Witt vectors. Part 1

Michiel Hazewinkel

Sidenotes by Darij Grinberg

Witt#5a: Polynomials that can be written as big w_n [completed, not proofread]

The point of this note is to generalize the property of p-adic Witt polynomials that appeared as Theorem 1 in [2] to big Witt polynomials.

First, let us introduce the notation that we are going to use.

Definition 1. Let \mathbb{P} denote the set of all primes. (A *prime* means an integer n > 1 such that the only divisors of n are n and n. The word "divisor" means "positive divisor".)

Definition 2. We denote the set $\{0, 1, 2, ...\}$ by \mathbb{N} , and we denote the set $\{1, 2, 3, ...\}$ by \mathbb{N}_+ . (Note that our notations conflict with the notations used by Hazewinkel in [1]; in fact, Hazewinkel uses the letter \mathbb{N} for the set $\{1, 2, 3, ...\}$, which we denote by \mathbb{N}_+ .)

Definition 3. Let Ξ be a family of symbols. We consider the polynomial ring $\mathbb{Q}[\Xi]$ (this is the polynomial ring over \mathbb{Q} in the indeterminates Ξ ; in other words, we use the symbols from Ξ as variables for the polynomials) and its subring $\mathbb{Z}[\Xi]$ (this is the polynomial ring over \mathbb{Z} in the indeterminates Ξ).

1. For any $n \in \mathbb{N}$, let Ξ^n mean the family of the n-th powers of all elements of our family Ξ (considered as elements of $\mathbb{Z}[\Xi]$)

2. (Therefore, whenever $P \in \mathbb{Q}[\Xi]$ is a polynomial, then $P(\Xi^n)$ is the polynomial obtained from P after replacing every indeterminate by its n-th power.
3)

Note that if Ξ is the empty family, then $\mathbb{Q}[\Xi]$ simply is the ring \mathbb{Q} , and $\mathbb{Z}[\Xi]$ simply is the ring \mathbb{Z} .

Definition 4. For any integer m, the set $\{n \in \mathbb{N}_+ \mid (n \mid m)\}$ will be denoted by $\mathbb{N}_{|m}$. This set $\mathbb{N}_{|m}$ is the set of all divisors of m.

Definition 5. If N is a set, we shall denote by X_N the family $(X_n)_{n\in N}$ of distinct symbols. Hence, $\mathbb{Z}[X_N]$ is the ring $\mathbb{Z}[(X_n)_{n\in N}]$ (this is the polynomial ring over \mathbb{Z} in |N| indeterminates, where the indeterminates are labelled X_n , where n runs through the elements of the set N). For instance, $\mathbb{Z}[X_{\mathbb{N}_+}]$ is the polynomial ring $\mathbb{Z}[X_1, X_2, X_3, ...]$ (since $\mathbb{N}_+ = \{1, 2, 3, ...\}$), and $\mathbb{Z}[X_{\{1,2,3,5,6,10\}}]$ is the polynomial ring $\mathbb{Z}[X_1, X_2, X_3, X_5, X_6, X_{10}]$.

If A is a commutative ring with unity, if N is a set, if $(x_d)_{d\in N} \in A^N$ is a family of elements of A indexed by elements of N, and if $P \in \mathbb{Z}[X_N]$, then

¹For instance, Ξ can be $(X_0, X_1, X_2, ...)$, in which case $\mathbb{Z}[\Xi]$ means $\mathbb{Z}[X_0, X_1, X_2, ...]$. Or, Ξ can be $(X_0, X_1, X_2, ...; Y_0, Y_1, Y_2, ...; Z_0, Z_1, Z_2, ...)$, in which case $\mathbb{Z}[\Xi]$ means $\mathbb{Z}[X_0, X_1, X_2, ...; Y_0, Y_1, Y_2, ...; Z_0, Z_1, Z_2, ...]$.

 $^{^{2}\}text{In other words, if }\Xi=(\xi_{i})_{i\in I}, \text{ then we define }\Xi^{n} \text{ as }(\xi_{i}^{n})_{i\in I}. \text{ For instance, if }\Xi=(X_{0},X_{1},X_{2},\ldots), \text{ then }\Xi^{n}=(X_{0}^{n},X_{1}^{n},X_{2}^{n},\ldots). \text{ If }\Xi=(X_{0},X_{1},X_{2},\ldots;Y_{0},Y_{1},Y_{2},\ldots;Z_{0},Z_{1},Z_{2},\ldots), \text{ then }\Xi^{n}=(X_{0}^{n},X_{1}^{n},X_{2}^{n},\ldots;Y_{0}^{n},Y_{1}^{n},Y_{2}^{n},\ldots;Z_{0}^{n},Z_{1}^{n},Z_{2}^{n},\ldots).$

³For instance, if $\Xi = (X_0, X_1, X_2, ...)$ and $P(\Xi) = (X_0 + X_1)^2 - 2X_3 + 1$, then $P(\Xi^n) = (X_0^n + X_1^n)^2 - 2X_3^n + 1$.

we denote by $P\left((x_d)_{d\in N}\right)$ the element of A that we obtain if we substitute x_d for X_d for every $d\in N$ into the polynomial P. (For instance, if $N=\{1,2,5\}$ and $P=X_1^2+X_2X_5-X_5$, and if $x_1=13$, $x_2=37$ and $x_5=666$, then $P\left((x_d)_{d\in N}\right)=13^2+37\cdot 666-666$.)

