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Witt#4: Some computations with symmetric functions
[version 1.2 (1 May 2013), not completed, not proofread]

In this note, we will prove some of the formulae from section 9 of [1] which remain
unproven in [1]. First, some definitions:

Definition 1. We denote by N the set {0, 1,2, ...} (and not the set {1,2, 3, ...},
as Hazewinkel does in [1]).

Definition 2. Let [ be an arbitrary countable set. (Note that throughout
most of section 9 of [1], it is silently assumed that I = {1,2,3,...}.) Every
element o € N’ is a family of nonnegative integers, indexed by elements of
I. For every a € N! and every i € I, we denote by «; the i-th member of
the family o. Then, of course, every element o € N’ satisfies o = (o).

We denote by NI the subset
{a € N’ | only finitely many i € I satisfy a; # 0}

of NI. |1 Obviously, for every element o € N | the sum Y o; is a well-
i€l

defined nonnegative integer (since only finitely many addends of this sum

are nonzero), so that we can define a function wt : N} — N by

(Wta = Z o; for every a € Nén> .

icl
Consider this function wt.

We consider the polynomial ring Z[¢; | ¢ € I] and the power series ring
Z[& | i € I]], where (&), is a family of pairwise distinct symbols indexed
by elements of I.

For every element o € N.L | we can define a polynomial £ € Z[&; | i € I]

by € = [] & (this product is well-defined, since only finitely many of its
i€l

factors are # 1). Such a polynomial £* is called a monomial. We consider

"More generally, if A is any subset of N, then we will denote by AL the subset
{a € A" | only finitely many i € I satisfy oy # O}

of AL



the polynomial ring Z [¢; | i € I] as a graded ring with unityP} with the n-th
graded component being the Z-module

(¢* | €N, such that wta =n).

An element of Z [¢; | i € I] is said to be n-homogeneous (or homogeneous of
degree n) if it lies in the n-th graded component of Z[¢; | i € I].

We consider the polynomial ring Z [¢; | i € ] as a subring of the ring Z [[¢; | i € []]
of power series in the indeterminates §;. We will now define aring Z [§; | i € I]__
that lies "between these two rings” (i. e., that contains Z[¢; | i € I] as a
subring, but is a subring of Z[[¢; | i € I]]):

For every power series P € Z|[[¢; | i € I]] and every a € Nf,, we denote by
coeff,, P the coefficient of the power series P before the monomial £*. We
denote by Z [¢; | © € I]_, the subring

. there exists some n € N such that every o € Nf,
{P €zl liel] | ( with wt a > n satisfies coeff, P =0

of Z[[& | i€ I]]. In other words, we define Z[¢; | i € I]_ as the ring of
all power series P € Z|[¢; | i € I]] where all monomials of sufficiently high
degree appear with zero coefficient.

This ring Z[§; | i € I]_ is obviously a subring of Z[[§, | i € I]] (even a
proper subring, if I # &), but contains the ring Z[&; | i € I] as a subring
(and is larger than Z[¢; | i € I] if I is an infinite set).

The difference between the rings Z [[¢; | i € I]] and Z [¢; | i € I]_ is that the
ring Z [[¢; | i € I]] contains power series like 1+ &, + &2+ &> + ... (where ¢ is
some element of I), while the ring Z [&; | i € I]|_ does not (since the power
series 14, +&2+&2+ ... contains monomials £% with arbitrarily large degree
wt ). The difference between the rings Z[¢; | i € I] _ and Z[; | i € I] is
that the ring Z [§; | i € I]_ contains power series like ) | &;, while the ring
i€l
Z & | i € I] does not, unless I is a finite set. The moral of the story is that
the elements of the ring Z [§; | ¢ € I]_, are something between power series
and polynomials: They may contain infinitely many monomials, but all
these monomials must have bounded (from above) degree. Of course, if [ is
a finite set, then Z [§; |i € I| = Z [ | ¢ € I] (since there are only finitely

2Remark. Different authors sometimes use different (and non-equivalent!) notions of a ”graded
ring with unity”. The one that we are using here is defined as follows:

Definition. A ”graded ring with unity” means a ring A with unity equipped with a family (A,),, oy
of subgroups of the additive group A satisfying 1 € Ay and

(An Ay C Api for every n € N and m € N).

Also, we use the following notation:

Definition. If a ring A, equipped with a family (A,), cy, is a graded ring, then the family (A,)
is said to be the grading of this graded ring A.

Definition. If a ring A, equipped with a family (A,),cy, is a graded ring, then, for each n € N,
the group A,, is called the n-th graded component of the graded ring A.

neN



many monomials of each degree if [ is a finite set). But if [ is infinite, then
Z[& | i€ 1) is truly larger than Z &, | ¢ € I].

We consider the polynomial ring Z [&; | ¢ € I]__ as a graded ring with unity,
with the n-th graded component being the Z-module

{PeZ[&|iel] | every a € N, with wta # n satisfies coeff, P = 0}.

An element of Z [§; | © € I]__ is said to be n-homogeneous (or homogeneous
of degree n) if it lies in the n-th graded component of Z [§; | i € 1] .

(Note that, unlike Z[; |i € I] or Z[&; | i € ], the ring of power series
Z[[& | i € I]] does not naturally have a grading in our sense of this word.)

Definition 3. 1 define a partition as a sequence A = (A, A9, A3, ...) €
Ngl’2’3"“} of nonnegative integers satisfying \y > Ay > A3 > .... This
definition of a partition is slightly different from the one given in [1], 9.30
- but these two definitions are easily seen to be equivalent. In fact, in [1],
9.30, Hazewinkel defines a partition as a finite sequence (A1, Ag, ..., \,,) of
nonnegative integers satisfying Ay > Ay > ... > \,, and identifies any two
such partitions which only differ in the number of trailing zeroeéﬂ. But
any partition (A1, Ag,...,\,) in Hazewinkel’s sense can be extended to a
partition in my sense - i. e., to a sequence A = (A1, A, A3, ...) € N&’m"“}
of nonnegative integers satisfying \; > Ay > A3 > ... - by adding trailing
zeroes (i. e. by setting \; = 0 for all ¢ > n), and conversely, any partition

A= (A, A2, A3,...) € Nf{ii’Q’g""} in my sense is an extension of a partition in

Hazewinkel’s sense by trailing zeroes (in fact, there exists some v € N such
that A\, = A\ys1 = Ay2 = ... =0 [] so that the sequence A = (A1, Ag, As, ...)
is the extension of the finite sequence (A1, Ag, ..., \,_1) by trailing zeroes).
This yields a one-to-one correspondence between partitions in my sense and
partitions in Hazewinkel’s sense, so these two notions of partition can be
regarded as equivalent.

We denote the set of all partitions by Par.
Definition 4. Let A = (Aq, Ay, A3, ...) be a partition (in my sense).
(a) Let « € NL . Then, we write A ~ a (and we say that the family « is a

permutation of the partition \) if and only if there exist

e a subset I’ of I such that o; =0 for every i € I\ I’,
e a subset N of {1,2,3,...} such that A\, =0 for every n € {1,2,3,...} \ N,

e and a bijection ® : N — I’ such that ag,) = A, for every n € N.

31. e., he identifies any partition (A1, A2, ..., \,) with the partition (/\1,)\2, ey An, 0,0, ...,O) for
——

m zeroes
every m € N.

4In fact, since \ € N&’Q’S"”}7 there exists some v € N such that A, = 0, and thus this v satisfies
Ay =MXt1=Xgo=..=0(since \; > Xy > A3 > ...).



F| In other words, we write A ~ « if and only if the multiset [o; | i € I]
and the multiset [\, | n € {1,2,3,...}] are "equal up to the element 0 ”
(this means that they contain every element k& # 0 the same number of
times, but may contain the element 0 differently often)ﬁ

In other words, we write A ~ « if and only if
Hiel | =k} =|{ne{1,2,3,..} | \n =k} for every k € {1,2,3,...}

(but not necessarily for k = 0).

Clearly,
if A ~ a, then wt A = wt a. (1)

Besides,

for every o € Ni | there exists one and only

one partition \ satisfying \ ~ « . (2)

(b) Let o € NI . Then, we write A < « if and only if A\ ~ « is false.
(c) We define a power series my € Z[[&; | © € I]] by

my = Z §a-

aENén;
A~
1, if A~ a;
1 _ ) )
Clearly, for every a € Ng, we have coeff, (m,) = { 0 ifAwa Thus,

the power series my liesin Z [§; | i € 1] |Z| This power series m is called
the monomial symmetric function associated to the partition . Actually,
this power series my, is a polynomial (i. e., an element of Z[¢; | i € I]) if I
is a finite set, but in the case of I being infinite, m, is only a ”symmetric
function” (i. e., an element of Symm, as defined in the Appendix of [1]).

SIf the set I is infinite, this definition is equivalent to the following simpler definition: We write
A ~ « if there exists a bijection ® : {1,2,3,...} — I such that V() = An for every n € {1,2,3,...}.

However, if the set I is finite, then this simpler definition makes no sense (because there can never
be a bijection P {1,2,3,..} = I).

SHere, we denote by [a; | i € I] the multiset formed by writing down «; for every i € I, and we
denote by [A\, | n € {1,2,3,...}] the multiset formed by writing down X, for every n € {1,2,3,...}.

"Proof. Every o € Nén such that wta > wt\ + 1 satisfies A = « (because otherwise, it would
satisfy A ~ «, so that

wt A = wta (by (1))
>wtA+1>wtA

which is absurd). Hence, every a € N} such that wta > wt\ + 1 satisfies coeff, (my) =

1, if A~ a;
{ 0, if A«
wt o > n satisfies coeff, (my) = 0 (in fact, take n = wt A 4 1). In other words, my € Z[&; | i € I]
(by the definition of Z[§; | ¢ € I]_), qed.

= 0 (since A = ). Thus, there exists some n € N such that every a € N} with



Here are some explicit examples for my where I = {1,2,3,...}:
moy = 1 (note that (0) = (0,0,0,...) is the zero partition);
may =& +&+ 8+ 8+
me =G +&+8E+&+ .
may = &1 + 6183 + 88 + 616 + &8 + 838 + -
My =& + a8 + 66+ 68 + 656+ 686 + G+ LG + &4+ L8 + 88+ 68 + .
m,1) = §18283 + §1828s + §18384 + 8380 + ..

We note that for every partition A, the power series my € ZI[¢; | i € 1] is wtA-
homogeneous. This is because every o € NI with wt v # wt \ satisfies coeff,, (my) = 0

. . L, if A~va;
(since wt av # wt A yields A » « and thus coeff, (m,) = { 0, ifAwa )-

Definition 5. Let A be a partition. Let n be a positive integer. We define
a nonnegative integer m, (A) by

m, (N ={i€{1,2,3,..} | \s=n},

where A = (A1, A2, A3, ...). This integer m,, () is the number of all blocks
of size n in the block representation of the partition .

