod pA 20.
Thus, ∑

d|n;
d-(n�p);
d 6=n

(rad d)︸ ︷︷ ︸
≡0 mod pA

xn�d
d ≡

∑
d|n;

d-(n�p);
d 6=n

0xn�d
d = 0 mod pA.

Hence,∑
d|n;
d6=n

(rad d)xn�d
d

=
∑
d|n;

d-(n�p);
d 6=n

(rad d)xn�d
d

︸ ︷︷ ︸
≡0 mod pA

+
∑
d|n;

d|(n�p);
d 6=n

(rad d)xn�d
d ≡

∑
d|n;

d|(n�p);
d 6=n

(rad d)xn�d
d =

∑
d|n;

d|(n�p)︸ ︷︷ ︸
=

∑
d|(n�p)

(rad d)xn�d
d

(
since for any divisor d of n, the assertions (d | (n�p) and d 6= n) and d | (n�p)

are equivalent (because if d | (n�p) , then d 6= n (since n - (n�p) ))

)
=
∑

d|(n�p)

(rad d)xn�d
d ≡ bn mod pA (by (11)) .

In other words,

bn −
∑
d|n;
d6=n

(rad d)xn�d
d ∈ pA.

This relation holds for every p ∈ PFn. Thus,

bn −
∑
d|n;
d6=n

(rad d)xn�d
d ∈

⋂
p∈PFn

(pA) = (radn)A (by Corollary 2) .

Hence, there exists an element xn of A that satisfies bn −
∑
d|n;
d6=n

(rad d)xn�d
d = (radn)xn.

20This has already been proven during our proof of the implication D =⇒ C4′ .
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Fix such an xn. We now claim that this element xn satisfies (10) for m = n. In fact,∑
d|n

(rad d)xn�d
d =

∑
d|n;
d6=n

(rad d)xn�d
d +

∑
d|n;
d=n

(rad d)xn�d
d

︸ ︷︷ ︸
=(radn)xn�n

n =(radn)x1
n=(radn)xn

=
∑
d|n;
d6=n

(rad d)xn�d
d +(radn)xn = bn

(since bn −
∑
d|n;
d6=n

(rad d)xn�d
d = (radn)xn). Hence, (10) is satisfied for m = n. This

shows that we can recursively construct a family (xn)n∈N ∈ AN of elements of A which
satisfies the equation (10) for every m ∈ N . Therefore, this family satisfies

bn =
∑
d|n

(rad d)xn�d
d (by (10), applied to m = n)

= ∞
√
wn

(
(xk)k∈N

)
for every n ∈ N . So we have proven that there exists a family (xn)n∈N ∈ AN which
satisfies bn = ∞

√
wn

(
(xk)k∈N

)
for every n ∈ N . In other words, we have proven

Assertion D. Thus, the implication C4′ =⇒ D is proven.
Now that both implications D =⇒ C4′ and C4′ =⇒ D are verified, we conclude the

equivalence C4′ ⇐⇒ D. Thus, Theorem 4’ is proven. With it, Theorem 4 is proven a
second time (because we have shown that Theorem 4’ yields Theorem 4).

Next, we will show a result similar to Theorem 421:

Theorem 5. Let N be a nest. Let A be an Abelian group (written
additively). For every n ∈ N , let ϕn : A → A be an endomorphism of
the group A such that

(ϕ1 = id) and (12)

(ϕn ◦ ϕm = ϕnm for every n ∈ N and every m ∈ N satisfying nm ∈ N) .
(13)

Let (bn)n∈N ∈ AN be a family of elements of A. Then, the following five
assertions C, E , F , G and H are equivalent:

Assertion C: Every n ∈ N and every p ∈ PFn satisfies

ϕp (bn�p) ≡ bn mod pA. (14)

Assertion E: There exists a family (yn)n∈N ∈ AN of elements of A such
that bn =

∑
d|n

(rad d)ϕn�d (yd) for every n ∈ N

 .

Assertion F : Every n ∈ N satisfies∑
d|n

µ (d)ϕd (bn�d) ∈ (radn)A.

21Later, we will unite it with Theorem 4 into one big theorem - whose conditions, however, will
include the conditions of both Theorems 4 and 5, so it does not replace Theorems 4 and 5.
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Assertion G: Every n ∈ N satisfies∑
d|n

φ (d)ϕd (bn�d) ∈ (radn)A.

Assertion H: Every n ∈ N satisfies

n∑
i=1

ϕn� gcd(i,n)

(
bgcd(i,n)

)
∈ (radn)A.

Remark: Here, µ denotes the Möbius function µ : N+ → Z defined by

µ (n) =

{
(−1)|PFn| , if (vp (n) ≤ 1 for every p ∈ PFn)

0, otherwise
. (15)

Besides, φ denotes the Euler phi function φ : N+ → Z defined by

φ (n) = |{m ∈ {1, 2, ..., n} | m ⊥ n}| .

Proof of Theorem 5. Let us use the conventions of Definition 10. We know that
prad is a pseudo-monotonous map. Hence, applying Theorem 5 in [6] to F = prad,
we conclude22 that the following five assertions Cprad, Eprad, Fprad, Gprad and Hprad are
equivalent:

Assertion Cprad: Every n ∈ N and every p ∈ PFn satisfies

ϕp (bn�p) ≡ bn mod pprad(p,vp(n))A.

Assertion Eprad: There exists a family (yn)n∈N ∈ AN of elements of A such
that bn =

∑
d|n

p̃rad (d)ϕn�d (yd) for every n ∈ N

 .

Assertion Fprad: Every n ∈ N satisfies∑
d|n

µ (d)ϕd (bn�d) ∈ p̃rad (n)A.

Assertion Gprad: Every n ∈ N satisfies∑
d|n

φ (d)ϕd (bn�d) ∈ p̃rad (n)A.

Assertion Hprad: Every n ∈ N satisfies

n∑
i=1

ϕn� gcd(i,n)

(
bgcd(i,n)

)
∈ p̃rad (n)A.

22We rename the assertions C, E , F , G and H of Theorem 5 in [6] as Cprad, Eprad, Fprad, Gprad and
Hprad, respectively, because we have already used up the letters C, E , F , G and H for five slightly
different (even if equivalent) assertions.

