Witt vectors. Part 1

Michiel Hazewinkel

Sidenotes by Darij Grinberg

Witt#5c: The Chinese Remainder Theorem for Modules

[not completed, not proofread]

This is an auxiliary note; its goal is to prove a form of the Chinese Remainder Theorem that will be used in [2].

Definition 1. Let \mathbb{P} denote the set of all primes. (A *prime* means an integer n > 1 such that the only divisors of n are n and n. The word "divisor" means "positive divisor".)

Definition 2. We denote the set $\{0, 1, 2, ...\}$ by \mathbb{N} , and we denote the set $\{1, 2, 3, ...\}$ by \mathbb{N}_+ . (Note that our notations conflict with the notations used by Hazewinkel in [1]; in fact, Hazewinkel uses the letter \mathbb{N} for the set $\{1, 2, 3, ...\}$, which we denote by \mathbb{N}_+ .)

Now, here is the Chinese Remainder Theorem in one of its most general forms:

Theorem 1. Let A be a commutative ring with unity. Let M be an A-module. Let $N \in \mathbb{N}$. Let $I_1, I_2, ..., I_N$ be N ideals of A such that $I_i + I_j = A$ for any two elements i and j of $\{1, 2, ..., N\}$ satisfying i < j.

- (a) Then, $I_1I_2...I_N \cdot M = I_1M \cap I_2M \cap ... \cap I_NM$.
- (b) Also, the map

$$\Phi: M \diagup (I_1 I_2 ... I_N \cdot M) \to \prod_{k=1}^N (M \diagup I_k M)$$

defined by

$$\Phi(m + I_1 I_2 ... I_N \cdot M) = (m + I_k M)_{k \in \{1, 2, ..., N\}}$$
 for every $m \in M$

is a well-defined isomorphism of A-modules.

(c) Let $(m_k)_{k \in \{1,2,\ldots,N\}} \in M^N$ be a family of elements of M. Then, there exists an element m of M such that

$$(m_k \equiv m \bmod I_k M \text{ for every } k \in \{1, 2, ..., N\}). \tag{1}$$

Proof of Theorem 1. (a) Theorem 1 (a) occurred as Theorem 1 in [1], and we won't repeat the proof given there.

(b) Let us first forget the definition of Φ made in Theorem 1 (b) (until we have shown that it is indeed well-defined).

For any integers $i \in \{1, 2, ..., N\}$ and $j \in \{1, 2, ..., N\}$ satisfying i < j, we can find an element $a_{i,j}$ of I_i and an element $a_{j,i}$ of I_j such that $a_{i,j} + a_{j,i} = 1$ (since

 $1 \in A = I_i + I_j$). Fix such elements $a_{i,j}$ and $a_{j,i}$ for all pairs of integers $i \in \{1, 2, ..., N\}$ and $j \in \{1, 2, ..., N\}$ satisfying i < j. Then,

$$\begin{pmatrix}
a_{i,j} \in I_i, & a_{j,i} \in I_j \text{ and } a_{i,j} + a_{j,i} = 1 \text{ for any} \\
\text{integers } i \in \{1, 2, ..., N\} \text{ and } j \in \{1, 2, ..., N\} \text{ satisfying } i < j
\end{pmatrix}.$$
(2)

Consequently, we have

$$\begin{pmatrix}
a_{i,j} \in I_i, \ a_{j,i} \in I_j \text{ and } a_{i,j} + a_{j,i} = 1 \text{ for any} \\
\text{integers } i \in \{1, 2, ..., N\} \text{ and } j \in \{1, 2, ..., N\} \text{ satisfying } i \neq j
\end{pmatrix}$$
(3)

¹. Notice that

$$\prod_{\substack{i \in \{1,2,...,N\};\\ i \neq \ell}} a_{i,\ell} \in I_k \text{ for any } \ell \in \{1,2,...,N\} \text{ and } k \in \{1,2,...,N\} \text{ satisfying } \ell \neq k.$$

² Also,

$$\prod_{\substack{i \in \{1, 2, ..., N\}; \\ i \neq k}} a_{i,k} \in 1 + I_k \qquad \text{for every } k \in \{1, 2, ..., N\}.$$
 (5)

(4)

3

Now, define a map

$$\varphi: M \to \prod_{k=1}^{N} (M/I_k M)$$
 by
$$\varphi(m) = (m + I_k M)_{k \in \{1, 2, \dots, N\}}$$
 for every $m \in M$.