We can define a map m : Par — N{{i}l’m"“} by
m (A) = (my (N),ma (N),msz (), ...) for all A € Par.

It is easy to see that this map m is a bijection. The inverse map m=" :

N{%’Q’S"”} — Par is given by
m~t (a1, ay,as,...) = (194,292 3% ) for every (ai,as,as,...) € Ngff’*"'}.

Here, (191,29 3%, ...) denotes the partition

v,v,.,.v,v—1Lv—1 .. v—1,...22 .2 1,1, ..1],
—— -~ —— ——

vV
a, times a,_—1 times az times a1 times

where v is the maximal element of {1,2,3, ...} satisfying a, # 0.

Note that every partition A € Par satisfies

wt A= kmy (), (3)
k=1
since
WhA = Z )\":Z Z k = |{n€{17273""} | /\n:k}|'k
ne{l1,2,3,...} k=0 n6{1,2i3,...}; k=0 :|{i6{17273t-} | =k}

iy =my(X)

—_———
—{ne{123,} | An=k}l-k

:’;mku)-kzmm)-mzmkm-k::k;k:mkm.

k=1
T =kmy(N)

=0
since if A ~ «, then wt A = wt «, contradicting wt o # wt A

8
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Definition 6. For every n € N, we define a power series h, € Z[[§; | ¢ € I]]

by
hn = Z .

A partition;
wt A=n

The sum ). m, is a finite sum (since there are only finitely many
A partition;
wt A=n

partitions A satisfying wt A = n). Consequently, h, = Y. m, is a
)\ partition;
A=n

wt
sum of finitely many m,, and hence is an element of Z [§; | ¢ € I]__ (because
each my is an element of Z[; | i € I]__). Besides, the power series h, is
n-homogeneous H Again, this h,, is a polynomial if I is a finite set, but
in the case of general I, this A, is solely a symmetric function.

It is easy to see that every n € N satisfies

=Y (1)

aENén;
wta=n
(since
h, = 5 my = E E £ (by the definition of my)
A partition; A partition; QENé ;
wt A=n wt A=n /\Nan
= E E £ = E E £ (since wt A = wta if A ~ «)
aeNL X partition; acNL X partition;
fin ot A=n; fin = Wt a=n;
Ao A~
=2 2 ¢=)
aeNén; A partition; aeNén;
wt a=n ~a wt a=n
=& (by @)

Definition 7. For every n € N, we define a power series e, € Z[[§; | ¢ € I]]
by e, = M, 1) Then,

n ones

ew=mq )= D, & (5)
n ones aeNé“;
l (1,1,...;1)~a
—_—

mn ones

9This is because h,, is a finite sum of n-homogeneous power series (in fact, h,, is the finite sum

> my, and for every partition A satisfying wt A = n, the power series m) is n-homogeneous
A partition;
wt A=n
(since my is wt A-homogeneous, and wt A = n)).



We notice that e, € Z[&; | i € I]__ (sincee, = ma,,. 1) € L& iel],,
) Y 9

n ones

because my € Z[§ | i € I] for every partition ), and that the power
series e, is n-homogeneous (in fact, e, = m,1,..,1) is wt (1,1,...,1)-
) PR a,—/

n ones n ones

homogeneous, but wt (1,1,....,1) =1+ 14+ ...+ 1 =mn).
—_—

n ones n ones

Now, if P, (I) denotes the set of all n-element subsets of I, then there exists a
bijection

R:P,(I) »{acNL | (1,1,..,1) ~«
N —

)

defined by
1, if i € D;
R(D)—({ 0. ifi¢D ) for every D € P, (1) .
el
This bijection satisfies
R(D)), R(D)), R(D)),
gr0) ~ T = ] (RO, I (RO,
i€l i€D =¢;, since i€l\D =1, since
1, if i € D; | 1, ifieD;
(R(D”i‘{ 0,ifi¢gD (R(D))i‘{ 0,ifi¢D
(since i€D) (since i¢ D)
= H & H 1= H &
i€D  iel\D i€D
=1
for every D € P, (I). Thus, (5] becomes
here, we substituted R (D) for «
_ a R(D) ) )
En Z ¢ Z é;,./ ( since R is a bijection )
a€NL ; DePu(l) — 1T ¢
(1,1,...., )~a €D
—_——

T ones

= > 1l (6)

DeP,(I)i€D

In other words, e, is the sum of all possible products of n pairwise different variables
among the & (with each such product being taken only once).
Now, in the ring (Z[&; | i € I]_) [[T]], we have

[T =&7) =3 (1) e, (7)



since

H (1-&T) = Z (—fz'T)j = Z H (=&T)™ (by the product rule)

iel i€l j=0 ac{0,1}5, icl
=% (&) O o
4=0 = [I (=&T)%- I (=&T)™
i€l i€l
a;=0 a;=1
= > [l e I (—em
ac{0,1}}, zeIO —1, since ze:I,l .:_"&T
a;=0 = since a;=1
) Iaizl
3 [ = 5 (ptE=]e
acfo1}, i€l ac{o1}, iel;
- ‘
:(_T)|{"€1|&¢:1}| 1 &
i€l
a;=1
d d d
=2 2 le=> e > Jle=> 0" > ]«
=0 ae{0,1}g,; i€l d=0 a€{01}g,; €l d=0 aeNL i€l
{i€l|a;=1}|=d @i=1 [{iel|oy=1}|=d “= (1,1, 71)Naai=1

since {@6{0,1}gn | |{z’€[|ai:1}\:d}: aeNL | (1,1,..,1) ~a
———

S (D=3 (1) et

d=0 d=0

Now we will prove a very easy identity - (9.37) in [1]:

Theorem 1 (the Wronski relations). (a) Inthering (Z[¢; | i € I]_) [[T]]
of formal power series, we have

H — & Zthd (8)

(b) In the ring Z [¢; | i € I]_, we have

i o O, if n > 1;
> whe={ HNZ )
(1.5)EN?;
i+j=n

for every n € N.



Proof of Theorem 1. (a) We have

H 1 _1&T - H Z &7y (since L _ Z (fiT)j>

el g 1-&T 4
i€l i€l 7=0 §=0
= Z H (&)™ (by the product rule)

aENén il ZS?ZTO%
-y e s (e (1)
aeNf i€l aeNL  \i€l i€l y
—fo = ar

=€l =Twta

[eS) oS
=D e Tt=) 3 & T = ) halt,
aENén d=0 aeN{in; d=0

wt a=d

——
=hg (by (@)
and is proven.
(b) In the ring (Z & | i € I] ) [[T]], we have

1= H : _1&T . H (1-&T) = (Z thd> - (Z (—1)dede)

el d=0

(by (8) and (7))
=3 3 (Y Tt =3 Y () et

d=0 (4,j)eN?;

itj i(_qyiti d=0 i,7)EN?;
A P S i
=(=D"(=1)%
since i+j=d

Comparing the coefficients before T™ of the power series on the left and on the right
hand side of this equation, we obtain

0,ifn>1; n i
{ Litn—po =D > (=1) hey.
(1,4)EN?;
i+j=n
Thus,
i . n 0,ifn>1; [ 0,if n>1;
2 (1) hie; = (1) { 1,ifn=0 —{ Lifn=0 "
(1.5)EN?;
1+j=n

and therefore, @ is proven. This completes the proof of Theorem 1.

The next formula that we want to prove is (9.44) in [1]. First, we need two more
definitions:

Definition 8. Let A be a partition. Then, we define a power series h, €
L& | i€l by

h = ﬁ i),
n=1

9



(This is actually a finite product, since only finitely many n € {1,2,3,...}
satisfy prn ) # 1, because only finitely many n € {1,2,3,...} satisfy
my, (A) # 0.) This power series hy can be written in a simpler way if we
write our partition A in the form (Aj, Ao, ..., \;,) for some m € N; namely,

if A= ()\1, )\2, 7)\m) s then h)\ = h,\lh,\Q...h)\m (10)
(since if A = (A1, A, ..., Ap), then

hahsgbn, = [ =] [ #= 1T Ju |- T II *

1€{1,2,...,m} n=04e{1,2,...,m}; 1€{1,2,....m}; —1 n=14e{1,2,...,m};
Ai=n ;=0 Ai=n
0 )
My (A
SV O | (e
n:1 ie{1727“'7m}; n:1
Ai=n
—_——
{ie{1,2,....m} | x;=n}|
—p
:h;ﬂn(k)

). Hence, our definition of h) agrees with the definition of h, given by
Hazewinkel in [1], (9.36).

Note that the power series hy is wt A-homogeneous/!”)

Similarly to how we defined h) using the already-defined symmetric func-
tions h,,, we can define e, using the e,. Namely, for every partition A\, we
define a power series ey € Z[§; | i € I]_ by

[o.¢]
e\ = H e?"(’\).
n=1

Again, this is actually a finite product. We can prove that
if A= ()\1,)\2,...,)\m), then Ex = €N\ €ENy---EN, (11)

(this is proven in exactly the same way as (10])). Hence, our definition of
ey agrees with the definition of ey given by Hazewinkel in [1], (9.36). The
power series ey 1S Wt )\-homogeneouﬂ.

We notice that for every o € NL | we have

> =[] la and (12)

A€Par; el

A~

E ey = H Ca; - (13)
A€Par; i€l

A~

0Tn fact, if we write our partition A in the form (A1, Az, ..., Ay ), then yields hy = hx,hxy...ha,, -
Since the power series hy, is A;-homogeneous for every i € {1,2,...,m}, the product hy, hy,...hy,, must
be a (A1 + A2 + ... + Ay )-homogeneous power series. But hy, hy,...hy, = hy and A\ + Ao+ ...+ A, =
wt A. Thus, h) is a wt A-homogeneous power series, qed.

"' This is proven in the same way as we showed that k) is wt A-homogeneous.

10



Proof. Fix some a € NL . Let X be a partition satisfying A ~ a. Let us write our
partition A in the form (A1, A2, A3, ...). Since X is a partition, there exists some v € N
such that A, = 0, and thus A\, = A\,41 = Apyo = ... = 0 (since A\ > Ag > A3 > ...), so
that A, = 0 for every integer n > v. But A = (A, A2, A3, ...) = (A1, A, ..., A1) (since
An = 0 for every integer n > v). Thus, yields hy = hy,hy,...hy, ,. On the other
hand, A ~ « yields that there exist:

e a subset I’ of I such that a; =0 for every i € I\ I,
e a subset N of {1,2,3,...} such that A\, =0 for every n € {1,2,3,...} \ N,

e and a bijection ® : N — I’ such that ag,) = A, for every n € N.

