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Witt#4a: Equigraded power series
[not completed, not proofread]

This little note is there to prove an easy lemma used in [1]. This lemma is about
equigraded power series. First, let us define this notion:

Definition 1. Let A be a graded commutative ring with unity'. A power series
a € A[[T]] is said to be equigraded if and only if

(for every n € N, the coefficient of o before T™ lies in the n-th graded component of A).

Here and in the following, the symbol N stands for the set {0,1,2,...} (and not for
the set {1,2,3,...}, as it does in various other literature).
We now claim that:

Theorem 1. Let A be a graded commutative ring with unity.
(a) The set

{a € A[[T]] | the power series « is equigraded}

is a sub-Ap-algebra of A [[T]]. In particular, the sum, the difference and the
product of finitely many equigraded power series are equigraded as well,
and the two power series 0 and 1 are both equigraded.

(b) Thisset {a € A[[T]] | the power series « is equigraded} is closed with
respect to the (T')-adic topology on the ring A [[T7].

(c) If an equigraded power series a € A[[T]] has a multiplicative inverse
a~t € A[[T]], then a~! is equigraded as well.

(d) If an equigraded power series o € A[[T]] has a multiplicative inverse
a~t € A[[T]], then o* is equigraded for every k € Z.

Proof of Theorem 1. For every n € N, we denote by A,, the n-th graded component
of A. Thus, a power series « is equigraded if and only if

(for every n € N, the coefficient of o before 7™ lies in A,,) .

! Remark. Different authors sometimes use different (and non-equivalent!) notions of a ”graded
ring with unity”. The one that we are using here is defined as follows:
Definition. A ” graded ring with unity” means a ring A with unity equipped with a family (A,,)

of subgroups of the additive group A satisfying A = € A,, (as abelian groups), 1 € Ap and
neN

neN

(A A, C Apyyy, for every n € N and m € N).

Also, we use the following notation:

Definition. If a ring A, equipped with a family (A,,)
is said to be the grading of this graded ring A.

Definition. If a ring A, equipped with a family (A,),,cy, is a graded ring, then, for each n € N,
the group A, is called the n-th graded component of the graded ring A.

is a graded ring, then the family (A,,)

neN? neN



We denote the coefficient of o before T™ by coeff,, a. Thus, a power series « is
equigraded if and only if

(for every n € N, we have coeff,, a € 4,,). (1)
We denote the set
{a € A[[T]] | the power series « is equigraded}

by E.
(a) In order to prove that the set

{a € A[[T]] | the power series « is equigraded}

is a sub-Ag-algebra of A [[T]], we must show the following assertions:

Assertion 1: The power series 0 and 1 are both equigraded.

Assertion 2: If o € A|[T]] is an equigraded power series, then —« is equigraded as
well.

Assertion 3: If o € A[[T]] and 8 € A[[T]] are two equigraded power series, then
a+ 3 and af are equigraded as well.

Assertion 4: If a € A[[T]] is an equigraded power series, and u € Ay, then ua is
equigraded as well.

However, Assertions 1 and 2 are completely obvious, so it will suffice to prove
Assertions 3 and 4 only.

Proof of Assertion 3. Let v € A[[T]] and 8 € A[[T]] be two equigraded power
series.

For every n € N, we have

coeff,, (a + ) = coeff,a + coeff, 3 € A, + A, C A,.

€A, (since o €A, (since
is equigraded)  is equigraded)

Thus, the power series a + 3 is equigraded.
Besides, for every n € N, we have

coeff,, (aff) = 2”:
k=0

coeffp a - coeff,,_, 3 (this is how the product of two power series is defined)
——— ———
€Ay (since €A,y (since 8
is equigraded) is equigraded)

=0

k=0 CA,, since (An)neN is
a grading of the ring A

Thus, the power series af is equigraded. Thus, Assertion 3 is proven.
Proof of Assertion 4. Let o € A[[T]] be an equigraded power series. Let u € Ay.
For every n € N, we have

coeff,, (ua) = _u  coeff,, (o) C AgA, C A,

€4o €A, (since a
is equigraded)

(since (A,),cy is a grading of the ring A).



In other words, the power series u« is equigraded. Thus, Assertion 4 is proven.
Now, all four Assertions 1, 2, 3 and 4 are proven. Therefore, the set

{a € A[[T]] | the power series « is equigraded}

is a sub-Ag-algebra of A[[T]]. This completes the proof of Theorem 1 (a).

(b) In order to prove Theorem 1 (b), we have to prove that the set E is closed
with respect to the (T')-adic topology on the ring A [[T]]. This is equivalent to showing
that every limit point of the set E lies in £. So let us prove that every limit point of
the set E lies in E.

