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Witt#5a: Polynomials that can be written as big wn
[completed, not proofread]

The point of this note is to generalize the property of p-adic Witt polynomials that
appeared as Theorem 1 in [2] to big Witt polynomials.

First, let us introduce the notation that we are going to use.

Definition 1. Let P denote the set of all primes. (A prime means an
integer n > 1 such that the only divisors of n are n and 1. The word
”divisor” means ”positive divisor”.)

Definition 2. We denote the set {0, 1, 2, ...} by N, and we denote the set
{1, 2, 3, ...} by N+. (Note that our notations conflict with the notations
used by Hazewinkel in [1]; in fact, Hazewinkel uses the letter N for the set
{1, 2, 3, ...}, which we denote by N+.)

Definition 3. Let Ξ be a family of symbols. We consider the polynomial
ring Q [Ξ] (this is the polynomial ring over Q in the indeterminates Ξ; in
other words, we use the symbols from Ξ as variables for the polynomials)
and its subring Z [Ξ] (this is the polynomial ring over Z in the indetermi-
nates Ξ). 1. For any n ∈ N, let Ξn mean the family of the n-th powers of
all elements of our family Ξ (considered as elements of Z [Ξ]) 2. (There-
fore, whenever P ∈ Q [Ξ] is a polynomial, then P (Ξn) is the polynomial
obtained from P after replacing every indeterminate by its n-th power.3)

Note that if Ξ is the empty family, then Q [Ξ] simply is the ring Q, and
Z [Ξ] simply is the ring Z.

Definition 4. For any integerm, the set {n ∈ N+ | (n | m)} will be denoted
by N|m. This set N|m is the set of all divisors of m.

Definition 5. If N is a set, we shall denote by XN the family (Xn)n∈N
of distinct symbols. Hence, Z [XN ] is the ring Z

[
(Xn)n∈N

]
(this is the

polynomial ring over Z in |N | indeterminates, where the indeterminates are
labelled Xn, where n runs through the elements of the set N). For instance,
Z
[
XN+

]
is the polynomial ring Z [X1, X2, X3, ...] (since N+ = {1, 2, 3, ...}),

and Z
[
X{1,2,3,5,6,10}

]
is the polynomial ring Z [X1, X2, X3, X5, X6, X10].

If A is a commutative ring with unity, if N is a set, if (xd)d∈N ∈ AN is a
family of elements of A indexed by elements of N , and if P ∈ Z [XN ], then

1For instance, Ξ can be (X0, X1, X2, ...), in which case Z [Ξ] means Z [X0, X1, X2, ...].
Or, Ξ can be (X0, X1, X2, ...;Y0, Y1, Y2, ...;Z0, Z1, Z2, ...), in which case Z [Ξ] means
Z [X0, X1, X2, ...;Y0, Y1, Y2, ...;Z0, Z1, Z2, ...].

2In other words, if Ξ = (ξi)i∈I , then we define Ξn as (ξni )i∈I . For instance, if Ξ = (X0, X1, X2, ...),
then Ξn = (Xn

0 , X
n
1 , X

n
2 , ...). If Ξ = (X0, X1, X2, ...;Y0, Y1, Y2, ...;Z0, Z1, Z2, ...), then Ξn =

(Xn
0 , X

n
1 , X

n
2 , ...;Y

n
0 , Y

n
1 , Y

n
2 , ...;Z

n
0 , Z

n
1 , Z

n
2 , ...).

3For instance, if Ξ = (X0, X1, X2, ...) and P (Ξ) = (X0 +X1)
2 − 2X3 + 1, then P (Ξn) =

(Xn
0 +Xn

1 )
2 − 2Xn

3 + 1.
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we denote by P
(
(xd)d∈N

)
the element of A that we obtain if we substitute xd

for Xd for every d ∈ N into the polynomial P . (For instance, if N = {1, 2, 5}
and P = X2

1 + X2X5 − X5, and if x1 = 13, x2 = 37 and x5 = 666, then
P
(
(xd)d∈N

)
= 132 + 37 · 666− 666.)