Consider this I’, this N and this ®. Since I’ C I, we have

e (D) [ T e [T T

icl icr iel\I’ 1 ier neN
(since ¢€I\I’, so that
a;=0, thus ho,=ho=1)
here, we substituted ® (n) for 7 in the product, since
® : N — I is a bijection

= H ha, (since ag(n) = An for every n € N) )

neN

Since N C {1,2,3,...}, we have

0 oo (Oe) | T m | -Ta-TDn

ne{1,2,3,...} neN ne{1,2,3,.. \IV -1 neN el
(since n€{1,2,3,...}\ N, thus
An=0 and hence hy,,=ho=1)

so that

[[rar= 11 m=]1]m
n=1

i€l ne{1,2,3,...}
= h)qh)\z"-h)\u_l H h)\n = h>\1h>\2"'h)\u—1 = h’>\‘
n=v

=1
(since Ap=0 for n>v)

Now forget that we fixed A\. We thus have shown that [] h,, = h, for every partition

el
A satisfying A ~ «. Thus,
5 - 3 o
AePar; i€l A€Par;
A~ A~a

11



But for any fixed a € NI | there exists one and only one partition A satisfying A ~ «

(by ), and therefore we have > [] ha; = [] ha,. Hence, rewrites as

AePar; el i€l
Ao

[17e =2 m

i€l A€Par;

and this proves . The proof for is exactly similar (we just have to replace h
by e). This completes the proofs of and .

Before we proceed further, we must introduce a simple notation relating to power
series. In fact, we will often want to apply one and the same power series to different
sets of variables. Here is our notation for that:

Definition 9. For every partition A € Par, we denote by m, (§) the el-
ement my of the ring Z[§, | i € I]_, and by my (n) the ”corresponding”
element of the ring Z [n; | j € J]__ (that is, the power series we would ob-
tain if we would replace the set I by the set J and the indeterminates &;
by the indeterminates n); in the definition of my). H Similarly, we
denote by hy (£) the element hy of the ring Z[§; | i € I]_, and by hy (n)
the ”corresponding” element of the ring Z[n; | j € J]__ (that is, the power
series we would obtain if we would replace the set I by the set J and the
indeterminates & by the indeterminates 7; in the definition of h,).

Also, for every n € N, we denote by h, ({) the element h, of the ring
Z[& | i€ 1], and by hy, (1) the "corresponding” element of the ring Z [n; | j € J|
(that is, the power series we would obtain if we would replace the set I by

the set J and the indeterminates & by the indeterminates 7; in the defini-

tion of h,).

oo

Now, we are approaching a proof of formula (9.44) in [1]. First, we need one remark
about power series:

Let A be a commutative ring with unity. Assume that for every partition A\, we
have given some element a, of A. Then, in the ring A[[T]] of power series in the
indeterminate 1" over A,

the infinite sum Z a, T is convergent (15)
A€Par

(with respect to the (7)-adic topology on the ring A [[T]]). This is because this infinite

12Explicitly, this means that

my (&) =ma= Y &, while ENOESPNE

a€NF BENT,;
A~ a A~

where 1? stands for [] n;’ (just as £ stands for [] &).
jed icl

12



sum > a TV rewrites as

A€Par
0o
E Oz,\TWt A= E E Q) .
AePar n=0 A€Par;

wt A=n

this is a finite sum of elements
of A, since there are only finitely

many partitions A such that wt A=n

Now, we present the formula (9.44) from [1] in a slightly generalized formﬁ:

Theorem 2. Let [ and J be two countable sets. In the ring
(Z[& i€l ) | i€ J]) ([T]], we have

S @mmr = [ —

A€Par (i.5)elxJ L=&mn;T

[

Proof of Theorem 2. For every A\ € Par, the power series my (n) € Zn; | j € J]|_
is defined as the power series we would obtain if we would replace the set I by the set
J and the indeterminates & by the indeterminates n; in the definition of m,. But the

definition of m, is
my = Z §a7

aENi{m;
Ao

and thus, replacing I by J and &; by 7; in this definition, we obtain

my (1) = Z n,

aENén;
A~

where the polynomial n® € Z[n; | j € J] is defined by n* = ] nj‘j . Hence,

jeJ
Doh©mam T =" ha () o T = () Y T
AePar AePar QENﬁ]n; :r‘rwtoz7 AEPar aeNén;
A~ since A~a A~o

yields wt A=wt a

= T > ha(6). (16)

aeNén A€Par;
A~

13 Actually, our Theorem 2 is slightly more general than formula (9.44) in [1], since formula (9.44) in
[1] follows from our Theorem 2 by setting T" equal to 1. However, in turn, our Theorem 2 follows from
formula in [1] by replacing n; by T';, so we do not win much generality by introducing the variable
T. The main reason for the introduction of the variable T in Theorem 2 is to make the convergence
of the sum S hy (&) ma (n) TV more obvious.

A€Par
“The sum 5. hy (&) my (n) TV is convergent according to 1)
A€Par

13



But Y. hy = ] ha, for every a € N{ (this is simply the equation 1') with

AEPar; jeJ
Ao
I replaced by J). In other words, > hx(§) = [] ha, (§) (since hy = hy (&) and
A€Par; jeJ
Ao

ha; = hq; (£)). Hence, (16) becomes

2 m@mimT =3 a2 ke ©= 3 1o IT7 1] 2, ()

AePar NJ . > s jeJ NJ jeJ jeJ JjeJ
a€ ﬁn:l—[ n;"J _piE J:H iy aeNg
jes jeg
(07
= > 7 Th., ©) =] <§ 19T hq ) (17)
aeN] jeJ j€J \aeN

(by the product rule). But for every j € J, we have

> T ha ( Zh => ha(T)" = ha(n;T)"

aeN aGN =hy _(77 ) aeN deN
=ty =H—1_; -
d=0 iel i
1

(since = 3" hyg (;T)%, which follows from substituting 7,7 for T in 15)

el 1 gz ] d=0

and thus ) becomes

wt 1
Zh)\ my (n) TV HH _& H W

AePar jeJ iel (3,5)EIXJ

Thus, Theorem 2 is proven.
We will prove some more identities later, but first we recall the definition and basic
properties of the "power sum” symmetric functions p,,:

Definition 10. For every n € N, we define a power series p, € Z[[&; | ¢ € I]]
by pn = my).

We notice that p, € Z[& | i € 1], (since p, = mu) € Z[& | i € 1], be-
cause my € Z[§ | i € I] for every partition ), and that the power se-
ries p, is n-homogeneous (in fact, p, = m(,) is wt (n)-homogeneous, but
wt (n) =n).

It is easy to see that

=> & for every n € {1,2,3,...} (18)

iel

(but not for n = 0, unless [I| =1 [).

15 This is because py = mg) = 1, whereas €Y is undefined for infinite sets I (and distinct from 1
i€l
even when I is finite, unless |I| = 1). This is a reason why most authors prefer not to define py at
all. However, we define pg to be 1 here, since this makes Definition 11 a little bit simpler. But let us
remember that does not hold for n = 0, and that our convention py = 1 is not compatible with
the convention that Hazewinkel uses in [1] (in fact, Hazewinkel sets py to be 0 in [1], (9.58)).

14



Proof. Fix n € {1,2,3,...}. For every j € I, we define a family ef € NZ by e} =
if i = j; : . .
<{ %’ 11le y ‘? > . In other words, we let €} be the family whose j-th component is
’ el
n and whose other components are all 0. It is clear that these families €} for different
j (but fixed n € {1,2,3,...}) are all pairwise different, and that these families e} are
the only families o € N. satisfying (n) ~ a. Hence,

{ n, if i = j;
YooY e =Ye |smeeet [ =l © T —e
aGN{an; Jjel Jjel i€l i€l
(n)~a
Thus,

doe=>g=> ¢

a€eNL ; Jjel iel

(n)~a

and consequently, (18] is proven.
Let us now verify the so-called Newton relations (formulae (9.59) and (9.57) in [1]):

Theorem 3 (the Newton relations). (a) In thering (Z[¢; | ¢ € I] ) [[T7]
of formal power series, we hav

" = Tl (01 (1) = Tt (19

where the power series H (T') € (Z[&; | @ € I]_) [[T]] is defined by

H(T) = Hl—ﬁ, Zthd

(where we are using [ | T S~ hgT?, which holds because of Theorem
i€l i d=0
1 (a)).

(b) In the ring Z [&; | ¢ € I]__, we have

n—1
1=0

for every n € N.

d
161t should be remarked that the logarithmic derivative T log (H (T)) is well-defined in the ring

(Z[& | i € I))[[T]] even though the logarithm log (H (T')) itself is not defined in this ring. In general,

if A is a commutative ring with unity, and f € A[[T]] is a formal power series with constant term
4
1, then the logarithmic derivative T log f of f is defined as the formal power series 7, no matter

whether the logarithm log f is well-defined in A [[T]] or not.

15



Proof of Theorem 3. Let us work in the ring (Q[[& |7 € I]]) [[T]]. (In this ring,
logarithms like log (H (T")) are well-defined, and not just logarithmic derivatives like

d
= log (H (1)),

1
Since H (T') = , we have
) ZEI_II 1=-&T
d d 1 d 1
T—log(H(T)) =T-—1 =T—)» 1
a7 08 (1) =T7 Og(Hl—@-T) dTZOgl—fiT
N el P el ———
e 1 :710g(17£iT)
=TT
O SN B T ) 9 SET AL
T AT “ A T AT &Ly Y
i€l 1 i€l n=1
= i —(&T)™ due to the
n=117M 1
power series —log(1—X)= ioj — X"
n=11M
- 1 d n = ngm—1 = nm
S SR TS S WTERED 3 STt
icl n=1 N—— i€l n=1 icl n=1
=ngpTn-1
Y S Y
n=1 el n=1
~——
=pn by "
d TH' (T
Besides, Tﬁ log (H(T)) = i (;)) , since the well-known formula for the logarithmic
derivative yields - log (H (7)) = Z5) Thus, Theorem 3 (a) i
erivative yields — lo = : s, Theore a) is proven.
rivative yi o 108 H(T) us, rem is proven
(b) We have
H’(T):iH(T)ziith sinceH(T):ith
dT dT =" i

= i hadT4 !
d=0

(where dT%! is considered to be 0 for d = 0) and thus

TH'(T) =T hedT*" = hedT* = hynT". (21)
d=0 d=0 n=0
00 TH'(T)
N 19) yiel ™ = h
ow, 1} yields nz::l Dn HT) so that
00 00 00 oo n—1
TH(T)= H(T) > pT" =3 hT* > pT"=> > hipyiT"
e d=0 u=1 n=0 =0
=3 haTd
d=0 =32 puTm

u=1

16



(by the definition of the product of two power series). Comparing this with , we
see that

o) oo n—1
n=0 n=0 =0

Thus, every n € N satisfies

n—1
=0

This proves Theorem 3 (b).

