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Witt#5c: The Chinese Remainder Theorem for Modules
[not completed, not proofread]

This is an auxiliary note; its goal is to prove a form of the Chinese Remainder
Theorem that will be used in [2].

Definition 1. Let P denote the set of all primes. (A prime means an
integer n > 1 such that the only divisors of n are n and 1. The word
”divisor” means ”positive divisor”.)

Definition 2. We denote the set {0, 1,2,...} by N, and we denote the set
{1,2,3,...} by N;. (Note that our notations conflict with the notations
used by Hazewinkel in [1]; in fact, Hazewinkel uses the letter N for the set
{1,2,3, ...}, which we denote by N, .)

Now, here is the Chinese Remainder Theorem in one of its most general forms:

Theorem 1. Let A be a commutative ring with unity. Let M be an A-
module. Let N € N. Let Iy, I, ..., Iy be N ideals of A such that [,+1;, = A
for any two elements i and j of {1,2,..., N} satisfying i < j.

(a) Then, [1Ir..In - M =LMNLMN...NIyM.

(b) Also, the map

N
©: M/ (Liy.Iy-M)— [[(M/I.M)
k=1
defined by
O (m+Lily.dy-M)=(m+LiM)ca  n for every m € M

is a well-defined isomorphism of A-modules.

(c) Let (mi)peqia,. Ny € MY be a family of elements of M. Then, there
exists an element m of M such that

(my = mmod I M for every k € {1,2,...,N}). (1)

Proof of Theorem 1. (a) Theorem 1 (a) occurred as Theorem 1 in [1], and we won’t
repeat the proof given there.

(b) Let us first forget the definition of ® made in Theorem 1 (b) (until we have
shown that it is indeed well-defined).

For any integers ¢ € {1,2,..., N} and j € {1,2,..., N} satisfying i < j, we can
find an element a;; of I; and an element a;; of I; such that a;; + a;; = 1 (since



1 € A= I;+ ;). Fix such elements a; ; and a;; for all pairs of integers ¢ € {1,2,..., N}
and j € {1,2,..., N} satisfying i < j. Then,

( Qg 5 € Ii; Qi c Ij and Qg j + aj; = 1 for any ) (2)

integers ¢ € {1,2,...,N} and j € {1,2,..., N} satisfying i < j
Consequently, we have

(3)

ai; € I;, a;; € I and a;; + a;; = 1 for any
integers Z € {1725 7N} andj < {1, 2, ,N} Satisfying 7 7&‘]

[ Notice that

H a;p € I for any ¢ € {1,2,...,N} and k € {1,2,..., N} satisfying ¢ # k.

i6{1,27...,N};
)
(4)

H aix €1+ I for every k € {1,2,...,N}. (5)

ie{1,2,..,N};
ik

E| Also,

B

Now, define a map

N
o M= ] (M LM) by
k=1
@ (m)=(m+ IkM)kE{l’sz} for every m € M.

Clearly, ¢ is a homomorphism of A-modules. We have I11...Iy - M C Ker ¢ (since

L Proof of (@ Let i € {1,2,...,N} and j € {1,2,..., N} be two integers satisfying i # j. Since
1 # j, we must have either ¢ < j and ¢ > j. But in both of these cases, can be derived from
(in fact, if ¢ < j, then directly follows from (2)), and if i > j, then follows from (applied to
j and i instead of 4 and j)). Hence, (3 is proven.

2 Proof of : Let £ € {1,2,...,N} and k € {1,2,..., N} satisfy £ # k. Then, (applied to i = k
and j = () yields ag s € Iy, asy, € Iy and ay ¢+ ag, = 1. But the product 11 a; ¢ contains the

16{17i2¥é.7N};

factor ay ¢ (because k # (), and thus lies in I}, (since ay ¢ € Ij, and since Ij is an ideal of A). This
proves .

3 Proof of (@ Let k € {1,2,...,N}. Applying to j = k, we obtain the following:

aix € I, ar; € I, and a; ; + a,; = 1 for any integer ¢ € {1,2,..., N} satisfying i # k.

Thus, for any integer ¢ € {1,2,..., N} satisying ¢ # k, we have 1 = a;  + ak; = a;  mod Ij,.
~—
=0mod [
(since ap,;€1L)
Hence, 11 1= a; mod I,. In other words, I app = II 1 =
i€{1,2,..,N}; i€{1,2,..,N}; i€{1,2,..,N}; i€{1,2,..,N};
i2k i2k ik i#k

1mod I}, so that I ai € 1+ I. This proves (9]).
i€{1,2,...,N};
i#k



every m € I11...Iy - M satisfies

p (m) = m+ LM = LM = (Oreqro,..ny =0
=I;M (since this is the zero
mehl. In-MCIM) ) e o\ of ﬂ]l\;;l}gl]&dule

ke{1,2,...,.N}

and thus m € Ker ¢). Hence, ¢ induces a homomorphism

N
©: M/ (L. dy-M)— [[(M/I.M
k=1

of A-modules satisfying
S (m+ L.y M)=(m+ 1';3]\/[),66{172 .... N} for every m € M.