Definition 6. For any n ∈ N+, we define a polynomial wn ∈ Z
[
XN|n

]
by

wn =
∑
d|n

dXn�d
d .

Hence, for every commutative ringA with unity, and for any family (xk)k∈N|n ∈
AN|n of elements of A, we have

wn

(
(xk)k∈N|n

)
=
∑
d|n

dxn�dd .

The polynomials w1, w2, w3, ... are called the big Witt polynomials or,
simply, the Witt polynomials.

Caution: These polynomials w1, w2, w3, ... are referred to as w1, w2, w3, ...
most of the time in [1] (beginning with Section 9). However, in Sections 5-8
of [1], Hazewinkel uses the notations w1, w2, w3, ... for some different poly-
nomials (the so-called p-adic Witt polynomials, defined by formula (5.1) in
[1]), which are not the same as our polynomials w1, w2, w3, ... (though they
are related to them: namely, the polynomial denoted by wk in Sections 5-8
of [1] is the polynomial that we are denoting by wpk here after a renaming
of variables ; on the other hand, the polynomial that we call wk here is
something completely different).

Definition 7. Let n ∈ Z \ {0}. Let p ∈ P. We denote by vp (n) the largest
nonnegative integer m satisfying pm | n. Clearly, pvp(n) | n and vp (n) ≥ 0.
Besides, vp (n) = 0 if and only if p - n.
We also set vp (0) = ∞; this way, our definition of vp (n) extends to all
n ∈ Z (and not only to n ∈ Z \ {0}).
Definition 8. Let n ∈ N+. We denote by PFn the set of all prime divisors
of n. By the unique factorization theorem, the set PFn is finite and satisfies
n =

∏
p∈PFn

pvp(n).

Let us now formulate our main result:

Theorem 1. Let Ξ be a family of symbols. Let τ ∈ Z [Ξ] be a polynomial.
Let m ∈ N. Then, the following two assertions A and B are equivalent:

Assertion A: There exists a family (τd)d∈N|m ∈ (Z [Ξ])N|m such that τ =

wm

(
(τd)d∈N|m

)
.

Assertion B: We have
∂

∂ξ
τ ∈ mZ [Ξ] for every ξ ∈ Ξ.
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Remarks: 1) Here,
∂

∂ξ
τ means the derivative of the polynomial τ ∈ Z [Ξ]

with respect to the variable ξ.

2) Theorem 1 makes sense even in the case when Ξ is the empty family
(in this case, the Assertion B is vacuously true (since no ξ ∈ Ξ exists), and
therefore Theorem 1 claims that in this case Assertion A is true as well;
see Corollary 3 for details).

Before we come to proving this theorem, let us remark why exactly this Theorem 1
generalizes the Theorem 1 of [2]. In fact, if p is a prime and n ∈ N, then the big Witt
polynomial wpn (the one that we have defined above, not the one called wpn in [2]) is

wpn =
∑
d|pn

dXpn�d
d =

∑
d∈N|pn

dXpn�d
d

=
n∑
k=0

pkXpn�pk
pk

(
since N|pn =

{
p0, p1, ..., pn

}
(because p is a prime)

)
=

n∑
k=0

pkXpn−k

pk

(
since pn�pk = pn−k

)
,

and therefore this polynomial wpn is equal to the polynomial denoted by wn in [2]4,
up to a renaming of variables (in fact, if we rename the variable Xpk as Xk for every

k ∈ N, then wpn =
n∑
k=0

pkXpn−k

pk
becomes wpn =

n∑
k=0

pkXpn−k

k , which is exactly the

formula defining wn in [2]). Hence, in the case when m = pn for a prime p and an
integer n ∈ N, and when Ξ = (X0, X1, X2, ...), the Assertions A and B of our Theorem
1 are identical with the Assertions A and B of the Theorem 1 in [2], and therefore our
Theorem 1 yields the Theorem 1 in [2].