The Wronski relations (Theorem 1) relate the sequences (hy), oy and (en),cy, and
the Newton relations (Theorem 3) relate the sequences (hy),,cy and (Pn) (125 3 Now
we shall prove the so-called summed Viete relations, which relate the sequences (e,,)
and (p")p€{1,2,3,...}’ thus completing the circle.

neN

Theorem 4 (the summed Viete relations). (a) Inthering (Z[&; | i € I]_ ) [[T]]
of formal power series, we hav

S ot = 1L iog (8 (1)) = - LED (22)

dT E(T)

where the power series E (1) € (Z[&; | i € I])[[T]] is defined by

E(T) =J[a-&1)=> (-1)" e

icl d=0
(where we are using [[ (1 —&T) = 3 (—=1)%e4T%, which holds because of
iel d=0

@)

(b) In the ring Z [&; | ¢ € I]__, we have

for every n € N.

Proof of Theorem 4. Let us work in the ring (Q[[& |7 € I]]) [[T]]. (In this ring,
logarithms like log (E (7')) are well-defined, and not just logarithmic derivatives like

d
= log (E(T)))

d
17Tt should be remarked that the logarithmic derivative aT log (E (T)) is well-defined in the ring

(Z[& | i € I])[[T]] even though the logarithm log (£ (T')) itself is not defined in this ring. In general,

if A is a commutative ring with unity, and f € A[[T]] is a formal power series with constant term
!
1, then the logarithmic derivative a7 log f of f is defined as the formal power series 7, no matter

whether the logarithm log f is well-defined in A [[T]] or not.

17



(a) We have

and thus log (E (T))) = log ((H (T))_l) = —log (H (T')). Consequently,

T g (7 (7)) = ~T-o (—log (H (T)) = -k og (1 (7)) = 3 puT™

ar dr ar
TE' (T

(by ) Besides, _TdiT log(E(T)) = — I (;)), since the well-known formula for
the logarithmic derivati ield dl (E(T))—E/(T) Thus, Th 4 (a) i

e logarithmic derivative yields — log = B0 us, Theorem is
proven.

(b) We have

d o0 . . 00
/ _ _ v . d _ _1\d d
E'(T)=—FE(T) = dT;( 1)%e T <smceE(T) d;( 1) edT)

(where dT9! is considered to be 0 for d = 0) and thus

~TE'(T)=-T» (-1)"eadT"" = =) " (=1)"edT" = =Y " (~1)"e,nT"
d=0 d=0 n=0
=> (=" enTm. (24)
n=0
0 TE'(T)
Now, (22)) yields P = — , o that
b v 3 E(T)
00 (%S) 00 co n—1 )
~TE'(T)= E(T) pT" =S (=) e 70N p, T = (=) e;pn_iT"
=3 (—1)Peqrd T~
d=0 _ Z:lpuTu

(by the definition of the product of two power series). Comparing this with , we
see that

o0

(=1)" " enT™ = Z (—=1)" eipn_iT™.
=0 ;

n



Thus, every n € N satisfies

i
L

()" e = (=1) eipus,

%

I
o

Upon multiplication by (—1)""", this becomes

n—1 '
€N = Z (_1)n—z+1 €iPn—i-
=0

This proves Theorem 4 (b).
We need some more definitions now:

Definition 11. Let A be a partition. Then, we define a power series

pr €L i eI] by
DA = HPZI"(A)~
n=1

(This is actually a finite product, since only finitely many n € {1,2,3,...}
satisfy p?"w # 1, because only finitely many n € {1,2,3,...} satisfy
m, (A) # 0.) This power series p, can be written in a simpler way if we
write our partition A in the form (Ay, Ag, ..., A) for some m € N; namely,

lf )\ = ()\1, )\2, ceey /\m) y then Px = PxiPro--Prm, (25)

(we recall that py is supposed to mean 1). This is proven in the same way
as we showed . Hence, our definition of p, agrees with the definition of
pa given by Hazewinkel in [1], (9.61).

The power series p) is wt )\—homogeneouﬁ.

We notice that for every o € NL | we have

> =] ro (26)

AePar; el
Ao

(again, remembering that py was defined as 1). The proof of this equation is exactly
the same as that of (but with A replaced by p throughout the proof).

Definition 12. For every partition A € Par, we denote by p, (§) the
element p, of the ring Z[; | i € I]__, and by py(n) the ”corresponding”
element of the ring Z [n; | j € J]__ (that is, the power series we would obtain
if we would replace the set I by the set J and the indeterminates &; by the
indeterminates 7; in the definition of py).

Besides, for every n € N, we denote by p, (£) the element p, of the
ring Z [§; | i € 1], and by p, (1) the ”corresponding” element of the ring

18This is proven in the same way as we showed that k) is wt A-homogeneous.
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Zn; | j € J], (that is, the power series we would obtain if we would re-
place the set I by the set J and the indeterminates &; by the indeterminates
n; in the definition of p,,).

Definition 13. For every partition A € Par, we denote by z, the nonneg-
ative integer defined by

o= [ ™™ (m, ().
n=1

This product is actually finite, because only finitely many n € {1,2,3,...}
satisfy n™ ) (m,, (\))! # 1 (since n™ ™ (m,, (\))! # 1 yields m,, (\) # 0,
and only finitely many n € {1,2,3, ...} satisfy m,, (\) # 0).

We now come to another formula from [1] - with a generalization:

Theorem 5. Let I and J be two countable sets.
(a) In the ring (@& |7 € 1) [n; | 7 € J].0) [[7]). we have

S ©pmT = ] _ (27)

A€Par (i.)elxJ L= &mT

[
(b) In the ring (((Q[& i € 1].0) [n; | 7 € J].0) [[T]) [[S]], we have

S st (€ g () T =[] (ﬁ) (28)

AePar (4,)eIxJ 51‘77]‘

PY where the function msum : Par — N is defined by

msum A = my (A)+mg (A)+ms (A)+... = Z my (A) for every partition .

Here, for any power series P € (((Q[& i€ 1] )[n|j€ J] ) UTI) [0S
with constant term 1, the power series PS € (((Q[& |1 € I])[n; | 7 € J]) [[T]
is defined by P¥ = exp (S log P) (where log P is computed using the log (1 )
00 (_1)1671

2.

k=1

Note that Theorem 5 (a), upon substitution of 1 for 7', becomes the formula (9.62)

IIV

X* formula).

in [1], while Theorem 5 (b) is a generalization which doesn’t occur in [1].

Proof of Theorem 5. (b) We have
Z z;lsmsum)\p)\ (f) I (n) th)\

A€Par

= > S ) ) (©) Pt () T (29)

aGNéiJ’S" 3

YThe sum 3" 2y 'pa (&) pa () TV is convergent according to ([15)).

A€Par
DThe sum Y. 2y 1S™umAp,y (€) py () TV is convergent according to .
AcPar
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(here, we substituted m™! (a) for A, since m : Par — N&’Q’g’“'} is a bijection). Now,

Nf{iil,2,3,...}

every a € satisfies

m, (m™" (a)) = a, for every n € {1,2,3,...} (30)
(since the definition of the map m yields that
(m1 (m™" (a)) ,ma (m™" (@) ,ms (m ™" (a)),...) =m (m™" (a)) =a = (a1,a9,as, ...)

), and thus
H k:m” @) m_1 (a)))! = H n“ra,,!
n=1

(by (30)), further

o0
msum E mk (a) :5 ag, so that
%,_/
k=1
=a by (B0)

Smsum(m_l(a)) _ Skilak _ Hsak — ﬁ Sa",
k=1 n=1

furthermore
-1 _ . -1
wt (m (a)) = Z kmy, (m (a)) (by @)
— N———
k=1 =ay, by (30)
= Z kay,, so that
k=1
t(m~'(a) > ka - k - k' @k -
DT | FR | (COG ) (e
k=1 k=1 n=1
and finally
Pm-1(a) = p:?"<m_ (@) (by the definition of py for A € Par)
n=1

=1z (by (30)) - (31)

This rewrites as
o

Pm~1(a) (5) = H (pn (5»% .

n=1

On the other hand, replacing the set I by the set J and the variables &; by the variables

n; in (31), we obtain
Pt () = [T ()™
n=1

21



Thus, transforms into

Z Z*lsmsum/\ (5) N (7]) th/\

AePar
-1
_ msum m_l(a)> Wt(m_l(a))
= Y | mw | 0 (&) P (1) T )
aENf{il’QB } I = Gan — N e o
" = I nenan =1 = 11 (u(© = H atmy =1L
00 -1 00 00 00
= Y (IIrmet) TI5™ T @e € T o™ [T (T
aeN{1,2,3,...} n=1 n=1 n=1 n=1 n=1

= > a5 o (€)™ (pn ()™ (T7)"

=11 (n%a)™ S (p (€))" (pa (0))" (T7)° (by the product rule)

-~

1 1 “
:_' ST™ —pn(§)pn(n)
a: n

=T

> ;, (ST" %pn (€) n (n))a = ﬁeXp (ST” - %pn (&) Pn (n))

a€eN n=1

3
Il
i

J/

-~

1
=exp (ST”~—pn(£)pn(n)>
n

= exp (Z ST" - %pn (€) pn (n)) = eXP( Z —T"py (€) pn (n )) : (32)

n=1

But for every n € {1,2,3,...}, we know that p, = > &" (by ), which rewrites as
i€l
pn (§) = > & If we replace the set I by J and the variables &; by 7; in this formula,
il
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we obtain p, (7) = > n}. Thus,

JjeJ
1
> TP (©)pn Z TSy = Z Ty g
n=1 el jeJ n= 1 (4,5)EIxXJ
= > &y
(i,J)€IxJ
= 2 Z ST = 3 Z (&m;T)
(3,7)eIxJ n= 1 — (T )n (¢,5)EIXJT

=—log(1—¢&;n;T) due to the

o0
formula > —X"=-—log(1-X)

n=117M,
1
= Z (—log (1 —=&n,T)) = Z log ——
- ~ - 1 —&nT
(Z,])EIXJ 1 (Z,])EIXJ
=log ———
1—&nT

Therefore, becomes

1 1
-1 Wt A _ =
S i @OpmT" =exp [ S > log 1 T I oo (S g 7 &-mT)

A€Par (1,7)eIxJ (4,7)EIXJ

T (&)

(¢,5)€IxJ

This proves Theorem 5 (b).
Theorem 5 (a) trivially follows from Theorem 5 (b) by evaluating at S = 1.
A useful corollary from Theorem 5 is the following fact:

-~

1 S
:(1 - fij)

Theorem 6. Let I be a countable set. In the ring Q[¢; | i € I]__, we have

Z 2oy = hy, for every n € N (33)
A€Par;
wt A=n
and
Z (1) = (1) e, for every n € N, (34)
)\E)\Par
wt A=n

where the map msum : Par — N is defined as in Theorem 5 (b).