This proves that the map ® of Theorem 1 (b) is well-defined and a homomorphism of
A-modules. We have yet to show that this ® is an isomorphism.
Define a map

N
v [[ M/ LM) = M/ (L. Iy - M)

k=1
by
N
U <(mk + Ich>k€{1,2 ..... N}) = Z H i | me+ Ll dy - M
=1 \ ie{12,...N};
i
for every (mk)ke{l,Q ..... Ny € MY
This map ¥ is indeed well-defined, since the residue class IT e | me+
=1\ ie{1,2,...,N};
vy,

Li1s...Ix - M depends only on (my + ko)ke{Lz ..... N} and not on (mk)ke{l,Q ..... N} (be-
cause if (Mi)pco Ny € M* and (M) keqno

77777

Ny €M N are two families satisfying

(mk + M )err o ny = (M + LMy 5y in k]:ll (M /1, M), then

N
I we|me+nb Iy-M=>" [T we|m+hbIy-M
=1 \ ie{1,2,...N}; =1 \ ie{1,2,...,N};
i£l i£l

*Proof. In fact, (mx + IxM)ye(1 o Ny = (), + IeM) ey oy vields my, + M = mj + I,M

)))))

™=




Every family (mx)ycq10 vy € M7 satisfies

(®o V) ((mk + ]kM)ke{l,Q,...,N}) = (‘IJ ((mk + ]kM)ke{l,Q,...,N}>>

N
=20 I ae|me+hbdy-M

=1 \ ie{1,2,.,.N};
i£0

<by the definition of ¥ ((mk + IkM)ke{1,2,...,N}>>

N

= Z H Aip | My + IkM (6)

=1 \ ie{1,2,.,N};
20

(by the definition of ®).

ke{1,2,...,N}

for each k € {1,2,...,N}, and thus my — mj}, € I;M for each k € {1,2,...,N}. In other words,
me —my € IpM for each £ € {1,2,...,N}. Now,

N N
Z H i | Mg — Z H a;o | my
=1\ ie{1,2,....N}; =1\ ie{1,2,...N};
i£0 i£L
N N N
=> I e | (me—mp) e Il &nlemM=> nn.myv-Mm
(=1 ie{l,ézé.,]\f}; e o =l ie{1,i2¥2,1v}; =1
= I I
ie{1,2,...,N}
=I11>...IN
ChLly.In- M (since I115...In - M is an A-module),
so that
N N
> Il  aie|m+nbdy-M=>" I  aie|mi+Lldy- M,
=1\ ic{1,2,...,N}; =1\ ie{1,2,...N};
i£l il
qed.



Since every k € {1,2,..., N} satisfies

N
E H Qip | Ty

=1 i€{1,2,..N};

0e{1,2,...,N}

= E H Qip | My

te{1,2,.,N} | i€{1,2,...N};
iy,

= Z H a; o | M+ Z H Qi | T

¢e{1,2,..,N}; \ ie{1,2,...N}; 0e{1,2,...,N}; \ ie{1,2,...N};
4k ) =k )
el
(by @)
= I1 Qi | Mk

i€{1,2,...,N};
i£k

c Z Iim, + H Qi | Mg

0e{1,2,...,.N}; i€{1,2,...,.N};
0+ itk
N,
(by (3))
- E Iimyg + (14 1) my, = g Temg +my, + Iymy,
—— ~~~ ~—~
te{1,2,...,N} - te{1,2,...N}; cr M CI,M
t#£k Fk
QIkM—i—mk—i—IkM: IkM—i-IkM +mk:mk+IkM
————

=I M (since I M is an A-module)

and thus

N
Z H Qi mg—l—IkM:mk—i—[kM,

¢=1 \ ie{1,2,.,N};
0

the equation (6) becomes

N
(@ o W) ((mk + M) N}) I TI ae|me+nm

=1 \ ie{1,2,..,N};
i£l

=mp+Iy M ke{1,2,..,N}
= (my + ]kM)ke{LQ ..... N} -



Since this holds for every (my)yco vy € M N this yields ® o ¥ = id (because every

-----

N
element of J] (M,/1;M) can be written in the form (my + IyM);cqy 5 ny for some
k=1 o