11



Now, for every n ∈ N and every p ∈ PFn, we have pprad(p,vp(n)) = p (by (4)). Hence,
Assertion Cprad is equivalent to Assertion C. Besides, Assertion Eprad is equivalent

to Assertion E (because the equality p̃rad = rad (which we know) yields p̃rad (d) =

rad (d) = rad d). Also, Assertion Fprad is equivalent to Assertion F (because p̃rad = rad

yields p̃rad (n) = rad (n) = radn); besides, Assertion Gprad is equivalent to Assertion
G (for the same reason). Finally, Assertion Hprad is equivalent to Assertion H (for the
same reason). So altogether we have proven the equivalences Cprad ⇐⇒ C, Eprad ⇐⇒ E ,
Fprad ⇐⇒ F , Gprad ⇐⇒ G, Hprad ⇐⇒ H and Cprad ⇐⇒ Eprad ⇐⇒ Fprad ⇐⇒ Gprad ⇐⇒
Hprad. From this we can conclude that all assertions C, E , F , G, H, Cprad, Eprad, Fprad,
Gprad and Hprad are equivalent, so that, in particular, the assertions C, E , F , G and H
are equivalent. Thus, Theorem 5 is proven.

We can slightly extend Theorem 5 if we require our group A to be torsionfree. First,
the definition:

Definition 11. An Abelian group A is called torsionfree if and only if
every element a ∈ A and every n ∈ N+ such that na = 0 satisfy a = 0.

A ring R is called torsionfree if and only if the Abelian group (R,+) is
torsionfree.

(Note that in [1], Hazewinkel calls torsionfree rings ”rings of characteristic zero” -
at least, if I understand him right, because he never defines what he means by ”ring of
characteristic zero”.)

Now, here comes the extension of Theorem 5:

Theorem 7. Let N be a nest. Let A be a torsionfree Abelian group
(written additively). For every n ∈ N , let ϕn : A→ A be an endomorphism
of the group A such that (12) and (13) hold.

Let (bn)n∈N ∈ AN be a family of elements of A. Then, the six assertions C,
E , E ′, F , G and H are equivalent, where the assertions C, E , F , G and H
are the ones stated in Theorem 5, and the assertion E ′ is the following one:

Assertion E ′: There exists one and only one family (yn)n∈N ∈ AN of ele-
ments of A such thatbn =

∑
d|n

(rad d)ϕn�d (yd) for every n ∈ N

 . (16)

Obviously, most of Theorem 7 is already proven. The only thing we have to add is
the following easy observation:

Lemma 8. Under the conditions of Theorem 7, there exists at most one
family (yn)n∈N ∈ AN of elements of A satisfying (16).

Proof of Lemma 8. Let us use the conventions of Definition 10. We know that
prad is a pseudo-monotonous map. Hence, applying Lemma 8 in [6] to F = prad, we
conclude that there exists at most one family (yn)n∈N ∈ AN of elements of A satisfyingbn =

∑
d|n

p̃rad (d)ϕn�d (yd) for every n ∈ N

 . (17)
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But since (17) is equivalent to (16) (because p̃rad = rad and therefore p̃rad (d) =
rad (d) = rad d), this result can be rewritten as follows: There exists at most one
family (yn)n∈N ∈ AN of elements of A satisfying (16). Hence, Lemma 8 is proven.

Now the proof of Theorem 7 is trivial:
Proof of Theorem 7. Theorem 5 yields that the five assertions C, E , F , G and H

are equivalent. In other words, C ⇐⇒ E ⇐⇒ F ⇐⇒ G ⇐⇒ H. Besides, it is obvious
that E ′ =⇒ E . It remains to prove the implication E =⇒ E ′.

Assume that Assertion E holds. In other words, assume that there exists a family
(yn)n∈N ∈ AN of elements of A satisfying (16). According to Lemma 8, there exists
at most one such family. Hence, there exists one and only one family (yn)n∈N ∈ AN

of elements of A satisfying (16). In other words, Assertion E ′ holds. Hence, we have
proven the implication E =⇒ E ′. Together with E ′ =⇒ E , this yields E ⇐⇒ E ′.
Combining this with C ⇐⇒ E ⇐⇒ F ⇐⇒ G ⇐⇒ H, we see that all six assertions C,
E , E ′, F , G and H are equivalent. This proves Theorem 7.

Just as Theorem 7 strengthened Theorem 5 in the case of a torsionfree A, we can
strengthen Theorem 4 in this case as well:

Theorem 9. Let N be a nest. Let A be a torsionfree commutative ring
with unity. For every p ∈ P ∩ N , let ϕp : A → A be an endomorphism of
the ring A such that (2) holds.

Let (bn)n∈N ∈ AN be a family of elements of A. Then, the three assertions
C, D and D′ are equivalent, where the assertions C and D are the ones
stated in Theorem 4, and the assertion D′ is the following one:

Assertion D′: There exists one and only one family (xn)n∈N ∈ AN of
elements of A such that(

bn = ∞
√
wn

(
(xk)k∈N

)
for every n ∈ N

)
. (18)

Again, having proven Theorem 4, the only thing we need to do here is checking the
following fact:

Lemma 10. Let N be a nest. Let A be a torsionfree commutative ring
with unity. Let (bn)n∈N ∈ AN be a family of elements of A. Then, there
exists at most one family (xn)n∈N ∈ AN of elements of A satisfying (18).

Proof of Lemma 10. Let us use the conventions of Definition 10. We know that
prad is a pseudo-monotonous map. Hence, applying Lemma 10 in [6] to F = prad, we
conclude that there exists at most one family (xn)n∈N ∈ AN of elements of A satisfying(

bn = wprad,n

(
(xk)k∈N

)
for every n ∈ N

)
. (19)

But since (19) is equivalent to (18) (because every n ∈ N satisfies wprad,n = ∞
√
wn),

this result can be rewritten as follows: There exists at most one family (xn)n∈N ∈ AN

of elements of A satisfying (18). Hence, Lemma 10 is proven.
Proving Theorem 9 now is immediate:
Proof of Theorem 9. Theorem 4 yields that the two assertions C and D are equiv-

alent. In other words, C ⇐⇒ D. Besides, it is obvious that D′ =⇒ D. It remains to
prove the implication D =⇒ D′.
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Assume that Assertion D holds. In other words, assume that there exists a family
(xn)n∈N ∈ AN of elements of A satisfying (18). According to Lemma 10, there exists
at most one such family. Hence, there exists one and only one family (xn)n∈N ∈ AN

of elements of A satisfying (18). In other words, Assertion D′ holds. Hence, we have
proven the implication D =⇒ D′. Together with D′ =⇒ D, this yields D ⇐⇒ D′.
Combining this with C ⇐⇒ D, we see that all three assertions C, D and D′ are
equivalent. This proves Theorem 9.