Clearly, φ is a homomorphism of A-modules. We have $I_1I_2...I_N \cdot M \subseteq \operatorname{Ker} \varphi$ (since

²Proof of (4): Let $\ell \in \{1, 2, ..., N\}$ and $k \in \{1, 2, ..., N\}$ satisfy $\ell \neq k$. Then, (3) (applied to i = kand $j = \ell$) yields $a_{k,\ell} \in I_k$, $a_{\ell,k} \in I_\ell$ and $a_{k,\ell} + a_{\ell,k} = 1$. But the product

factor $a_{k,\ell}$ (because $k \neq \ell$), and thus lies in I_k (since $a_{k,\ell} \in I_k$, and since I_k is an ideal of A). This proves (4).

³ Proof of (5): Let $k \in \{1, 2, ..., N\}$. Applying (3) to j = k, we obtain the following:

$$a_{i,k} \in I_i, \ a_{k,i} \in I_k \text{ and } a_{i,k} + a_{k,i} = 1 \text{ for any integer } i \in \{1, 2, ..., N\} \text{ satisfying } i \neq k.$$

Thus, for any integer $i \in \{1, 2, ..., N\}$ satisfying $i \neq k$, we have $1 = a_{i,k} + 1$

Thus, for any integer
$$i \in \{1, 2, ..., N\}$$
 satisfying $i \neq k$, we have $1 = a_{i,k} + \underbrace{a_{k,i}}_{\equiv 0 \bmod I_k} = a_{i,k} \bmod I_k$. Hence, $\prod_{\substack{i \in \{1, 2, ..., N\}; \\ i \neq k}} 1 \equiv \prod_{\substack{i \in \{1, 2, ..., N\}; \\ i \neq k}} a_{i,k} \bmod I_k$. In other words, $\prod_{\substack{i \in \{1, 2, ..., N\}; \\ i \neq k}} a_{i,k} \equiv \prod_{\substack{i \in \{1, 2, ..., N\}; \\ i \neq k}} 1 = 1 \bmod I_k$, so that $\prod_{\substack{i \in \{1, 2, ..., N\}; \\ i \neq k}} a_{i,k} \in 1 + I_k$. This proves (5).

¹Proof of (3): Let $i \in \{1, 2, ..., N\}$ and $j \in \{1, 2, ..., N\}$ be two integers satisfying $i \neq j$. Since $i \neq j$, we must have either i < j and i > j. But in both of these cases, (3) can be derived from (2) (in fact, if i < j, then (3) directly follows from (2), and if i > j, then (3) follows from (2) (applied to j and i instead of i and j). Hence, (3) is proven.

every $m \in I_1 I_2 ... I_N \cdot M$ satisfies

$$\varphi(m) = \left(\underbrace{m + I_k M}_{=I_k M \text{ (since}\atop m \in I_1 I_2 \dots I_N \cdot M \subseteq I_k M)}\right)_{k \in \{1, 2, \dots, N\}} = \left(\underbrace{I_k M}_{\text{this is the zero}\atop \text{of the } A\text{-module}\atop M / I_k M}\right)_{k \in \{1, 2, \dots, N\}} = (0)_{k \in \{1, 2, \dots, N\}} = 0$$

and thus $m \in \text{Ker } \varphi$). Hence, φ induces a homomorphism

$$\Phi: M \diagup (I_1 I_2 ... I_N \cdot M) \to \prod_{k=1}^N (M \diagup I_k M)$$

of A-modules satisfying

$$\Phi(m + I_1 I_2 ... I_N \cdot M) = (m + I_k M)_{k \in \{1, 2, ..., N\}}$$
 for every $m \in M$.

This proves that the map Φ of Theorem 1 (b) is well-defined and a homomorphism of A-modules. We have yet to show that this Φ is an isomorphism.

