
Witt vectors. Part 1
Michiel Hazewinkel

Sidenotes by Darij Grinberg

Witt#4b: A combinatorial identity proven using symmetric functions
identities

[absolutely not completed (proof of Thm 2 is very sloppy), not proofread]

The point of this note is to use the results of [2] (more precisely, its Theorem 5 (b))
in order to verify a combinatorial identity from [3]:

Theorem 1. Let n ∈ N and x ∈ R. Then,∑
σ∈Sn

signσ · xcycleσ = n!

(
x

n

)
.

Here, for every permutation σ ∈ Sn, we let cycle σ denote the number of
all cycles (including cycles of length 1) in the cycle decomposition of the
permutation σ.

Note that x has been called k in [2].
In order to prove Theorem 1, we are going to use some of the notations of [2];

namely, we will use the Definitions 1, 2, 3, 4, 5, 10, 11, 12, 13 of [2].
First, let us find an alternative formula for the number zλ defined in Definition 13

of [2]. In fact, let us recall that in Definition 13 of [2], the number zλ was defined by

zλ =
∞∏
n=1

nmn(λ) (mn (λ))! for every λ ∈ Par .

Thus,

zλ =
∞∏
n=1

nmn(λ) (mn (λ))! =
∞∏
n=1

nmn(λ)

∞∏
n=1

(mn (λ))!. (1)

But if we write the partition λ in the form λ = (λ1, λ2, ..., λu) for some u ∈ N such
that λu 6= 0 (clearly we can write the partition λ in this way, because every partition
has only finitely many nonzero terms), then

u∏
i=1

λi =
∏

i∈{1,2,...,u}

λi =
∞∏
n=1

∏
i∈{1,2,...,u};

λi=n

n

︸ ︷︷ ︸
=n|{i∈{1,2,...,u} | λi=n}|=nmn(λ)

=
∞∏
n=1

nmn(λ),

so that (1) becomes

zλ =
∞∏
n=1

nmn(λ)

︸ ︷︷ ︸
=

u∏
i=1

λi

∞∏
n=1

(mn (λ))! =
u∏
i=1

λi ·
∞∏
n=1

(mn (λ))! =
u∏
i=1

λi ·
∞∏
k=1

(mk (λ))! (2)
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(here, we substituted k for n in the second product).
Next, let us define the cycle type of a permutation:
Definition 1. Let σ ∈ Sn be a permutation. For every i ∈ {1, 2, 3, ...}, let us

denote by cyclei σ the number of all cycles of length i in the cycle decomposition of the

permutation σ. Clearly, (cycle1 σ, cycle2 σ, cycle3 σ, ...) ∈ N
{1,2,3,...}
fin and

∞∑
i=1

cyclei σ︸ ︷︷ ︸
=(the number of all cycles of length i in the cycle decomposition of the permutation σ)

=
∞∑
i=1

(the number of all cycles of length i in the cycle decomposition of the permutation σ)

= (the number of all cycles in the cycle decomposition of the permutation σ) = cycle σ

1.
Now, the cycle type cycσ ∈ Par of the permutation σ is defined as the partition

m−1 (cycle1 σ, cycle2 σ, cycle3 σ, ...) ,

where m : Par→ N{1,2,3,...}fin is the bijection defined by

m (λ) = (m1 (λ) ,m2 (λ) ,m3 (λ) , ...) for all λ ∈ Par .

Hence,

(cycle1 σ, cycle2 σ, cycle3 σ, ...) = m (cycσ) = (m1 (cycσ) ,m2 (cycσ) ,m3 (cycσ) , ...) .

Thus, cyclei σ = mi (cycσ) for every i ∈ {1, 2, 3, ...}.
It is clear that

wt (cycσ) =
∞∑
k=1

kmk (cycσ)︸ ︷︷ ︸
=cyclek σ(
by the formula wtλ =

∞∑
k=1

kmk (λ) , which holds for every partition λ

)

=
∞∑
k=1

k cyclek σ

1This sum
∞∑
i=1

cyclei σ is an infinite sum, but it contains only finitely many nonzero summands

(since (cycle1 σ, cycle2 σ, cycle3 σ, ...) ∈ N
{1,2,3,...}
fin ), and thus has a well-defined value.
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and

n =
∑

k∈{1,2,...,n}

1 =
∑

Z is a cycle
in the cycle

decomposition of
the permutation σ

∑
k∈{1,2,...,n};

k∈Z

1

︸ ︷︷ ︸
=(length of the cycle Z)·1
=(length of the cycle Z)(

since every element of {1, 2, ..., n} lies in one and only one
cycle in the cycle decomposition of the permutation σ