However, just as Theorem 4, Theorem 9 is not the whole story, and can be strength-
ened in the case of radical Witt polynomials:

Theorem 9’. Let N be a nest. Let A be a torsionfree commutative ring
with unity.

Let (bn)n∈N ∈ AN be a family of elements of A. Then, the three assertions
C4′ , D and D′ are equivalent, where the assertions C4′ and D are the ones
stated in Theorem 4’, and the assertion D′ is the one stated in Theorem 9.

Proof of Theorem 9’. Theorem 4’ yields that the two assertions C4′ and D are
equivalent. In other words, C4′ ⇐⇒ D. Besides, it is obvious that D′ =⇒ D. It
remains to prove the implication D =⇒ D′.

Assume that Assertion D holds. In other words, assume that there exists a family
(xn)n∈N ∈ AN of elements of A satisfying (18). According to Lemma 10, there exists
at most one such family. Hence, there exists one and only one family (xn)n∈N ∈ AN

of elements of A satisfying (18). In other words, Assertion D′ holds. Hence, we have
proven the implication D =⇒ D′. Together with D′ =⇒ D, this yields D ⇐⇒ D′.
Combining this with C4′ ⇐⇒ D, we see that all three assertions C4′ , D and D′ are
equivalent. This proves Theorem 9’.

For the sake of application, let us combine Theorems 4, 4’ and 5:

Theorem 11’. Let N be a nest. Let A be a commutative ring with unity.
For every n ∈ N , let ϕn : A → A be an endomorphism of the ring A such
that the conditions (2), (12) and (13) are satisfied.

Let (bn)n∈N ∈ AN be a family of elements of A. Then, the assertions C,
C4′ , D, E , F , G and H are equivalent, where the assertions C and D are the
ones stated in Theorem 4, the assertion C4′ is the one stated in Theorem
4’, and the assertions E , F , G and H are the ones stated in Theorem 5.

Proof of Theorem 11’. According to Theorem 4, the assertions C and D are equiv-
alent. According to Theorem 4’, the assertions C4′ and D are equivalent. According
to Theorem 5, the assertions C, E , F , G and H are equivalent. Combining these three
observations, we conclude that the assertions C, C4′ , D, E , F , G and H are equivalent23,
and thus Theorem 11’ is proven.

And here comes the strengthening of Theorem 11’ for torsionfree rings A:

23Here, of course, we have used that the assertion C from Theorem 5 is identic with the assertion C
from Theorem 4, and we have used that the assertion D from Theorem 4’ is identic with the assertion
D from Theorem 4.
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Theorem 12’. Let N be a nest. Let A be a torsionfree commutative ring
with unity. For every n ∈ N , let ϕn : A → A be an endomorphism of the
ring A such that the conditions (2), (12) and (13) are satisfied.

Let (bn)n∈N ∈ AN be a family of elements of A. Then, the assertions C, C4′ ,
D, D′, E , E ′, F , G and H are equivalent, where:

• the assertions C and D are the ones stated in Theorem 4,

• the assertion C4′ is the one stated in Theorem 4’,

• the assertions E , F , G and H are the ones stated in Theorem 5,

• the assertion D′ is the one stated in Theorem 9, and

• the assertion E ′ is the one stated in Theorem 7.

Proof of Theorem 12’. According to Theorem 9, the assertions C, D and D′ are
equivalent. According to Theorem 9’, the assertions C4′ , D and D′ are equivalent.
According to Theorem 7, the assertions C, E , E ′, F , G andH are equivalent. Combining
these three observations, we conclude that the assertions C, C4′ , D, D′, E , E ′, F , G and
H are equivalent24, and thus Theorem 12’ is proven.

We now start specializing the above results. First, let us formulate the most impor-
tant particular case of Theorem 12’, namely the one where A is a ring of polynomials
over Z:

Theorem 13’. Let Ξ be a family of symbols. Let N be a nest, and let
(bn)n∈N ∈ (Z [Ξ])N be a family of polynomials in the indeterminates Ξ.
Then, the following assertions CΞ, C4′Ξ, DΞ, D′Ξ, EΞ, E ′Ξ, FΞ, GΞ and HΞ are
equivalent:

Assertion CΞ: Every n ∈ N and every p ∈ PFn satisfies

bn�p (Ξp) ≡ bn mod pZ [Ξ] .

Assertion C4′Ξ: Every n ∈ N and every p ∈ PFn satisfies

bpn�p ≡ bn mod pZ [Ξ] .

Assertion DΞ: There exists a family (xn)n∈N ∈ (Z [Ξ])N of elements of Z [Ξ]
such that (

bn = ∞
√
wn

(
(xk)k∈N

)
for every n ∈ N

)
.

Assertion D′Ξ: There exists one and only one family (xn)n∈N ∈ (Z [Ξ])N of
elements of Z [Ξ] such that(

bn = ∞
√
wn

(
(xk)k∈N

)
for every n ∈ N

)
.

24Here, of course, we have used that the assertion C from Theorem 5 is identic with the assertion C
from Theorem 4, and we have used that the assertion D from Theorem 4’ is identic with the assertion
D from Theorem 4.

15



Assertion EΞ: There exists a family (yn)n∈N ∈ (Z [Ξ])N of elements of Z [Ξ]
such that bn =

∑
d|n

(rad d) yd
(
Ξn�d

)
for every n ∈ N

 .

Assertion E ′Ξ: There exists one and only one family (yn)n∈N ∈ (Z [Ξ])N of
elements of Z [Ξ] such thatbn =

∑
d|n

(rad d) yd
(
Ξn�d

)
for every n ∈ N

 .

Assertion FΞ: Every n ∈ N satisfies∑
d|n

µ (d) bn�d

(
Ξd
)
∈ (radn)Z [Ξ] .

Assertion GΞ: Every n ∈ N satisfies∑
d|n

φ (d) bn�d

(
Ξd
)
∈ (radn)Z [Ξ] .

Assertion HΞ: Every n ∈ N satisfies

n∑
i=1

bgcd(i,n)

(
Ξn� gcd(i,n)

)
∈ (radn)Z [Ξ] .

Before we prove this result, we need a lemma:

Lemma 14. Let a ∈ Z [Ξ] be a polynomial. Let p be a prime. Then,
a (Ξp) ≡ ap mod pZ [Ξ].