Before we come to the proof of Theorem 1, let us state a simple fact: If Ξ is a
family of symbols, then

∂

∂ξ
P g = gP g−1 ·

(
∂

∂ξ
g

)
(1)

for every ξ ∈ Ξ, every P ∈ Z [Ξ] and every positive integer g. (This can be proven
either using the chain rule for differentiation, or by induction on g using the Leibniz
rule.)

Proof of Theorem 1. Proof of the implication A =⇒ B: Assume that the As-
sertion A holds. Then, there exists a family (τd)d∈N|m ∈ (Z [Ξ])N|m such that τ =

wm

(
(τd)d∈N|m

)
. Hence,

τ = wm

(
(τd)d∈N|m

)
=
∑
d|m

dτm�dd ,

4Let us remind ourselves once again that this is not the polynomial that we call wn in this present
note.
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and thus every ξ ∈ Ξ satisfies

∂

∂ξ
τ =

∂

∂ξ

∑
d|m

dτm�dd =
∑
d|m

d
∂

∂ξ
τm�dd︸ ︷︷ ︸

=(m�d)τm�d−1
d ·

 ∂

∂ξ
τd


(by (1), applied to P=τd and g=m�d)

=
∑
d|m

d (m�d)︸ ︷︷ ︸
=m

τm�d−1
d ·

(
∂

∂ξ
τd

)

= m
∑
d|m

τm�d−1
d ·

(
∂

∂ξ
τd

)
︸ ︷︷ ︸

∈Z[Ξ]

∈ mZ [Ξ] ,

so that Assertion B holds. Thus, we have shown that whenever Assertion A holds,
Assertion B must hold as well. This proves the implication A =⇒ B.

Proof of the implication B =⇒ A: Let us assume that Assertion B holds. Thus, we

have
∂

∂ξ
τ ∈ mZ [Ξ] for every ξ ∈ Ξ. If we rename ξ as η here, this rewrites as follows:

We have
∂

∂η
τ ∈ mZ [Ξ] for every η ∈ Ξ.

Let us introduce some notation:
For every family j ∈ NΞ and every ξ ∈ Ξ, let us denote by jξ the ξ-th member of

the family j. Then, every family j ∈ NΞ satisfies j = (jξ)ξ∈Ξ.

Let NΞ
fin denote the set

{
j ∈ NΞ | only finitely many ξ ∈ Ξ satisfy jξ 6= 0

}
. For

every j ∈ NΞ
fin, let Ξj denote the monomial

∏
ξ∈Ξ

ξjξ . For every polynomial P ∈ Z [Ξ], let

coeffj P denote the coefficient of P before this monomial Ξj. Then, every polynomial
P ∈ Z [Ξ] satisfies

P =
∑
j∈NΞ

fin

coeffj P · Ξj. (2)

(This sum
∑

j∈NΞ
fin

coeffj P · Ξj has only finitely many nonzero summands, since every

polynomial has only finitely many nonzero coefficients.)
For every n ∈ N and every j ∈ NΞ

fin, let us denote by nj ∈ NΞ
fin the family (njξ)ξ∈Ξ.

Clearly, 1j = (1jξ)ξ∈Ξ = (jξ)ξ∈Ξ = j.

If k ∈ NΞ
fin and n ∈ N, then we write n | k if and only if (n | kξ for every ξ ∈ Ξ).

If k ∈ NΞ
fin and n ∈ N are such that n | k, then we can define a family k�n ∈ NΞ

fin

by k�n =

(
kξ
n

)
ξ∈Ξ

(indeed,
kξ
n
∈ N for every ξ ∈ Ξ, since n | k yields n | kξ). This

family k�n clearly satisfies n (k�n) =

(
n
kξ
n

)
ξ∈Ξ

= (kξ)ξ∈Ξ = k. Also, it is obvious

that k�1 =

(
kξ
1

)
ξ∈Ξ

= (kξ)ξ∈Ξ = k.

