Witt vectors. Part 1
Michiel Hazewinkel
Sidenotes by Darij Grinberg

Witt#4b: A combinatorial identity proven using symmetric functions
identities
[absolutely not completed (proof of Thm 2 is very sloppy), not proofread|

The point of this note is to use the results of [2] (more precisely, its Theorem 5 (b))
in order to verify a combinatorial identity from [3]:

Theorem 1. Let n € N and x € R. Then,

Z signo - xVI7 = p) (x)
n

oESy

Here, for every permutation o € S,,, we let cycles denote the number of
all cycles (including cycles of length 1) in the cycle decomposition of the
permutation o.

Note that x has been called & in [2].

In order to prove Theorem 1, we are going to use some of the notations of [2];
namely, we will use the Definitions 1, 2, 3, 4, 5, 10, 11, 12, 13 of [2].

First, let us find an alternative formula for the number z, defined in Definition 13
of [2]. In fact, let us recall that in Definition 13 of [2], the number z) was defined by

Zy = H n™ N (m,, (\))! for every A € Par.
n=1
Thus,
=[] (m, W) = T2 T (mn (W) (1)
n=1 n=1 n=1

But if we write the partition A in the form A = (A, A, ..., \,) for some u € N such
that A, # 0 (clearly we can write the partition A in this way, because every partition
has only finitely many nonzero terms), then

RN SR | G | B | E
i=1 n=1

1€{1,2,...,u} n=1 i€{1,2,...,u};
Ai=n

:n|{¢e{1,2 ,,,,, u} | )\i:n}|:nmn(k)

so that becomes

o= ] T mn ) =TT T (e Q) =TT - TL (e O (2)
n=1 N n=1 =1 n=1 =1 k=1
=1



(here, we substituted k for n in the second product).

Next, let us define the cycle type of a permutation:

Definition 1. Let ¢ € S, be a permutation. For every ¢ € {1,2,3,...}, let us
denote by cycle; o the number of all cycles of length ¢ in the cycle decomposition of the
permutation o. Clearly, (cycle, o, cycle, o, cycles o, ...) € N{1 234 and

[M]8

cycle, o
1 v

=(the number of all cycles of length ¢ in the cycle decomposition of the permutation o)

<.
Il

= Z (the number of all cycles of length 7 in the cycle decomposition of the permutation o)

(the number of all cycles in the cycle decomposition of the permutation o) = cycle o

[

Now, the cycle type cyco € Par of the permutation o is defined as the partition
m ™ (cycle, o, cycle, o, cycley o, ...)
where m : Par — Néi’z?”'“} is the bijection defined by
m (X)) = (mq (N),ma (X)), mz(N),...) for all A\ € Par.
Hence,
(cycle, o, cycle,y o, cycleg o, ...) = m (cyco) = (my (cyco) ,ms (cyco) ,ms (cyco),...).

Thus, cycle; o = m; (cyco) for every i € {1,2,3,...}.
It is clear that

t (cyco) kak cyco)

—cyclek o

<by the formula wt A = Z kmy (A), which holds for every partition A)

k=1
oo
= Z k cycle, o
k=1

IThis sum 3 cycle; o is an infinite sum, but it contains only finitely many nonzero summands
i=1

(since (cycle, o, cycle, o, cycles o, ...) € N{{ii’m"“}), and thus has a well-defined value.



and

n= >y 1= > oo

ke{l1,2,...,n} Z is a cycle ke{1,2,...,n};
in the cycle keZ
decomposition of

the permutation ¢ =(length of the cycle Z)-1
=(length of the cycle Z)

since every element of {1,2,...,n} lies in one and only one
cycle in the cycle decomposition of the permutation o

= Z (length of the cycle Z) = Z Z (length of the cycle Z)

Z is a cycle k=1 Z is a cycle of —k
in the cycle length £ in the cycle B
decomposition of decomposition of
the permutation o the permutation o
9]

= Z k = i kcycle, o,
k=1

Z is a cycle of
length k in the cycle
decomposition of
the permutation o
TV
=(the number of all cycles of length k in the cycle decomposition of the permutation o)-k
=cycley, 0-k=kcycle, o

e
Il
—

J/

and therefore
wt (cyco) =n for every permutation o € S,,.

