Witt vectors. Part 1
Michiel Hazewinkel
Sidenotes by Darij Grinberg

Witt#5b: Some divisibilities for big Witt polynomials
[not completed, not proofread]

In this note, we are going to verify a few properties of big Witt polynomials. First,
the relevant definitions:

Definition 1. Let P denote the set of all primes. (A prime means an
integer n > 1 such that the only divisors of n are n and 1. The word
”divisor” means ”positive divisor”.)

Definition 2. We denote the set {0, 1,2,...} by N, and we denote the set
{1,2,3,...} by N;. (Note that our notations conflict with the notations

used by Hazewinkel in [1]; in fact, Hazewinkel uses the letter N for the set
{1,2,3, ...}, which we denote by N, .)

Definition 3. Let = be a family of symbols. We consider the polynomial
ring Q[Z] (this is the polynomial ring over Q in the indeterminates =; in
other words, we use the symbols from = as variables for the polynomials)
and its subring 7Z [Z] (this is the polynomial ring over Z in the indetermi-
nates =). E] For any n € N, let =" mean the family of the n-th powers of
all elements of our family = (considered as elements of Z[=Z]) P} (There-
fore, whenever P € Q[Z] is a polynomial, then P (Z") is the polynomial
obtained from P after replacing every indeterminate by its n-th powerE[)

Note that if = is the empty family, then Q [Z] simply is the ring Q, and
Z =] simply is the ring Z.

Definition 4. If m and n are two integers, then we write m L n if and
only if m is coprime to n. If m is an integer and S is a set, then we write
m L S if and only if (m L n for every n € S).

Definition 5. A nest means a nonempty subset N of N, such that for
every element d € N, every divisor of d lies in V.

Here are some examples of nests: For instance, N itself is a nest. For every
prime p, the set {1,p,p? p?, ...} is a nest; we denote this nest by p". For
any integer m, the set {n € N, | n L m} is a nest; we denote this nest by
N,,,. For any positive integer m, the set {n € N, | n < m} is a nest; we
denote this nest by N«,,. For any integer m, the set {n € Ny | (n | m)} is

For instance, = can be (Xo,X1,Xs,...), in which case Z[Z] means Z[Xo, X1, Xa,...].
Or, Z can be (Xo,X1,Xo,..5Y0,Y1,Ys,...520,7Z1,Z5,...), in which case Z[Z] means
Z[X07X1>X27"';}/OaYh}/Qw“;Z(thvZQa"']'

*In other words, if 2 = (&;),c;, then we define " as (£]"), ;. For instance, if 2 = (X, X1, X5, ...),
then E" = (X§, X7, X7,..). If E = (Xo,X1,Xo,...Y0,Y1,Y5,...; 20,21, Z3,...), then E" =
(XgaX?aX£L7-";YOnaY1n7Y2n7"';Z(?aZ{L7ng"')'

3For instance, if & = (X, X1,Xs,...) and P(Z) = (Xo+ X1)> — 2X5 + 1, then P(E") =
(Xp+X71)? —2X7 4+ 1.



a nest; we denote this nest by Nj,,. Another example of a nest is the set
{1,2,3,5,6,10}.

Clearly, every nest N contains the element 1 E|

Definition 6. If N is a setﬂ, we shall denote by Xy the family (X,),.y
of distinct symbols. Hence, Z [Xy] is the ring Z [(X,),cy] (this is the
polynomial ring over Z in |N| indeterminates, where the indeterminates are
labelled X,,, where n runs through the elements of the set N). For instance,
Z [XN+ is the polynomial ring Z [ X7, Xs, X3, ...] (since N, ={1,2,3,...}),
and Z HX{172,37576710}} is the polynomial I'iIlg 7z [Xl, XQ, Xg, X5, Xﬁ, XlO]-

If Ais a commutative ring with unity, if N is a set, if (z4),cy € AV is a
family of elements of A indexed by elements of N, and if P € Z [Xy], then
we denote by P ((z4) 4y ) the element of A that we obtain if we substitute z4
for X, for every d € N into the polynomial P. (For instance, if N = {1,2,5}
and P = X? + XyX5 — X5, and if z; = 13, 75 = 37 and x5 = 666, then
P ((za)4en) = 132 + 37 - 666 — 666.)

We notice that whenever N and M are two sets satisfying N C M, then
we canonically identify Z [Xy] with a subring of Z[X|. In particular,
when P € Z|[Xy] is a polynomial, and A is a commutative ring with
unity, and (2,,),,c,, € AM is a family of elements of A, then P ((l’m)meM)
means P ((z),,cn). (Thus, the elements z,, for m € M \ N are simply
ignored when evaluating P ((z),,c),).) In particular, if N C Ny, and
(21,22, 33,...) € AN+, then P (z1, 25, 3,...) means P ((z),,cy)-

Definition 7. For any n € N, we define a polynomial w,, € Z [XNM} by
=> dx;?
dn

Hence, for every commutative ring A with unity, and for any family (zy) ke, €

ANin of elements of A, we have

Wy, ( Ty) keN,, ) de"/d.

din

As explained in Definition 6, if IV is a set containing Ny,, if A is a commu-
tative ring with unity, and (z,),cy € AV is a family of elements of A, then

wy, ((21)ey) means wy, ((xk)keNm>; in other words,

d
wy, a:k keN E dx"/.

din

4In fact, there exists some n € N (since N is a nest and thus nonempty), and thus 1 € N (since 1
is a divisor of n, and every divisor of n must lie in N because N is a nest).

5We will use this notation only for the case of N being a nest. However, it equally makes sense for
any arbitrary set N.



The polynomials wy, wsy, ws, ... are called the big Witt polynomials or,
simply, the Witt polynommlsﬁ

Definition 8. Let n € Z\ {0}. Let p € P. We denote by v, (n) the largest
nonnegative integer m satisfying p™ | n. Clearly, p*»™ | n and v, (n) > 0.
Besides, v, (n) = 0 if and only if p { n.

We also set v, (0) = oo; this way, our definition of v, (n) extends to all
n € Z (and not only to n € Z\ {0}).

Definition 9. Let n € N,. We denote by PF n the set of all prime divisors
of n. By the unique factorization theorem, the set PF n is finite and satisfies

n = H p”p(n)‘
pePFn

Definition 10. An Abelian group A is called torsionfree if and only if
every element a € A and every n € N, such that na = 0 satisfy a = 0.

A ring R is called torsionfree if and only if the Abelian group (R,+) is
torsionfree.