)
=

∑
Z is a cycle
in the cycle

decomposition of
the permutation σ

(length of the cycle Z) =
∞∑
k=1

∑
Z is a cycle of

length k in the cycle
decomposition of

the permutation σ

(length of the cycle Z)︸ ︷︷ ︸
=k

=
∞∑
k=1

∑
Z is a cycle of

length k in the cycle
decomposition of

the permutation σ

k

︸ ︷︷ ︸
=(the number of all cycles of length k in the cycle decomposition of the permutation σ)·k

=cyclek σ·k=k cyclek σ

=
∞∑
k=1

k cyclek σ,

and therefore

wt (cycσ) = n for every permutation σ ∈ Sn.

The following simple property connects this notion of cycle types with the numbers
zλ defined above:

Theorem 2. Let λ ∈ Par and let n = wtλ. Then,

|{σ ∈ Sn | cycσ = λ}| = n!

zλ
.

Proof of Theorem 2. We write the partition λ in the form λ = (λ1, λ2, ..., λu) for
some u ∈ N such that λu 6= 0 (clearly we can write the partition λ in this way, because
every partition has only finitely many nonzero terms). Clearly, λ1 + λ2 + ... + λu =∑
i∈{1,2,...,u}

λi = wtλ = n.

Let us introduce a notation: A λ-partition will mean a family (I1, I2, ..., Iu) ∈
(P ({1, 2, ..., n}))u of pairwise disjoint subsets of {1, 2, ..., n} satisfying
(|Ik| = λk for every k ∈ {1, 2, ..., u}). The number of all λ-partitions is the multinomial

coefficient

(
n

λ1, λ2, ..., λu

)
=

n!
u∏
i=1

λi!
(since λ1 + λ2 + ...+ λu = n).

For every finite set U , let SU denote the set of all permutations of the set U . A
permutation π of a nonempty finite set U is said to be cyclic if and only if there exists
a bijection ν : {1, 2, ..., |U |} → U such that π =

(
ν1, ν2, ..., ν|U |

)
. In other words, a

permutation π of a nonempty finite set U is said to be cyclic if and only if its cycle
decomposition consists only of one cycle of length |U |. In other words, a permutation
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π of a nonempty finite set U is said to be cyclic if and only if the cycle type of π is
(|U |). Clearly, for every nonempty finite set U , the number of cyclic permutations of
U is (|U | − 1)! 2. In other words,

∣∣SCU ∣∣ = (|U | − 1)!, where SCU denotes the set of all
cyclic permutations of the set U .

If U is a subset of a finite set V , then we consider SU as a subset of SV (in fact, we
identify every element π of SU with the element π′ of SV defined by(

π′ (v) =

{
π (v) , if v ∈ U ;
v, if v /∈ U for all v ∈ V

)
). In particular, if U is a subset of {1, 2, ..., n}, then SU is thus considered as a subset
of S{1,2,...,n} = Sn.

For every λ-partition (I1, I2, ..., Iu) and every family (πi)i∈{1,2,...,u} ∈
u∏
i=1

SCIi of cyclic

permutations of the sets Ii, we can define a permutation σ ∈ Sn by σ =
u∏
i=1

πi (note that

order doesn’t matter in this product
u∏
i=1

πi, because the permutations π1, π2, ..., πu are

disjoint cycles and therefore commute). This permutation σ has cycle decomposition
π1 ◦ π2 ◦ ... ◦ πu, and thus for every i ∈ {1, 2, 3, ...}, we have

mi (cycσ)

= cyclei (σ)

= (the number of all cycles of length i in the cycle decomposition of the permutation σ)

=

the number of all k ∈ {1, 2, ..., u} such that the length of the cycle πk︸ ︷︷ ︸
=|Ik|=λk

is i


(since the cycle decomposition of the permutation σ is π1 ◦ π2 ◦ ... ◦ πu)

= (the number of all k ∈ {1, 2, ..., u} such that λk = i) = |{k ∈ {1, 2, ..., u} | λk = i}|
= mi (λ) .