The following simple property connects this notion of cycle types with the numbers
zy defined above:

Theorem 2. Let A\ € Par and let n = wt A\. Then,

|
{o €S, | cyco =} = —.
ZX

Proof of Theorem 2. We write the partition A in the form A = (A, Ao, ..., A,) for
some u € N such that A, # 0 (clearly we can write the partition A in this way, because

every partition has only finitely many nonzero terms). Clearly, A\; + Ao + ... + A, =
Yoo =wtA=n.

Let us introduce a notation: A A-partition will mean a family (I, I, ...,1,) €
(P ({1,2,...,n}))" of pairwise disjoint subsets of {1,2,...,n} satisfying
(|1x] = g for every k € {1,2,...;u}). The number of all A-partitions is the multinomial
. n n!
coefficient = —
AL, A2y ey Ay I \!
For every finite set U, letz éU denote the set of all permutations of the set U. A
permutation 7 of a nonempty finite set U is said to be cyclic if and only if there exists
a bijection v : {1,2,...,|U|} — U such that = = (Vl,l/g,...,l/‘U‘). In other words, a
permutation 7 of a nonempty finite set U is said to be cyclic if and only if its cycle

decomposition consists only of one cycle of length |U|. In other words, a permutation

(since A\; + Ay + ... + Ay, = n).



m of a nonempty finite set U is said to be cyclic if and only if the cycle type of 7 is
(|U]). Clearly, for every nonempty finite set U, the number of cyclic permutations of
Uis (JU] — 1! . In other words, |SG| = (|U| — 1)!, where S denotes the set of all
cyclic permutations of the set U.

If U is a subset of a finite set V| then we consider Sy as a subset of Sy (in fact, we
identify every element 7w of Sy with the element 7’ of Sy defined by

vy (v, ifvel;
(7?(1})—{ v if v ¢ U forallvEV)

). In particular, if U is a subset of {1,2,...,n}, then Sy is thus considered as a subset
of S{l,2,...,n} = Sn

For every A-partition (I1, I, ..., I,) and every family (7i),c(10 .y € ]1 S¢ of cyclic
gLy ’L:l 2
permutations of the sets I;, we can define a permutation o € S, by 0 = [] m; (note that
i=1

u

order doesn’t matter in this product [] 7;, because the permutations 7y, o, ..., 7, are
i=1

disjoint cycles and therefore commute). This permutation o has cycle decomposition

1 0 T 0 ... 0 Ty, and thus for every ¢ € {1,2,3,...}, we have

m; (cyco)
= cycle; (o)

= (the number of all cycles of length ¢ in the cycle decomposition of the permutation o)

= | the number of all k£ € {1,2,...,u} such that the length of the cycle 7, is i

iy
=|Tx|=Xx

(since the cycle decomposition of the permutation o is m; 0 Ty 0 ... 0 7y,)
= (the number of all £ € {1,2,...,u} such that \; =i) = [{k € {1,2,...,u} | \x =i}
Consequently, (m; (cyco),ms(cyco),ms(cyco),...) = (my(A),ma(X),mg(N),...).
This rewrites as m (cyco) = m (A). Hence, cyco = A (since m is a bijection).
Thus, for every A-partition (1, I,...,1,) and every family (m;);cr15 .y € Z];[l St
we have defined a permutation o € S, by ¢ = [] 7, and this permutation o sat-

i=1
isfies cyco = A. Conversely, for every permutation o € S, satisfying cyco = A,

2 Proof. Every bijection v : {1,2,...,|U|} — U induces a cyclic permutation (ul, v, ...,1/|U|) of U,
and conversely, every cyclic permutation of U can be written in the form 7 = (v1,vs,...,vy)) for
exactly |U| different choices of a bijection v : {1,2,...,|U|} — U. Hence,

(the number of all cyclic permutations of U)

1
= il (the number of all bijections v : {1,2,...,|U|} = U)