Definition 11. Let x4 denote the Mobius function p: Ny — Z defined by

PFn .
L) = { (—=)IFF i (v, (n) < 1 for every p € PFn) for every n € N,.

0, otherwise
Let ¢ denote the Euler phi function ¢ : Ny — Z defined by

d(n)={me{1,2,...,n} | m L n} for every n € N.

We recall one of the results of [4]:

Theorem 1. Let N be a nest. Let A be a torsionfree Abelian group
(written additively). For every n € N, let ¢, : A — A be an endomorphism
of the group A such that
(p1 =id) and (1)
(0 © ©m = @nm for every n € N and every m € N satisfying nm € N).
(2)
Let (by),cy € AY be a family of elements of A. Then, the following asser-
tions C, &, &', F, G and H are equivalent:
Assertion C: Every n € N and every p € PF n satisfies

©p (bnp) = b, mod pr(M A (3)

6 Caution: These polynomials are referred to as wi, wa, w3, ... most of the time in [1] (beginning
with Section 9). However, in Sections 5-8 of [1], Hazewinkel uses the notations wy, we, w3, ... for some
different polynomials (the so-called p-adic Witt polynomials, defined by formula (5.1) in [1]), which
are not the same as our polynomials wy, wa, ws, ... (though they are related to them: namely, the
polynomial denoted by wy, in Sections 5-8 of [1] is the polynomial that we are denoting by w,« here
after a renaming of variables; on the other hand, the polynomial that we call wy here is something
completely different).



Assertion €: There exists a family (y,),.y € AV of elements of A such
that

b, = Z dena(ya) for every n € N
din

Assertion E': There exists one and only one family (y,) c AN of ele-

ments of A such that

neN

b, = Z don s a(ya) for every n € N
dln

Assertion F: Every n € N satisfies

S 1(d) pa (buya) € nA.

din
Assertion G: Every n € N satisfies

Z ¢ (d) pq (b, a) € nA.
d|

Assertion H: Every n € N satisfies

Z ¥Pn,/ ged(in) (bgcd(z’,n)) € nA.

i=1

We won’t prove this theorem here, because it is identical with Theorem 7 in [4],
and thus we refer to [4] for its proof.
Our main result is the following:

Theorem 2. Consider the polynomial ring Z [XN+] = 7Z[Xy, X2, X3, ...].

Let A be the Abelian group (Z Xy +] )N+ (this is the Abelian group of all
sequences of elements of 7Z [XN .|, with componentwise addition and zero

(0)nen, )
For every n € N, define an endomorphism ¢, : A — A of the group A by

©n <(.:1:k)k€N+) = (Tnk) en, for every (z),cy, € A (4)

We define a family (b,),,cy, € AN+ of elements of A by

by = (Wi gen, for every n € N,.

(a) The group A is torsionfree, and the endomorphisms ¢,, satisfy and
(2)-

(b) The family (bn),cy,
Theorem 1 for N = N,.

satisfies the Assertions C, &, &', F, G and H of



Before we come to the proof of this fact, we recall some lemmata:

Lemma 3. Let B be a commutative ring with unity, and p € N be a
nonnegative integerﬂ Let k € N and ¢ € N be such that £ > 0. Let u € B
and v € B. If uw = vmod p* B, then v?" = vP mod p*B.

This is Lemma 3 in [3] (with slightly different notations: our B, v and v were called
A, a and b in [3]). This lemma yields:

Lemma 4. Let B be a commutative ring with unity. Let n € N, and
p € PFn. Let u € B and v € B. If u = vmodpB, then u? =
v™ P mod p*™ B.

Proof of Lemma 4. Since p € PFn, we have p | n and thus v, (n) > 1. In other
words, v, (n) —1 > 0.

Set k =1and £ =v,(n) — 1. Then, k+¢ =1+ (v,(n) —1) = v, (n). Note that
¢ € N, since ¢ = v,(n) —1 > 0. Also, note that v = vmod p*B (this follows from
u = vmod pB, because k = 1).

Since pU»(™ | n, there exists some v € N such that n = yp*™. Consider this 7.
Since n = yp”™ we have n/p = yp*™ /p = 4p*»™~1 Now, applying Lemma 3, we
obtain u?* = v* mod p*+*B. Since k+{ = vy, (n), this rewrites as w? = v* mod pr™ B.
But n,/p = ypr™W~1 = p! (since v, (n) — 1 = £), so that u™'? = WP and v™P = P,
Therefore,

U =P = <up€)7 = <1)7”£>7 (since ' =P modp”p(n)B)
— " — P mod pr™ B,

and Lemma 4 is proven.
Another easy lemma:

Lemma 5. Let £ € N, and p € P. Then, wy, = w) mod pZ [XNJ.
(Remember that Z [XNJ =7Z[Xy, X, X3, ...]).

Proof of Lemma 5. We notice that

Z dX"* % = 0mod pZ [Xn. ], (5)

d|pk;
dik

since every divisor d of pk which satisfies d 1 k must satisfy dX gk/ 4 = 0mod pZ [XN +] .
Now, comparing

wpe = »_AXPVP =N T dXP LN T axE = N dxp =" dXE Y  mod pZ [ Xy, ]
d|pk d(\izr]l:; dll?’/:; dlﬁglz; dlk
—_— =~

EOmodpﬁXN+] =
dlk
(by @)
"Though we call it p, we do not require it to be a prime in this lemmal!
8In fact, if d is a divisor of pk which satisfies d { k, then d cannot be coprime to p (since otherwise,

d | pk would yield d | k, contradicting to d t k), and thus d must be divisible by p (since p is a prime),
so that d = 0 mod pZ [XNJ and thus ngk/d = Omod pZ [XNJ.

5



with

P
wy = Zng/d since wy, = Zng/d
dlk dlk
= (axi )’
dlk
p
(since (Z a5> = Z af mod pK for any family (a,),.q of elements of a commutative ring K )
ses seS
_ kod\P o k/d
-3 & <Xd ) =3 dxT  mod pZ [ Xy, ]
dlk =dmod pZ[ Xy, | — dlk

_xk/dp_xpk/d
(since dP=d mod pZ =X4 =Xgq

by Fermat’s Little Theorem)

we obtain wy, = wj, mod pZ [XN +], and thus Lemma 5 is proven.
A conclusion from Lemmata 4 and 5:

Lemma 6. Let £k € N.. Let n € Ny and p € PFn. Then, wgk/p =

w mod p**™Z [ Xy, |. (Remember that Z [Xy, | = Z X1, Xa, X, ...]).