Consequently, (m1 (cycσ) ,m2 (cycσ) ,m3 (cycσ) , ...) = (m1 (λ) ,m2 (λ) ,m3 (λ) , ...).
This rewrites as m (cycσ) = m (λ). Hence, cyc σ = λ (since m is a bijection).

Thus, for every λ-partition (I1, I2, ..., Iu) and every family (πi)i∈{1,2,...,u} ∈
u∏
i=1

SCIi ,

we have defined a permutation σ ∈ Sn by σ =
u∏
i=1

πi, and this permutation σ sat-

isfies cyc σ = λ. Conversely, for every permutation σ ∈ Sn satisfying cycσ = λ,

2Proof. Every bijection ν : {1, 2, ..., |U |} → U induces a cyclic permutation
(
ν1, ν2, ..., ν|U |

)
of U ,

and conversely, every cyclic permutation of U can be written in the form π =
(
ν1, ν2, ..., ν|U |

)
for

exactly |U | different choices of a bijection ν : {1, 2, ..., |U |} → U . Hence,

(the number of all cyclic permutations of U)

=
1

|U |
· (the number of all bijections ν : {1, 2, ..., |U |} → U)︸ ︷︷ ︸

=|U |!

=
1

|U |
· |U |! = (|U | − 1)!.
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we can find a λ-partition (I1, I2, ..., Iu) and a family (πi)i∈{1,2,...,u} ∈
u∏
i=1

SCIi such that

σ =
u∏
i=1

πi: In fact, the permutations π1, π2, ..., πu must be chosen as the cycles in

the cycle decomposition of σ (ordered by decreasing length), and the sets I1, I2, ...,
Iu are the respective subsets of {1, 2, ..., n} on which these cycles operate. The choice
of the permutations π1, π2, ..., πu involves an actual choice: For each k ∈ {1, 2, ..., n},
the order of the cyclek σ cycles of length k can be chosen in (cyclek σ)! different ways,
each of them leading to a different λ-partition (I1, I2, ..., Iu) and a different family

(πi)i∈{1,2,...,u} ∈
u∏
i=1

SCIi (though they only differ in their order). Hence, for every per-

mutation σ ∈ Sn satisfying cycσ = λ, we can choose a λ-partition (I1, I2, ..., Iu) and a

family (πi)i∈{1,2,...,u} ∈
u∏
i=1

SCIi such that σ =
u∏
i=1

πi in
∞∏
k=1

(cyclek σ)! different ways. Since

∞∏
k=1

(cyclek σ)! =
∞∏
k=1

mk (λ)! (since cyclei (σ) = mi (λ) for every i ∈ {1, 2, 3, ...} as shown

above), this rewrites as follows: For every permutation σ ∈ Sn satisfying cyc σ = λ,

we can choose a λ-partition (I1, I2, ..., Iu) and a family (πi)i∈{1,2,...,u} ∈
u∏
i=1

SCIi such that

σ =
u∏
i=1

πi in
∞∏
k=1

mk (λ)! different ways.
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Thus,

(the number of all permutations σ ∈ Sn satisfying cycσ = λ)

=
1

∞∏
k=1

mk (λ)!
(number of all possible choices of a λ-partition (I1, I2, ..., Iu)

and a family (πi)i∈{1,2,...,u} ∈
u∏
i=1

SCIi

)

=
1

∞∏
k=1

mk (λ)!

∑
(I1,I2,...,Iu) is a
λ-partition

(
number of all possible choices of a family (πi)i∈{1,2,...,u} ∈

u∏
i=1

SCIi

)
︸ ︷︷ ︸

=

∣∣∣∣ u∏
i=1

SCIi

∣∣∣∣= u∏
i=1
|SCIi|=

u∏
i=1

(λi−1)!

(since each i∈{1,2,...,u} satisfies

|SCIi |=(|Ii|−1)!=(λi−1)!)

=
1

∞∏
k=1

mk (λ)!

∑
(I1,I2,...,Iu) is a
λ-partition

u∏
i=1

(λi − 1)!

︸ ︷︷ ︸
=(number of all λ-partitions)·

u∏
i=1

(λi−1)!

=
1

∞∏
k=1

mk (λ)!
(number of all λ-partitions)︸ ︷︷ ︸

=
n!
u∏
i=1

λi!

·
u∏
i=1

(λi − 1)!

=
1

∞∏
k=1

mk (λ)!
· n!

u∏
i=1

λi!
·

u∏
i=1

(λi − 1)! =
n!