=|U|!
1



we can find a A-partition (I, I3, ..., [y) and a family (m);c5 .y € 1 S§ such that
i=1

u
o = [] mi: In fact, the permutations m, 7o, ..., m, must be chosen as the cycles in
i=1
the cycle decomposition of o (ordered by decreasing length), and the sets I, I, ...,
I, are the respective subsets of {1,2,...,n} on which these cycles operate. The choice
of the permutations 7y, 9, ..., T, involves an actual choice: For each k € {1,2,...,n},
the order of the cycle, o cycles of length & can be chosen in (cycle, o)! different ways,

each of them leading to a different A-partition (I3, ls,...,I,) and a different family
(Wi)ie{l,l...,u} €I Sg (though they only differ in their order). Hence, for every per-
i=1

mutation o € Sn_satisfying cyco = A, we can choose a A-partition (I, I, ..., I,) and a
u u oo

family (7:);c1 0wy € 11 S such that o = [] 7 in [] (cycle,, o)! different ways. Since
o i=1 i=1 k=1

I (cycle, o)l = [ my (A)! (since cycle; (o) = m; (A) for every i € {1,2,3, ...} as shown
k=1 k=1

above), this rewrites as follows: For every permutation o € S, satisfying cyco = A,

we can choose a A-partition (I1, /s, ..., 1,) and a family (m:);c, 5, € [] S§ such that
i=1

o= []min [] mk(N)! different ways.
i=1 k=1



Thus,

(the number of all permutations o € S,, satisfying cyco = \)

= ——— (number of all possible choices of a A-partition ([y, I, ...

1
[T i (V)!
k=1
B 1

my (A)! (11,12, 1) s a

and a family (7;),c10 . € H ST

u
C
i=1

) Iu)

<number of all possible choices of a family (7;),. (120} € H S¢

)

i=1

J/

k=1 A-partition ~
=|T1 8¢ |=TI1|S¢ |=T1 (-1
i=1 "' =1 "' i=1
(since each i€{1,2,...,u} satisfies
S |=(1L:1-1)!=(\—1)1)
1

> -

I[Tme (N (5 d) is ai=1
k=1 A-partition
=(number of all A-partitions)- ]_u[ (A—1)!
=1
1 . -
= —— (number of all A-partitions) - H (A —1)!
kl;[l my (A)! i ~ i=1
[T A
=1
- |
1 n! “ n! Hl At
TEmet [IA TL e () IT (- 1)

I o

(by (2)). This proves Theorem 2.
Now, we quote Theorem 5 (b) from [2]:

Theorem 3. Let I and J be two countable sets. In the ring
((Ql&i lieI]) e Jl,)[T]) [[S), we have

AePar

YDIECEEININTERSY | G (R SES

Gj)elxT N §ini T



where the function msum : Par — N is defined by

msum A = my (A)+mg (A)+mg (A\)+... = ka (A) for every partition A.

Here, for any power series P € (((Q[& i€ 1] )[n;|j€ J] T (1S)
with constant term 1, the power series P € (((Q[& |1 € I] ) [n; | j € J]
is defined by P¥ = exp (S log P) (where log P is computed using the log (1
= (—1)]
Z A

k=1

]
)[)

X formula).

We are going to apply this theorem to the case when I = J = {1}. In this case,

Q& [iell)nlie

= Q& |iel])n|je ] (since the sets I and J are both finite)
= (QI[&]) [m] (since I = {1} and J = {1}).
Besides, every n € {1,2,3,...} satisfies p, = > & = &' (since we are in the case
i€l
I ={1}), and thus
mp(N)
- T /e ) nma () _ Z mmn) i
& =m=]] | H€ Hé” =&
n=1 —¢n n=1
—S1

If we replace & by 7 in this equation, it becomes py () = n***. Thus,

Z Z;lsmsum)\p)\ (5) ) (7]) th)\ _ Z Z;lsmsum)\givt )\’T]IVt /\th)\

AePar AePar

_ Z Z lsmsumké-f fTZ (4)

{=0 A€Par;
wt )\ZZ

Finally, [ = J = {1} yields I x J = {1} x {1} = {(1,1)} and thus

B RS S 1 T7)~°
11 (1—£ij> (1—£1mT> =1 =&mT)

(4,9)eIxJ
-5 ¢ .
/ (=&mT) (by the binomial formula)
0

0 (}S) (—&m)‘T

Using this and using , we can rewrite the identity as

[e.9] [e.9] —S
Z Z 2y LSmSm AL T = Z ( ; ) (—&m) T (5)