This lemma is Lemma 4 (a) in [3] (with ψ renamed as a), so we don’t need to prove
this lemma here.

Proof of Theorem 13’. Let A be the ring Z [Ξ] (this is the ring of all polynomials
over Z in the indeterminates Ξ). Then, A is a torsionfree commutative ring with unity
(torsionfree because every element a ∈ Z [Ξ] and every n ∈ N+ such that na = 0 satisfy
a = 0).

For every n ∈ N , define a map ϕn : Z [Ξ] → Z [Ξ] by ϕn (P ) = P (Ξn) for every
polynomial P ∈ Z [Ξ]. It is clear that ϕn is an endomorphism of the ring Z [Ξ] 25. The

25because ϕn (0) = 0 (Ξn) = 0, ϕn (1) = 1 (Ξn) = 1, and any two polynomials P ∈ Z [Ξ] and
Q ∈ Z [Ξ] satisfy

ϕn (P +Q) = (P +Q) (Ξn) = P (Ξn) +Q (Ξn) = ϕn (P ) + ϕn (Q) and

ϕn (P ·Q) = (P ·Q) (Ξn) = P (Ξn) ·Q (Ξn) = ϕn (P ) · ϕn (Q) .
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condition (2) is satisfied, since ϕp (a) = a (Ξp) ≡ ap mod pZ [Ξ] (by Lemma 14) holds for
every a ∈ A. The condition (12) is satisfied as well (since ϕ1 (P ) = P (Ξ1) = P (Ξ) = P
for every P ∈ Z [Ξ]), and the condition (13) is also satisfied (since ϕn ◦ ϕm = ϕnm for
every n ∈ N and every m ∈ N satisfying nm ∈ N 26). Hence, the three conditions
(2), (12) and (13) are satisfied. Therefore, Theorem 12’ yields that the assertions C,
C4′ , D, D′, E , E ′, F , G and H are equivalent, where:

• the assertions C and D are the ones stated in Theorem 4,

• the assertion C4′ is the one stated in Theorem 4’,

• the assertions E , F , G and H are the ones stated in Theorem 5,

• the assertion D′ is the one stated in Theorem 9, and

• the assertion E ′ is the one stated in Theorem 7.

Now, comparing the assertions C, C4′ , D, D′, E , E ′, F , G and H with the respective
assertions CΞ, C4′Ξ, DΞ, D′Ξ, EΞ, E ′Ξ, FΞ, GΞ and HΞ, we notice that:

• we have C ⇐⇒ CΞ (since A = Z [Ξ] and ϕp (bn�p) = bn�p (Ξp));

• we have C4′ ⇐⇒ C4′Ξ (since A = Z [Ξ]);

• we have D ⇐⇒ DΞ (since A = Z [Ξ]);

• we have D′ ⇐⇒ D′Ξ (since A = Z [Ξ]);

• we have E ⇐⇒ EΞ (since A = Z [Ξ] and ϕn�d (yd) = yd
(
Ξn�d

)
);

• we have E ′ ⇐⇒ E ′Ξ (since A = Z [Ξ] and ϕn�d (yd) = yd
(
Ξn�d

)
);

• we have F ⇐⇒ FΞ (since A = Z [Ξ] and ϕd (bn�d) = bn�d

(
Ξd
)
);

• we have G ⇐⇒ GΞ (since A = Z [Ξ] and ϕd (bn�d) = bn�d

(
Ξd
)
);

• we haveH ⇐⇒ HΞ (sinceA = Z [Ξ] and ϕn� gcd(i,n)

(
bgcd(i,n)

)
= bgcd(i,n)

(
Ξn� gcd(i,n)

)
).

26Proof. Let n ∈ N and m ∈ N be such that nm ∈ N . Then, every P ∈ Z [Ξ] satisfies

(ϕn ◦ ϕm) (P ) = ϕn

ϕm (P )︸ ︷︷ ︸
=P (Ξm)

 = ϕn (P (Ξm)) = P

(Ξn)
m︸ ︷︷ ︸

=Ξnm


(

here, (Ξn)
m

means the family of the m-th powers of all elements of
the family Ξn (considered as elements of Z [Ξ] )

)
= P (Ξnm) = ϕnm (P ) .

Thus, ϕn ◦ ϕm = ϕnm, qed.
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Hence, the equivalence of the assertions C, C4′ , D, D′, E , E ′, F , G and H yields the
equivalence of the assertions CΞ, C4′Ξ, DΞ, D′Ξ, EΞ, E ′Ξ, FΞ, GΞ and HΞ. Thus, Theorem
13’ is proven.

Theorem 13’ has numerous applications, in particular the existence of ”addition and
multiplications” for the radical Witt vectors similar to those for normal Witt vectors.
But first, let us formulate the simplest corollary of Theorem 13’: namely, the one
obtained for Ξ = ∅.

Theorem 15’. Let N be a nest, and let (bn)n∈N ∈ ZN be a family of
integers. Then, the following assertions C∅, C4′∅, D∅, D′∅, E∅, E ′∅, F∅, G∅
and H∅ are equivalent:

Assertion C∅: Every n ∈ N and every p ∈ PFn satisfies

bn�p ≡ bn mod pZ.

Assertion C4′∅: Every n ∈ N and every p ∈ PFn satisfies

bpn�p ≡ bn mod pZ.

Assertion D∅: There exists a family (xn)n∈N ∈ ZN of integers such that(
bn = ∞

√
wn

(
(xk)k∈N

)
for every n ∈ N

)
.

Assertion D′∅: There exists one and only one family (xn)n∈N ∈ ZN of
integers such that(

bn = ∞
√
wn

(
(xk)k∈N

)
for every n ∈ N

)
.

Assertion E∅: There exists a family (yn)n∈N ∈ ZN of integers such thatbn =
∑
d|n

(rad d) yd for every n ∈ N

 .

Assertion E ′∅: There exists one and only one family (yn)n∈N ∈ ZN of
integers such thatbn =

∑
d|n

(rad d) yd for every n ∈ N

 .

Assertion F∅: Every n ∈ N satisfies∑
d|n

µ (d) bn�d ∈ (radn)Z.

Assertion G∅: Every n ∈ N satisfies∑
d|n

φ (d) bn�d ∈ (radn)Z.
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Assertion H∅: Every n ∈ N satisfies

n∑
i=1

bgcd(i,n) ∈ (radn)Z.