Define a map

$$\Psi: \prod_{k=1}^{N} (M/I_k M) \to M/(I_1 I_2 ... I_N \cdot M)$$

by

$$\Psi\left((m_k + I_k M)_{k \in \{1, 2, \dots, N\}}\right) = \sum_{\ell=1}^{N} \left(\prod_{\substack{i \in \{1, 2, \dots, N\}; \\ i \neq \ell}} a_{i,\ell}\right) m_{\ell} + I_1 I_2 \dots I_N \cdot M$$
for every $(m_k)_{k \in \{1, 2, \dots, N\}} \in M^N$.

This map Ψ is indeed well-defined, since the residue class $\sum_{\ell=1}^{N} \left(\prod_{i\in\{1,2,\dots,N\};\ i\neq\ell} a_{i,\ell}\right) m_{\ell} + I_{1}I_{2}...I_{N} \cdot M$ depends only on $(m_{k}+I_{k}M)_{k\in\{1,2,\dots,N\}}$ and not on $(m_{k})_{k\in\{1,2,\dots,N\}}$ (because if $(m_{k})_{k\in\{1,2,\dots,N\}} \in M^{N}$ and $(m'_{k})_{k\in\{1,2,\dots,N\}} \in M^{N}$ are two families satisfying

 $(m_k + I_k M)_{k \in \{1,2,\dots,N\}} = (m'_k + I_k M)_{k \in \{1,2,\dots,N\}} \text{ in } \prod_{k=1}^{N} (M/I_k M), \text{ then}$

$$\sum_{\ell=1}^{N} \left(\prod_{\substack{i \in \{1,2,\dots,N\}; \\ i \neq \ell}} a_{i,\ell} \right) m_{\ell} + I_{1}I_{2}...I_{N} \cdot M = \sum_{\ell=1}^{N} \left(\prod_{\substack{i \in \{1,2,\dots,N\}; \\ i \neq \ell}} a_{i,\ell} \right) m_{\ell}' + I_{1}I_{2}...I_{N} \cdot M$$

4).

⁴ Proof. In fact, $(m_k + I_k M)_{k \in \{1,2,...,N\}} = (m'_k + I_k M)_{k \in \{1,2,...,N\}}$ yields $m_k + I_k M = m'_k + I_k M$

Every family $(m_k)_{k \in \{1,2,\ldots,N\}} \in M^N$ satisfies

$$(\Phi \circ \Psi) \left((m_k + I_k M)_{k \in \{1, 2, \dots, N\}} \right) = \Phi \left(\Psi \left((m_k + I_k M)_{k \in \{1, 2, \dots, N\}} \right) \right)$$

$$= \Phi \left(\sum_{\ell=1}^{N} \left(\prod_{\substack{i \in \{1, 2, \dots, N\}; \\ i \neq \ell}} a_{i,\ell} \right) m_{\ell} + I_1 I_2 \dots I_N \cdot M \right)$$

$$\left(\text{by the definition of } \Psi \left((m_k + I_k M)_{k \in \{1, 2, \dots, N\}} \right) \right)$$

$$= \left(\sum_{\ell=1}^{N} \left(\prod_{\substack{i \in \{1, 2, \dots, N\}; \\ i \neq \ell}} a_{i,\ell} \right) m_{\ell} + I_k M \right)_{k \in \{1, 2, \dots, N\}}$$

$$(6)$$

$$(6)$$

for each $k \in \{1, 2, ..., N\}$, and thus $m_k - m_k' \in I_k M$ for each $k \in \{1, 2, ..., N\}$. In other words, $m_\ell - m_\ell' \in I_\ell M$ for each $\ell \in \{1, 2, ..., N\}$. Now,