Proof of Lemma 6. Lemma 5 yields wy, = w} mod pZ [XNJ (since p € P due to
p € PFn). Lemma 4 (applied to B = Z [XNJ, u = wy, and v = wf) now yields

wi? = (W) P mod p»™WZ [Xy,]. Since (wf)™” = wy, this rewrites as wy” =

wy mod pr(M7Z, [XN +], and thus Lemma 6 is proven.
N

Proof of Theorem 2. Let N be the nest N,. Then, A = (Z [XNJJ)N+ = (Z [XNJ) ,
and the equation (4]) rewrites as

On ((a:k)keN) = (Tnk) ey for every (z),cy € A (6)

(since Ny = N).
(a) Clearly, the group A is torsionfree (since A = (Z [Xy, | )N+, and since the group
Z [Xn,] is torsionfree). Besides, every (zy),cy € A satisfies

o1 ((@1)gen) = (@11 pen (by (6), applied to n = 1)
= (xk)k;ENv

and thus ¢; = id. Hence, holds. Finally, for every n € N and m € N, every
(7r)pen € A satisfies

(n 0 m) (()ren) = #n (Pm (@r)ren)) = €0 (@mi)ren)
(since ©m (1) pen) = (@mr)ren by (6) (applied to m instead of n))
= (Tunnk) pen (by @ (applied to (Zm),ey instead of (:ck)keN))
= (Tnmk)gen = Prm ((T)pen) (by (6) (applied to nm instead of n)),

and thus ¢, o v, = @.m. Hence, holds. This completes the proof of Theorem 2

(a).



(b) Every n € N and every p € PF n satisfies

@p (bnp) = ©p ((w,?””) keN) (since bnp 1 defined as (wZ/p> keN)
_ n/ . n,/ :
_ (wpk p) . (by @ (applied to p and (wk p) e instead of n and (zx),cy )>
= (W) ken (since Lemma 6 says that w;k/p = w} mod p**M7Z [Xn. ] for every k € N+>
= b,, mod p*»™ A

Thus, Assertion C of Theorem 1 is true for our family (b,),.,. Since the Assertions
C, &, €&, F,Gand H of Theorem 1 are equivalent (according to Theorem 1, which we
can apply because of Theorem 2 (a)), this yields that the Assertions &£, £, F, G and
H must be true as well. This proves Theorem 2 (b).

Now that Theorem 2 is proven, let us explicitly write down what the assertions F,
G and H of Theorem 1 mean for our family (b,),,cx:

Theorem 7. Consider the polynomial ring Z [Xy, | = Z [X1, Xo, X3, ...].
(a) Every n € N, satisfies

Z,u (d)wi* € nZ [XNUM} for every k € N,.

din
(b) Every n € N, satisfies

N 6 (@) wy ! e nZ [XN“M] for every k € N,

dln

(c) Every n € N, satisfies

n

Zwic/dgc’zzi’n).k € nZ [XNum] for every k € N,.

B

Proof of Theorem 7. Let us invoke Theorem 2. So let us define the nest N = N,
the Abelian group A, the endomorphisms ¢, : A — A and the family (bn),oy, € AN+
as in Theorem 2. Then, Theorem 2 (b) states that the family (b,), ., satisfies the
Assertions C, &, &', F, G and H of Theorem 1.

(a) Assertion F of Theorem 1 states that every n € N satisfies

Z p(d) oa (bna) € nA.

din

9 Remark on notation: Here and in the following, /3 - v means (a,/3) - v and not o,/ (3 - 7).



Since this assertion is satisfied, we thus have _ u (d) ¢4 (b, ,4) € nA for every n € N.

d|n
Since
B n/d . . n,/d
;H (d) @a (b ) = dE“ (d) ¢q ((wk >keN+> (smce by, q is defined as (wk >keN+>

~
_ n/d

_(wdk >keN+

(by the definition of ¢4)

=S u(d) <wgk/d)kem = | D@y wy

din dn keN,

(since addition in A is componentwise) ,

this becomes (Z,u(d) w’ d) € nA. In other words, there exists a sequence
djn keNy

(uk)pen, € Asuch that (Z p(d) wgk/d> =1 (k) ey, - Thus, (Z w(d) wgk/d> =
keN, keN,

djn d|n
n(u)pen, = (Puk)yey, - Hence, for every k € Ny, we have > u(d) wi = nuy, €
d|n
1
nZ [Xy,]. In other words, — > uu(d)wji* € Z [Xn,].
g
1
On the other hand, =3 u(d)wi? € Q [XNWJ’ since every d | n satisfies wg, €
N dn

Q |:XN\dk:| CQ [XNIIW} (since d | n yields dk | nk = kn and thus Nig C Njg,).

1 1
Hence, — S pu(d)wi/* € Q [XN”W} NZ[Xn,] (because ﬁZM(d) w e Q [XNUM}

dln din
1 n
and - Su(d)wi ez [Xn, ])-
d|n
Now, as was shown in the proof of Theorem 25 (b) in [4], we have

QUINZV] = Z[U]

whenever U and V are two sets of symbols such that U C V. Applying this to
U= Xy, and V' = Xy, (which satisfy U C V since XNjen © Xy, since Ny, C N,),
we obtain

Q| Xn, | N2 [Xi] = Z [ X, | (7)
1 1
Thus, > pu(d)wi ' € Q@ X, | N2 [Xi, ] becomes =Y u(d)uj " e Z X, |-
dln dln
other words, S i (d) w’{* € nZ [XNHW] This proves Theorem 7 (a).
dn

(b) The proof of Theorem 7 (b) is the same as the proof of Theorem 7 (a) that
we have just done; we just have to replace every u by ¢ and use Assertion G instead
of Assertion F.