∞∏
k=1

mk (λ)!
�

u∏
i=1

λi!

u∏
i=1

(λi − 1)!︸ ︷︷ ︸
=

u∏
i=1

 λi!

(λi − 1)!

=
u∏
i=1

λi

=
n!

u∏
i=1

λi ·
∞∏
k=1

mk (λ)!
=
n!

zλ

(by (2)). This proves Theorem 2.
Now, we quote Theorem 5 (b) from [2]:

Theorem 3. Let I and J be two countable sets. In the ring((
(Q [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞

)
[[T ]]

)
[[S]], we have

∑
λ∈Par

z−1
λ Smsumλpλ (ξ) pλ (η)Twtλ =

∏
(i,j)∈I×J

(
1

1− ξiηjT

)S
, (3)
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where the function msum : Par→ N is defined by

msumλ = m1 (λ)+m2 (λ)+m3 (λ)+... =
∞∑
k=1

mk (λ) for every partition λ.

Here, for any power series P ∈
((

(Q [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞
)

[[T ]]
)

[[S]]
with constant term 1, the power series P S ∈

((
(Q [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞

)
[[T ]]

)
[[S]]

is defined by P S = exp (S logP ) (where logP is computed using the log (1 +X) =
∞∑
k=1

(−1)k−1

k
Xk formula).

We are going to apply this theorem to the case when I = J = {1}. In this case,

(Q [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞
= (Q [ξi | i ∈ I]) [ηj | j ∈ J ] (since the sets I and J are both finite)

= (Q [ξ1]) [η1] (since I = {1} and J = {1}) .

Besides, every n ∈ {1, 2, 3, ...} satisfies pn =
∑
i∈I
ξni = ξn1 (since we are in the case

I = {1}), and thus

pλ (ξ) = pλ =
∞∏
n=1

 pn︸︷︷︸
=ξn1


mn(λ)

=
∞∏
n=1

(ξn1 )mn(λ) =
∞∏
n=1

ξ
nmn(λ)
1 = ξ

∞∑
n=1

nmn(λ)

1 = ξwtλ
1 .

If we replace ξ1 by η1 in this equation, it becomes pλ (η) = ηwtλ
1 . Thus,∑

λ∈Par

z−1
λ Smsumλ pλ (ξ)︸ ︷︷ ︸

=ξwtλ
1

pλ (η)︸ ︷︷ ︸
=ηwtλ

1

Twtλ =
∑
λ∈Par

z−1
λ Smsumλξwtλ

1 ηwtλ
1 Twtλ

=
∞∑
`=0

∑
λ∈Par;
wtλ=`

z−1
λ Smsumλξ`1η

`
1T

`. (4)

Finally, I = J = {1} yields I × J = {1} × {1} = {(1, 1)} and thus

∏
(i,j)∈I×J

(
1

1− ξiηjT

)S
=

(
1

1− ξ1η1T

)S
= (1− ξ1η1T )−S

=
∞∑
`=0

(
−S
`

)
(−ξ1η1T )` (by the binomial formula)

=
∞∑
`=0

(
−S
`

)
(−ξ1η1)` T `.

Using this and using (4), we can rewrite the identity (3) as

∞∑
`=0

∑
λ∈Par;
wtλ=`

z−1
λ Smsumλξ`1η

`
1T

` =
∞∑
`=0

(
−S
`

)
(−ξ1η1)` T `. (5)
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This is an identity in the ring((
(Q [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞

)
[[T ]]

)
[[S]] = (((Q [ξ1]) [η1]) [[T ]]) [[S]] ,

but it can also be considered an identity in the subring (((Q [ξ1]) [η1]) [S]) [[T ]] (since
both sides of the identity (5) lie in this subring), i. e. as an identity between two
power series in the indeterminate T over the ring ((Q [ξ1]) [η1]) [S]. Hence, comparing
coefficients before T n in this identity, we obtain∑

λ∈Par;
wtλ=n

z−1
λ Smsumλξn1 η

n
1 =

(
−S
n

)
(−ξ1η1)n .

This is an identity in the polynomial ring ((Q [ξ1]) [η1]) [S] ∼= Q [ξ1, η1, S]. Evaluating
both sides at ξ1 = 1, η1 = 1 and S = −x, we obtain∑

λ∈Par;
wtλ=n

z−1
λ (−x)msumλ 1n1n =

(
− (−x)

n

)
(−1 · 1)n .