Now, according to (2), our polynomial τ satisfies τ =
∑

j∈NΞ
fin

coeffj τ · Ξj. Thus, for

4



every η ∈ Ξ, we have

∂

∂η
τ =

∂

∂η

∑
j∈NΞ

fin

coeffj τ · Ξj =
∑
j∈NΞ

fin

coeffj τ ·
∂

∂η
Ξj =

∑
j∈NΞ

fin

coeffj τ ·
∂

∂η

ηjη ∏
ξ∈Ξ\{η}

ξjξ


since Ξj =

∏
ξ∈Ξ

ξjξ = ηjη
∏

ξ∈Ξ\{η}

ξjξ


=
∑
j∈NΞ

fin

coeffj τ ·
(
∂

∂η
ηjη
)

︸ ︷︷ ︸
=

 jηη
jη−1, if jη > 0;
0, if jη = 0

∏
ξ∈Ξ\{η}

ξjξ =
∑
j∈NΞ

fin

coeffj τ ·
{
jηη

jη−1, if jη > 0;
0, if jη = 0

∏
ξ∈Ξ\{η}

ξjξ

=
∑
j∈NΞ

fin;
jη>0

coeffj τ ·
{
jηη

jη−1, if jη > 0;
0, if jη = 0︸ ︷︷ ︸

=jηη
jη−1, since
jη>0

∏
ξ∈Ξ\{η}

ξjξ +
∑
j∈NΞ

fin;
jη=0

coeffj τ ·
{
jηη

jη−1, if jη > 0;
0, if jη = 0︸ ︷︷ ︸

=0, since jη=0

∏
ξ∈Ξ\{η}

ξjξ

=
∑
j∈NΞ

fin;
jη>0

coeffj τ · jηηjη−1
∏

ξ∈Ξ\{η}

ξjξ +
∑
j∈NΞ

fin;
jη=0

coeffj τ · 0
∏

ξ∈Ξ\{η}

ξjξ

︸ ︷︷ ︸
=0

=
∑
j∈NΞ

fin;
jη>0

coeffj τ · jηηjη−1
∏

ξ∈Ξ\{η}

ξjξ .

(3)

Now, define a map

F :
{
j ∈ NΞ

fin | jη > 0
}
→ NΞ

fin defined by

F (j) =

({
jξ, if ξ 6= η;

jη − 1, if ξ = η

)
ξ∈Ξ

for every j ∈ NΞ
fin satisfying jη > 0.

This map F is a bijection (in fact, this map leaves all members of the family j fixed,
except of the η-th member, which is reduced by 1). By the definition of F , every

j ∈ NΞ
fin satisfying jη > 0 is mapped to F (j) =

({
jξ, if ξ 6= η;

jη − 1, if ξ = η

)
ξ∈Ξ

. Hence, for

every ξ ∈ Ξ, we have (F (j))ξ =

{
jξ, if ξ 6= η;

jη − 1, if ξ = η
. In other words, (F (j))ξ = jξ if

5



ξ 6= η, and (F (j))η = jη − 1 (since η = η). Using these two equations, (3) becomes

∂

∂η
τ =

∑
j∈NΞ

fin;
jη>0

coeffj τ︸ ︷︷ ︸
=coeffF−1(F (j)) τ

· jη︸︷︷︸
=(jη−1)+1
=(F (j))η+1

ηjη−1︸ ︷︷ ︸
=η

(F (j))η

(since (F (j))η=jη−1)

∏
ξ∈Ξ\{η}

ξjξ︸︷︷︸
=ξ

(F (j))ξ

(since ξ∈Ξ\{η}
yields ξ 6=η and thus

(F (j))ξ=jξ)

=
∑
j∈NΞ

fin;
jη>0

coeffF−1(F (j)) τ ·
(

(F (j))η + 1
)
η(F (j))η

∏
ξ∈Ξ\{η}

ξ(F (j))ξ

=
∑
j∈NΞ

fin

coeffF−1(j) τ · (jη + 1) ηjη
∏

ξ∈Ξ\{η}

ξjξ︸ ︷︷ ︸
=

∏
ξ∈Ξ

ξ
jξ=ξj

(
here we substituted F (j) for j in the sum,

since the map F is a bijection

)

=
∑
j∈NΞ

fin

coeffF−1(j) τ · (jη + 1) ξj.