Proof of Theorem 6. Let J = {1}. Theorem 5 (b) yields that holds in
(Ql&ilie ] )my i€ J],) (S]] Now, we have

11 < 1 —&n,T ) HH( e T )S=g<ﬁ)s (35)

(4,5)eIxJ iel zeJ .
1 s
(1 - fz’ThT> 7
since J={1}
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Besides, for every n € {1,2,3,...}, we have

=

jeJ
(by (L8), with the set I replaced by J and the indeterminates &; replaced by 7;)
=y

(since J = {1}). Hence, every A € Par satisfies

= = mn()\ o nmpn (\) nijlnmn(/\) wt A
=TI )™ H = I = =)
n=1 n=1 n=1
(since i nmy, () = i kmy () = wt A by ) Using this equation and , we can
n=1 =
rewrite as =
—1 gmsum A\ wt Agpwt A 1 5
A;“ Z S pA (&) m" T = g (—1 — &ThT) . (36)
This holds in the ring (((Q[& | i€ I].) [n; |7 € J]) [T1]) [[S]]. But
Q& liell)miliedle= @& |iell)nlie] (since J = {1} is a finite set)
= (Ql& | i€ 1].0) [m] (since J = {1}),

and therefore, holds in the ring (((Q[& | i € 1)) [m]) [[T1]) [[S]]-
By the universal property of a polynomial ring, there exists a ring homomorphism

Q&G liel]l ) m]—Ql& |ieI],

that leaves each element of Q[; | ¢ € I]_ invariant and maps n; to 1. This homomor-
phism extends to a continuouﬂ ring homomorphism

(QI& [ € 1)) ) [T [1S1 = (Q&: | i € 1) [ITT]) [151]

that leaves each element of Q [§; | ¢ € I]__ invariant and maps 7y, T and S to 1, T"and S,
respectively. This homomorphism respects infinite sums and infinite products (since it
is continuous), and thus it maps > 2, 1 SWSUmAp, (&) pitATWEA o S7 ptgmsumAy, (£) [WEATWEA

AePar A€ePar
1 5 1 s
and maps —— | to —— | . Therefore, upon applying this ho-
P ieHI<1_§i771T> z‘eHI(l_&"lT) P pPivInG

momorphism to the equation , we obtain

— msum wt wt A ]' 5
2215 )\ (5)1 )\T A—H(m) .

AePar i€l

This simplifies to

1 S
Z Z;lsmsum)\p)\ (é—) th)\ _ ];JI: (1 — 51T> .

AePar

21Here, ” continuous” means ” continuous with respect to the (T, S)-adic topologies on the two rings”.
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Since

Z Z Smsum/\ th)\ Z Z Z)\lsmsum/\ )\(5) l.-v:v/t-);

A€Par n=0 A€Par; _ =7Tm

Wt A=n TPX (since wtA=n)
0o
_ —1 gmsum A n
= E g 28 T
n=0 A€Par;
wt A=n

this rewrites as

5 5 e - [ o

n=0 A\€Par; el
wt /\:n

Evaluating this identity at S =1 yieldﬂ

- 1
2 2 st =1l

n=0 \ePar; iel v
wt A=n

Since

II——— - —g Zthd (by (§)
iel v
= Z haT™,
n=0

this rewrites as

() 00
g E z;lp,\T" = E h,T".
n=0 \&Par; n=0

wt A=n

Comparing coefficients in this equation, we obtain

Z z/\_lp,\ = h, for every n € N.

AePar;
wt A=n

Thus, is proven.
On the other hand, evaluating the identity at S = —1, we get

> > st =T ()

n=0 A\€Par; i€l
wt A=n

22This is a bit sloppy formulation - in fact, is not even a polynomial identity in S, so it is not
really clear what ”evaluating it at S = 17 means. But what I mean is: if we replace S by 1 throughout
the proof of , we arrive at

> 1
> ¥ s =Ty

n=0 \ePar; i€l
wt A=n
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Since

1l <1 —1§1-T)_ =lIa-eD = (=1 e (by (@)

iel iel d=0
o
= Z (_1)" enTna
n=0
this rewrites as
o0 S
Z Z Z;l (_1)msum)\p)\Tn _ Z (_1)n €nTn.
n=0 \ePar; n=0
wt A=n
Comparing coefficients in this equation, we obtain
Z Z (—1)™" py = (=1)"e, for every n € N.
A€Par;
wt A=n

Thus, is proven.

Now it is time to introduce some more elements of Z [&; | ¢ € I]__, namely the power
series x1, X3, .... They are rather difficult to define directly, so we define them by means
of a theorem:

Theorem 7. Let A be a commutative ring with unity. Let (po, p1, p2, -..) €
AN be a sequence of elements of A such that py = 1.

(a) There exists one and only one sequence (X, Xy, X3,...) € A123} of
elements of A that satisfies the equation

ﬁ (1- X, 17" = i puT" (38)

d=1

in the ring A[[T]]. [

oo —
?3Note that the infinite product [] (1 —z4T?) ! converges (with respect to the (7T')-adic topol-
d=1

ogy on the ring A[[T]]) for every sequence (zi,z2,xs,..) € A3} In fact, the sequence

m _
(H (1 — xde) 1) is a Cauchy sequence.
d=1 meN

Proof. Let n € N. Let a and b be two integers such that ¢ > n and b > n. Then, since a > n, we

have

-1

f[ (1 -z, = (n_l (1 z:de)1> : f[ 1—aqT"

d=n | _; mod(T™)
(since d>n)

= (”1 (1- xde)1> : (ﬁ 11> = ”1:[1 (1- gvule)71 mod (T™) .

d=1
—_———
=1
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(b) Assume that the ring A is graded, and that

(for every n € N, the element p, lies in the n-th graded component of A).

(39)
Then, the unique sequence (X1, Xy, X3,...) € A{L23-} that satisfies
has the property that

(for every n € {1,2,3, ...}, the element X,, lies in the n-th graded component of A).
(40)

Proof of Theorem 7. (a) In order to establish Theorem 7 (a), we must prove two
assertions:

Assertion 1: There exists a sequence (X1, Xy, X3, ...) € A{123-} of elements of A
that satisfies the equation

ﬁ 1— X777 Z on T
d=1

in the ring A [[T]].

b n—1
Similarly, [] (1 — xde)_l =11 (1- xde)_l mod (T™). Hence,
d=1 d=1

Now, forget that we fixed a and b. We thus have proven that any two integers a and b such that
a > n and b > n satisfy

a

b
H (1 — xde)_1 = H (1 — chT‘]l)_1 mod (T").
d=1 d=1

Hence, there exists an N € N such that any two integers a and b such that a > N and b > N satisfy

a

b
[T @ =zar®)™ =] (1 —2a1?)” " mod (™)
d=1 d=1

(namely, N = n).
Now, forget that we fixed n. We thus have shown that for every n € N, there exists an N € N such
that any two integers a and b such that ¢ > N and b > N satisfy

a

b
H (1 - erTd)_l = H (1 - xde)_l mod (T")
d=1 d=1

d=1

m
In other words, the sequence (H (1 — xde)_1> is a Cauchy sequence (with respect to the
meN
(T')-adic topology on the ring A[[T]]). Hence, this sequence converges (since A [[T]] is complete with

respect to the (T')-adic topology). In other words, the infinite product [] (1 — achd)_l converges,
d=1
qed.
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Assertion 2: If (X1, Xo, X3,...) € AIL23-} and (Y,Y3,Ys,...) € At23} are two
sequences of elements of A that satisfy the equations

oo

H (1— X1 Z N A and (41)

d=1
ﬁ I Z onT" (42)
d=1

in the ring A [[T]], then (X1, X5, X3,...) = (Y1,Y3, Y5, ...).

Once both Assertions 1 and 2 are proven, Theorem 7 (a) will ensue (since Assertion
1 yields the existence of the required sequence (X7, Xo, X3, ...), while Assertion 2 yields
the uniqueness thereof). So it remains to prove Assertions 1 and 2.

Proof of Assertion 1. We construct the required sequence (X1, X, X3, ...) € At1:23-}
by recursion: Let m € {1,2,3,...} be given. We want to define an element X, € A,
assuming that the elements X, X,, ..., X,,_1 are already defined.

We define X, as the coefficient before T™ of the power series

m—1
Z o [T (1= X7 (43)
d=1

This way, we have recursively defined a sequence (X1, Xy, X3, ...) € A{L23-},
We now will show that every m € N satisfies

I - x.1%" Z pa T mod (T™+1) (44)
d=1 n=0

where (T™1) means the ideal 7! - A[[T]] of the ring A [[T]] (so that the congruence
of two power series modulo 7! simply means that they are equal in all of their terms
in which T occurs in a power less than m + 1).
We will prove by induction over m. First, the induction base is clear, since
for m = 0, the congruence is true (because the left hand side, ] (1 — Xde)fl,
d=1
is an empty product and therefore = 1, while the right hand side is > p, 7" and thus
n=0
congruent to py = 1 modulo (T1)). Now we come to the induction step: Let m € N be
such that m > 0. We want to prove , assuming that holds with m replaced
by m — 1.
We have assumed that holds with m replaced by m — 1; in other words, we
have assumed that

m—1
I (- x.7%)" Z puT™ mod (T™) .
d=1 n=0
m—1
Multiplication by [] (1 — X47%) yields
d=1

m—1

1= Z pu T - H (1 — X 7% mod (T™).
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Since 1 = (1 — X,,7™) ' mod (™) (because 1 — X, = 1 mod (T™)), this becomes

m—1

(1— X, T™)" anT” [T (1= X,7%) mod (1) .

d=1

In other words, the power series is congruent to the power series (1 — Xme)f1
modulo the ideal (7"). This means that the coefficients of the power series
before T°, T, ..., T™ ! are equal to the corresponding coefficients of the power se-
ries (1 — Xme)_l. But the coefficient of the power series before 1™ 1is also
equal to the corresponding coefﬁcient of the power series (1 —Xme)f1 (because
the coefficient of the power series (43) before 7™ is X (by our definition of X,,),
and the coeflicient of the power series (1 — X, 7™ " before T™ is also X,, (since

(1-— Xme) = Z (Xm Tm) )). Hence, the coefficients of the power series |D be-
fore T°, T*, .. Tm are equal to the correspondli coefficients of the power series

(1-X,T™)" 1. In other words, the power series (43| is congruent to (1 — Xme)f1
modulo the ideal (7). This means that

m—1

(1— X, T™)" Z puT" - [ (1 = XaT%) mod (T7) .

d=1

m—1
Multiplying this congruence by [] (1 — Xde)_l yields (since (1 — X, T™) "

d=1
m—1 m
[T (- Xde)_1 =JI(1- Xde)_l). Hence, is proven, and our induction is
d=1 d=1
complete.
Now, we have lim H (1- Xde)_ = z pr " (where the limit is taken with

m— 00 d=
respect to the (T')-adic topology on the rlng A [[T]]), since for every N € N, there
exists some v € N such that

ﬁ 1— X,T%)" Z pT" mod (TV)
d=1

n=0

for every m > v (in fact, this holds for v = N — 1 E[) Hence, the sequence
(X1, X2, X3,...) € AlL23-} that we constructed satisfies

ﬁ 1— X% = lim H (1— X177 Z onT".
d=1

Consequently, Assertion 1 is proven.