(mk)ke{1,2 ..... Ny € MN)-
Now we are going to prove that the A-module homomorphism & is injective. In

fact, let m € M be such that ® (m + [115...Iy - M) = 0. Then,
Oz@(m—i—[lfgINM):(m—i—[kM)ke{l’Z 77777 N}

so that 0 = m + I M in M /I M for every k € {1,2,...,N}. This yields m € I, M

for every k € {1,2,..., N} (because 0 = m + I;M rewrites as m € [;;M), and thus

me LMNLMnN..NIyM. Using Theorem 1 (a), this rewrites as m € I1I5...0x - M.
Thus, we have proven that

every m € M such that ® (m + I1I5...Ix - M) = 0 must satisfy m € 1 I...Ix-M. (7)

Now, if « € M/ (L1 5...Iy - M) satisfies ® (o) = 0, then o = 0.  [| Thus, the
homomorphism & is injective. Consequently, ® is left cancellable, so that ®o (V¥ o &) =
PoVod = =>Poid yields ¥ o ® =id.

=id

Since ® o ¥ = id and ¥ o & = id, the map ¥ must be an inverse map of the map
®. Hence, ® is bijective. Since ® is an A-module homomorphism, this yields that ® is
an A-module isomorphism, and thus Theorem 1 (b) is proven.

(c) Let

a=9o" ((mk + ]kM)ke{1,2 ..... N}>

(where @~ ! is a well-defined map, since ® is an isomorphism). Then, o € M/ (I1I5...Ix - M),
and therefore a« = m + I I5...Iy - M for some m € M. Consequently,

O (mp + LM ey ) = @ = m+ LoDy M,
so that
(mi + LM )yepyo . vy = ®(m+ Lily Iy - M) = (m+ LeM)c 5 vy

(by the definition of ®). Hence, we have my+Iy M = m~+I; M forevery k € {1,2,..., N}.
This yields (since my, + I M = m+ I M is equivalent to my = mmod Iy M). Thus,
Theorem 1 (c) is proven.

Here is a trivial corollary of Theorem 1 which is used in [2]:

Corollary 2. Let M be an Abelian group (written additively). Let P be
a finite set of positive integers such that any two distinct elements of P
are coprime. Let <Cp)p€ p € M* be a family of elements of M. Then, there
exists an element m of M such that

(¢, = mmodpM for every p € P).

In fact, we can find some m € M such that « = m + I r..Ix - M (by the definition of the
factor module M/ (I1I5...In - M)), and thus ® (o)) = 0 becomes ® (m + I1I5...Ix - M) = 0, so that
yields m € I1Is..Inx - M. In other words, m + I1Is.. Iy - M = 0 in M/ (I11...In - M). Since
a=m+ L1 1I5...In - M, this rewrites as a = 0, qed.

6



Proof of Corollary 2. Since P is a finite set of positive integers, it can be written in
the form P = {py, pa, ..., pn }, where py, po, ..., py are pairwise distinct positive integers
and N = [P[. Define a family (mx)ycr10 ny € MM of elements of M by my = ¢, for
every k € {1,2,..., N}.

Now, let A be the ring Z. Then, M is a Z-module. For every k € {1,2,..., N},
define an ideal I of Z by I, = pxZ. Then, for any two elements i and j of {1,2,..., N}
satisfying ¢ < j, we have [, +1; = A ﬂ Hence, Theorem 1 (c) yields that there exists
an element m of M such that

(my = mmod I M for every k € {1,2,...,N}). (8)

Hence, ¢, = mmod pM for every p € P |Z| This proves Corollary 2.
A yet more trivial consequence of Corollary 2:

Corollary 3. Let M be an Abelian group (written additively). Let P C P
be a finite set of primes. Let (¢),.p € M P be a family of elements of M.
Then, there exists an element m of M such that

(¢, = mmodpM for every p € P).

Proof of Corollary 3. Corollary 3 directly follows from Corollary 2, because any
two distinct elements of P are coprime (in fact, any two distinct elements of P are two
distinct primes, and two distinct primes are always coprime).
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bIn fact, let i and j be two elements of {1,2, ..., N} satisfying i < j. Then, p; and p; are distinct
elements of P (since i < j yields ¢ # j, and since p1, pa, ..., py are pairwise distinct). Hence, p; and
p; are coprime (because any two distinct elements of P are coprime). Thus, Bezout’s Theorem yields

that there exist u € Z and v € Z satisfying p;u + p;v = 1. Hence, 1 = p;u + pjv € I; +1; and
~~~ ~—~
€pil=I; €p;Z=I;

thus Iz'+[j =7Z=A.

"Proof. Let p € P. Then, there exists k € {1,2,..., N} such that p = py, (since P = {p1, pa, ..., DN })-
Hence, yields my = mmod I, M. Since my = ¢p, = ¢p and I, M = ppZ - M = ppM = pM, this
rewrites as ¢, = mmodpM, ged.
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