(c) Assertion H of Theorem 1 states that every n € N satisfies

Z ¥Yn,/ ged(i,n) (bgcd(@n)) € nA.

i=1

n
Since this assertion is satisfied, we thus have )¢5, scd(in) (bgcd(i,n)) € nA for every

i=1
n € N. Since
ged(i,n)
Qpn/gcd (3,n) gcd 7 n) Qpn/gcd (3,m) Wy,
keNy
o ged(i,n)
_(wn/ gccl(i,n)-k)keN+
(by the definition of ¢,, , gcd(i,n))
. . d
(smce bged(i,n) 1s defined as (w%c @, ")> )
keNy
n n
ged(i,n) o ged(i,n)
2 : n/gcd(l n) kEN - z : wn/gcd(i,n)-k
i=1 * i=1 keN,
(since addition in A is componentwise) ,
. . ged(i,n) .
this rewrites as <Z W, ged(in) ) € nA. In other words, there exists a sequence
keNy

ged(i,n) . ged(i,n) o
(Uk)keN € A such that (Z Wy, ged(im). k) =n (Uk)kem' Thus, (Z Wi wed(im) > —
i=1 keNy keNy

n
d(%,
n (Vk)pen, = (MUk)gey, - Hence, for every k € Ny, we have leic/(gzcgzm)_k = nu, €
1=

1 n .
nZ [Xy.]. In other words, - ; wic;l(glézzi,n),k €Z[Xn,]

1 & cd(z,n . .
On the other hand, — Y w® de, )m)_k e Q [XN“W], since every i € {1,2,...,n}
1

: n,/ ged(i,
1=

satisfies wy, / ged(in)k € Q |:XN\n/gcd(i,n)~k:| cQ [XNum] (since (n, ged (i,m)) | n yields

. 1z cd(i,n
n,/ ged (i,n) - k | nk = kn and thus Ny, ged(in)e © Njgn). Hence, ngi/(gcdzm),k €

& d(z,n) d(i,n)
Q [XN“M] N7Z [XNJ (because Eizzlwic/ng(zn 5 €Q [XN“M] and - ; ic/gcd( nk €

1 n calt,n
Z [XN+]). Due to , this becomes ﬁ;wijggédzi,n)-k € Z [XN\kn]' In other words,

;wi(;igégzm).k €nZ [XN‘ kn] This proves Theorem 7 (c).

Actually, Theorem 2 generalizes:
Theorem 8. Let B be a commutative ring with unity.

Let A be the Abelian group BY+ (this is the Abelian group of all sequences
of elements of B, with componentwise addition and zero (0),,c, )-

For every n € N, define an endomorphism ¢,, : A — A of the group A by

©On <($k)keN+> = (xnk>keN+ for every (xk)keN+ € A.



Let (B)pen, € BN+ be a family of elements which satisfies

(8%, = BnmodpB for every n € N, and every p € PFn). (8)

We define a family (b,),,cy, € AN+ of elements of A by

bn = (B¢ ) ken, for every n € N,.

(a) The endomorphisms ¢, satisfy (1)) and (2).

(b) The family (b,),,cy, satisfies the Assertions C, €, F, G and H of The-
orem 1 for N = N,.

(c) If the ring B is torsionfree, then the family (by), oy, satisfies the Asser-
tions C, &, &', F, G and ‘H of Theorem 1 for N = N,.

Remarks: 1) Note that Theorem 2 is a particular case of Theorem 8 for the ring
B = Z[Xy,] (this ring is torsionfree) and the family (Ba)nen, € BN+ defined by
fn = w, for every n € N,. (That this family (3,) satisfies (§)) follows from
Lemma 5, applied to k =n/p.)

2) If B = Z, then the condition is equivalent to the condition

neNL

(B, p = By mod pB for every n € N; and every p € PFn),

because ﬁg/p = B, p,modpB if B =7 (by Fermat’s Little Theorem).
Now we are going to prove Theorem 8 in all its generality. First, let us formulate
the part of Theorem 1 that holds without requiring A to be torsionfree:

Theorem 9. Let N be a nest. Let A be a Abelian group (written addi-
tively). For every n € N, let ¢, : A — A be an endomorphism of the group
A such that and hold.

Let (by),cy € AY be a family of elements of A. Then, the assertions C, &,
F, G and H of Theorem 1 are equivalent.

This Theorem 9 is Theorem 5 in [4], so we don’t need to prove it here.

Proof of Theorem 8. Let N be the nest N,.

(a) The proof of Theorem 8 (a) is completely analogous to the corresponding part
of the proof of Theorem 2 (a).

(b) For every n € N, every p € PFn and every k € N, we have f,, = (5, mod pB
(since B} = ;’k _» = BprmodpB by (applied to pk instead of n)). Thus, Lemma
4 (applied to u = By, and v = f}) yields that 87" = (87)" " modp*™B. Since
(Bg)n/p = B}, this simplifies to ;k/p = B2 mod p*™ B.

Every n € N and every p € PF n satisfies

©p (bnp) = ©p (( ,Z/p> keN) (since bn,p is defined as ( ,:‘/p> keN)
n/ . n/ .
— <6pk P) . (by (6) (applied to p and (ﬁk P) en instead of n and (2y),cy )>
= (8% ) pen (since gk/p = 0 modp””(”)B>

= b, mod p»™ A.

10



Thus, Assertion C of Theorem 1 is true for our family (b,),. . Since the Assertions C,
E, F, G and H of Theorem 1 are equivalent (according to Theorem 9, which we can
apply because of Theorem 8 (a)), this yields that the Assertions £, F, G and H must
be true as well. This proves Theorem 8 (b).

(c) Assume that the ring B is torsionfree. Then, the Abelian group A is torsionfree
as well (since A = BY+). Due to this fact, and due to Theorem 8 (a), we can apply
Theorem 1 to our situation, and Theorem 1 yields that the Assertions C, &, &', F, G
and H of Theorem 1 are equivalent. Since the Assertion C is true (as we have shown
above), we can therefore conclude that all the Assertions C, &, &', F, G and H are
true, and thus Theorem 8 (c) is proven.

The following is a kind of generalization of Theorem 7:

Theorem 10. Let B be a commutative ring with unity. Let (5,) €

BY+ be a family of elements which satisfies .
(a) Every n € N, satisfies

> p(d) B enB for every k € N,.

neNL

(b) Every n € N, satisfies
Z¢ (d) By * € nB for every k € N,.

din

(c) Every n € N satisfies

Z ﬁiijgzcg Vi €NB for every k € N_.

Proof of Theorem 10. Let N be the nest N,. Let us invoke Theorem 8. So
let us define the Abelian group A, the endomorphisms ¢, : A — A and the family
(On)nen, € AN+ as in Theorem 8. Then, Theorem 8 (b) states that the family (b,)
satisfies the Assertions C, £, F, G and ‘H of Theorem 1.