Hence, for every j ∈ NΞ
fin, we have coeffj

(
∂

∂η
τ

)
= coeffF−1(j) τ · (jη + 1). But we must

have coeffj

(
∂

∂η
τ

)
∈ mZ (since

∂

∂η
τ ∈ mZ [Ξ]). Thus,

coeffF−1(j) τ · (jη + 1) ∈ mZ for every j ∈ NΞ
fin. (4)

Thus, every j ∈ NΞ
fin and every η ∈ Ξ satisfy

coeffj τ · jη ∈ mZ (5)

(since (4), applied to F (j) instead of j, yields coeffF−1(F (j)) τ ·
(

(F (j))η + 1
)
∈ mZ,

which simplifies to coeffj τ · jη ∈ mZ because F−1 (F (j)) and because (F (j))η︸ ︷︷ ︸
=jη−1

+1 =

(jη − 1) + 1 = jη).
Now we recall the following result from [4]:

Theorem 2. Let Ξ be a family of symbols. Let N be a nest5, and let
(bn)n∈N ∈ (Z [Ξ])N be a family of polynomials in the indeterminates Ξ.
Then, the two following assertions CΞ and DΞ are equivalent:

Assertion CΞ: Every n ∈ N and every p ∈ PFn satisfies

bn�p (Ξp) ≡ bn mod pvp(n)Z [Ξ] .

Assertion DΞ: There exists a family (xn)n∈N ∈ (Z [Ξ])N of elements of Z [Ξ]
such that (

bn = wn
(
(xk)k∈N

)
for every n ∈ N

)
.

5We refer to [4] (Definition 5) for the definition of a nest. For our aims, it is only important to
know that N|m is a nest.

6



6

This Theorem 2 is part of Theorem 13 in [4] (which claims that the assertions CΞ,
DΞ, D′Ξ, EΞ, E ′Ξ, FΞ, GΞ and HΞ are equivalent, where CΞ and DΞ are our assertions CΞ

and DΞ, while D′Ξ, EΞ, E ′Ξ, FΞ, GΞ and HΞ are some other assertions). Hence, for the
proof of Theorem 2, we refer the reader to [4].

Now, let us continue with the proof of Theorem 1:
Let N = N|m. Then, every element n of N is a divisor of m, and hence m�n ∈ N

for every n ∈ N .
We are going to apply Theorem 2 to the family (bn)n∈N ∈ (Z [Ξ])N defined by

bn =
∑
j∈NΞ

fin;
(m�n)|j

coeffj τ · Ξj�(m�n) for every n ∈ N.

Let n ∈ N and every p ∈ PFn. The polynomial bn�p (Ξp) is the polynomial
obtained from bn�p after replacing every indeterminate by its n-th power. Since

bn�p =
∑
j∈NΞ

fin;
(m�(n�p))|j

coeffj τ · Ξj�(m�(n�p))︸ ︷︷ ︸
=

∏
ξ∈Ξ

ξ
(j�(m�(n�p)))ξ

=
∑
j∈NΞ

fin;
(m�(n�p))|j

coeffj τ ·
∏
ξ∈Ξ

ξ(j�(m�(n�p)))ξ ,

it must therefore be

bn�p (Ξp) =
∑
j∈NΞ

fin;
(m�(n�p))|j

coeffj τ ·
∏
ξ∈Ξ

(ξp)(j�(m�(n�p)))ξ =
∑
j∈NΞ

fin;
(m�(n�p))|j

coeffj τ ·
∏
ξ∈Ξ

(ξp)jξn�(mp)︸ ︷︷ ︸
=ξ

p·jξn�(mp)
=ξ

jξn�m(
since (j� (m� (n�p)))ξ =

jξ
(m�n)�p

= jξn� (mp)

)
=

∑
j∈NΞ

fin;
(m�(n�p))|j

coeffj τ ·
∏
ξ∈Ξ

ξjξn�m =
∑
j∈NΞ

fin;
(pm�n)|j

coeffj τ ·
∏
ξ∈Ξ

ξjξn�m (6)

(since m� (n�p) = pm�n). Now, let us prove that

every j ∈ NΞ
fin which satisfies (m�n) | j and (pm�n) - j must satisfy coeffj τ ≡ 0 mod pvp(n)Z [Ξ] .