Proof of Theorem 15’. We let Ξ be the empty family. Then, Z [Ξ] = Z (because
the ring of polynomials in an empty set of indeterminates over Z is simply the ring Z
itself). Every ”polynomial” a ∈ Z satisfies a (Ξn) = a for every n ∈ N 27. Theorem
13’ yields that the assertions CΞ, C4′Ξ, DΞ, D′Ξ, EΞ, E ′Ξ, FΞ, GΞ and HΞ are equivalent
(these assertions were stated in Theorem 13’).

Now, comparing the assertions CΞ, C4′Ξ, DΞ, D′Ξ, EΞ, E ′Ξ, FΞ, GΞ and HΞ with the
respective assertions C∅, C4′∅, D∅, D′∅, E∅, E ′∅, F∅, G∅ and H∅, we notice that:

• we have CΞ ⇐⇒ C∅ (since Z [Ξ] = Z and bn�p (Ξp) = bn�p);

• we have C4′Ξ ⇐⇒ C4′∅ (since Z [Ξ] = Z);

• we have DΞ ⇐⇒ D∅ (since Z [Ξ] = Z);

• we have D′Ξ ⇐⇒ D′∅ (since Z [Ξ] = Z);

• we have EΞ ⇐⇒ E∅ (since Z [Ξ] = Z and yd
(
Ξn�d

)
= yd);

• we have E ′Ξ ⇐⇒ E ′∅ (since Z [Ξ] = Z and yd
(
Ξn�d

)
= yd);

• we have FΞ ⇐⇒ F∅ (since Z [Ξ] = Z and bn�d

(
Ξd
)

= bn�d);

• we have GΞ ⇐⇒ G∅ (since Z [Ξ] = Z and bn�d

(
Ξd
)

= bn�d);

• we have HΞ ⇐⇒ H∅ (since Z [Ξ] = Z and bgcd(i,n)

(
Ξn� gcd(i,n)

)
= bgcd(i,n)).

Hence, the equivalence of the assertions CΞ, C4′Ξ, DΞ, D′Ξ, EΞ, E ′Ξ, FΞ, GΞ and HΞ

yields the equivalence of the assertions C∅, C4′∅, D∅, D′∅, E∅, E ′∅, F∅, G∅ and H∅.
Thus, Theorem 15’ is proven.

We notice a simple corollary of Theorem 15’:

Theorem 16. Let q ∈ Z be an integer. Then:

(a) There exists one and only one family (xn)n∈N+
∈ ZN+ of integers such

that (
qn = ∞

√
wn

(
(xk)k∈N+

)
for every n ∈ N+

)
.

(b) There exists one and only one family (yn)n∈N+
∈ ZN+ of integers such

that qn =
∑
d|n

(rad d) yd for every n ∈ N+

 .

27In fact, a (Ξn) is defined as the result of replacing every indeterminate by its n-th power in the
polynomial a. But since there are no indeterminates, ”replacing” them by their n-th powers doesn’t
change anything, and thus a (Ξn) = a.
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(c) Every n ∈ N+ satisfies∑
d|n

µ (d) qn�d ∈ (radn)Z.

(d) Every n ∈ N+ satisfies∑
d|n

φ (d) qn�d ∈ (radn)Z.

(e) Every n ∈ N+ satisfies

n∑
i=1

qgcd(i,n) ∈ (radn)Z.

Note that parts (c), (d) and (e) of our Theorem 16 are weaker versions of the
corresponding parts of Theorem 16 in [4], because radn | n. Still, we are going to
prove the whole Theorem 16 here for the sake of completeness.

Proof of Theorem 16. First we note that every n ∈ N+ and every p ∈ PFn satisfies

qn�p ≡ qn mod pZ. (20)

28

Now let N be the nest N+. Define a family (bn)n∈N ∈ ZN by bn = qn for every
n ∈ N . According to Theorem 15’, the assertions C∅, C4′∅, D∅, D′∅, E∅, E ′∅, F∅, G∅ and
H∅ are equivalent (these assertions were stated in Theorem 15’). Since the assertion
C∅ is true for our family (bn)n∈N ∈ ZN (because every n ∈ N and every p ∈ PFn
satisfies

bn�p = qn�p ≡ qn (by (20))

= bn mod pZ

), this yields that the assertions C4′∅, D∅, D′∅, E∅, E ′∅, F∅, G∅ and H∅ must also be
true for our family (bn)n∈N ∈ ZN . But for the family (bn)n∈N ∈ ZN ,

• assertion D′∅ is equivalent to Theorem 16 (a) (since N = N+ and bn = qn);

• assertion E ′∅ is equivalent to Theorem 16 (b) (since N = N+ and bn = qn);

• assertion F∅ is equivalent to Theorem 16 (c) (since N = N+ and bn�d = qn�d);

• assertion G∅ is equivalent to Theorem 16 (d) (since N = N+ and bn�d = qn�d);

• assertion H∅ is equivalent to Theorem 16 (e) (since N = N+ and bgcd(i,n) =
qgcd(i,n)).

28Proof. Let n ∈ N+ and p ∈ PFn. By Fermat’s little theorem,
(
qn�p

)p ≡ qn�p mod pZ. Thus,

qn�p ≡
(
qn�p

)p
= q(n�p)·p = qn mod pZ, qed.
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Hence, Theorem 16 (a), Theorem 16 (b), Theorem 16 (c), Theorem 16 (d) and
Theorem 16 (e) must be true (since the assertions D′∅, E ′∅, F∅, G∅ and H∅ are true
for the family (bn)n∈N ∈ ZN). This proves Theorem 16.

We now take on Theorem 17 of [4]. Its analogue for radical Witt polynomials is the
following:

Theorem 17. In the following, for any u ∈ Z and any r ∈ Q, we define

the binomial coefficient

(
u

r

)
by

(
u

r

)
=


1

r!

r−1∏
k=0

(u− k) , if r ∈ N;

0, if r /∈ N
.

In particular, if r ∈ Q \ Z, then

(
u

r

)
is supposed to mean 0.

Let q ∈ Z and r ∈ Q. Then:

(a) There exists one and only one family (xn)n∈N+
∈ ZN+ of integers such

that ((
qn

rn

)
= ∞
√
wn

(
(xk)k∈N+

)
for every n ∈ N+

)
.

(b) There exists one and only one family (yn)n∈N+
∈ ZN+ of integers such

that (qn
rn

)
=
∑
d|n

(rad d) yd for every n ∈ N+

 .

(c) Every n ∈ N+ satisfies∑
d|n

µ (d)

(
qn�d
rn�d

)
∈ (radn)Z.