Let a be a limit point of the set E; then, for every neighbourhood U of «, there
exists some ay € U N E. We want to show that a € E.

Let n € N. Let U be the neighbourhood

{BeA[T]] | coeff,, = coeff, a}

of a. Then, ay € U (since ay € U N E) yields that coeff,, (ay) = coeff,, a, while
ay € E (since ay € U N E) yields that oy is equigraded and thus coeff, (ay) € A,.
Hence, coeff,, a = coeff,, (ay) € A,. Since this holds for every n € N, we can conclude
that a is equigraded. In other words, o € E. So we have shown that every limit point
« of the set E lies in E. This completes the proof of Theorem 1 (b).

(c) Let a € A[[T]] be an equigraded power series that has a multiplicative inverse
a~t € A[[T]]. Thus, - a~! = 1. Hence,

1 = coeffy 1 = coeffy (a . ofl) (since l=«a- a_l)

= coeffy a - coeffy (ofl)

(because coeffy (a - ) = coeffy a - coeffy 5 for any two power series o and ). Hence,
the element coeffg o € A is invertible, and coeffy (™) is its inverse.

Now, for every element u € A and for every n € N, let us denote by u,, the n-th
graded component of u. Of course, u,, € A, for every u € A and every n € N.

Note that (uv), = ugvy for any u € A and any v € A (because the map A — Ay, z +—
7o is a ring homomorphism). Applied to u = coeffg o and v = coeffy (a™1), this yields

(coeffg a - coeffy (™)), = (coeffy a) - (coefy (a™1)),. But since | coeffya - coeffy (™)

-

=1
1o = 1 and (coeffg @), = coeffy v (since coeffy v € Ay, because « is equigraded), this
becomes 1 = coeffya - (coeffy (a1)),. Thus, (coeffy (o)), is the inverse of the ele-
ment coeffy o of A. But on the other hand, we know that coeffy (a™!) is the inverse of
the element coeff o of A. Thus, coeffy (™) = (coeffy (a™1)), (since the inverse of an
element of a ring is unique). Since (coeffy (1)), € Ao, this yields coeffy (a™1) € A.

Now, we are going to prove that coeff, (a™1) € A, for every n € N. In fact, we are
going to prove this by strong induction over n € N: We fix some n € N, and assume
that

coeff, (a™') € Ay, for every k € N satisfying k < n. (2)

Our goal is to prove that coeff, (a™!) € A, for our fixed value of n.
If n = 0, then this means proving that coeffy (o) € Ay, which we have already
shown. Hence, if n = 0, then we are done. So we can now WLOG assume that n > 0.
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By the definition of the product of two power series, we have

coeff,, (& . 5) = 2": coeff, & - coeff,,_ 3

k=0

for any two power series a and B . Applying this to @ = o~ ! and B = «, we obtain
coeff,, Z coeff k - coefl,,_1. a.
But coeff,, (@™ - @) = coeff,, 1 = 0 (since n > 0). Thus,

0 = coeff,, Z coeffk -coefl,,_1 «

i
L

= coefl}, (ofl) - coeff,,_. a + coeff,, (ofl) - coeffy a,
0

e
Il

so that
n—1
coeff,, (™) - coeffg v = — coeffy, (a™1) - coeffn O € — Ap - Ap_i
(™) ; C Z ‘ -
€Ay (by (2) EAn L, since « CAn, since (An)nEN is
is equigraded a grading of the ring A
n—1
c-N "4, CA,. (3)
k=0
But
coeff,, (a’l) = coefl,, (ofl) - coefly av - coeffy (a’l) (since 1 = coeffy o - coeff (a
€ A, - coeffy (a™') (by (3))
—_———
€A
CA,-AyCA, (since (An),ey is a grading of the ring A) )

This completes our induction step. Thus, we have proven that coeff, (a™') € A, for
every n € N. Consequently, the power series a~! is equigraded. This proves Theorem
1 (c).

(d) Let o € A[[T]] be an equigraded power series that has a multiplicative inverse
a~! € A|[T]]. Let k € Z. Then, three cases are possible: Either k& > 0 or k = 0 or
k < 0. We will now show that in each of these cases, o is equigraded.

o If k > 0, then of = o -« -...-q is equigraded (since « is equigraded, and since

k times
the product of finitely many equigraded power series is equigraded).

e If k=0, then o* =1 is equigraded (as we know from Assertion 1).

o If k <0, then —k > 0, and thus of = (o)) =a'-a~'- ... a~Lis equigraded
—k times
(since a~! is equigraded (by Theorem 1 (c)), and since the product of finitely

many equigraded power series is equigraded).

4

)



Hence, in each of the three possible cases, o

1 (d).

is equigraded. This proves Theorem
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