(7)
In fact, let j ∈ NΞ

fin be such that (m�n) | j and (pm�n) - j. We have to prove
that coeffj τ ≡ 0 mod pvp(n)Z [Ξ]. Assume, for the sake of contradiction, that the op-
posite holds, i. e. that coeffj τ 6≡ 0 mod pvp(n)Z [Ξ]. Then, pvp(n) - coeffj τ , so that
vp (coeffj τ) < vp (n). Hence, vp (coeffj τ) ≤ vp (n)− 1 (since vp (coeffj τ) and vp (n) are
integers). But for every η ∈ Ξ, the relation (5) yields m | coeffj τ · jη and thus

vp (m) ≤ vp (coeffj τ · jη) = vp (coeffj τ)︸ ︷︷ ︸
≤vp(n)−1

+vp (jη) ≤ (vp (n)− 1) + vp (jη) ,

6Here, wn
(
(xk)k∈N

)
means wn

(
(xk)k∈N|n

)
(because N|n is a subset of N , since n ∈ N and since

n is a nest).
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so that
vp (jη) ≥ vp (m)︸ ︷︷ ︸

=vp((m�n)·n)
=vp(m�n)+vp(n)

− (vp (n)− 1) = vp (m�n) + 1,

and thus pvp(m�n)+1 | jη. On the other hand, m�n | jη (since m�n | j). Thus,
lcm

(
pvp(m�n)+1,m�n

)
| jη. But lcm

(
pvp(m�n)+1,m�n

)
= pm�n (in fact, gcd

(
pvp(m�n)+1,m�n

)
=

pvp(m�n) 7, and thus the formula lcm (a, b) =
ab

gcd (a, b)
(which holds for any two posi-

tive integers a and b) yields lcm
(
pvp(m�n)+1,m�n

)
=

pvp(m�n)+1 ·m�n
pvp(m�n)

= pm�n).

Hence, (pm�n) | jη. Since this holds for any η ∈ Ξ, we have thus shown that
(pm�n) | j, contradicting our assumption that (pm�n) - j. This contradiction shows
that our assumption that coeffj τ 6≡ 0 mod pvp(n)Z [Ξ] was wrong. Thus, (7) is proven.

Now, every n ∈ N and every p ∈ PFn satisfy

bn =
∑
j∈NΞ

fin;
(m�n)|j

coeffj τ · Ξj�(m�n) =
∑
j∈NΞ

fin;
(m�n)|j;
(pm�n)|j

coeffj τ · Ξj�(m�n) +
∑
j∈NΞ

fin;
(m�n)|j;
(pm�n)-j

coeffj τ︸ ︷︷ ︸
≡0 mod pvp(n)Z[Ξ]

(by (7))

·Ξj�(m�n)

≡
∑
j∈NΞ

fin;
(m�n)|j;
(pm�n)|j

coeffj τ · Ξj�(m�n) +
∑
j∈NΞ

fin;
(m�n)|j;
(pm�n)-j

0 · Ξj�(m�n)

︸ ︷︷ ︸
=0

=
∑
j∈NΞ

fin;
(m�n)|j;
(pm�n)|j

coeffj τ · Ξj�(m�n)

=
∑
j∈NΞ

fin;
(pm�n)|j

coeffj τ · Ξj�(m�n)︸ ︷︷ ︸
=

∏
ξ∈Ξ

ξ
(j�(m�n))ξ(

since for every j ∈ NΞ
fin, the conditions ((m�n) | j and (pm�n) | j) are

equivalent, because if (pm�n) | j, then (m�n) | j

)
=

∑
j∈NΞ

fin;
(pm�n)|j

coeffj τ ·
∏
ξ∈Ξ

ξ(j�(m�n))ξ

=
∑
j∈NΞ

fin;
(pm�n)|j

coeffj τ ·
∏
ξ∈Ξ

ξjξn�m
(

since (j� (m�n))ξ =
jξ

m�n
= jξn�m

)

= bn�p (Ξp) mod pvp(n)Z [Ξ] (by (6)) .

