Witt vectors. Part 1
Michiel Hazewinkel
Sidenotes by Darij Grinberg

Witt#5a: Polynomials that can be written as big w,
[completed, not proofread]

The point of this note is to generalize the property of p-adic Witt polynomials that
appeared as Theorem 1 in [2] to big Witt polynomials.
First, let us introduce the notation that we are going to use.

Definition 1. Let P denote the set of all primes. (A prime means an
integer n > 1 such that the only divisors of n are n and 1. The word
”divisor” means ”positive divisor”.)

Definition 2. We denote the set {0,1,2,...} by N, and we denote the set
{1,2,3,...} by N.. (Note that our notations conflict with the notations
used by Hazewinkel in [1]; in fact, Hazewinkel uses the letter N for the set
{1,2,3, ...}, which we denote by N, .)

Definition 3. Let = be a family of symbols. We consider the polynomial
ring Q [=] (this is the polynomial ring over Q in the indeterminates =; in
other words, we use the symbols from = as variables for the polynomials)
and its subring Z [Z] (this is the polynomial ring over Z in the indetermi-
nates =). EI For any n € N, let =" mean the family of the n-th powers of
all elements of our family = (considered as elements of Z[Z]) P} (There-
fore, whenever P € Q[Z] is a polynomial, then P (=") is the polynomial
obtained from P after replacing every indeterminate by its n-th powerﬂ)

Note that if = is the empty family, then Q [Z] simply is the ring @, and
Z =] simply is the ring Z.

Definition 4. For any integer m, the set {n € N | (n | m)} will be denoted
by Nj,,. This set N}, is the set of all divisors of m.

Definition 5. If N is a set, we shall denote by Xy the family (X,), .y
of distinct symbols. Hence, Z[Xy] is the ring Z [(X,),cy] (this is the
polynomial ring over Z in |N| indeterminates, where the indeterminates are
labelled X,,, where n runs through the elements of the set N). For instance,
Z [XN+ is the polynomial ring Z [ X1, Xo, X3, ...] (since N, = {1,2,3,...}),
and Z HX{172737576710}} is the polynomial I'iIlg Z [Xl, XQ, Xg, X5, X67 XlO]-

If A is a commutative ring with unity, if N is a set, if (zq),cy € AY is a
family of elements of A indexed by elements of N, and if P € Z [Xy], then

For instance, = can be (Xo,X1,X2,...), in which case Z[Z] means Z[Xo, X1, Xa,...].
Or, Z can be (Xo,X1,Xo2,..5Y0,Y1,Y5,...520,7Z1,Z5,...), in which case Z[Z] means
Z[X07X1>X2a"';}/anlv}/Q7“';Z0aZ1722a"']'

*In other words, if 2 = (&;),c;, then we define " as (£]"), ;. For instance, if 2 = (X, X1, X5, ...),
then 2" = (Xg,X?,XS,) If = = (Xo,Xl,Xg,...;Y(),Yl,YQ,...;Zo,Zl,ZQ,...), then =Z" =
(X2, XD X, s YO Y Y o 20, 20, 25,

3For instance, if = = (Xo, X1, Xo,...) and P(Z) = (X0+X1)2 — 2X3 4+ 1, then P(E™) =
(X + X7)° —2X7 + 1.



we denote by P ((xd) de N) the element of A that we obtain if we substitute x4
for X, for every d € N into the polynomial P. (For instance, if N = {1,2,5}
and P = X? + XpX5 — X5, and if 2y = 13, 2o = 37 and x5 = 666, then
P ((x4)gey) = 132 + 37 - 666 — 666.)

Definition 6. For any n € N, we define a polynomial w,, € Z [XNM} by

w, =y _dX;7?
dln

Hence, for every commutative ring A with unity, and for any family (zy,) keN,

ANim of elements of A, we have

Wn ((xk)keNm> = Zdl'g/d'

dln

The polynomials wy, wsy, ws, ... are called the big Witt polynomials or,
simply, the Witt polynomials.

Caution: These polynomials wy, wsy, w3, ... are referred to as wy, ws, ws, ...
most of the time in [1] (beginning with Section 9). However, in Sections 5-8
of [1], Hazewinkel uses the notations w;, ws, ws, ... for some different poly-
nomials (the so-called p-adic Witt polynomials, defined by formula (5.1) in
[1]), which are not the same as our polynomials wq, we, ws, ... (though they
are related to them: namely, the polynomial denoted by wy in Sections 5-8
of [1] is the polynomial that we are denoting by w, here after a renaming
of variables; on the other hand, the polynomial that we call wy here is
something completely different).