Definition 6. For any $n \in \mathbb{N}_+$, we define a polynomial $w_n \in \mathbb{Z}\left[X_{\mathbb{N}_{|n}}\right]$ by

$$w_n = \sum_{d|n} dX_d^{n/d}.$$

Hence, for every commutative ring A with unity, and for any family $(x_k)_{k \in \mathbb{N}_{|n}} \in A^{\mathbb{N}_{|n}}$ of elements of A, we have

$$w_n\left((x_k)_{k\in\mathbb{N}_{\mid n}}\right) = \sum_{d\mid n} dx_d^{n \wedge d}.$$

The polynomials w_1 , w_2 , w_3 , ... are called the *big Witt polynomials* or, simply, the *Witt polynomials*.

Caution: These polynomials w_1 , w_2 , w_3 , ... are referred to as w_1 , w_2 , w_3 , ... most of the time in [1] (beginning with Section 9). However, in Sections 5-8 of [1], Hazewinkel uses the notations w_1 , w_2 , w_3 , ... for some different polynomials (the so-called p-adic Witt polynomials, defined by formula (5.1) in [1]), which are not the same as our polynomials w_1 , w_2 , w_3 , ... (though they are related to them: namely, the polynomial denoted by w_k in Sections 5-8 of [1] is the polynomial that we are denoting by w_{p^k} here after a renaming of variables; on the other hand, the polynomial that we call w_k here is something completely different).

Definition 7. Let $n \in \mathbb{Z} \setminus \{0\}$. Let $p \in \mathbb{P}$. We denote by $v_p(n)$ the largest nonnegative integer m satisfying $p^m \mid n$. Clearly, $p^{v_p(n)} \mid n$ and $v_p(n) \geq 0$. Besides, $v_p(n) = 0$ if and only if $p \nmid n$.

We also set $v_p(0) = \infty$; this way, our definition of $v_p(n)$ extends to all $n \in \mathbb{Z}$ (and not only to $n \in \mathbb{Z} \setminus \{0\}$).

Definition 8. Let $n \in \mathbb{N}_+$. We denote by PF n the set of all prime divisors of n. By the unique factorization theorem, the set PF n is finite and satisfies $n = \prod_{p \in \text{PF } n} p^{v_p(n)}$.

Let us now formulate our main result:

Theorem 1. Let Ξ be a family of symbols. Let $\tau \in \mathbb{Z}[\Xi]$ be a polynomial. Let $m \in \mathbb{N}$. Then, the following two assertions \mathcal{A} and \mathcal{B} are equivalent:

Assertion \mathcal{A} : There exists a family $(\tau_d)_{d \in \mathbb{N}_{|m}} \in (\mathbb{Z}[\Xi])^{\mathbb{N}_{|m}}$ such that $\tau = w_m\left((\tau_d)_{d \in \mathbb{N}_{|m}}\right)$.

Assertion \mathcal{B} : We have $\frac{\partial}{\partial \xi} \tau \in m\mathbb{Z}[\Xi]$ for every $\xi \in \Xi$.

Remarks: 1) Here, $\frac{\partial}{\partial \xi} \tau$ means the derivative of the polynomial $\tau \in \mathbb{Z}[\Xi]$ with respect to the variable ξ .

2) Theorem 1 makes sense even in the case when Ξ is the empty family (in this case, the Assertion \mathcal{B} is vacuously true (since no $\xi \in \Xi$ exists), and therefore Theorem 1 claims that in this case Assertion \mathcal{A} is true as well; see Corollary 3 for details).

Before we come to proving this theorem, let us remark why exactly this Theorem 1 generalizes the Theorem 1 of [2]. In fact, if p is a prime and $n \in \mathbb{N}$, then the big Witt polynomial w_{p^n} (the one that we have defined above, not the one called w_{p^n} in [2]) is

$$\begin{split} w_{p^n} &= \sum_{d \mid p^n} dX_d^{p^n/d} = \sum_{d \in \mathbb{N}_{\mid p^n}} dX_d^{p^n/d} \\ &= \sum_{k=0}^n p^k X_{p^k}^{p^n/p^k} \qquad \left(\text{since } \mathbb{N}_{\mid p^n} = \left\{p^0, p^1, ..., p^n\right\} \text{ (because p is a prime)}\right) \\ &= \sum_{k=0}^n p^k X_{p^k}^{p^{n-k}} \qquad \left(\text{since } p^n/p^k = p^{n-k}\right), \end{split}$$

and therefore this polynomial w_{p^n} is equal to the polynomial denoted by w_n in $[2]^4$, up to a renaming of variables (in fact, if we rename the variable X_{p^k} as X_k for every $k \in \mathbb{N}$, then $w_{p^n} = \sum_{k=0}^n p^k X_{p^k}^{p^{n-k}}$ becomes $w_{p^n} = \sum_{k=0}^n p^k X_k^{p^{n-k}}$, which is exactly the formula defining w_n in [2]). Hence, in the case when $m = p^n$ for a prime p and an integer $n \in \mathbb{N}$, and when $\Xi = (X_0, X_1, X_2, ...)$, the Assertions \mathcal{A} and \mathcal{B} of our Theorem 1 are identical with the Assertions \mathcal{A} and \mathcal{B} of the Theorem 1 in [2], and therefore our Theorem 1 yields the Theorem 1 in [2].

Before we come to the proof of Theorem 1, let us state a simple fact: If Ξ is a family of symbols, then

$$\frac{\partial}{\partial \xi} P^g = g P^{g-1} \cdot \left(\frac{\partial}{\partial \xi} g \right) \tag{1}$$

for every $\xi \in \Xi$, every $P \in \mathbb{Z}[\Xi]$ and every positive integer g. (This can be proven either using the chain rule for differentiation, or by induction on g using the Leibniz rule.)