$$\begin{split} \sum_{\ell=1}^{N} \left(\prod_{i \in \{1,2,\ldots,N\};} a_{i,\ell} \right) m_{\ell} - \sum_{\ell=1}^{N} \left(\prod_{i \in \{1,2,\ldots,N\};} a_{i,\ell} \right) m'_{\ell} \\ &= \sum_{\ell=1}^{N} \left(\prod_{i \in \{1,2,\ldots,N\};} \underbrace{a_{i,\ell}}_{i \neq \ell} \right) \underbrace{(m_{\ell} - m'_{\ell})}_{\in I_{\ell}M} \in \sum_{\ell=1}^{N} \left(\prod_{i \in \{1,2,\ldots,N\};} I_{i} \right) I_{\ell} M = \sum_{\ell=1}^{N} I_{1}I_{2}...I_{N} \cdot M \\ &= \prod_{i \in \{1,2,\ldots,N\} \atop i \neq \ell} I_{i} \\ &= \prod_{i \in \{1,2,\ldots,N\} \atop i \neq \ell} I_{i} \\ &= \prod_{i \in \{1,2,\ldots,N\} \atop i \neq \ell} I_{i} \end{split}$$

$$\subseteq I_{1}I_{2}...I_{N} \cdot M \quad \text{(since } I_{1}I_{2}...I_{N} \cdot M \text{ is an A-module)},$$

so that

$$\sum_{\ell=1}^{N} \left(\prod_{\substack{i \in \{1,2,\dots,N\}; \\ i \neq \ell}} a_{i,\ell} \right) m_{\ell} + I_{1}I_{2}...I_{N} \cdot M = \sum_{\ell=1}^{N} \left(\prod_{\substack{i \in \{1,2,\dots,N\}; \\ i \neq \ell}} a_{i,\ell} \right) m_{\ell}' + I_{1}I_{2}...I_{N} \cdot M,$$

qed.

Since every $k \in \{1, 2, ..., N\}$ satisfies

$$\begin{split} &\sum_{\ell \in \{1,2,\dots,N\}}^{N} \left(\prod_{i \in \{1,2,\dots,N\}; i \neq \ell} a_{i,\ell} \right) m_{\ell} \\ &= \sum_{\ell \in \{1,2,\dots,N\}} \left(\prod_{i \in \{1,2,\dots,N\}; i \neq \ell} a_{i,\ell} \right) m_{\ell} \\ &= \sum_{\ell \in \{1,2,\dots,N\}; i \neq \ell} \left(\prod_{i \in \{1,2,\dots,N\}; i \neq \ell} a_{i,\ell} \right) m_{\ell} + \sum_{\ell \in \{1,2,\dots,N\}; i \neq \ell} \left(\prod_{i \in \{1,2,\dots,N\}; i \neq \ell} a_{i,\ell} \right) m_{\ell} \\ &= \sum_{\ell \in \{1,2,\dots,N\}; i \neq \ell} \left(\prod_{i \in \{1,2,\dots,N\}; i \neq \ell} a_{i,\ell} \right) m_{\ell} + \sum_{\ell \in \{1,2,\dots,N\}; i \neq \ell} \left(\prod_{i \in \{1,2,\dots,N\}; i \neq \ell} a_{i,\ell} \right) m_{\ell} \\ &= \left(\prod_{i \in \{1,2,\dots,N\}; i \neq \ell} a_{i,\ell} \right) m_{k} \\ &\in \sum_{\ell \in \{1,2,\dots,N\}; i \neq \ell} I_{k} m_{\ell} + \left(\prod_{i \in \{1,2,\dots,N\}; i \neq \ell} a_{i,k} \right) m_{k} \\ &\subseteq \sum_{\ell \in \{1,2,\dots,N\}; i \neq \ell} I_{k} m_{\ell} + \left(\prod_{i \in \{1,2,\dots,N\}; i \neq \ell} a_{i,k} \right) m_{k} \\ &\subseteq I_{k} M + m_{k} + I_{k} M = I_{k} M (\text{since } I_{k} M \text{ is an } A\text{-module}) \end{split}$$

and thus

$$\sum_{\ell=1}^{N} \left(\prod_{\substack{i \in \{1,2,\dots,N\}; \\ i \neq \ell}} a_{i,\ell} \right) m_{\ell} + I_{k} M = m_{k} + I_{k} M,$$