Definition 7. Let n € Z\ {0}. Let p € P. We denote by v, (n) the largest
nonnegative integer m satisfying p™ | n. Clearly, p*»™ | n and v, (n) > 0.
Besides, v, (n) = 0 if and only if p { n.

We also set v, (0) = oo; this way, our definition of v, (n) extends to all
n € Z (and not only to n € Z\ {0}).

Definition 8. Let n € N,. We denote by PF n the set of all prime divisors
of n. By the unique factorization theorem, the set PF n is finite and satisfies

pePFn

Let us now formulate our main result:

Theorem 1. Let = be a family of symbols. Let 7 € Z [Z] be a polynomial.
Let m € N. Then, the following two assertions A and B are equivalent:

Assertion A: There exists a family <Td)d€N|m e (Z[E)V™ such that 7 =
Wm ((Td)deN‘”) .

0
Assertion B: We have (9_£T € mZ =] for every £ € E.



0 o : -
Remarks: 1) Here, 8_§T means the derivative of the polynomial 7 € Z [Z]
with respect to the variable &.
2) Theorem 1 makes sense even in the case when = is the empty family
(in this case, the Assertion B is vacuously true (since no £ € = exists), and
therefore Theorem 1 claims that in this case Assertion A is true as well;
see Corollary 3 for details).

Before we come to proving this theorem, let us remark why exactly this Theorem 1
generalizes the Theorem 1 of [2]. In fact, if p is a prime and n € N, then the big Witt
polynomial w,» (the one that we have defined above, not the one called wyn in [2]) is

o = dep"/ d Z dxv /4

d|p™ deN|,n
= Zka;’:/pk (since Nipn = {po,pl, ...,p"} (because p is a prime))
=S prxn (since p" /p* = p" "),

k=0

and therefore this polynomial w,» is equal to the polynomial denoted by w, in [2]E|,
up to a renaming of variables (in fact, if we rename the variable X, as X, for every

n _ n .
k € N, then wyn = Zka;’k * becomes wyn = Y pPXE k, which is exactly the
k=0 k=0

formula defining w,, in [2]). Hence, in the case when m = p™ for a prime p and an
integer n € N, and when = = (X, X;, Xy, ...), the Assertions A and B of our Theorem
1 are identical with the Assertions A4 and B of the Theorem 1 in [2], and therefore our
Theorem 1 yields the Theorem 1 in [2].

Before we come to the proof of Theorem 1, let us state a simple fact: If = is a

family of symbols, then
0 0
— P9 =qgpPit. | — 1
9 9 ( a€g> (1)
for every £ € Z, every P € Z[Z] and every positive integer g. (This can be proven
either using the chain rule for differentiation, or by induction on ¢ using the Leibniz
rule.)

Proof of Theorem 1. Proof of the implication A = B: Assume that the As-
sertion A holds. Then, there exists a family (74) den,, € (Z[Z])"™ such that 7 =

Wi <(Td)deN‘m> . Hence,

d
T:wm<Tdd€N|> de/,

dlm

4Let us remind ourselves once again that this is not the polynomial that we call w,, in this present
note.



and thus every ¢ € = satisfies

0 0
9. dr’ =3 "d 7l =N d(m/d) (—
o€ gz d%‘ oE dlsz_,_l d o€
d
=(m/d)ry ! (a—gm)

(by , applied to P=74 and g=m, /d)

g (o) o

d\m

-~

cZ[E]

so that Assertion B holds. Thus, we have shown that whenever Assertion A holds,
Assertion B must hold as well. This proves the implication A = B.
Proof of the implication B = A: Let us assume that Assertion B holds. Thus, we

have —7 € mZ [Z] for every £ € =. If we rename £ as 1 here, this rewrites as follows:

23
0
We have a7 € mZ =] for every n € =.
7

Let us introduce some notation:

For every family j € N= and every ¢ € Z, let us denote by j¢ the &-th member of
the famil;: j. Then, every family j € N= satisfies j = (j¢)¢ez-

Let Ng denote the set { j € N* | only finitely many ¢ € = satisfy je # O}. For
every j € N5 | let Z7 denote the monomial [] &%. For every polynomial P € Z =], let

¢ex
coeff; P denote the coefficient of P before this monomial Z7. Then, every polynomial
P € Z =] satisfies
P= Z coefij-Ej. (2)
JENG,
(This sum Y coeff; P - =7 has only finitely many nonzero summands, since every
JENG,

polynomial has only finitely many nonzero coefficients.)