Proof of Theorem 1. Proof of the implication $\mathcal{A} \Longrightarrow \mathcal{B}$: Assume that the Assertion \mathcal{A} holds. Then, there exists a family $(\tau_d)_{d \in \mathbb{N}_{|m}} \in (\mathbb{Z}[\Xi])^{\mathbb{N}_{|m}}$ such that $\tau = w_m\left((\tau_d)_{d \in \mathbb{N}_{|m}}\right)$. Hence,

$$\tau = w_m \left((\tau_d)_{d \in \mathbb{N}_{|m}} \right) = \sum_{d|m} d\tau_d^{m/d},$$

⁴Let us remind ourselves once again that this is *not* the polynomial that we call w_n in this present note.

and thus every $\xi \in \Xi$ satisfies

$$\frac{\partial}{\partial \xi} \tau = \frac{\partial}{\partial \xi} \sum_{d \mid m} d\tau_d^{m/d} = \sum_{d \mid m} d \qquad \underbrace{\frac{\partial}{\partial \xi} \tau_d^{m/d}}_{=(m/d)\tau_d^{m/d-1} \cdot \left(\frac{\partial}{\partial \xi} \tau_d\right)}_{=(m/d)\tau_d^{m/d-1} \cdot \left(\frac{\partial}{\partial \xi} \tau_d\right)} = \sum_{d \mid m} \underbrace{\frac{d \left(m/d\right)}{\int_{\Xi} \tau_d \tau_d^{m/d-1}}}_{(\text{by (1), applied to } P = \tau_d \text{ and } g = m/d)} = m \underbrace{\sum_{d \mid m} \tau_d^{m/d-1} \cdot \left(\frac{\partial}{\partial \xi} \tau_d\right)}_{\in \mathbb{Z}[\Xi]} \in m\mathbb{Z}[\Xi],$$

so that Assertion \mathcal{B} holds. Thus, we have shown that whenever Assertion \mathcal{A} holds, Assertion \mathcal{B} must hold as well. This proves the implication $\mathcal{A} \Longrightarrow \mathcal{B}$.

Proof of the implication $\mathcal{B} \Longrightarrow \mathcal{A}$: Let us assume that Assertion \mathcal{B} holds. Thus, we have $\frac{\partial}{\partial \xi} \tau \in m\mathbb{Z}[\Xi]$ for every $\xi \in \Xi$. If we rename ξ as η here, this rewrites as follows:

We have $\frac{\partial}{\partial \eta} \tau \in m\mathbb{Z}[\Xi]$ for every $\eta \in \Xi$.

Let us introduce some notation:

For every family $j \in \mathbb{N}^{\Xi}$ and every $\xi \in \Xi$, let us denote by j_{ξ} the ξ -th member of the family j. Then, every family $j \in \mathbb{N}^{\Xi}$ satisfies $j = (j_{\xi})_{\xi \in \Xi}$.

Let $\mathbb{N}_{\text{fin}}^{\Xi}$ denote the set $\{j \in \mathbb{N}^{\Xi} \mid \text{ only finitely many } \xi \in \Xi \text{ satisfy } j_{\xi} \neq 0\}$. For every $j \in \mathbb{N}_{\text{fin}}^{\Xi}$, let Ξ^{j} denote the monomial $\prod_{\xi \in \Xi} \xi^{j_{\xi}}$. For every polynomial $P \in \mathbb{Z}[\Xi]$, let

 $\operatorname{coeff}_j P$ denote the coefficient of P before this monomial Ξ^j . Then, every polynomial $P \in \mathbb{Z}[\Xi]$ satisfies

$$P = \sum_{j \in \mathbb{N}_{\text{fin}}^{\Xi}} \operatorname{coeff}_{j} P \cdot \Xi^{j}. \tag{2}$$

(This sum $\sum_{j \in \mathbb{N}_{\text{fin}}^\Xi} \operatorname{coeff}_j P \cdot \Xi^j$ has only finitely many nonzero summands, since every polynomial has only finitely many nonzero coefficients.)

For every $n \in \mathbb{N}$ and every $j \in \mathbb{N}_{\text{fin}}^{\Xi}$, let us denote by $nj \in \mathbb{N}_{\text{fin}}^{\Xi}$ the family $(nj_{\xi})_{\xi \in \Xi}$. Clearly, $1j = (1j_{\xi})_{\xi \in \Xi} = (j_{\xi})_{\xi \in \Xi} = j$.

If $k \in \mathbb{N}_{\text{fin}}^{\Xi}$ and $n \in \mathbb{N}$, then we write $n \mid k$ if and only if $(n \mid k_{\xi} \text{ for every } \xi \in \Xi)$. If $k \in \mathbb{N}_{\text{fin}}^{\Xi}$ and $n \in \mathbb{N}$ are such that $n \mid k$, then we can define a family $k / n \in \mathbb{N}_{\text{fin}}^{\Xi}$ by $k / n = \left(\frac{k_{\xi}}{n}\right)_{\xi \in \Xi}$ (indeed, $\frac{k_{\xi}}{n} \in \mathbb{N}$ for every $\xi \in \Xi$, since $n \mid k$ yields $n \mid k_{\xi}$). This

family k / n clearly satisfies $n(k / n) = \left(n \frac{k_{\xi}}{n}\right)_{\xi \in \Xi} = (k_{\xi})_{\xi \in \Xi} = k$. Also, it is obvious

that
$$k \diagup 1 = \left(\frac{k_{\xi}}{1}\right)_{\xi \in \Xi} = (k_{\xi})_{\xi \in \Xi} = k.$$