(d) Every n ∈ N+ satisfies∑
d|n

φ (d)

(
qn�d
rn�d

)
∈ (radn)Z.

(e) Every n ∈ N+ satisfies

n∑
i=1

(
q gcd (i, n)

r gcd (i, n)

)
∈ (radn)Z.

Just as in the case of Theorem 16, parts (c), (d) and (e) of Theorem 17 tell nothing
new compared to the similar parts of Theorem 17 of [4]. We will still prove them along
with the rest.

Let us first quote Lemma 19 from [4]:
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Lemma 19. Let n ∈ N+ and let p ∈ PFn. Let q ∈ Z and r ∈ Q. Then,(
qn�p
rn�p

)
≡
(
qn

rn

)
mod pvp(n)Z. (21)

For the proof of this lemma, see [4].
Proof of Theorem 17. Let us first notice that every n ∈ N+ and every p ∈ PFn

satisfy (
qn�p
rn�p

)
≡
(
qn

rn

)
mod pZ. (22)

29

Let N be the nest N+. Define a family (bn)n∈N ∈ ZN by bn =

(
qn

rn

)
for every n ∈ N .

According to Theorem 15’, the assertions C∅, C4′∅, D∅, D′∅, E∅, E ′∅, F∅, G∅ and H∅
are equivalent (these assertions were stated in Theorem 15’). Since the assertion C∅ is
true for our family (bn)n∈N ∈ ZN (because every n ∈ N and every p ∈ PFn satisfies

bn�p =

(
qn�p
rn�p

)
≡
(
qn

rn

)
(by (22))

= bn mod pZ

), this yields that the assertions C4′∅, D∅, D′∅, E∅, E ′∅, F∅, G∅ and H∅ must also be
true for our family (bn)n∈N ∈ ZN . But for the family (bn)n∈N ∈ ZN ,

• assertion D′∅ is equivalent to Theorem 17 (a) (since N = N+ and bn =

(
qn

rn

)
);

• assertion E ′∅ is equivalent to Theorem 17 (b) (since N = N+ and bn =

(
qn

rn

)
);

• assertion F∅ is equivalent to Theorem 17 (c) (since N = N+ and bn�d =(
qn�d
rn�d

)
);

• assertion G∅ is equivalent to Theorem 17 (d) (since N = N+ and bn�d =(
qn�d
rn�d

)
);

• assertion H∅ is equivalent to Theorem 17 (e) (since N = N+ and bgcd(i,n) =(
q gcd (i, n)

r gcd (i, n)

)
).

Hence, Theorem 17 (a), Theorem 17 (b), Theorem 17 (c), Theorem 17 (d) and
Theorem 17 (e) must be true (since the assertions D′∅, E ′∅, F∅, G∅ and H∅ are true
for the family (bn)n∈N ∈ ZN). This proves Theorem 17.

Actually, we can do better than Theorem 17 in the case when r is an integer:

29Proof of (22): Let n ∈ N+ and p ∈ PFn. Then, p | n (since p ∈ PFn) and thus vp (n) ≥ 1, so

that p | pvp(n). Hence, pvp(n)Z ⊆ pZ. But Lemma 19 yields

(
qn�p
rn�p

)
≡
(
qn

rn

)
mod pvp(n)Z. Since

pvp(n)Z ⊆ pZ, this yields

(
qn�p
rn�p

)
≡
(
qn

rn

)
mod pZ. This proves (22).
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Theorem 20. In the following, for any u ∈ Z and any r ∈ Q, we define

the binomial coefficient

(
u

r

)
by

(
u

r

)
=


1

r!

r−1∏
k=0

(u− k) , if r ∈ N;

0, if r /∈ N
.

In particular, if r ∈ Z \ N, then

(
u

r

)
is supposed to mean 0.

Let q ∈ Z and r ∈ Z. Then:

(a) There exists one and only one family (xn)n∈N+
∈ ZN+ of integers such

that ((
qn− 1

rn− 1

)
= ∞
√
wn

(
(xk)k∈N+

)
for every n ∈ N+

)
.

(b) There exists one and only one family (yn)n∈N+
∈ ZN+ of integers such

that (qn− 1

rn− 1

)
=
∑
d|n

(rad d) yd for every n ∈ N+

 .

(c) Every n ∈ N+ satisfies∑
d|n

µ (d)

(
qn�d− 1

rn�d− 1

)
∈ (radn)Z.

(d) Every n ∈ N+ satisfies∑
d|n

φ (d)

(
qn�d− 1

rn�d− 1

)
∈ (radn)Z.

(e) Every n ∈ N+ satisfies

n∑
i=1

(
q gcd (i, n)− 1

r gcd (i, n)− 1

)
∈ (radn)Z.

(f) Every n ∈ N+ satisfies∑
d|n

µ (d)

(
qn�d
rn�d

)
∈ q
r

(radn)Z.

(g) Every n ∈ N+ satisfies∑
d|n

φ (d)

(
qn�d
rn�d

)
∈ q
r

(radn)Z.

(h) Every n ∈ N+ satisfies

n∑
i=1

(
q gcd (i, n)

r gcd (i, n)

)
∈ q
r

(radn)Z.
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The proof of this fact will use an analogue (and corollary) of Lemma 19:

Lemma 21. Let n ∈ N+ and let p ∈ PFn. Let q ∈ Z and r ∈ Q. Assume

that there exist two integers α and β with vp (α) ≥ vp (β) and r =
α

β
. Then,

(
qn�p− 1

rn�p− 1

)
≡
(
qn− 1

rn− 1

)
mod pvp(n)Z. (23)

This lemma is identic with Lemma 21 in [4], so we won’t prove it here.
Proof of Theorem 20. We will use the formula(

a

b

)
=
a

b

(
a− 1

b− 1

)
(24)

for any a ∈ Q and b ∈ Q \ {0}. (This formula was proven during the proof of Lemma
21 in [4].)