(a) Assertion F of Theorem 1 states that every n € N satisfies

Z,u n/d) € nA.

din

neNL

Since this assertion is satisfied, we thus have ) u (d) ¢4 (b, 4) € nA for every n € N.

din
Since
n,/d . . n,/d
%; w1 (d) pa (b, a) ; w(d (( 4 )kEN+> (smce by, q is defined as ( k/ >k€N+)
=85 ) pen,

(by the definition of ¢4)

-Se(),,, - (S0

din keN,

(since addition in A is componentwise) ,
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this becomes (Zu( ) B d) € nA. In other words, there exists a sequence
keNy

(uk)keN+ € Asuch that (Z,u( ) "/d> — n(uk)keN+‘ Thus, (ZM( ) n/d) _
d|n k€N+ dln k€N+

n(up) ey, = (nuk)ey, - Hence, for every k € Ny, we have %M( ) B, "/d

= nug € nB.

This proves Theorem 10 (a).

(b) The proof of Theorem 10 (b) is the same as the proof of Theorem 10 (a) that
we have just done; we just have to replace every u by ¢ and use Assertion G instead
of Assertion F.

(c) Assertion H of Theorem 1 states that every n € N satisfies

Z ¥n/ ged(i;n) (bgcd(i,n)) € nA.

=1

n
Since this assertion is satisfied, we thus have ) ¢,  ged(in) (bgcd(i,n)) € nA for every

i=1
n € N. Since
gcd(z n)
E Pn,/ ged(i,n) gcd i n) E Pn/ ged(i,n)
k€N+
=1 _
ged(i,n)
7(ﬁn/ gcd(i,n)-k)k€N+
(by the definition of ¢,, , gcd(i,n))
: : ged(i,n)
since bgeq(i,n) is defined as ( 3;
keNy
n
Z ged(i,n) Z Bgcd(z n
n/ ged(i keN, n,/ ged(i,n)
=1 keNy
(since addition in A is componentwise) ,
. . ged(i,n) .
this rewrites as (E B, e (i ) € nA. In other words, there exists a sequence
keNy

cd(i,n cd(i,n)
(Uk)keN+ € Asuch that (Z Bs/gcd (i,n) ) =n (Uk)keNJr‘ Thus, (Z 55/gcd (i,n)- k) =
kEN+ kaN+

(V) gen, = (M%) e, - Hence, for every k € Ny, we have Z peedten) = nuy, € nB.

n,/ ged(i,n)-k

This proves Theorem 10 (c).
We can generalize Theorem 10 even further, replacing some of the N, by an arbi-
trary nest N:

Theorem 11. Let N be a nest. Let B be a commutative ring with unity.
Let (8,),cn € BY be a family of elements which satisfies

( 5/;; = [, mod pB for every n € N and every p € PF n) ) (9)

12



(a) Every n € N satisfies

Zu (d) B " e nB for every k € N satisfying nk € N.
dln

(b) Every n € N satisfies

Z ¢ (d) By e nB for every k € N satisfying nk € N.
dln

(c) Every n € N satisfies

Zﬁiiigzcg k€ nB for every k € N satisfying nk € N.

Remarks: 1) In the particular case N = N, Theorem 11 yields Theorem 10.
2) If B = Z, then the condition (9) is equivalent to the condition

(Bnp = BpmodpB for every n € N and every p € PFn),

because ), ,, = B, pmodpB if B =Z (by Fermat’s Little Theorem).
For the proof of Theorem 11, we will need a consequence of the Chinese Remainder
Theorem:

Lemma 12. Let B be an Abelian group (written additively). Let P C P
be a finite set of primes. Let (Cp)pGP € B” be a family of elements of B.
Then, there exists an element m of B such that

(¢, = mmod pB for every p € P).

This Lemma 12 is Corollary 3 in [5] (with M renamed as B), so we won’t give the
proof of Lemma 12 here.

Proof of Theorem 11. We would like to apply Theorem 10, but we cannot do
this directly, since we only have a family (5,),cy € B", while Theorem 10 requires
a family <5n)n€N+ € BN+, So let us extend our family (8,),.x € B to a family
(ﬁn)neNJr € BY+. In other words, we are going to define an element 3, € B for every

n € N4\ N such that the resulting family (8,),,cy, € BN+ (which consists of the already
known elements f3,, for n € N and the newly constructed elements f3,, for n € N \ N)
satisfies .

This construction will be done by strong induction over n. So fix some n € N, \ N,
and let us construct an element (3, € B, assuming that we have already constructed
an element (3, € B for every m € N, \ N satisfying m < n.

Actually, an element 3, € B is defined for every m € N, satisfying m < n (in fact,
if m € N, then (3, is defined by the condition of Theorem 11, and if m € N, \ N,
then f3,, has already been constructed by our induction assumption). Consequently, an
element 3, ,, € B is defined for every p € PFn (because n,/p<n). Now, let P =PFn,
and define a family (cp)pep € B by ¢, = n/p for every p € P. Then, Lemma 12
states that there exists an element m of B such that (¢, = m mod pB for every p € P).

13



Now, define an element 3, € B by (3, = m for this element m. Then, for every
p € P, we have
Y= Cp=m = [, modpB.

Thus, we have shown that
( » p = BnmodpB for every p € PF n). (10)

Hence, we can recursively define elements 3, € B for all n € Ny \ N, and these
elements satisfy for every n € N. \ N.

This construction gives us a family (3,),,oy, € B"* which satisfies (8) (in fact, (8) is
satisfied, because for each n € N and each p € PF n, we have Bz/p = [, mod pB H)
Thus, Theorem 10 can be applied to this family (ﬁn)n6N+ € BN+, and the assertions of
Theorem 10 (a), Theorem 10 (b) and Theorem 10 (c) yield the assertions of Theorem
11 (a), Theorem 11 (b) and Theorem 11 (c), respectively. This proves Theorem 11.

Now let us extend Theorem 2 and Theorem 7 a bit further. In fact, if we trace
back our proof of Theorem 2, we notice that the only property of the Witt polyno-
mials w,, which we used is Lemma 5, which relied chiefly on the fact that ngk/ d =
0 mod pZ [XN+] for every d € Ny, k € N and p € PFd satisfying d 1 k. This is an
almost trivial fact, which can be easily weakened using the notion of the radical of a
positive integer:

Definition 12. We define a function rad : N, — N, by

radn = H D for any n € N,.
pePFn

For any n € N, we denote the number rad n as the radical of n.

Here are some very basic properties of rad: Clearly, every n € N, satisfies
radn | n E The number radn is the greatest squarefree divisor of n.
Also notice that

p | radn for every n € N, and every p € PFn. (11)

&

Using this notion, we can define so-called radical Witt polynomials, which mimic
the Witt polynomials but tend to have smaller coefficients:

0Tn fact, we must have either n € N or n € Ny \ N. But in both of these cases, we have

Z/p = B, mod pB (in fact, in the case n € N, this follows from @, and in the case n € N1 \ N, this
follows from ) Hence, ¥ p = B, mod pB always holds.