Now, according to (2), our polynomial τ satisfies $\tau = \sum_{j \in \mathbb{N}_{\text{fin}}^\Xi} \text{coeff}_j \, \tau \cdot \Xi^j$. Thus, for

every $\eta \in \Xi$, we have

$$\frac{\partial}{\partial \eta} \tau = \frac{\partial}{\partial \eta} \sum_{j \in \mathbb{N}_{\text{fin}}^{\Xi}} \operatorname{coeff}_{j} \tau \cdot \Xi^{j} = \sum_{j \in \mathbb{N}_{\text{fin}}^{\Xi}} \operatorname{coeff}_{j} \tau \cdot \frac{\partial}{\partial \eta} \Xi^{j} = \sum_{j \in \mathbb{N}_{\text{fin}}^{\Xi}} \operatorname{coeff}_{j} \tau \cdot \frac{\partial}{\partial \eta} \left(\eta^{j\eta} \prod_{\xi \in \Xi \setminus \{\eta\}} \xi^{j\xi} \right)$$

$$= \sum_{j \in \mathbb{N}_{\text{fin}}^{\Xi}} \operatorname{coeff}_{j} \tau \cdot \left(\frac{\partial}{\partial \eta} \eta^{j\eta} \right) \prod_{\xi \in \Xi \setminus \{\eta\}} \xi^{j\xi} = \sum_{j \in \mathbb{N}_{\text{fin}}^{\Xi}} \operatorname{coeff}_{j} \tau \cdot \left\{ \begin{array}{c} j_{\eta} \eta^{j\eta-1}, \text{ if } j_{\eta} > 0; \\ 0, \text{ if } j_{\eta} = 0 \end{array} \right.$$

$$= \left\{ \begin{array}{c} j_{\eta} \eta^{j\eta-1}, \text{ if } j_{\eta} > 0; \\ 0, \text{ if } j_{\eta} = 0 \end{array} \right.$$

$$= \sum_{j \in \mathbb{N}_{\text{fin}}^{\Xi}} \operatorname{coeff}_{j} \tau \cdot \left\{ \begin{array}{c} j_{\eta} \eta^{j\eta-1}, \text{ if } j_{\eta} > 0; \\ 0, \text{ if } j_{\eta} = 0 \end{array} \right.$$

$$= \sum_{j \in \mathbb{N}_{\text{fin}}^{\Xi}} \operatorname{coeff}_{j} \tau \cdot \left\{ \begin{array}{c} j_{\eta} \eta^{j\eta-1}, \text{ if } j_{\eta} > 0; \\ 0, \text{ if } j_{\eta} = 0 \end{array} \right.$$

$$= \sum_{j \in \mathbb{N}_{\text{fin}}^{\Xi}} \operatorname{coeff}_{j} \tau \cdot j_{\eta} \eta^{j\eta-1}, \text{ since}$$

$$= \sum_{j \in \mathbb{N}_{\text{fin}}^{\Xi}} \operatorname{coeff}_{j} \tau \cdot j_{\eta} \eta^{j\eta-1} \prod_{\xi \in \Xi \setminus \{\eta\}} \xi^{j\xi} + \sum_{j \in \mathbb{N}_{\text{fin}}^{\Xi}} \operatorname{coeff}_{j} \tau \cdot 0 \prod_{\xi \in \Xi \setminus \{\eta\}} \xi^{j\xi} = \sum_{j \in \mathbb{N}_{\text{fin}}^{\Xi}} \operatorname{coeff}_{j} \tau \cdot j_{\eta} \eta^{j\eta-1} \prod_{\xi \in \Xi \setminus \{\eta\}} \xi^{j\xi}.$$

$$= \sum_{j \in \mathbb{N}_{\text{fin}}^{\Xi}} \operatorname{coeff}_{j} \tau \cdot j_{\eta} \eta^{j\eta-1} \prod_{\xi \in \Xi \setminus \{\eta\}} \xi^{j\xi} + \sum_{j \in \mathbb{N}_{\text{fin}}^{\Xi}} \operatorname{coeff}_{j} \tau \cdot 0 \prod_{\xi \in \Xi \setminus \{\eta\}} \xi^{j\xi} = \sum_{j \in \mathbb{N}_{\text{fin}}^{\Xi}} \operatorname{coeff}_{j} \tau \cdot j_{\eta} \eta^{j\eta-1} \prod_{\xi \in \Xi \setminus \{\eta\}} \xi^{j\xi}.$$

$$= \sum_{j \in \mathbb{N}_{\text{fin}}^{\Xi}} \operatorname{coeff}_{j} \tau \cdot j_{\eta} \eta^{j\eta-1} \prod_{\xi \in \Xi \setminus \{\eta\}} \xi^{j\xi} + \sum_{j \in \mathbb{N}_{\text{fin}}^{\Xi}} \operatorname{coeff}_{j} \tau \cdot 0 \prod_{j \in \mathbb{N}_{\text{fin}}^{\Xi}} \operatorname{coeff}_{j} \tau \cdot j_{\eta} \eta^{j\eta-1} \prod_{\xi \in \Xi \setminus \{\eta\}} \xi^{j\xi}.$$

$$= \sum_{j \in \mathbb{N}_{\text{fin}}^{\Xi}} \operatorname{coeff}_{j} \tau \cdot j_{\eta} \eta^{j\eta-1} \prod_{\xi \in \Xi \setminus \{\eta\}} \xi^{j\xi}.$$

Now, define a map

$$F: \left\{ j \in \mathbb{N}_{\text{fin}}^{\Xi} \mid j_{\eta} > 0 \right\} \to \mathbb{N}_{\text{fin}}^{\Xi} \qquad \text{defined by}$$

$$F\left(j \right) = \left(\left\{ \begin{array}{l} j_{\xi}, \text{ if } \xi \neq \eta; \\ j_{\eta} - 1, \text{ if } \xi = \eta \end{array} \right\}_{\xi \in \Xi} \qquad \text{for every } j \in \mathbb{N}_{\text{fin}}^{\Xi} \text{ satisfying } j_{\eta} > 0.$$