For every E N and every j e NEH, let us denote by nj € N5, the family (nje) cez
Clearly, 15 = (Uf)geE = (]5)§€E = 7.

If k € N5, and n € N, then we write n | k if and only if (n | k¢ for every £ € E).
If k € N and n € N are such that n | k, then we can define a family k,/n € N

k k
by k,/n = (—5) (indeed, X €N for every € E, since n | k yields n | k¢). This
N ) e n

k
family &k, n clearly satisfies n (k,/n) = <n—€) = (k¢)eez = k. Also, it is obvious
N ) ee =

ke
that k1 = = (k¢),.= = k.
Now, according to 1} our polynomial 7 satisfies 7 = Y coeff; 7 - Z7. Thus, for

JENE,



every n € =, we have

0 0 . 0 _. 0 . .
a—nT:a—anoefij-:Jz Zcoeffj7'~a—n:J: Zcoeffj7~a—n n’n H &

JENE, JENE, JENE §eE\{n}

since 2 = [[¢s=n [ ¢*

3= €eE\{n}
0 . . gL, if g, > 0; .
— ST — Je — ST n ’ n ! Je
Z coeff; 7 (87; n) H 3 Z coeff; 7 { 0,if j, = 0 H 13
JENE, —_— ¢eE\{n} JENE §eE\{n}
_f gt i gy > 0
- 0,if 5, =0
_ ) . jr;??j"_l, if jn > O; jg ) . jnﬁj"_1> if jn > 05 jg
= 2 coeft; T { 0, if j, = 0 H & + Z coeff; 7 0, if j, = 0 H 1S
JENE ; N -~ €€E\{n} JENE ; N - o §€E\{n}
Jn>0 =j,min 1, since Jn=0 =0, since jn=0
jin>0
= Z coeff; 7 - g/ H £l 4 Z coeff; 7-0 H g = Z coeft; 7 - gy~ H ge.
JENE ; £€E\{n} JENE; £eE\{n} JENE; £eE\{n}
Jn>0 In=0 0
=0
(3)
Now, define a map
F:{jeN;, | j,>0} = Ng, defined by
N jfv if 5 7é ;5 ) . = C o .
F(j) = . . for every j € Ni, satisfyin > 0.
(7) ({]n—L T . yJjeNg ying jy

This map F' is a bijection (in fact, this map leaves all members of the family j fixed,
except of the n-th member, which is reduced by 1). By the definition of F', every

j € NE, satisfying j, > 0 is mapped to F (j) = ({ Jer IEE 711 ) . Hence, for
¢ex

jn_la 1f€:77
jf? 1f57é77a

every § € E, we have (F (j)), = { o ife=g In other words, (F(j)), = Jje if



§#n, and (F (j)), = j, — 1 (since n = n). Using these two equations, (3) becomes

0 , , ,
37 = Z coeft;7 - j, =t H &
n s ~—— ~~ had = ~
TENGwi =cooff o1 () T =(in— 1)+ —yFOy CER\E _e(FGe
JIn =(F(4)),+1 (since (F()),=in—1) (since £E€E\{n}

yields £#n and thus
(F()e=de)

= > coelipipgy - ((F (), +1) "0 T 00

JENE; geE\{n}
jn>0
. ; - here we substituted F'(j) for j in the sum

= _ . . J Je 9

Z coefl gy 7 (g + 1) H ¢ ( since the map F' is a bijection

JENE £eE\{n}

=[] ¢e=¢i
£es

= Z coeffp1(jy 7+ (4 +1) &

JENZ

Hence, for every j € N% | we have coeff;; (—7’ = coeffp-1(j) 7+ (j, +1). But we must

In
0 . 0 -
have coeff; 7)€ mZ (since a7 € mZ[Z]). Thus,
n n
coeffp-10jy 7+ (4, +1) € mZ for every j € Ng . (4)

Thus, every j € N5, and every n € = satisfy
coeft; 7 - j, € mZ (5)

(since , applied to F'(j) instead of j, yields coeffp-1(p(j)) T - ((F ), +
which simplifies to coeff; 7 - j, € mZ because F~' (F (j)) and because (F (j)), +1 =

(= 1) +1=1Jy)
Now we recall the following result from [4]:

Theorem 2. Let = be a family of symbols. Let N be a nestﬂ and let
(bn),en € (Z[Z])" be a family of polynomials in the indeterminates =.
Then, the two following assertions C=z and Dz are equivalent:

Assertion C=z: Every n € N and every p € PF n satisfies
byp (ZF) = b, mod p**™Z[Z] .
Assertion Dz: There exists a family (z,,),,cy € (Z [=])" of elements of Z [Z]

such that
(bn =w, ((xk)keN) for every n € N) )

®We refer to [4] (Definition 5) for the definition of a nest. For our aims, it is only important to
know that Nj,, is a nest.



f

This Theorem 2 is part of Theorem 13 in [4] (which claims that the assertions Cz,
D=, DL, &=, EL, F=, G= and Hz are equivalent, where Cz and Dg are our assertions Cz
and Dz, while DL, &z, L, Fz, G= and Hz are some other assertions). Hence, for the
proof of Theorem 2, we refer the reader to [4].

Now, let us continue with the proof of Theorem 1:

Let N = Nj,,. Then, every element n of N is a divisor of m, and hence m,n € N
for every n € N.

We are going to apply Theorem 2 to the family (by),cn € (Z [Z])" defined by

bn = Z coeff; 7 . 22/ (m/m for every n € N.
JENE ;
(m,/n)lj

Let n € N and every p € PFn. The polynomial b, , (Z") is the polynomial
obtained from b,, , after replacing every indeterminate by its n-th power. Since

b p = Z coeff; 7 - =i/ (m/(n/p))  _ Z coeff; 7 - H g(j/(m/(n/p))k,
—_——
JENE ; — ] €U/ (m/ (n/P))e JENE ; ¢e=
(m,/(n,/p))li 5 (m/(n,/p))li

it must therefore be

bn,p (EP) = Z coeff; T - H (gp)(j/(m/(n/p)))g _ Z coeff; 7 - H (gp)jgn/(mp)

—_——

JENR,; geE JENG,; CEE
(m/(n/p))lj (m/(n/p))lj
. . Je .
since (3, (m/ (n,/p =——— =340/ mp)
(since (im0 D)) = e = e )
= Z coeff; 7 - ka”/m = Z coeff; 7 - Hfjin/m (6)
JENE ; ge= JENE ge=
(m/ (n,/p))|j (pm,/m)j

(since m, (n,/p) = pm,n). Now, let us prove that

every j € N5, which satisfies (m,/n) | j and (pm,/n) tj must satisfy coeff; 7 = 0mod p»WZ =

(7)
In fact, let 7 € N5 be such that (m,n) | j and (pm,n) t j. We have to prove
that coeff; 7 = Omod p*™7Z[Z]. Assume, for the sake of contradiction, that the op-
posite holds, i. e. that coeff; 7 # 0modp*™Z[=Z]. Then, p»™ { coeff; 7, so that
v, (coeft; 7) < v, (n). Hence, v, (coeff; 7) < v, (n) —1 (since v, (coeft; 7) and v, (n) are
integers). But for every n € =, the relation yields m | coeff; 7 - j, and thus

vp (m) < wp (coeff; 7 - 7,) = vy (coeff; 7) +v, (7y) < (vp (n) = 1) + v, (Gn)

<vp(n)—1

Here, wy, ((@%)),c ) means wy, ((xk)keN‘J (because Ny, is a subset of N, since n € N and since

n is a nest).

—gpden/ (mp) _gign/m

I,



so that
vp (Jiy) = vp (M) —(vp(n) = 1) =v, (m/n) +1
—up((m/n)m)
=vp(m,/n)+vp(n)
and thus p*»(™/ ™+ | j = On the other hand, m,n | j, (since mn | j). Thus,
lem (pUr(™/ ™+ 'm /n) | j,. Butlem (pr(m/™ st ,m,/n) = pm,n (in fact, ged (p* (m,/n)+1 ,m,/n) =

b
prr(m/m) , and thus the formula lem (a, b) = ¢ which holds for any two posi-

ged (a, b) (
vp(m,/m)+1
= /)
Hence, (pm,n) | j,. Since this holds for any n € =, we have thus shown that
(pm,/n) | j, contradicting our assumption that (pm,n){ j. This contradiction shows
that our assumption that coeff; 7 # 0 mod p*»(™Z [Z] was wrong. Thus, is proven.
Now, every n € N and every p € PF n satisfy