This simplifies to ∑
λ∈Par;
wtλ=n

z−1
λ (−x)msumλ =

(
x

n

)
(−1)n .

Multiplying this by n! yields

n!
∑
λ∈Par;
wtλ=n

z−1
λ (−x)msumλ = n!

(
x

n

)
(−1)n .

Since

n!
∑
λ∈Par;
wtλ=n

z−1
λ (−x)msumλ =

∑
λ∈Par;
wtλ=n

n!

zλ︸︷︷︸
=|{σ∈Sn | cycσ=λ}|

(by Theorem 2)

(−x)msumλ

=
∑
λ∈Par;
wtλ=n

|{σ ∈ Sn | cycσ = λ}| (−x)msumλ︸ ︷︷ ︸
=

∑
σ∈Sn;

cycσ=λ

(−x)msumλ=
∑

σ∈Sn;
cycσ=λ

(−x)msum(cycσ)

=
∑
λ∈Par;
wtλ=n

∑
σ∈Sn;

cycσ=λ

(−x)msum(cycσ) =
∑
σ∈Sn

(−x)msum(cycσ)

(because for every σ ∈ Sn, there exists one and only one λ ∈ Par such that wtλ = n
and cycσ = λ (because wt (cycσ) = n)), this rewrites as∑

σ∈Sn

(−x)msum(cycσ) = n!

(
x

n

)
(−1)n .
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Now, every permutation σ ∈ Sn satisfies

msum (cycσ) =
∞∑
k=1

mk (cycσ) =
∞∑
i=1

mi (cycσ)︸ ︷︷ ︸
=cyclei σ

(here, we substituted i for k in the sum)

=
∞∑
i=1

cyclei σ = cycleσ,

and thus this becomes ∑
σ∈Sn

(−x)cycleσ = n!

(
x

n

)
(−1)n . (6)

Now,

(the number of all even cycles in the cycle decomposition of the permutation σ)

=
∑

i∈{1,2,3,...};
i is even

(the number of all cycles of length i in the cycle decomposition of the permutation σ)

=
∑

i∈{1,2,3,...};
i is even

cyclei σ =
∑

i∈{1,2,3,...}

cyclei σ︸ ︷︷ ︸
=

∞∑
i=1

cyclei σ=cycleσ

−
∑

i∈{1,2,3,...};
i is odd

cyclei σ = cycleσ −
∑

i∈{1,2,3,...};
i is odd

cyclei σ,

which, in view of

n =
∞∑
k=1

k cyclek σ =
∞∑
i=1

i cyclei σ (here, we substituted i for k in the sum)

=
∑

i∈{1,2,3,...}

i cyclei σ =
∑

i∈{1,2,3,...};
i is even

i︸︷︷︸
≡0 mod 2

(since i is even)

cyclei σ +
∑

i∈{1,2,3,...};
i is odd

i︸︷︷︸
≡1 mod 2

(since i is odd)

cyclei σ

≡
∑

i∈{1,2,3,...};
i is even

0 cyclei σ

︸ ︷︷ ︸
=0

+
∑

i∈{1,2,3,...};
i is odd

1 cyclei σ =
∑

i∈{1,2,3,...};
i is odd

1 cyclei σ

=
∑

i∈{1,2,3,...};
i is odd

cyclei σmod 2,

becomes

(the number of all even cycles in the cycle decomposition of the permutation σ)

= cycleσ −
∑

i∈{1,2,3,...};
i is odd

cyclei σ

︸ ︷︷ ︸
≡nmod 2

≡ cycleσ − nmod 2,

so that

(−1)(the number of all even cycles in the cycle decomposition of the permutation σ) = (−1)cycleσ−n .
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Hence, the signum signσ of the permutation σ satisfies

signσ = (−1)(the number of all even cycles in the cycle decomposition of the permutation σ) = (−1)cycleσ−n .

Thus,∑
σ∈Sn

signσ · xcycleσ =
∑
σ∈Sn

(−1)cycleσ−n · xcycleσ = (−1)−n
∑
σ∈Sn

(−1)cycleσ · xcycleσ︸ ︷︷ ︸
=(−x)cycleσ

= (−1)−n
∑
σ∈Sn

(−x)cycleσ

= (−1)−n n!

(
x

n

)
(−1)n (by (6))

= n!

(
x

n

)
.

This proves Theorem 1.
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