This map F is a bijection (in fact, this map leaves all members of the family j fixed, except of the η -th member, which is reduced by 1). By the definition of F, every $j \in \mathbb{N}_{\text{fin}}^{\Xi}$ satisfying $j_{\eta} > 0$ is mapped to $F(j) = \left(\begin{cases} j_{\xi}, & \text{if } \xi \neq \eta; \\ j_{\eta} - 1, & \text{if } \xi = \eta \end{cases} \right)_{\xi \in \Xi}$. Hence, for every $\xi \in \Xi$, we have $(F(j))_{\xi} = \begin{cases} j_{\xi}, & \text{if } \xi \neq \eta; \\ j_{\eta} - 1, & \text{if } \xi = \eta \end{cases}$. In other words, $(F(j))_{\xi} = j_{\xi}$ if

 $\xi \neq \eta$, and $(F(j))_{\eta} = j_{\eta} - 1$ (since $\eta = \eta$). Using these two equations, (3) becomes

$$\begin{split} \frac{\partial}{\partial \eta} \tau &= \sum_{\substack{j \in \mathbb{N}_{\mathrm{fin}}^{\Xi}; \\ j_{\eta} > 0}} \underbrace{\operatorname{coeff}_{j} \tau}_{=(F(j))_{\eta}} \cdot \underbrace{\frac{\eta^{j_{\eta}-1}}{\sup_{j=(F(j))_{\eta}+1} (\operatorname{since}\left(F(j))_{\eta}}}_{=(F(j))_{\eta}+1 (\operatorname{since}\left(F(j))_{\eta}=j_{\eta}-1\right)} \prod_{\substack{\xi \in \Xi \setminus \{\eta\} \\ \text{ since } \xi \in \Xi \setminus \{\eta\} \\ \text{ yields } \xi \neq \eta \text{ and thus}}} \underbrace{F(j))_{\xi}}_{\text{ yields } \xi \neq \eta \text{ and thus}} \\ &= \sum_{\substack{j \in \mathbb{N}_{\mathrm{fin}}^{\Xi}; \\ j_{\eta} > 0}} \operatorname{coeff}_{F^{-1}(F(j))} \tau \cdot \left((F(j))_{\eta} + 1 \right) \eta^{(F(j))_{\eta}} \prod_{\xi \in \Xi \setminus \{\eta\}} \underbrace{\xi^{(F(j))_{\xi}}}_{\text{ since the map } F \text{ is a bijection}} \right) \\ &= \sum_{\substack{j \in \mathbb{N}_{\mathrm{fin}}^{\Xi}; \\ j \in \mathbb{N}_{\mathrm{fin}}^{\Xi}}} \operatorname{coeff}_{F^{-1}(j)} \tau \cdot \left(j_{\eta} + 1 \right) \underbrace{\eta^{j_{\eta}}}_{\xi \in \Xi \setminus \{\eta\}} \underbrace{\xi^{j_{\xi}}}_{\xi \in \Xi \setminus \{\eta\}} \\ &= \sum_{\substack{j \in \mathbb{N}_{\mathrm{fin}}^{\Xi}; \\ \xi \in \Xi \setminus \{\eta\}}} \operatorname{coeff}_{F^{-1}(j)} \tau \cdot \left(j_{\eta} + 1 \right) \xi^{j}. \end{split}$$

Hence, for every $j \in \mathbb{N}_{\text{fin}}^{\Xi}$, we have $\operatorname{coeff}_{j}\left(\frac{\partial}{\partial \eta}\tau\right) = \operatorname{coeff}_{F^{-1}(j)}\tau \cdot (j_{\eta}+1)$. But we must have $\operatorname{coeff}_{j}\left(\frac{\partial}{\partial \eta}\tau\right) \in m\mathbb{Z}$ (since $\frac{\partial}{\partial \eta}\tau \in m\mathbb{Z}\left[\Xi\right]$). Thus,

$$\operatorname{coeff}_{F^{-1}(j)} \tau \cdot (j_{\eta} + 1) \in m\mathbb{Z}$$
 for every $j \in \mathbb{N}_{fin}^{\Xi}$. (4)

Thus, every $j \in \mathbb{N}_{\text{fin}}^{\Xi}$ and every $\eta \in \Xi$ satisfy

$$\operatorname{coeff}_{j} \tau \cdot j_{\eta} \in m\mathbb{Z} \tag{5}$$

(since (4), applied to F(j) instead of j, yields $\operatorname{coeff}_{F^{-1}(F(j))} \tau \cdot \left((F(j))_{\eta} + 1 \right) \in m\mathbb{Z}$, which simplifies to $\operatorname{coeff}_{j} \tau \cdot j_{\eta} \in m\mathbb{Z}$ because $F^{-1}(F(j))$ and because $\underbrace{(F(j))_{\eta}}_{=j_{\eta}-1} + 1 = \underbrace{(F(j))_{\eta}}_{=j_{\eta}-1} + 1 = \underbrace{(F(j))_{\eta}}_$

$$(j_{\eta} - 1) + 1 = j_{\eta}).$$

Now we recall the following result from [4]:

Theorem 2. Let Ξ be a family of symbols. Let N be a nest⁵, and let $(b_n)_{n\in\mathbb{N}}\in(\mathbb{Z}[\Xi])^N$ be a family of polynomials in the indeterminates Ξ . Then, the two following assertions \mathcal{C}_{Ξ} and \mathcal{D}_{Ξ} are equivalent:

Assertion C_{Ξ} : Every $n \in N$ and every $p \in PF n$ satisfies

$$b_{n \neq p}(\Xi^p) \equiv b_n \mod p^{v_p(n)} \mathbb{Z}[\Xi].$$

Assertion \mathcal{D}_{Ξ} : There exists a family $(x_n)_{n\in\mathbb{N}}\in(\mathbb{Z}[\Xi])^N$ of elements of $\mathbb{Z}[\Xi]$ such that

$$(b_n = w_n((x_k)_{k \in N}) \text{ for every } n \in N).$$

⁵We refer to [4] (Definition 5) for the definition of a nest. For our aims, it is only important to know that $\mathbb{N}_{|m|}$ is a nest.