b, = Z coeff; 7 - =i/ (m/n) Z coeff; 7 - =i/ msm) 4 Z coeff; 7 =1/ (m/m)

tive integers a and b) yields lem (p“P(m/ Wt m n) =

JENG,s JENGL; JENG,; =0mod p¥» (M Z[Z]
(m,/n)j (m/m)|j; (m/mlis = R @)
(pm,/n)]j (pm./n)fj g
= Z coeff; 1 - =3/ (m/m) 4 Z 0./ m/m) = Z coeff; 7 . 22/ m/m)
jeNﬁn’ ]ENﬁn’ JENﬁn’
(m,/m)|35; (m/ )7 (m/m)|3;
(pm/n)|j (pm/n)tj o (pmsm)lj

= Z coeff; 7 - =i/ (m/m)
|
JENE ; — T €U/ (/e
(pm,/m)|j gex

since for every j € N% | the conditions ((m,n) | j and (pm,n)|j) are
equivalent, because if (pm,n) | j, then (m,n) | j

_ Z coeff; 7 - H gl tm/n))e

]eNﬁn; £e=
(pm,/m)|j
= Z coeff; 7 - Hfjfn/m <since 4/ (m/"))g =2 = jgn/m>
=t = m,/n
(pm,/n)|j
= by (E7) mod p* "2 =] (by (@))-

Hence, we have shown that every n € N and every p € PFn satisfies b, , (2P) =
b, mod p*»™Z[E]. Thus, Assertion Cz of Theorem 2 holds for our family (b,),.y €

(Z[Z])". Consequently, Assertion D= of Theorem 2 also holds for this family (since

"In fact, the number gcd (pvp(m/")+1, m/n) must be a power of p (since it is a divisor of
plr(m/ M+ and pis a prime) and a divisor of m_/n, so it must be a power of p which divides m_/n, and
thus it must be p® for some integer x satisfying 0 < k < v, (m,/n). Thus, ged (pvp(m/")ﬂ, m/n) =
p* | pPr(™/ ™) (since k < v, (m,n)). On the other hand, p*»(™ ™) | gcd (p”l’(m/””l,m/n) (since
pUr(m/ ™) is a common divisor of p*»(™/™*! and m,/n). Hence, ged (p*»(m/ ™+ m /n) = pre(m/m),
qed.



Theorem 2 states that assertions Cz and Dz are equivalent). In other words, there

—_

exists a family (2,),.y € (Z [Z])™ of elements of Z [Z] such that

(bn = w, ((:ck)keN) for every n € N) )

Applying this to n = m, we obtain b,, = w,, ((xk)keN) = Wy, <(xk)k€N‘m> . Renaming

the family (:z;k)keNl as (Td)deN| , we can rewrite this as b, = wy, ((Td>d€N| . Since

by, = E coeff; 7 - =i/ (m/m) — E coeff; 7- 27 = E coeff; 7 - =7
_—
JENG; =Bi/1=5] JENE JENE,

(m,/m)|j (m,/m)|j
(since every j € Ni, satisfies (m,m) | j, because m,/m = 1)

=T (by )?

this rewrites as 7 = w,, ((Td) deN, ) Thus, Assertion A holds. Hence, we have derived

Assertion A from Assertion B. This proves the implication B = A.
Altogether we have now proven the implications A = B and B = A. We can
thus conclude that the assertions A and B are equivalent. This proves Theorem 1.
We notice a trivial corollary from Theorem 1:

Corollary 3. Let 7 € Z be an integer. Let m € N. Then, there exists a

family (Td)deN‘m € ZNm of integers such that 7 = w,, <(Td)d€N‘m

Proof of Corollary 3. Let = be the empty family. Then, Z [Z] = Z (in fact, Z [Z] is
the ring of all polynomials in the indeterminates = over Z, but = is the empty family,
and polynomials in an empty family of indeterminates over Z are the same as integers).
Clearly, our "polynomial” 7 € Z [=] satisfies Assertion B of Theorem 1 (in fact, = is
the empty family, so that there exists no ¢ € =, and thus Assertion B of Theorem 1 is
vacuously true). Hence, it also satisfies Assertion A of Theorem 1 (because Theorem
1 states that assertions A4 and B are equivalent). In other words, there exists a family

(Td)deN‘m e (Z[2))"™ such that 7 = wy, <(Td)d€N‘m). Since Z [=] = Z, this yields the

assertion of Corollary 3. Thus, Corollary 3 is proven.
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