Let us also notice that every n ∈ N+ and every p ∈ PFn satisfy(
qn�p− 1

rn�p− 1

)
≡
(
qn− 1

rn− 1

)
mod pZ. (25)

30

Let N be the nest N+. Define a family (bn)n∈N ∈ ZN by bn =

(
qn− 1

rn− 1

)
for every

n ∈ N . According to Theorem 15’, the assertions C∅, C4′∅, D∅, D′∅, E∅, E ′∅, F∅, G∅ and
H∅ are equivalent (these assertions were stated in Theorem 15’). Since the assertion
C∅ is true for our family (bn)n∈N ∈ ZN (because every n ∈ N and every p ∈ PFn
satisfies

bn�p =

(
qn�p− 1

rn�p− 1

)
≡
(
qn− 1

rn− 1

)
(by (25))

= bn mod pZ,

), this yields that the assertions C4′∅, D∅, D′∅, E∅, E ′∅, F∅, G∅ and H∅ must also be
true for our family (bn)n∈N ∈ ZN . But for the family (bn)n∈N ∈ ZN ,

• assertionD′∅ is equivalent to Theorem 20 (a) (sinceN = N+ and bn =

(
qn− 1

rn− 1

)
);

• assertion E ′∅ is equivalent to Theorem 20 (b) (since N = N+ and bn =

(
qn− 1

rn− 1

)
);

30Proof of (25): Let n ∈ N+ and p ∈ PFn. Then, p | n (since p ∈ PFn) and thus vp (n) ≥ 1, so
that p | pvp(n). Hence, pvp(n)Z ⊆ pZ.

But clearly, there exist two integers α and β with vp (α) ≥ vp (β) and r =
α

β
(namely, α = r and β =

1, since
r

1
= 1 and vp (r) ≥ 0 = vp (1)). Thus, Lemma 21 yields

(
qn�p− 1

rn�p− 1

)
≡
(
qn− 1

rn− 1

)
mod pvp(n)Z.

Since pvp(n)Z ⊆ pZ, this yields

(
qn�p− 1

rn�p− 1

)
≡
(
qn− 1

rn− 1

)
mod pZ. This proves (25).
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• assertion F∅ is equivalent to Theorem 20 (c) (since N = N+ and bn�d =(
qn�d− 1

rn�d− 1

)
);

• assertion G∅ is equivalent to Theorem 20 (d) (since N = N+ and bn�d =(
qn�d− 1

rn�d− 1

)
);

• assertion H∅ is equivalent to Theorem 20 (e) (since N = N+ and bgcd(i,n) =(
q gcd (i, n)− 1

r gcd (i, n)− 1

)
).

Hence, Theorem 20 (a), Theorem 20 (b), Theorem 20 (c), Theorem 20 (d) and
Theorem 20 (e) must be true (since the assertions D′∅, E ′∅, F∅, G∅ and H∅ are true
for the family (bn)n∈N ∈ ZN).

Theorem 20 (f) follows from Theorem 20 (c), since∑
d|n

µ (d)

(
qn�d
rn�d

)
︸ ︷︷ ︸

=
qn�d
rn�d

(
qn�d− 1

rn�d− 1

)
(by (24), applied to

a=qn�d and b=rn�d)

=
∑
d|n

µ (d)
qn�d
rn�d︸ ︷︷ ︸

=
q

r

(
qn�d− 1

rn�d− 1

)
=
q

r

∑
d|n

µ (d)

(
qn�d− 1

rn�d− 1

)
︸ ︷︷ ︸

∈(radn)Z
(by Theorem 20 (c))

∈ q
r

(radn)Z.

Theorem 20 (g) follows from Theorem 20 (d), because∑
d|n

φ (d)

(
qn�d
rn�d

)
︸ ︷︷ ︸

=
qn�d
rn�d

(
qn�d− 1

rn�d− 1

)
(by (24), applied to

a=qn�d and b=rn�d)

=
∑
d|n

φ (d)
qn�d
rn�d︸ ︷︷ ︸

=
q

r

(
qn�d− 1

rn�d− 1

)
=
q

r

∑
d|n

φ (d)

(
qn�d− 1

rn�d− 1

)
︸ ︷︷ ︸

∈(radn)Z
(by Theorem 20 (d))

∈ q
r

(radn)Z.

Theorem 20 (h) follows from Theorem 20 (e), since

n∑
i=1

(
q gcd (i, n)

r gcd (i, n)

)
︸ ︷︷ ︸

=
q gcd (i, n)

r gcd (i, n)

(
q gcd (i, n)− 1

r gcd (i, n)− 1

)
(by (24), applied to

a=q gcd(i,n) and b=r gcd(i,n))

=
n∑

i=1

q gcd (i, n)

r gcd (i, n)︸ ︷︷ ︸
=
q

r

(
q gcd (i, n)− 1

r gcd (i, n)− 1

)

=
q

r

n∑
i=1

(
q gcd (i, n)− 1

r gcd (i, n)− 1

)
︸ ︷︷ ︸

∈(radn)Z
(by Theorem 20 (e))

∈ q
r

(radn)Z.
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Thus, altogether we have now proven Theorem 20 completely.
So much for applications of Theorem 13’ for the case when Ξ is the empty family (i.

e. for polynomials in zero variables). We now aim to apply Theorem 13’ to nonempty
Ξ. However, at first, let us make a part of Theorem 13’ stronger.

Theorem 22. Let Ξ be a family of symbols. Let N be a nest, and let
(bn)n∈N ∈ (Q [Ξ])N be a family of polynomials in the indeterminates Ξ.

(a) There exists one and only one family (xn)n∈N ∈ (Q [Ξ])N of elements
of Q [Ξ] such that(

bn = ∞
√
wn

(
(xk)k∈N

)
for every n ∈ N

)
.

We denote this family (xn)n∈N by (x̃n)n∈N . Then, we have (x̃n)n∈N ∈
(Q [Ξ])N and (

bn = ∞
√
wn

(
(x̃k)k∈N

)
for every n ∈ N

)
.

(b) The family (x̃n)n∈N ∈ (Q [Ξ])N defined in Theorem 22 (a) satisfies

x̃n ∈ Q
[
bN|n

]
(where Q

[
bN|n

]
means the sub-Q-algebra of Q [Ξ] generated

by the polynomials bd for all d ∈ N|n) for every n ∈ N .

(c) Assume that (bn)n∈N ∈ (Z [Ξ])N . Then, the family (x̃n)n∈N ∈ (Q [Ξ])N

defined in Theorem 22 (a) satisfies (x̃n)n∈N ∈ (Z [Ξ])N if and only if every
n ∈ N and every p ∈ PFn satisfies

bn�p (Ξp) ≡ bn mod pZ [Ξ] . (26)

Proof of Theorem 22. Let us use the conventions of Definition 10. We know that
prad is a pseudo-monotonous map. Hence, we can apply Theorem 22 in [6] to F = prad.
As a result, we obtain the following theorem:

Theorem 22a. Let Ξ be a family of symbols. Let N be a nest, and let
(bn)n∈N ∈ (Q [Ξ])N be a family of polynomials in the indeterminates Ξ.