" Proof. Let n € Ni. Every p € PF n satisfies p | n and thus v, (n) > 1, so that p | p’»(") . Hence,

T »| II »p"™. Butnow, we haveradn= T[] p| [ p*™ =n, qed.
peEPFn peEPF n peEPFn pEPF n

12 Proof of (11]): Let n € Ny. Then, every q € PFn satisfies ¢| [] p =radn. If we rename q as
pePFn

p in this result, we obtain the following: Every p € PF n satisfies p | rad n. This proves .
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Definition 13. For any n € N, we define a polynomial §/w, € Z [XNIJ
(note that %/w is considered to be a single symbol here; it’s not a "root of

w” or anything like that) by

Yw, = Z (rad d) X}/“.

dln

The polynomials /w,, /w,, ¥Fw;, ... will be called the big radical Witt
polynomials or, simply, the radical Witt polynomialsﬂ

These polynomials are studied in [6]. Here comes an analogue of Theorem 2 for
these radical Witt polynomials:
Theorem 13. Consider the polynomial ring Z [XNJ =7 [X1, Xa, X3, ...
Let A be the Abelian group (Z HXN +] )N+ (this is the Abelian group of all

sequences of elements of Z [XN .|, with componentwise addition and zero
(O)neN+)'

For every n € N, define an endomorphism ¢,, : A — A of the group A as
in Theorem 2.

We define a family (b,),,cn, € AN+ of elements of A by

b, = (Ywy,) o for every n € N,.

(Of course, this family (b,),,cy, is not the family (by),cy, from Theorem
2.)

(a) The group A is torsionfree, and the endomorphisms ¢,, satisfy and
(2)-

(b) The family (bn)n€N+ satisfies the Assertions C, &, &', F, G and H of
Theorem 1 for N = N,.

And the corresponding analogue of Theorem 7 says:
Theorem 14. Consider the polynomial ring Z [XNJ =7[X1, Xo, X3, ...].

(a) Every n € N, satisfies

Zu dk Yenz [XN“C } for every k € N,..
d|n

(b) Every n € N satisfies

Zgb dk enz [XN‘k ] for every k € N.
dn

(c) Every n € N, satisfies

Z \/_ic/dglcz (i) € N [XN“M] for every k € N.
=1

13These radical Witt polynomials X/w,, ¥/w,, X/ws, ... are somewhat similar to the big Witt
polynomials wy, wsy, w3, ... defined in [4]. Exploiting this similarity is the purpose of this paper.
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We will not prove Theorems 13 and 14 directly, but rather extend them even further.
In order to do so, we define a more general ilk of Witt polynomials:

Definition 14. Let F': P x N — N be a map. We denote by F: N, - N,
the map defined by

F(n) = H pleee() for every n € N,.
pePFn

For any n € N, we define a polynomial wg,, € Z [XN\n] by

Wrgn = Z ﬁ (d) X;/d
dn

The polynomials wg;, wra, wrs, ... will be called the big F'-Witt polyno-
mials or, simply, the F'-Witt polynomials.

Note that the notions £ and w Fn Which we have just defined are exactly identical
with the notions F and wp,, defined in [7], but in [7] they were only defined for pseudo-
monotonous maps F': P x N — N (we refer to Definition 9 of [7] for the meaning of
”pseudo-monotonous” ), while here we have defined them for arbitrary F.

However, these F'-Witt polynomials don’t yet have to satisfy analogues of Theorems
2 and 7. We need an additional condition to ensure that:

Definition 15. A map F : P x N — N is said to be superradical if it
satisfies
(F (p,a) >0 for every p e Pand a € N, ). (12)

Before we continue, let us give two example of superradical maps:
Example 1: Define the map pry : P x N — N by

pry (p, k) =k for every p € P and k € N.
Then, pry is a superradical map (this is very easy to check), and pry = id (since every
n € Ny satisfies pry(n) = [[  pPm@w®) = T p»™ = n). Hence, every
N pePFn — pePFn

=p?r(™) (since
pry (p,vp(n))=vp(n))
n € N, satisfies Wy, ., = Y Py (d) X =3dX = w,.

djn ~—~— dln
—id(d)=d

Example 2: Define the map prad : P x N — N by

prad (p, k) = { (i’ liffkl;:>(()); for every p € P and k € N.
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Then, prad is a superradical ma, and the map pfr\a/d is identic with the map rad :
N, — N, defined by radn = [] p for every n € N, (since every n € N satisfies

pePFn
prad (n) — H pprad(ﬂvp(n)) — H p= rad n
—_——
pePFn =p (since pePF n yields pePFn
p|n and thus v, (n)>0,
so that prad(p,vp(n))=1
and thus pprad(p’”P(”)):pl =p)
). Hence, every n € N, satisfies
T d d o0
Wpradn = Z prad (d) X}/ = Z (radd) X/ = /w,, (14)
——
din —radd din

We now state the generalization of Theorem 2:

Theorem 15. Consider the polynomial ring Z [XNJ =7Z[X1, Xo, X3, ...].

Let A be the Abelian group (Z XN +] )N+ (this is the Abelian group of all
sequences of elements of 7Z [XN .|, with componentwise addition and zero

(0)en, )-
Let F: P x N — N be a superradical map.

For every n € N, define an endomorphism ¢,, : A — A of the group A as
in Theorem 2.

We define a family (b,),,cy, € A™ of elements of A by
b, = (w?’:k)kem for every n € N,

(Of course, this family (b,)
2.)

(a) The group A is torsionfree, and the endomorphisms ¢,, satisfy and
2)-

(b) The family (bn),cy,
Theorem 1 for N = N,.

is not the family (b,) from Theorem

neNL neNL

satisfies the Assertions C, &, &', F, G and H of

The corresponding generalization of Theorem 7 now claims:

4 Proof. By the definition of ”superradical”, the map prad is superradical if and only if it satisfies
(prad (p,a) >0 for every p e Pand a € Ny ). (13)

Since the map prad does satisfy (because for every p € P and a € N, we have

prad (p,a) = { (i’ liffC;i%; (by the definition of prad)
=1 (since a > 0 (because a € N,))

>0

), this yields that the map prad is superradical, ged.
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Theorem 16. Consider the polynomial ring Z [XNJ =7[X1, X5, X3, ...].
Let F: P x N — N be a superradical map.
(a) Every n € N, satisfies

Z/L (d) w;’/d,f € nZ [XNUM} for every k € N,.
dln

(b) Every n € N satisfies

ZQS (d) w?{dz € nZ [XNVW] for every k € N,.
dn

(c) Every n € N, satisfies

w%«ﬂfi&?ﬁd@,@k e nz [XN”W} for every k € N,
i=1

We now come to proving these theorems. First, a simple remark:

Lemma 17. Let F : P x N — N be a superradical map. Then, p | F (n)
for every n € N, and p € PFn.