the equation (6) becomes

$$(\Phi \circ \Psi) \left((m_k + I_k M)_{k \in \{1, 2, \dots, N\}} \right) = \left(\sum_{\ell=1}^{N} \left(\prod_{\substack{i \in \{1, 2, \dots, N\}; \\ i \neq \ell}} a_{i,\ell} \right) m_\ell + I_k M \right)_{k \in \{1, 2, \dots, N\}}$$

$$= (m_k + I_k M)_{k \in \{1, 2, \dots, N\}}.$$

Since this holds for every $(m_k)_{k\in\{1,2,\dots,N\}} \in M^N$, this yields $\Phi \circ \Psi = \mathrm{id}$ (because every element of $\prod_{k=1}^N (M/I_k M)$ can be written in the form $(m_k + I_k M)_{k\in\{1,2,\dots,N\}}$ for some $(m_k)_{k\in\{1,2,\dots,N\}} \in M^N$).

Now we are going to prove that the A-module homomorphism Φ is injective. In fact, let $m \in M$ be such that $\Phi(m + I_1 I_2 ... I_N \cdot M) = 0$. Then,

$$0 = \Phi(m + I_1 I_2 ... I_N \cdot M) = (m + I_k M)_{k \in \{1, 2, ..., N\}},$$

so that $0 = m + I_k M$ in $M/I_k M$ for every $k \in \{1, 2, ..., N\}$. This yields $m \in I_k M$ for every $k \in \{1, 2, ..., N\}$ (because $0 = m + I_k M$ rewrites as $m \in I_k M$), and thus $m \in I_1 M \cap I_2 M \cap ... \cap I_N M$. Using Theorem 1 (a), this rewrites as $m \in I_1 I_2 ... I_N \cdot M$. Thus, we have proven that

every $m \in M$ such that $\Phi(m + I_1 I_2 ... I_N \cdot M) = 0$ must satisfy $m \in I_1 I_2 ... I_N \cdot M$. (7)

Now, if $\alpha \in M / (I_1 I_2 ... I_N \cdot M)$ satisfies $\Phi(\alpha) = 0$, then $\alpha = 0$. Thus, the homomorphism Φ is injective. Consequently, Φ is left cancellable, so that $\Phi \circ (\Psi \circ \Phi) = \Phi \circ \Psi \circ \Phi = \Phi \circ \operatorname{id} \operatorname{yields} \Psi \circ \Phi = \operatorname{id}$.

Since $\Phi \circ \Psi = \operatorname{id}$ and $\Psi \circ \Phi = \operatorname{id}$, the map Ψ must be an inverse map of the map Φ . Hence, Φ is bijective. Since Φ is an A-module homomorphism, this yields that Φ is an A-module isomorphism, and thus Theorem 1 (b) is proven.

(c) Let

$$\alpha = \Phi^{-1} \left((m_k + I_k M)_{k \in \{1, 2, \dots, N\}} \right)$$

(where Φ^{-1} is a well-defined map, since Φ is an isomorphism). Then, $\alpha \in M / (I_1 I_2 ... I_N \cdot M)$, and therefore $\alpha = m + I_1 I_2 ... I_N \cdot M$ for some $m \in M$. Consequently,

$$\Phi^{-1}\left((m_k + I_k M)_{k \in \{1, 2, \dots, N\}}\right) = \alpha = m + I_1 I_2 \dots I_N \cdot M,$$

so that

$$(m_k + I_k M)_{k \in \{1,2,\dots,N\}} = \Phi(m + I_1 I_2 \dots I_N \cdot M) = (m + I_k M)_{k \in \{1,2,\dots,N\}}$$

(by the definition of Φ). Hence, we have $m_k + I_k M = m + I_k M$ for every $k \in \{1, 2, ..., N\}$. This yields (1) (since $m_k + I_k M = m + I_k M$ is equivalent to $m_k \equiv m \mod I_k M$). Thus, Theorem 1 (c) is proven.

Here is a trivial corollary of Theorem 1 which is used in [2]:

Corollary 2. Let M be an Abelian group (written additively). Let P be a finite set of positive integers such that any two distinct elements of P are coprime. Let $(c_p)_{p\in P} \in M^P$ be a family of elements of M. Then, there exists an element m of M such that

$$(c_p \equiv m \mod pM \text{ for every } p \in P)$$
.