(a) There exists one and only one family (xn)n∈N ∈ (Q [Ξ])N of elements
of Q [Ξ] such that(

bn = wprad,n

(
(xk)k∈N

)
for every n ∈ N

)
.

We denote this family (xn)n∈N by (x̃n)n∈N . Then, we have (x̃n)n∈N ∈
(Q [Ξ])N and (

bn = wprad,n

(
(x̃k)k∈N

)
for every n ∈ N

)
.

(b) The family (x̃n)n∈N ∈ (Q [Ξ])N defined in Theorem 22a (a) satisfies

x̃n ∈ Q
[
bN|n

]
(where Q

[
bN|n

]
means the sub-Q-algebra of Q [Ξ] generated

by the polynomials bd for all d ∈ N|n) for every n ∈ N .
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(c) Assume that (bn)n∈N ∈ (Z [Ξ])N . Then, the family (x̃n)n∈N ∈ (Q [Ξ])N

defined in Theorem 22a (a) satisfies (x̃n)n∈N ∈ (Z [Ξ])N if and only if every
n ∈ N and every p ∈ PFn satisfies

bn�p (Ξp) ≡ bn mod pprad(p,vp(n))Z [Ξ] .

But Theorem 22 can be obtained from Theorem 22a by means of replacing wprad,n

by ∞
√
wn and replacing pprad(p,vp(n)) by p. Since these replacements don’t change the

validity of the theorem (because every n ∈ N satisfies wprad,n = ∞
√
wn, and because

every n ∈ N and every p ∈ PFn satisfy pprad(p,vp(n)) = p (according to (4))), this yields
that Theorem 22 is equivalent to Theorem 22a. Since we know that Theorem 22a is
true, we can thus conclude that Theorem 22 is true.

Now we come to the main application of Theorem 13’:

Theorem 25. Let N be a nest. Let m ∈ N. Let Ξ denote the family
(Xk,n)(k,n)∈{1,2,...,m}×N of symbols. This family is clearly the union

⋃
k∈{1,2,...,m}

Xk,N

of the families Xk,N defined by Xk,N = (Xk,n)n∈N for each k ∈ {1, 2, ...,m}.
For each k ∈ {1, 2, ...,m}, the family Xk,N = (Xk,n)n∈N consists of |N | sym-
bols; their union Ξ is a family consisting of m · |N | symbols. (Consequently,

Z [Ξ] = Z
[
(Xk,n)(k,n)∈{1,2,...,m}×N

]
is a polynomial ring over Z in m · |N |

indeterminates which are labelled Xk,n for (k, n) ∈ {1, 2, ...,m} ×N .)

Let f ∈ Z [α1, α2, ..., αm] be a polynomial in m variables.

(a) Then, there exists one and only one family (xn)n∈N ∈ (Q [Ξ])N of
polynomials such that(
∞
√
wn

(
(xk)k∈N

)
= f

(
∞
√
wn (X1,N) , ∞

√
wn (X2,N) , ..., ∞

√
wn (Xm,N)

)
for every n ∈ N

)
.

We denote this family (xn)n∈N by (fn)n∈N . Then, we have (fn)n∈N ∈
(Q [Ξ])N and(
∞
√
wn

(
(fk)k∈N

)
= f

(
∞
√
wn (X1,N) , ∞

√
wn (X2,N) , ..., ∞

√
wn (Xm,N)

)
for every n ∈ N

)
.

(b) This family (fn)n∈N ∈ (Q [Ξ])N satisfies fn ∈ Z
[
ΞN|n

]
(where Z

[
ΞN|n

]
means the sub-Z-algebra of Z [Ξ] generated by the polynomials Xk,d for
k ∈ {1, 2, ...,m} and d ∈ N|n) for every n ∈ N .

Proof of Theorem 25. Let us use the conventions of Definition 10. We know that
prad is a pseudo-monotonous map. Hence, we can apply Theorem 25 in [6] to F = prad.
As a result, we obtain the following theorem:

Theorem 25a. Let N be a nest. Let m ∈ N. Let Ξ denote the family
(Xk,n)(k,n)∈{1,2,...,m}×N of symbols. This family is clearly the union

⋃
k∈{1,2,...,m}

Xk,N

of the families Xk,N defined by Xk,N = (Xk,n)n∈N for each k ∈ {1, 2, ...,m}.
For each k ∈ {1, 2, ...,m}, the family Xk,N = (Xk,n)n∈N consists of |N | sym-
bols; their union Ξ is a family consisting of m · |N | symbols. (Consequently,
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Z [Ξ] = Z
[
(Xk,n)(k,n)∈{1,2,...,m}×N

]
is a polynomial ring over Z in m · |N |

indeterminates which are labelled Xk,n for (k, n) ∈ {1, 2, ...,m} ×N .)

Let f ∈ Z [α1, α2, ..., αm] be a polynomial in m variables.

(a) Then, there exists one and only one family (xn)n∈N ∈ (Q [Ξ])N of
polynomials such that(
wprad,n

(
(xk)k∈N

)
= f (wprad,n (X1,N) , wprad,n (X2,N) , ..., wprad,n (Xm,N)) for every n ∈ N

)
.

We denote this family (xn)n∈N by (fn)n∈N . Then, we have (fn)n∈N ∈
(Q [Ξ])N and(
wprad,n

(
(fk)k∈N

)
= f (wprad,n (X1,N) , wprad,n (X2,N) , ..., wprad,n (Xm,N)) for every n ∈ N

)
.

(b) This family (fn)n∈N ∈ (Q [Ξ])N satisfies fn ∈ Z
[
ΞN|n

]
(where Z

[
ΞN|n

]
means the sub-Z-algebra of Z [Ξ] generated by the polynomials Xk,d for
k ∈ {1, 2, ...,m} and d ∈ N|n) for every n ∈ N .

But Theorem 25 can be obtained from Theorem 25a by means of replacing wprad,n

by ∞
√
wn. Since this replacement doesn’t change the validity of the theorem (because

every n ∈ N satisfies wprad,n = ∞
√
wn), this yields that Theorem 25 is equivalent to

Theorem 25a. Since we know that Theorem 25a is true, we can thus conclude that
Theorem 25 is true.

[...]
[define +W and ·W maybe]
[...]
[add stuff to witt5b]
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