Proof of Lemma 17. According to Definition 15, we know that the map F is
superradical if and only if it satisfies . Since we know that F' is superradical, we
thus conclude that F' satisfies .

Every n € Ny satisfies F'(n) = ] pf®»™) = [ ¢F@»™) (here, we renamed
pEPF 1 4EPF n

the index p as ¢ in the product).

Now, let n € N, and p € PFn. Since p € PFn, we know that p is prime and
satisfies p | n. Thus, v, (n) > 1. In other words, v, (n) € N;.

Since p is prime, we have p € P. Hence, applying to a = v, (n), we obtain
F(p,v,(n)) > 0 (since v, (n) € N), so that F'(p,v, (n)) > 1. Hence,

qePFn

— F(n).

This proves Lemma 17.
Next, we show an analogue of Lemma 5:

Lemma 18. Let k € N, and p € P. Let F': P x N — N be a superradical

map. Then, wpy, = w%k mod pZ [XN+]. (Remember that 7Z [XNJ =
7 1X1, Xq, X3,...]).
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Proof of Lemma 18. For every divisor d of pk which satisfies d 1 k, we have
F (d) X?** = 0 mod pZ [ X, ] . Thus,

S F(d)XP=Y"0=0modpZ [Xy,] . (15)
d|pk; =0 d|pk;
dik - dik

Now, comparing

wrpk = Y F(d) X5 =N"F (d) X"+ F(d) X5

dlpk d|pk; d|pk;
dlk dfk
=0 mod%XN+]
(by ([13))
= Z f(d) ng/d = Z]:; (d) ng/d mod pZ [XNJ

d|pk; d|k

dlk

—~—

=>
dlk

with
p
Wy, = Zf (d) X% since wpy, = Zﬁ (d) X%
dlk dlk
= (Fayxi)
dlk
p
(Since (Z as> = Z af mod pK for any family (a,),.q of elements of a commutative ring K )
s€S seS
- (ﬁ (d))p (Xj;/ d)p =3 F(d) X2 mod pZ [ X, ]
d|k ~—— ~—— d|k

— k/d- k/d
=F(d) modp%[XN+] —xk/dp_xPk/
(since (F(d))pEF(d) mod pZ
by Fermat’s Little Theorem)

we obtain wppx = wh;, mod pZ [XN +], and thus Lemma 18 is proven.
A conclusion from Lemmata 4 and 18:

Lemma 19. Let k € N;. Let n € Ny and p € PFn. Let F: P x N — N
be a superradical map. Then, w?ﬁc’ = wj, mod pr(M7Z, [XN +]. (Remember

that Z |:XN+:| =7 [Xl,XQ,Xg, ])

Proof of Lemma 19. Lemma 18 yields wpp, = w%k mod pZ [XNJ (since p € P
due to p € PFn). Lemma 4 (applied to B = Z [X. ], u = wpp, and v = W) NOW

15 Proof. Let d be a divisor of pk which satisfies d ¥ k. Then, d cannot be coprime to p, (since
otherwise, from d | pk we could conclude that d | k, contradicting to d 1 k), and thus d must be
divisible by p (since p is a prime). Thus, p is a divisor of d. Since p is prime, this yields that p is a
prime divisor of d, so that p € PFd. Hence, Lemma 17 (applied to d instead of n) yields p | F (d).
Hence, F (d) = 0 mod pZ [Xn, |, so that F (d) ng/d = 0mod pZ [ X, |, qed.
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yields w?,/pi = (wh, k)n/p mod p»"™Z [Xy,]. Since (wh k)n/ " = w},, this rewrites as

wgﬁi = wi, mod p»™Z [ Xy, ], and thus Lemma 19 is proven.

Proof of Theorem 15. Let N be the nest N,. Then, A = (Z [XNJ)M = (Z [XN+] )N.
Just as in the proof of Theorem 2, we can see that @ holds.

(a) Theorem 15 (a) is identical with Theorem 2 (a), and thus needs not be proven
again.

(b) Every n € N and every p € PF n satisfies

©p (bnyp) = ©p ((w?,/,f) k€N> (Since b, 1s defined as (wZ/,f) k€N>
= (w}%ﬁ) e (by () (applied to p and (ka )kGN instead of n and (), y ))

= (w}fﬂ’k)keN (since Lemma 19 says that w}",gz = wj,, mod p"™Z [ Xy, ] for every k € N+)
= b, mod p*r™ A.

Thus, Assertion C of Theorem 1 is true for our family (b,), .. Since the Assertions
C, &, &, F, G and H of Theorem 1 are equivalent (according to Theorem 1, which we
can apply because of Theorem 15 (a)), this yields that the Assertions £, &', F, G and
H must be true as well. This proves Theorem 15 (b).

Theorem 15 is now proven. We are now going to derive Theorem 16 from it:

Proof of Theorem 16. Let us invoke Theorem 15. So let us define the nest N = N,
the Abelian group A, the endomorphisms ¢, : A — A and the family (b,),,cy, € AN+
as in Theorem 15. Then, Theorem 15 (b) states that the family (b,), . satisfies the
Assertions C, &, &', F, G and ‘H of Theorem 1.

(a) Assertion F of Theorem 1 states that every n € N satisfies

Zu n/d) € nA.

dln

Since this assertion is satisfied, we thus have ) u (d) ¢4 (b, 4) € nA for every n € N.

din
Since
n/d . . n/d
; p(d) wa (bna) dz w(d ((wF/k >k€N+> (smce bna is defined as (wF/k )k€N+>

~~
n/d)
(wF dk keENL

(by the definition of ¢4)

=S i (wi) = (Yo n@ui
N+ dln

(since addition in A is componentwise) ,

keNL

this becomes (Z,u( )w?ﬁi) € nA. In other words, there exists a sequence
din kN,

(uk)keN+ € Asuch that <Z i (d) wg{ii) =n (uk)keN+‘ Thus, (Z i (d) w?«“fli) =
kJEN+ kEN+

din dln
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n(u) ey, = (Ruk)yey, . Hence, for every k € Ny, we have >y (d )w;i/dk = nuy €

d|n

nZ [Xy.]. In other words, %Zu( )dek € Z[Xn.].
dln

1
On the other hand, — >y (d )dek €Q [Xle } since every d | n satisfies wp g €
LT

Q |:XN\dk:| CQ [Xle } (since d | n yields dk | nk = kn and thus Nig C Njg,).