Proof of Assertion 2. Let (X1, Xa, X3,...) € At23-}F and (Y1, Y5, Y5, ...) € At123}
be two sequences of elements of A that satisfy the equations and . We are
now going to prove that X,, =Y, for every n € {1,2,3,...}.

24because of , and since any two elements that are congruent to each other modulo (7™+1)
must automatically be congruent to each other modulo (TV) (since m+1 > v+1= (N —1)+1= N)
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In fact, we are going to prove this by strong induction over n. So we fix some
n € {1,2,3,...}, and we try to prove that X, = Y,,, assuming that we have already

proved that X, =Y for every d € {1,2,3,...} satisfying d < n.
The equation yields

00 e n—1 00
S o =T - X%y = [] (- xar) ™ - X ]
n=0 d=1 d=1 d=n+1

1
=T1 (1 - X719 " - (1 = X, 7) "  mod (T™+) .
1

3
|

&
Il

1— Xx,7¢
N——

=1 mod(T"Jrl)7

since T%=0mod T”‘H)

because of d>n—+1

o) -1 0
Multiplying this congruence with (Z pnT”) (1 — X, T™) (the power series > p,T"
n=0 n=0

is indeed invertible, since its coefficient before T° is py = 1), we obtain

00 -1 p1
1-X,T" = (Z pnT"> . H (1 — Xde)_1 mod (TRH) ,

n=0 d=1
s0 that ) L
X, =1~ (Z pnT"> T (10— XaT?) ™ mod (1741
Similarly, - .
0o -1 pa
Y, I"=1- (Z pnTn> T (= var®) ™ mod (171 .
n=0 d=1
Thus,
o -1 pa
X, T"=1- <Z pnT"> T (- xar?)™ (by ([@5))
s aa
—1- (Z pnT"> JI G -vard)™
n=0 d=1

(45)

(46)

(since Xy =Y, for every d € {1,2,3,...} satistying d < n)

=Y, T" mod (T"") (by ([4)) .

In other words, the power series X,, 7™ — Y,,T™ must belong to the ideal (T"*1). But a
power series belonging to the ideal (T"1) must have its coefficient before T™ equal to
0. Thus, the power series X,, 7" —Y,T™ has its coefficient before T™ equal to 0. In other
words, X,, —Y,, = 0 (since X,, —Y,, is the coefficient of the power series X, 7™ — Y, T"

before T™), and therefore X,, = Y,,. This completes our induction step.
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We have therefore shown that X,, =Y, forevery n € {1,2,3,...}. Thus, (X1, X, X3,...) =

(Y1,Y5,Y5,...). This proves Assertion 2.

As both Assertions 1 and 2 are verified now, Theorem 7 (a) is proven.

(b) Let us introduce a notation: A power series a € A[[T]] is said to be equigraded
if and only if

(for every n € N, the coefficient of « before T™ lies in the n-th graded component of A).
It is easy to see that
{a € A[[T]] | the power series « is equigraded}

is a subring of A[[T]] (for a proof of this, see [2], Theorem 1 (a)). In other words,
the sum, the difference and the product of finitely many equigraded power series are
equigraded as well, and the two power series 0 and 1 are both equigraded.

Now, let us prove Theorem 7 (b). The unique sequence (X1, Xo, X3, ...) € At1:23-}
that satisfies was recursively constructed in the proof of Assertion 1 above; ac-
cording to that construction, this sequence satisfies

(Xn is the coefficient before 7™ of the power series (43))) (47)

for every m € {1,2,3,...}.

Now, we are going to prove by strong induction over n. That is, we fix some
n € {1,2,3,...}, and we want to show that X,, lies in the n-th graded component of
A, assuming that X lies in the d-th graded component of A for every d € {1,2,3,...}
satisfying d < n.

For every d € {1,2,3,...} satisfying d < n, the power series X T is equigraded
(since X, lies in the d-th graded component of A, according to our assumption), and
thus the power series 1 — X4T'? is equigraded, too (because it is the difference of the

m—1
two equigraded power series 1 and X;7'%). Hence, the power series [] (1 — Xde)

d=1
is the product of finitely many equ1graded power series, and thus it is equigraded as

well. Besides, the power series Z pnT™ is equigraded (by (39)). Therefore, the power

series is the product of two equ1graded power series, and therefore equigraded as
well. Consequently, the coefficient before T™ of the power series lies in the n-th
graded component of A. But the coefficient before T™ of the power series is X,
(due to , applied to m = n). Thus, X,, lies in the n-th graded component of A.
This completes our induction, and thus is proven. In other words, Theorem 7 (b)
is proven.

Theorem 7 (a) makes the following definition possible:

Definition 14. There exists one and only one sequence (X1, Xo, X3,...) €
(Z[& |ie I]oo){l’2’3""} of elements of Z [§; | i € I]_ that satisfies the equa-

tion -
H 1— X,T%)" Z h, T"
d=1
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in the ring (Z[& | i€ I].,)[[T]]. [P| This sequence will be denoted by
(1, 9,3, ...) from now on until the end of this note. Hence, this sequence
(1,9, T3, ...) satisfies

o0

(12" = h,1" (48)
n=0

d=1

This way, we have defined a sequence (1, xs,x3,...) of power series. Note
that this definition agrees with the definition of (z1,x2, 3, ...) given in [1],
(9.64).

Besides, we define a power series 2y € Z[§; | i € I]_ by xo = 1.

We notice a first property of the power series xg, 1, xs, ...: For every n € N, the
power series z,, € Z[§; | © € I]__ is homogeneous of degree n. E

Now, we are going to define a power series x, for every partition A as a product
of x,,’s in the same way as we defined h, as a product of h,’s, as we defined ey as a
product of e,,’s, and as we defined p, as a product of pn’sm

Definition 15. Let A be a partition. Then, we define a power series

xy€Z& |iel]l by
Ty = Hxnm"m.
n=1

(This is actually a finite product, since only finitely many n € {1,2,3,...}
satisfy zn ) # 1, because only finitely many n € {1,2,3,...} satisfy
mp (A) # 0.) This power series x, can be written in a simpler way if we
write our partition A in the form (A1, Ag, ..., A,) for some m € N; namely,

if A= (A, A2, ..., A\) , then ) = ), ), ...2) (49)

m

(we recall that xq is supposed to mean 1). This is proven in the same way
as we showed . Hence, our definition of z) agrees with the definition of
x, given by Hazewinkel in [1], (9.66).

25This follows from Theorem 7 (a), applied to A = Z[ i€ ] and (po,p1,p2,...) =
(h07 h17 h27 ...).

26 Proof. Recall that (x1,x9, 73, ...) is the unique sequence (X1, Xo, X3,...) € (Z[& | i € I]oo){l’2’3""}
of elements of Z[¢; | i € I]_ that satisfies the equation

ﬁ (1 X,1%) " = f: hT"
d=1 n=0

in the ring (Z[& |i€I])[[T]]. Thus, Theorem 7 (b), applied to A = Z[{ |ie ], and
(po, p1,p2,--.) = (ho, h1,ha,...), yields that for every n € {1,2,3,...}, the element x,, lies in the n-
th graded component of Z[&; | i € I]_ (because for every n € N, the element h,, lies in the n-th
graded component of Z[; | i € I]__, since h, is a homogeneous power series of degree n). In other
words, for every n € {1,2,3, ...}, the power series z,, is homogeneous of degree n. This holds for n = 0,
as well (since zg = 1 is clearly homogeneous of degree 0), so we can conclude that for every n € N,
the power series z,, is homogeneous of degree n, qed.

27 Actually we are copying the definition of py verbatim, just replacing every p by 2 and changing
the reference to [1].
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The power series x is wt A-homogeneoug™|

We notice that for every o € NL | we have

Z )\ = H:Eai (50)

A€Par; 1€l
Ao
(again, remembering that z, was defined as 1). The proof of this equation is exactly
the same as that of (but with A replaced by z throughout the proof).
Our next definition will be a simple notation:

Definition 16. Let P € Z[¢ | i€ I] be a power series. Let n €

{1,2,3,...}. Then, we define a power series P (£") € Z[§; | i € I]_ as fol-

lows: If we write the power series P in the form P = Y P, -£* (with P,
aENén

being an element of Z for every o € NL ), then the power series P (£7) is

defined as > P, -£". Here, nov means the family (nay),.; € Ni,.

aENén

Informally speaking, the power series P (") is what we obtain if we replace
every variable &; by its n-th power £ in the power series P.

Note that P (£') = P for every power series P € Z[&; | i € I] .
Next, we are going to define yet some more power series (but this time, they are
not defined in the same way as hy, ey, py and x):

Definition 17. Let A be a partition. Then, we define a power series
r€Z[&|iel] by

T\ = H P2y (€7) -
n=1

(This product Hl Pom, v (§7) is a finite product, since hp,, ) (") = 1 for

all but finitely nzlany n € {1,2,3,...}, since m, (A\) = 0 for all but finitely
many 7, and if m, (A) = 0, then h,, ) (") = 1.) Note that this definition
——

—ho=1
of ry is the same as the one given by Hazewinkel in [1], 9.63.

For every partition A, the power series r) is wt )\—homogeneousﬁ

Now, we will show an identity relating the power series x) and r)y:

28This is proven in the same way as we showed that hy is wt A-homogeneous.
Tn fact, for every n € {1,2,3,...}, the power series P, (») is My (X)-homogeneous, and thus the

power series hp, (x) (§") is nm, (A)-homogeneous (since for every k € N and every k-homogeneous
power series a € ZI[&; | ¢ € I],, the power series a(£") is nk-homogeneous). Hence, the prod-

oo?

uct [[ hp,n) (§7) is X2 mmy, (A)-homogeneous.  Since [] A, () (§") = ra and ) nm, (\) =
n=1 n=1 n=1 n=1

o0
> kmy, (A) = wt A, this means that 7y is wt A-homogeneous, qed.
k=1
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Theorem 8. Let I and J be two countable sets. In the ring
(Z[& i€l )| j€J)) T, we have

Y n@nmr= I

AEPar (i,j)EIX T

EY

Before we start proving this theorem, let us recall a standard fact from the theory
of formal power series:

Power series substitution rule. If A is a commutative ring with unity, and
P € A[[T]] is a power series with constant term 0, then there exists a continuous?]
ring homomorphism evy p : A[[T]] = A[[T]] which maps T" to P and is the identity on
the ring A.