{=0 A\€Par; =0
wt A=¢{

—ewt A t A
=& =ny

[
NE

¢

[
WK

o~
Il



This is an identity in the ring

((Ql& i€ 1e) [ 17 € J1) (ITN) (1SN = ((QED) [n]) 171 [150]

but it can also be considered an identity in the subring (((Q [&1]) [m]) [S]) [[T]] (since
both sides of the identity lie in this subring), i. e. as an identity between two
power series in the indeterminate 7" over the ring ((Q [&1]) [m]) [S]. Hence, comparing
coefficients before T™ in this identity, we obtain

_S .
> s = (77 (an

A€Par;
wt A=n

This is an identity in the polynomial ring ((Q[&1]) [m]) [S] = Q[&1,m, S]. Evaluating
both sides at &, =1, 7y =1 and S = —z, we obtain

ST ot (e = (_ (n_x)) (—1-1)".

This simplifies to

> st et = (1)

A€Par;
wt A=n

Multiplying this by n! yields

nl 37t ()t = ) (z) (—1)".

A€Par;
wt A=n

Since

n!
n! Z Z;l (_$)msumA: Z Z_}\ (_x)msum)\

AePar; A€Par;
wt A=n wt A=n =|{O'€Sn ‘ CyCO'Z)\}‘
(by Theorem 2)

= Z \’{UESn | Cyca':/\}|(_x)msum>;

A€Par;

e = Z (_I)msum A Z (_I)msum(cyc o)
oESy; 0ESh;
cyco=A cyco=A
_ msum(cyco) msum(cyc o)
=Y > (- =Y (-2
AePar; oc€Sy; oc€Sh

wt A=n cyco=X\

(because for every o € 5, there exists one and only one A\ € Par such that wt A = n
and cyco = A (because wt (cyco) = n)), this rewrites as

Y () = pl (2) (—1)".

oc€Sh



Now, every permutation o € S,, satisfies

msum (cyco) = Z my, (cyco) = Z m; (cyco) (here, we substituted ¢ for k in the sum)
k=1 i=1 =cycle, o

(o, ¢]
= Z cycle, o = cycleo,
i=1

and thus this becomes

Now,

(the number of all even cycles in the cycle decomposition of the permutation o)

= Z (the number of all cycles of length i in the cycle decomposition of the permutation o)
i€{1,2,3,...};

7 is even

= Z cycle, 0 = Z cycle, o — Z cycle, 0 = cycleo — Z cycle,; o,

1€{1,2,3,...}; 1€{1,2,3,...} 1€{1,2,3,...}; 1€{1,2,3,...};
1 is even N — 4 ¢ is odd % is odd

e
=3 cycle; o=cycleo
i=1

which, in view of

(o.9] o
n= E kcycle, o = g icycle, o (here, we substituted ¢ for k£ in the sum)
k=1 i=1
= E 1cycle, o = E 1 cycle, o + E ? cycle, o
i€{1,2,3,..} i€{1,2,3,..}; =0mod2 i€{1,2,3,..}; =lmod2
iis even (since i is even) iis odd (since ¢ is odd)
= E Ocycle; o + E lcycle, 0 = g 1cycle; o
i€{1,2,3,...}; i€{1,2,3,..}; i€{1,2,3,..};
N is even , i is odd 1 is odd
=0
= E cycle; 0 mod 2,
i€{1,2,3,..};
1 is odd
becomes

(the number of all even cycles in the cycle decomposition of the permutation o)

= cycleo — Z cycle; 0 = cycleoc — nmod 2,

ie{1,2,3,...};
i is odd
TV 4
=n mod 2
so that
(_ 1)(the number of all even cycles in the cycle decomposition of the permutation o) (_ l)cycle o—n

9



Hence, the signum sign o of the permutation o satisfies

sign o — (_1)(the number of all even cycles in the cycle decomposition of the permutation o) (_ 1)cycle o—n
Thus,
. leo— - 1
Z sign o - xcycleo _ Z (_1)cyc eo—n xcyclea _ (_1) n (_1)Cyc eo xcycleg
0ESK 0ESK €S :(_l?):ycleo
. -n cycleo
= (=)D (—x)
O'ESTL

This proves Theorem 1.
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