This Theorem 2 is part of Theorem 13 in [4] (which claims that the assertions \mathcal{C}_{Ξ} , \mathcal{D}_{Ξ} , \mathcal{D}_{Ξ} , \mathcal{E}_{Ξ} , \mathcal{E}_{Ξ} , \mathcal{E}_{Ξ} , \mathcal{E}_{Ξ} and \mathcal{H}_{Ξ} are equivalent, where \mathcal{C}_{Ξ} and \mathcal{D}_{Ξ} are our assertions \mathcal{C}_{Ξ} and \mathcal{D}_{Ξ} , while \mathcal{D}'_{Ξ} , \mathcal{E}_{Ξ} , \mathcal{E}'_{Ξ} , \mathcal{F}_{Ξ} , \mathcal{G}_{Ξ} and \mathcal{H}_{Ξ} are some other assertions). Hence, for the proof of Theorem 2, we refer the reader to [4].

Now, let us continue with the proof of Theorem 1:

Let $N = \mathbb{N}_{|m}$. Then, every element n of N is a divisor of m, and hence $m/n \in \mathbb{N}$ for every $n \in N$.

We are going to apply Theorem 2 to the family $(b_n)_{n\in\mathbb{N}}\in(\mathbb{Z}[\Xi])^N$ defined by

$$b_n = \sum_{\substack{j \in \mathbb{N}_{\text{fin}}^{\Xi}; \\ (m/n)|j}} \operatorname{coeff}_j \tau \cdot \Xi^{j/(m/n)} \qquad \text{for every } n \in N.$$

Let $n \in N$ and every $p \in PF n$. The polynomial $b_{n/p}(\Xi^p)$ is the polynomial obtained from $b_{n/p}$ after replacing every indeterminate by its n-th power. Since

$$b_{n/p} = \sum_{\substack{j \in \mathbb{N}_{\text{fin}}^{\Xi}; \\ (m/(n/p))|j}} \operatorname{coeff}_{j} \tau \cdot \underbrace{\Xi^{j/(m/(n/p))}}_{= \prod_{\xi \in \Xi} \xi^{(j/(m/(n/p)))\xi}} = \sum_{\substack{j \in \mathbb{N}_{\text{fin}}^{\Xi}; \\ (m/(n/p))|j}} \operatorname{coeff}_{j} \tau \cdot \prod_{\xi \in \Xi} \xi^{(j/(m/(n/p)))\xi},$$

it must therefore be

$$b_{n/p}(\Xi^{p}) = \sum_{\substack{j \in \mathbb{N}_{\text{fin}}^{\Xi}; \\ (m/(n/p))|j}} \operatorname{coeff}_{j} \tau \cdot \prod_{\xi \in \Xi} (\xi^{p})^{(j/(m/(n/p)))}_{\xi} = \sum_{\substack{j \in \mathbb{N}_{\text{fin}}^{\Xi}; \\ (m/(n/p))|j}} \operatorname{coeff}_{j} \tau \cdot \prod_{\xi \in \Xi} (\xi^{p})^{j\xi n/(mp)}_{\xi^{p} n/m}$$

$$\left(\operatorname{since} (j/(m/(n/p)))_{\xi} = \frac{j\xi}{(m/n)/p} = j\xi n/(mp) \right)$$

$$= \sum_{\substack{j \in \mathbb{N}_{\text{fin}}^{\Xi}; \\ (m/(n/p))|j}} \operatorname{coeff}_{j} \tau \cdot \prod_{\xi \in \Xi} \xi^{j\xi n/m} = \sum_{\substack{j \in \mathbb{N}_{\text{fin}}^{\Xi}; \\ (pm/n)|j}} \operatorname{coeff}_{j} \tau \cdot \prod_{\xi \in \Xi} \xi^{j\xi n/m}$$

$$(6)$$

(since m/(n/p) = pm/n). Now, let us prove that

every $j \in \mathbb{N}_{\text{fin}}^{\Xi}$ which satisfies $(m/n) \mid j$ and $(pm/n) \nmid j$ must satisfy $\operatorname{coeff}_{j} \tau \equiv 0 \operatorname{mod} p^{v_{p}(n)} \mathbb{Z} [\Xi]$.