(In fact, this homomorphism evy p is defined by evy p (Z anT") = Y a,P" for
n=0 n=0

every power series > a,T™ € A[[T]] with a; € A for all i € N. The infinite sum
n=0

(o]
> a, P™ is convergent, because for any n € N, the power series a,, P" has no monomial
n=0

of degree < n.)
Proof of Theorem 8. We have

S n@©nmT = Y i () i () TTT@) (51

A€Par aeNx{ay?,&m}

}

(here, we substituted m~! (a) for A, since m : Par — N&’Zg’"'

every a € Nf{iim’“'} satisfies 7% (®) = [T (T™)“" (as we have seen during the proof

is a bijection). Now,

n=1
of Theorem 5) and furthermore
. = mn (m=1(a)) ..
Tp1(a) = Tn (by the definition of x, for A € Par)
n=1

= [ = (by (30))
n=1

In other words,

Ty (6) = [ ] (2a (€)™
n=1
Besides,
Tm—1(a) = H P (m—1(a)) (§7) (by the definition of ry for A € Par)

=1
o0

=1 7. (€7 (by (30)) -

=1

30The sum Y. ) (&) ra (n) TV is convergent according to ([15).
A€Par
31Here, ” continuous” means ”continuous with respect to the (1")-adic topology on the ring A [[T]]”.
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Replacing the set I by the set J and the variables §; by the variables 7); in this equation,

we obtain .
Tm-1(a) () = H ha, (1
n=1

(where h,, (") is defined in the same way as h,, (£"), but with the set I replaced by
J and the variables ; replaced by n;). Thus, transforms into

S” o (€)ra () T

AePar
wt(m~1(a
= 2 @@ ()T @)
aeNéLQ,s,m} = 0

=11 (wn()" = 131 hay () = LL(T™)™

n=1

= > T @)™ [T e ) TT T

ac N{1’2’3"“} n=1

= > H Tn (€)™ ha, (") (T7)™

aeN(L2) n=1

— H Z Z ( n") (T”) (by the product rule)

n=l \ el )(V €)1y

-11 (z ha (") (20 () T“)“) . (52)

Now, fix n € {1,2,3,...}. We are going to simplify the term > h, (n") (z,, (§) T™)".

aeN

First, we remember that () yields

H - —§T Zthd - ZhaTa - ZhQT“.
d=0 a=0

el aeN

Replacing the variables & by the variables &' in this equation, we obtain

g7 - X

a€eN

Replacing the set I by the set J and the variables §; by the variables 7; in this equation,

we obtain
[[i—7=2_" (53)
niT

jeJ aeN

This is an equality in the ring ((Z[& |i€ 1] )[n; | j € J]) [[T]]. According to the
power series substitution rule (applied to A = (Z[§; |i€ ] )[n;|j€ J], and P =
z, (€) T™), there exists a continuous® ring homomorphism

(Z[&iell)mlie )TN — (Zl&|i€l])mlie )T

32Here, ”continuous” means ”continuous with respect to the (T)-adic topology on the ring

(Z[& i€ )i lie ) (T
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which maps T to z,, (§) T™ and is the identity on the ring (Z[& |t € I] ) [n; | j € J]
This homomorphism respects infinite sums and infinite products (since it is continu-

ous), and thus it maps — to — and maps he (™) T* to
) Wi—pr * i o &)

S ha (") (2, (§) T™)". Therefore, upon applying this homomorphism to the equation

aeN

(53), we obtain
jed

=> he €T . (54)

1—n"zx
7]] n aeN

Now forget that we fixed n. The equality (52 becomes

> o T =TT [ D2 ha ™) (2 () T
AePar n=1 a€eN ,
!
71;[" 1— 0} Tn &
by (54] .
-1
e 11 [ EEEE
n=1jeJ jeJ n= 1 jeJ n=1 (€ )(77] )
~TII0 - ©@my " =TI1] (1 2 (0) <an>d)‘1 (55)
jeJn=1 jeJ d=1

(here we substituted d for n in the second product) .

Now, fix some j € J. Note that

[T0-ar) =Tz (56)

d=1 el

(since

[T =z Zh ™ (by (@9))

d=1

1
d=0 i€l

). According to the power series substitution rule (appliedto A = (Z[& | i € I] ) [n; | 7 € J],
and P = n;T), there exists a continuouﬂ ring homomorphism

(Z[&Tiel)mlie ) [T — (Zl& i€l )mlie ) [T

33Here, ”continuous” means ”continuous with respect to the (T)-adic topology on the ring

(Z[& i€ )i lie ) (T

36



which maps T to n;T and is the identity on the ring (Z[& |ie Il )n;| € J],..
This homomorphism respects infinite products (since it is continuous), and thus it

[e'¢] 1 [e’e] A\ 1 1
maps 1 — 2474  to (1 —xq- (n;T ) and maps to .
dl;ll( ) dl;ll 1) z’lgfl_fiT iel_lfl_gian
Therefore, upon applying this homomorphism to the equation , we obtain
(-5 0m) " ~Tlbr
d=1 pir §ini T
In other words,
[M(-w©@un?) =T+
d=1 e 17 &ini T
(since x4 = 24 (€)). Thus, becomes
IENGENO A I (1 — 24 (§) (UjT)d> =111 T—enT
AePar j€J d=1 - jediel il
!
ier 1 sz]JT
- 11 1
(i.5)eIx] L=&mn;T

This proves Theorem 8.
Combining Theorem 8 with Theorem 9.42 in [1] yields the relations (9.70) in [1].
Theorem 8 can be generalized. In order to formulate this generalization, we will
have to generalize Definitions 14, 15 and 17. But first, we generalize the sequence
of power series (hg, hi, he,...) in such a way that we get a sequence of power series

(h{;‘], hle) pled, ) defined for every o € Z which coincides with (ho, by, ha, ...) if a = 1
and coincides with ((—1)0 eo, (—1)' e1, (—1)% e, L) ifa=—1.

Before we define this sequence (hgod, h[la], h[QO‘]7 ), we notice that the power series

S h, T € (Z]& | i€ I],)[[T]] is invertible (because its coefficient before T° is hy =
n=0

1). Hence, it makes sense to speak of (Z hnT”) for every a € Z.
n=0

Definition 18. Let a € Z. There exists one and only one sequence
(hga], h[la], h[2a], ) c @l ien )" of elements of Z[&; | i € I]
that satisfies the equation

i T = (i hnT"> (57)
n=0

n=0

34Note that the upper index [a] in h([)a], h[la]7 h[;‘], ... is not an exponent. It is just an index that

reminds us that the power series hga], h[la], h[za], ... depend upon a.
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in the ring (Z[& | i€ 1)) [[T]]. [P| This sequence will be denoted by
(hg“], hlel pled, ) henceforth until the end of this note.

Ezamples: 1) The sequence (h%l], h[l1

This is because yields

oo o0 1 o0
> wllrr = (Z hnT”> => T,
n=0 n=0

n=0

], h[;], > is identical to the sequence (hg, h1, ha, ...).

and comparing coefficients, we obtain that hL” = h, for every n € N, and therefore
(n), 08, ) = (s, o).

2) The sequence (hg_l], h[l_l], h[2_1], ) is identical to the sequence ((—1)0 eo, (—1) €1, (—1)% e, ).
This is because (b7)) yields

00 . 00 : —1 0o —1 1 -1
S (Ser) () (1)

n=0 el
= 1
<since yields Z haT¢ = H T {,T)
d=0 i€l
=[[a-&1)=>" (-1 e, (by ()
il d=0
— Z (—1)"e,TT,
n=0
and comparing coefficients, we obtain that - (—1)"e, for every n € N, and

therefore (hgﬁl],h[fl],hg”,...) = ((—1)0 eo, (—1)' ey, (—1)° €, ...).

3) The sequence (hg)], h[lo], h[QO], ) is identical to the sequence | 1, 0,0,... |. This
——

only zeroes

is because yields
o0 o0 0
> T = (Z hnT"> =1,
n=0 n=0

1, if n=0;

0. ifn >0 for every n € N, and

and comparing coefficients, we obtain hl?} = {

consequently, <h([)0],h[10},h[20}, > =11, 0,0,...

only zeroes

[e%
[e.e]
35This is clear, because (Z hnT”> is a power series in the indeterminate T over the ring
n=0

L& |iel],.
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We notice that for every a € Z and every n € N, the power series hf Vs n-
homogeneous. Also, for every o € Z, we have h([;“] =1 (since h([;“} is the coefficient of

the power series (Z hnT”> before T° (according to ), and the coefficient of the

o

power series (Z hnT”) before 7% is 1 P7)).
n=0

Now comes a generalization of Definition 14:

Definition 19. Let a € Z. There exists one and only one sequence
(X1, Xo, X3,...) € (Z[& | i € I) )" of elements of Z[&; | i € I]_ that
satisfies the equation

ﬁ 1— X179 " i hlelm (58)
d=1 n=0

in the ring (Z[& |i € I].)[[T])- ﬁ This sequence will be denoted by
(x[la], :L’[Qa], :cga], ) from now on until the end of this note. Hence,

this sequence (93[1 I x[;d, x[ga], > satisfies

ﬁ (1- xgale)l - i hlelm (59)
n=0

d=1

This way, for every a € Z, we have defined a sequence (x[la}, x[za],xga], )

of power series.

Besides, we define a power series ZL‘[ dez & |ieI], by a:ga} =1

36In fact, using the notion of ”"equigraded power series” that we have introduced in the proof of

Theorem 7 (b), we notice that if P is an invertible equigraded power series, then P is an equigraded

power series for every « € Z. (For a proof of this fact, see [2], Theorem 1 (d)). Hence, since we
o0

know that the power series Y h,T" € (Z[& |i € I]) [[T]] is equigraded (because h,, lies in the n-th
n=0

graded component of Z [§; | i € I]_ for every n € N, since h, is an n-homogeneous power series for

(oo}
every n € N), we can conclude that the power series ( > hnT") is equigraded as well, and therefore

h lies in the n-th graded component of Z [¢; | i € I], for every n € N (since yields that e s
the coefficient of the power series (Z h T”) before T™). In other words, the power series h%ﬂ is
n-homogeneous for every n € N.