⁵In fact, we can find some $m \in M$ such that $\alpha = m + I_1 I_2 ... I_N \cdot M$ (by the definition of the factor module $M \diagup (I_1 I_2 ... I_N \cdot M)$), and thus $\Phi(\alpha) = 0$ becomes $\Phi(m + I_1 I_2 ... I_N \cdot M) = 0$, so that (7) yields $m \in I_1 I_2 ... I_N \cdot M$. In other words, $m + I_1 I_2 ... I_N \cdot M = 0$ in $M \diagup (I_1 I_2 ... I_N \cdot M)$. Since $\alpha = m + I_1 I_2 ... I_N \cdot M$, this rewrites as $\alpha = 0$, qed.

Proof of Corollary 2. Since P is a finite set of positive integers, it can be written in the form $P = \{p_1, p_2, ..., p_N\}$, where $p_1, p_2, ..., p_N$ are pairwise distinct positive integers and N = |P|. Define a family $(m_k)_{k \in \{1, 2, ..., N\}} \in M^N$ of elements of M by $m_k = c_{p_k}$ for every $k \in \{1, 2, ..., N\}$.

Now, let A be the ring \mathbb{Z} . Then, M is a \mathbb{Z} -module. For every $k \in \{1, 2, ..., N\}$, define an ideal I_k of \mathbb{Z} by $I_k = p_k \mathbb{Z}$. Then, for any two elements i and j of $\{1, 2, ..., N\}$ satisfying i < j, we have $I_i + I_j = A$ ⁶. Hence, Theorem 1 (c) yields that there exists an element m of M such that

$$(m_k \equiv m \bmod I_k M \text{ for every } k \in \{1, 2, ..., N\}). \tag{8}$$

Hence, $c_p \equiv m \mod pM$ for every $p \in P$ ⁷. This proves Corollary 2. A yet more trivial consequence of Corollary 2:

Corollary 3. Let M be an Abelian group (written additively). Let $P \subseteq \mathbb{P}$ be a finite set of primes. Let $(c_p)_{p \in P} \in M^P$ be a family of elements of M. Then, there exists an element m of M such that

$$(c_p \equiv m \mod pM \text{ for every } p \in P).$$

Proof of Corollary 3. Corollary 3 directly follows from Corollary 2, because any two distinct elements of P are coprime (in fact, any two distinct elements of P are two distinct primes, and two distinct primes are always coprime).

References

- [1] Darij Grinberg, Witt#5: Around the integrality criterion 9.93. http://www.cip.ifi.lmu.de/~grinberg/algebra/witt5.pdf
- [2] Darij Grinberg, Witt#5b: Some divisibilities for big Witt polynomials. http://www.cip.ifi.lmu.de/~grinberg/algebra/witt5b.pdf

⁶In fact, let i and j be two elements of $\{1, 2, ..., N\}$ satisfying i < j. Then, p_i and p_j are distinct elements of P (since i < j yields $i \neq j$, and since $p_1, p_2, ..., p_N$ are pairwise distinct). Hence, p_i and p_j are coprime (because any two distinct elements of P are coprime). Thus, Bezout's Theorem yields that there exist $u \in \mathbb{Z}$ and $v \in \mathbb{Z}$ satisfying $p_i u + p_j v = 1$. Hence, $1 = \underbrace{p_i u}_{\in p_i \mathbb{Z} = I_i} + \underbrace{p_j v}_{\in p_j \mathbb{Z} = I_j} \in I_i + I_j$ and

thus $I_i + I_i = \mathbb{Z} = A$.

⁷Proof. Let $p \in P$. Then, there exists $k \in \{1, 2, ..., N\}$ such that $p = p_k$ (since $P = \{p_1, p_2, ..., p_N\}$). Hence, (8) yields $m_k \equiv m \mod I_k M$. Since $m_k = c_{p_k} = c_p$ and $I_k M = p_k \mathbb{Z} \cdot M = p_k M = p M$, this rewrites as $c_p \equiv m \mod p M$, qed.