In fact, let $j \in \mathbb{N}_{\text{fin}}^{\Xi}$ be such that $(m/n) \mid j$ and $(pm/n) \nmid j$. We have to prove that $\operatorname{coeff}_{j} \tau \equiv 0 \operatorname{mod} p^{v_{p}(n)} \mathbb{Z}[\Xi]$. Assume, for the sake of contradiction, that the opposite holds, i. e. that $\operatorname{coeff}_{j} \tau \not\equiv 0 \operatorname{mod} p^{v_{p}(n)} \mathbb{Z}[\Xi]$. Then, $p^{v_{p}(n)} \nmid \operatorname{coeff}_{j} \tau$, so that $v_{p}(\operatorname{coeff}_{j} \tau) < v_{p}(n)$. Hence, $v_{p}(\operatorname{coeff}_{j} \tau) \leq v_{p}(n) - 1$ (since $v_{p}(\operatorname{coeff}_{j} \tau)$ and $v_{p}(n)$ are integers). But for every $\eta \in \Xi$, the relation (5) yields $m \mid \operatorname{coeff}_{j} \tau \cdot j_{\eta}$ and thus

$$v_p(m) \le v_p(\operatorname{coeff}_j \tau \cdot j_\eta) = \underbrace{v_p(\operatorname{coeff}_j \tau)}_{\le v_p(n)-1} + v_p(j_\eta) \le (v_p(n)-1) + v_p(j_\eta),$$

⁶Here, $w_n\left((x_k)_{k\in\mathbb{N}}\right)$ means $w_n\left((x_k)_{k\in\mathbb{N}_{|n}}\right)$ (because $\mathbb{N}_{|n}$ is a subset of N, since $n\in N$ and since n is a nest).

so that

$$v_{p}\left(j_{\eta}\right) \geq \underbrace{v_{p}\left(m\right)}_{=v_{p}\left(\left(m/n\right)\cdot n\right)} - \left(v_{p}\left(n\right) - 1\right) = v_{p}\left(m/n\right) + 1,$$

$$= v_{p}\left(\left(m/n\right)\cdot n\right)$$

$$= v_{p}\left(\left(m/n\right)\cdot n\right)$$

$$= v_{p}\left(\left(m/n\right)\cdot n\right)$$

and thus $p^{v_p(m/n)+1} \mid j_\eta$. On the other hand, $m/n \mid j_\eta$ (since $m/n \mid j$). Thus, $\operatorname{lcm}\left(p^{v_p(m/n)+1}, m/n\right) \mid j_\eta$. But $\operatorname{lcm}\left(p^{v_p(m/n)+1}, m/n\right) = pm/n$ (in fact, $\operatorname{gcd}\left(p^{v_p(m/n)+1}, m/n\right) = p^{v_p(m/n)}$, and thus the formula $\operatorname{lcm}\left(a,b\right) = \frac{ab}{\operatorname{gcd}\left(a,b\right)}$ (which holds for any two posi-

tive integers a and b) yields $\operatorname{lcm}\left(p^{v_p(m/n)+1}, m/n\right) = \frac{p^{v_p(m/n)+1} \cdot m/n}{p^{v_p(m/n)}} = pm/n$.

Hence, $(pm/n) \mid j_{\eta}$. Since this holds for any $\eta \in \Xi$, we have thus shown that $(pm/n) \mid j$, contradicting our assumption that $(pm/n) \nmid j$. This contradiction shows that our assumption that $\operatorname{coeff}_j \tau \not\equiv 0 \mod p^{v_p(n)} \mathbb{Z}[\Xi]$ was wrong. Thus, (7) is proven.

Now, every $n \in N$ and every $p \in PF n$ satisfy

$$b_{n} = \sum_{\substack{j \in \mathbb{N}_{\mathrm{fin}}^{\mathbb{N}}: \\ (m/n)|j}} \operatorname{coeff}_{j} \tau \cdot \Xi^{j/(m/n)} = \sum_{\substack{j \in \mathbb{N}_{\mathrm{fin}}^{\mathbb{N}}: \\ (m/n)|j: \\ (pm/n)|j: \\ = 0} \operatorname{coeff}_{j} \tau \cdot \Xi^{j/(m/n)} + \sum_{\substack{j \in \mathbb{N}_{\mathrm{fin}}^{\mathbb{N}}: \\ (m/n)|j: \\ (pm/n)|j: \\ (pm/n)|j: \\ (pm/n)|j: \\ (pm/n)|j: \\ = 0}} \operatorname{coeff}_{j} \tau \cdot \Xi^{j/(m/n)}$$

$$= \sum_{\substack{j \in \mathbb{N}_{\mathrm{fin}}^{\mathbb{N}}: \\ (pm/n)|j: \\ (pm/n)|j: \\ (pm/n)|j: \\ = 0}} \operatorname{coeff}_{j} \tau \cdot \Xi^{j/(m/n)}$$

$$= \sum_{\substack{j \in \mathbb{N}_{\mathrm{fin}}^{\mathbb{N}}: \\ (pm/n)|j: \\ (pm/n)|j: \\ (pm/n)|j: \\ = 0}} \operatorname{coeff}_{j} \tau \cdot \Xi^{j/(m/n)}$$

$$= \sum_{\substack{j \in \mathbb{N}_{\mathrm{fin}}^{\mathbb{N}}: \\ (pm/n)|j: \\ (pm/n)|j: \\ (pm/n)|j: \\ = 0}} \operatorname{coeff}_{j} \tau \cdot \prod_{\xi \in \Xi} \xi^{j/(m/n)} \times \prod_{\xi \in \Xi} \xi^{j/$$

Hence, we have shown that every $n \in N$ and every $p \in \operatorname{PF} n$ satisfies $b_{n/p}(\Xi^p) \equiv b_n \operatorname{mod} p^{v_p(n)}\mathbb{Z}[\Xi]$. Thus, Assertion \mathcal{C}_{Ξ} of Theorem 2 holds for our family $(b_n)_{n \in N} \in (\mathbb{Z}[\Xi])^N$. Consequently, Assertion \mathcal{D}_{Ξ} of Theorem 2 also holds for this family (since

⁷In fact, the number $\gcd\left(p^{v_p(m/n)+1},m/n\right)$ must be a power of p (since it is a divisor of $p^{v_p(m/n)+1}$, and p is a prime) and a divisor of m/n, so it must be a power of p which divides m/n, and thus it must be p^{κ} for some integer κ satisfying $0 \le \kappa \le v_p(m/n)$. Thus, $\gcd\left(p^{v_p(m/n)+1},m/n\right) = p^{\kappa} \mid p^{v_p(m/n)}$ (since $\kappa \le v_p(m/n)$). On the other hand, $p^{v_p(m/n)} \mid \gcd\left(p^{v_p(m/n)+1},m/n\right)$ (since $p^{v_p(m/n)}$ is a common divisor of $p^{v_p(m/n)+1}$ and m/n). Hence, $\gcd\left(p^{v_p(m/n)+1},m/n\right) = p^{v_p(m/n)}$, qed.