1
Hence, EZM( )w;f/dz €Q [XN”W} NZ[Xn,] (because —Zu( )wz/dz €Q [XNUM}

dln n dln
1 n/d
and 52\3#( ) Wi € Z [ Xn,])-
d|n
1
Now, as was shown in the proof of Theorem 7, we have {H) Thus, — > u(d) w}f/dg €
n din

Q [XN“C ]ﬂZ [ X, | becomes - ‘Zp( )wg/d,f eZ [XN“W]. In other words, Iz,u( )w;i/dz €
d|n d|n

nZ [XN“W} This proves Theorem 16 (a).

(b) The proof of Theorem 16 (b) is the same as the proof of Theorem 16 (a) that
we have just done; we just have to replace every u by ¢ and use Assertion G instead

of Assertion F.
(c) Assertion H of Theorem 1 states that every n € N satisfies

Z ¥n/ ged(in) (bgcd(i,n)) € nA.

=1

n

Since this assertion is satisfied, we thus have ) ¢,  gcd(in) (bgcd(i,n)) € nA for every
i=1

n € N. Since

n
d
Z; SOn/ ng(’L,TL ng i TL Z QOTL/ ng ' n) (<w§?k(z n)> kEN+)
i J/

=1

< ged (s, n) )
- F,n/ ged(i,n)-k keN,

(by the definition of ¢,, , gcd(i,n))

<since bged(i,n) 1s defined as (w%c,(j(l n)) )
k€N+

n n
Z ged(i,n) . wgcd(i,n)
Fn/ ged(i,n) keN, - Fn/ ged(in)-k
1=1 keNL

=1

(since addition in A is componentwise) ,

. . ged(i,n) .
this rewrites as (Z W/ sed(im). k) € nA. In other words, there exists a sequence
keNL

ged(4,n) _ ged(i,n) o
(Uk)keN € Asuch that (Z Wgn/ ged(iyn)- k) =n (vk)keN+' Thus, (E We/ scd(imn)- k) =
keNL keN4

n
_ ged(in) _
1 (Vk)pen, = (MUk)4en, - Hence, for every k € Ny, we have } 1wF7n/ng(i7n).k = nuy €
1=
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12 cd(z,n
nZ [Xy.]. In other words, ﬁ ‘ﬂw?:(/’gzd(m » €Z[Xn,].

On the other hand, Z ged(im) cQ [XNI

Wi sed(im) & since every ¢ € {1,2,...,n}

satisfies Wrp  ged(in)k € Q [XNWgcd“ . k] cQ [XN“C ] (since (n, ged (i,n)) | n yields
).

1 n C ,n
n,/ ged (i,n) - k | nk = kn and thus Ny, gca(in)-k € Nji). Hence, — Z wBean)
n

Fn/ ged(iyn)-k €
X 7. [X b 1 ged(i,n) X, d= ged(i,n)
Q Nikn n [ N+] ( ecatse E ; an/gcd (3,n)-k € @ Nign an Z Fn/gcd(z n)-k €

Z [Xn,]). Due to 1) this becomes — Z ifi/lgc)d(l i € Z [XNWL]- In other words,

i;wiﬂf:g’gd(m)‘k €nz [XN“M] This proves Theorem 16 (c).
We can now get Theorems 13 and 14 as particular cases of Theorems 15 and 16:
Proof of Theorem 13. We know that prad is a superradical map. Hence, we can

apply Theorem 15 to F' = prad, and obtain the following result:

Theorem 15a. Consider the polynomial ring 7 [XNJ =7 Xy, X2, X3, ...].

Let A be the Abelian group (Z XN +] )N+ (this is the Abelian group of all
sequences of elements of 7Z [XN .|, with componentwise addition and zero

(0)ner, )

For every n € N, define an endomorphism ¢,, : A — A of the group A as
in Theorem 2.

We define a family (b,),,cy, € AN+ of elements of A by

_ n
b, = (wpmd,k) . for every n € N

(Of course, this family (b,),,cy, is not the family (by), oy, from Theorem
2.)

(a) The group A is torsionfree, and the endomorphisms ¢, satisfy and
2)-

(b) The family (b,),y, satisfies the Assertions C, &, &', F, G and H of
Theorem 1 for N = N,.

Now, Theorem 13 is obtained from Theorem 15a by replacing wpraar by /w,.
Since this replacement doesn’t change the validity of this theorem (because

Wprad k = /Wy (by (14), applied to k instead of n)

), this yields that Theorem 13 is equivalent to Theorem 15a. Thus, Theorem 13 holds
(since we know that Theorem 15 holds).

Proof of Theorem 16. We know that prad is a superradical map. Hence, we can
apply Theorem 16 to F' = prad.

(a) Let n € Ny and k € N;. We have wyraaar = F/wy, for every divisor d of n (by
(14)), applied to dk instead of n). Thus,

Z p(d \/_dk ZN (d) wgr/aidk € ni [XNUW}

_wprad dk d|n
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(by Theorem 14 (a), applied to F' = prad). This proves Theorem 16 (a).
(b) Let n € N; and k € N;. We have wyraq,ar = ¥/wy, for every divisor d of n (by
, applied to dk instead of n). Thus,

oo n/d n
SU6(d) Fwa " =36 (d) ujh g € 02X,
——
d|n =Wprad,dk d|’I’L
(by Theorem 14 (b), applied to F' = prad). This proves Theorem 16 (b).
(c) Let n € Ny and k € N;.. We have Wyradn ged(in)k = %n/gcd(i,n),k for every
i€ {1,2,...,n} (by (14), applied to n ged (i, n) - k instead of n). Thus,

n n
o ged(én) ged(i,n)
Z ‘/En/gcd(i,n)k - Z Whrad,n/ ged(in) -k € ni [XNUM]
= —

=1
=Wprad,n,/ ged(i,n)-k

(by Theorem 14 (c), applied to F' = prad). This proves Theorem 16 (c).
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