Hence, we have shown that every n ∈ N and every p ∈ PFn satisfies bn�p (Ξp) ≡
bn mod pvp(n)Z [Ξ] . Thus, Assertion CΞ of Theorem 2 holds for our family (bn)n∈N ∈
(Z [Ξ])N . Consequently, Assertion DΞ of Theorem 2 also holds for this family (since

7In fact, the number gcd
(
pvp(m�n)+1,m�n

)
must be a power of p (since it is a divisor of

pvp(m�n)+1, and p is a prime) and a divisor of m�n, so it must be a power of p which divides m�n, and
thus it must be pκ for some integer κ satisfying 0 ≤ κ ≤ vp (m�n). Thus, gcd

(
pvp(m�n)+1,m�n

)
=

pκ | pvp(m�n) (since κ ≤ vp (m�n)). On the other hand, pvp(m�n) | gcd
(
pvp(m�n)+1,m�n

)
(since

pvp(m�n) is a common divisor of pvp(m�n)+1 and m�n). Hence, gcd
(
pvp(m�n)+1,m�n

)
= pvp(m�n),

qed.
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Theorem 2 states that assertions CΞ and DΞ are equivalent). In other words, there
exists a family (xn)n∈N ∈ (Z [Ξ])N of elements of Z [Ξ] such that(

bn = wn
(
(xk)k∈N

)
for every n ∈ N

)
.

Applying this to n = m, we obtain bm = wm
(
(xk)k∈N

)
= wm

(
(xk)k∈N|m

)
. Renaming

the family (xk)k∈N|m as (τd)d∈N|m , we can rewrite this as bm = wm

(
(τd)d∈N|m

)
. Since

bm =
∑
j∈NΞ

fin;
(m�m)|j

coeffj τ · Ξj�(m�m)︸ ︷︷ ︸
=Ξj�1=Ξj

=
∑
j∈NΞ

fin;
(m�m)|j

coeffj τ · Ξj =
∑
j∈NΞ

fin

coeffj τ · Ξj

(
since every j ∈ NΞ

fin satisfies (m�m) | j, because m�m = 1
)

= τ (by (2)) ,

this rewrites as τ = wm

(
(τd)d∈N|m

)
. Thus, Assertion A holds. Hence, we have derived

Assertion A from Assertion B. This proves the implication B =⇒ A.
Altogether we have now proven the implications A =⇒ B and B =⇒ A. We can

thus conclude that the assertions A and B are equivalent. This proves Theorem 1.
We notice a trivial corollary from Theorem 1:

Corollary 3. Let τ ∈ Z be an integer. Let m ∈ N. Then, there exists a

family (τd)d∈N|m ∈ Z
N|m of integers such that τ = wm

(
(τd)d∈N|m

)
.

Proof of Corollary 3. Let Ξ be the empty family. Then, Z [Ξ] = Z (in fact, Z [Ξ] is
the ring of all polynomials in the indeterminates Ξ over Z, but Ξ is the empty family,
and polynomials in an empty family of indeterminates over Z are the same as integers).
Clearly, our ”polynomial” τ ∈ Z [Ξ] satisfies Assertion B of Theorem 1 (in fact, Ξ is
the empty family, so that there exists no ξ ∈ Ξ, and thus Assertion B of Theorem 1 is
vacuously true). Hence, it also satisfies Assertion A of Theorem 1 (because Theorem
1 states that assertions A and B are equivalent). In other words, there exists a family

(τd)d∈N|m ∈ (Z [Ξ])N|m such that τ = wm

(
(τd)d∈N|m

)
. Since Z [Ξ] = Z, this yields the

assertion of Corollary 3. Thus, Corollary 3 is proven.
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