Theorem 2 states that assertions \mathcal{C}_{Ξ} and \mathcal{D}_{Ξ} are equivalent). In other words, there exists a family $(x_n)_{n\in\mathbb{N}}\in(\mathbb{Z}\left[\Xi\right])^N$ of elements of $\mathbb{Z}\left[\Xi\right]$ such that

$$(b_n = w_n((x_k)_{k \in N}) \text{ for every } n \in N).$$

Applying this to n = m, we obtain $b_m = w_m\left((x_k)_{k \in \mathbb{N}}\right) = w_m\left((x_k)_{k \in \mathbb{N}_{|m}}\right)$. Renaming the family $(x_k)_{k \in \mathbb{N}_{|m}}$ as $(\tau_d)_{d \in \mathbb{N}_{|m}}$, we can rewrite this as $b_m = w_m\left((\tau_d)_{d \in \mathbb{N}_{|m}}\right)$. Since

$$b_{m} = \sum_{\substack{j \in \mathbb{N}_{\text{fin}}^{\Xi}; \\ (m/m)|j}} \operatorname{coeff}_{j} \tau \cdot \underbrace{\Xi^{j/(m/m)}}_{=\Xi^{j/1}=\Xi^{j}} = \sum_{\substack{j \in \mathbb{N}_{\text{fin}}^{\Xi}; \\ (m/m)|j}} \operatorname{coeff}_{j} \tau \cdot \Xi^{j} = \sum_{\substack{j \in \mathbb{N}_{\text{fin}}^{\Xi} \\ (m/m)|j}} \operatorname{coeff}_{j} \tau \cdot \Xi^{j}$$

$$\left(\text{since every } j \in \mathbb{N}_{\text{fin}}^{\Xi} \text{ satisfies } (m/m) \mid j, \text{ because } m/m = 1 \right)$$

$$= \tau \qquad \text{(by (2))},$$

this rewrites as $\tau = w_m \left((\tau_d)_{d \in \mathbb{N}_{|m}} \right)$. Thus, Assertion \mathcal{A} holds. Hence, we have derived Assertion \mathcal{A} from Assertion \mathcal{B} . This proves the implication $\mathcal{B} \Longrightarrow \mathcal{A}$.

Altogether we have now proven the implications $\mathcal{A} \Longrightarrow \mathcal{B}$ and $\mathcal{B} \Longrightarrow \mathcal{A}$. We can thus conclude that the assertions \mathcal{A} and \mathcal{B} are equivalent. This proves Theorem 1.

We notice a trivial corollary from Theorem 1:

Corollary 3. Let
$$\tau \in \mathbb{Z}$$
 be an integer. Let $m \in \mathbb{N}$. Then, there exists a family $(\tau_d)_{d \in \mathbb{N}_{|m}} \in \mathbb{Z}^{\mathbb{N}_{|m}}$ of integers such that $\tau = w_m\left((\tau_d)_{d \in \mathbb{N}_{|m}}\right)$.

Proof of Corollary 3. Let Ξ be the empty family. Then, $\mathbb{Z}[\Xi] = \mathbb{Z}$ (in fact, $\mathbb{Z}[\Xi]$ is the ring of all polynomials in the indeterminates Ξ over \mathbb{Z} , but Ξ is the empty family, and polynomials in an empty family of indeterminates over \mathbb{Z} are the same as integers). Clearly, our "polynomial" $\tau \in \mathbb{Z}[\Xi]$ satisfies Assertion \mathcal{B} of Theorem 1 (in fact, Ξ is the empty family, so that there exists no $\xi \in \Xi$, and thus Assertion \mathcal{B} of Theorem 1 is vacuously true). Hence, it also satisfies Assertion \mathcal{A} of Theorem 1 (because Theorem 1 states that assertions \mathcal{A} and \mathcal{B} are equivalent). In other words, there exists a family $(\tau_d)_{d\in\mathbb{N}_{|m}} \in (\mathbb{Z}[\Xi])^{\mathbb{N}_{|m}}$ such that $\tau = w_m \left((\tau_d)_{d\in\mathbb{N}_{|m}} \right)$. Since $\mathbb{Z}[\Xi] = \mathbb{Z}$, this yields the assertion of Corollary 3. Thus, Corollary 3 is proven.

References

- [1] Michiel Hazewinkel, Witt vectors. Part 1, revised version: 20 April 2008.
- [2] Darij Grinberg, Witt#2: Polynomials that can be written as w_n .

http://www.cip.ifi.lmu.de/~grinberg/algebra/witt2.pdf

- [3] Darij Grinberg, Witt#3: Ghost component computations.
- http://www.cip.ifi.lmu.de/~grinberg/algebra/witt3.pdf
 - [4] Darij Grinberg, Witt#5: Around the integrality criterion 9.93.

http://www.cip.ifi.lmu.de/~grinberg/algebra/witt5.pdf