%) (0%
3Thecause in general, the coefficient of a power series <Z unT”) before TV is u&, and thus the
n=0

jo%s) [e3
coefficient of the power series [ > h,T" | before T? is h§ =1% =1

n=0
3This follows from Theorem 7 (a), applied to A = Z[& |i€ ] and (po,p1,p2,...) =
(h[a] h[a] h[a] )
o hit hyt ).

39Note that the upper index [a] in :C[l ], x[Q ], xga], ... is not an exponent. It is just an index that
reminds us that the power series x[l I 33[20‘], xga , ... depend upon a.
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Ezamples: 1) The sequence (x[l}, :L*[QO], x[;”, ) is identical with (0,0,0,...). This is

because the sequence <$[1 ], x[QO], :)3%0}, ) was defined as the only sequence (X;, X, X3, ...) €

(Z[& i € I]Oo){l’ 33 of elements of Z [¢; | i € I]_, that satisfies the equation , but
the sequence (X1, Xs, X3,...) = (0,0,0,...) does satisfy this equation@

2) The sequence x[l ], x[;], xgl], ) is identical with the sequence (x1, z9, x3,...) de-
fined in Definition 14. In other words, ol =z, for every n € {1,2,3,...}. Since it is

also clear that x([)l] = 1o, we can therefore conclude that z}]

We notice a first property of the power series x([)a], x[la], x[za], .... For every a € Z

and n € N, the power series ez (& | © € I]_, is homogeneous of degree n.

=z, for every n € N.

Now, we are going to generalize Definition 15 in order to define a power series xE\a]

for every partition A:

Deﬁnltlon 20. Let aw € Z. Let X be a partition. Then, we define a power
series xA €L |iel], by

o0

2 =TT (aley™ .

n=1

(This is actually a finite product, since only finitely many n € {1,2,3,...}

mn(X)
satisfy (:v%) # 1, because only finitely many n € {1,2,3, ...} satisfy
[a]

my (A) # 0.) This power series =’ can be written in a simpler way if we
write our partition A in the form (Ay, Ao, ..., \;,) for some m € N; namely,

if A= (A, A2, ..., A\, then x[)\] = x[a]x[ . x&oi (60)
4Osince .
H 1—0Td =[[rt=1=> nlrm
d=1 1 d=1 =
41This is because Definition 14 is the particular case of Definition 19 for o = 1 (since
(hg”,hg”,hgﬂ,...) — (ho, h1, ha, ...)).
42 Proof. Recall that (x[la],xg],xga],...) is the unique sequence (Xi,Xs,X5,..) €

(Z[& i€ I]OQ){I’Q’B"“} of elements of Z[¢; | i € I]_ that satisfies the equation

ﬁ 1—X,7%)" Z plelm
d=1

in the ring (Z[& |i€I])[[T]]. Thus, Theorem 7 (b), applied to A = Z[¢ |ie ], and
(po, p1,p2,-..) = (hga],h[la]7h[2a]7...), yields that for every n € {1,2,3,...}, the element x%o‘} lies in
the n-th graded component of Z[&; | i € I] (because for every n € N, the element K lies in the
n-th graded component of Z[¢; | i € I]__, since R is a homogeneous power series of degree n). In
other words, for every n € {1,2,3,...}, the power series xL] is homogeneous of degree n. This holds

o0?

for n = 0, as well (since :ch} = 1 is clearly homogeneous of degree 0), so we can conclude that for

every n € N, the power series sc%a} is homogeneous of degree n, qed.
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(we recall that xgl] is supposed to mean 1). This is proven in the same way
as we showed ([10)).

In particular, xE\H = x, for every partition A\, because the definition of x)

(Definition 15) is the particular case of the definition of :13[)\0‘] for a = 1 (since

2l = 1, for every n € N).

The power series 1:[ ) is wt \- homogeneoul
So we have generalized Definition 15. Next, we generalize Definition 17:

Definition 21. Let a € Z. Let A be a partition. Then, we define a power
series 1™ € Z[¢; | i € 1] by

o)

et =TT e

n=1

(This product H h[a] » (€") is a finite product, since h[ N (€") =1 for

all but ﬁmtely many n € {1,2,3,. }, since my,, (A) =0 for all but finitely
many n, and if m,, (A) = 0, then hmn(x) (") =1))
——

=nll=1

Note that r[;} = ry for every partition \. This is because the definition of

r» (Definition 17) is the particular case of the definition of r&a] for a = 1

(since <h([)”,h[1”,h[2”,...> — (ho, b1, hs, ...)).

For every partition A, the power series 7, is wt A—homogeneous@
Finally, let us introduce a trivial notation:

Definition 22. Let a € Z. For every partition A € Par, we denote by
h&a] (&) the element hE\a] of the ring Z [&; | i € I]_, and by hi\a] (n) the ”cor-
responding” element of the ring Z[n; | j € J|__ (that is, the power series
we would obtain if we would replace the set I by the set J and the inde-
terminates &; by the indeterminates n; in the definition of h ol ). Similarly,

we define the power series Al (£), Al (n), ! (&), i) (n), x[f} (£), [)\a] (n),
7 (€) and o ().

Now, we will show an identity relating the power series x&a] and rf\a}, generalizing

Theorem &:

43This is proven in the same way as we showed that hy is wt A-homogeneous.
41n fact, for every n € {1,2,3, ...}, the power series h[rz]n(/\) is my, (A)-homogeneous, and thus the
power series h[a} Y (&™) is nmy, (A)-homogeneous (since for every k& € N and every k-homogeneous

power series v € Z[¢; | i€ I]_, the power series v (£") is nk- homogeneous) Hence, the prod-

o0

uct H th(A) (&™) is Z nm,, (A)-homogeneous. Since 1:[1 h[ (f”) = TA and Y nm, (\) =

n=1

Z kmy (A) = wt A, this means that rg\a] is wt A\-homogeneous, qed.
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Theorem 9. Let o € Z and € Z. Let I and J be two countable sets. In
the ring ((Z 6 | € 1)) [n; | j € J1..) [[T)], we have

af

S alofor - I 7=

A€Par (i.)elxJ L= &mT

[

The proof of this theorem is completely analogous to that of Theorem §; it was
mostly copy-pasted from the latter. Again, we will use the power series substitution
rule.

Proof of Theorem 9. We have

> @A = 30wl @l ) (6

AePar aeNf{il’z’?’""}
. _ . 1,2,3,..} . ee .
(here, we substituted m™! (a) for A, since m : Par — Nf{in Vis a bijection). Now,

every a € N&’Q’g"“} satisfies T (m (@) — [T (T™)* (as we have seen during the proof

n=1
of Theorem 5) and furthermore

ad mn(m—1(a
mE:],l(a) = H (mf‘]) n(m (@) (by the definition of x[)\a] for \ € Par)

= H (ng‘])an (by ) )

In other words,

n=1
Besides,
in fact, we have r) = H h[ﬂ y (€") for every A € Par,
T[ﬁ] La) = Hh[ﬁ] “1(ay (€7) e
n=1 according to the deﬁmtlon of r)\ (Wlth « replaced by ()

_ H h[ﬁ] (by )

Replacing the set I by the set J and the variables §; by the variables 7); in this equation,

we obtain .
n) = []rd ()
n=1

The sum > :c[)\a] €) r[f] (n) T¥** is convergent according to .

A€Par

42



(where h([fn] (n™) is defined in the same way as h([fn] (&™), but with the set I replaced by
J and the variables &; replaced by n;). Thus, transforms into

>l ©n

A€Par
wt(m~1(a
= > dly© Al mrtnte)
NGt Y e = =TI (Tm)en
=TI («5©) ™ =TT i)~
n=1 n=1
SR CIOR /IR 08
aGNt{ﬁi’Q’S’ }n=1 n=1

S TT el €)™ e ey (e

aeNéi’Q’S’“‘} n=1

H Z h[ﬁ] ( (T (by the product rule)
n=1 eN g

(62)

I
—#
=
=
—~
=
=
—~
8
e
o
~
3
~
IS}
N——

3
Il
—
2
m
Z

Now, fix n € {1,2,3,...}. We will simplify the term ) h (n™) (x,[fd (&) T")a.

aeN
First,

11 (1 —1£Z-T)B B (1} 1-&T ) (Z thd) (by ()

o0 /8 oo
- (Z hnT”> => nlim
n=0 n=0

oo o0 B
since Z hLﬁlT" = (Z hnT”) by , applied to [ instead of «
n=0

n=0
= i nPTe = " nlTe
a=0 aeN

Replacing the variables &; by the variables £ in this equation, we obtain

I (=gr) S

el a€eN

Replacing the set I by the set J and the variables &; by the variables 7; in this equation,

we obtain
11 (1 > LIt (63)

jedJ aeN
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This is an equality in the ring ((Z[& |i€ 1] ) [n; | j € J]) [T]]. According to the
power series substitution rule (applied to A = (Z[§ |ie€ 1] )[n;|j€ J], and P =

i) (&) T™), there exists a continuou ring homomorphism

(Z[&1iell)mlie )T — (Zl&|i€l]) e )T

which maps T to ! (€) 7™ and is the identity on the ring (Z[§; | i € )il jed],
This homomorphism respects infinite sums and infinite products (since it is continuous),

B
1\’ 1
and thus it maps [] ( ~ ) to [] and maps h (™) T
jes \1=miT i€l \ 1 —nj nglo] & a€N

Y ! (n"™) ( o] (€) T”) . Therefore, upon applying this homomorphism to the
aeN
equation ((63), we obtain

(i ) = ) (O T ©

jeJ aeN

Now, forget that we fixed n. The equality becomes

STl =TT Y o) () ¢ 1m)°
AEPar n=1 aeN
: — .
:jg,(l 77%[106] (§'>Tn)
by.
00 B 00 1 B
_HJGJ<1—HJ 2 ) EH( — i (E)T"> :g(gl wi?]@)T”)
—1\ B
_ o0 1 : g)‘] 5 Tn
=0 & (n;H)"™
o0 2\ o0 1\
=TI (I (-2 ©mn") ) =H(H (125 © ) ) (65)
jeJ \n=1 jedJ d=1

(here we substituted d for n in the second product) .

Now, fix some j € J. Note that

ﬁ (1-afir) o 11 (1 _1&T)a (66)

d=1

46Here, ”continuous” means ”continuous with respect to the (T)-adic topology on the ring

(Z[& i€ )i lie ) (T
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(since
[0
Err) we

:HQ—@)

el

-1

= hllrm (by (B9))
n=0

). According to the power series substitution rule (appliedto A = (Z[& |i € I] ) [n; | 7 € J],
and P = n;T), there exists a Continuouﬂ ring homomorphism

(Z[&1iell)mlie )T — (Zl& i€l )mlie )T

which maps T' to n;T and is the identity on the ring (Z[&; | i € I] ) [n; | j € J]_,. This

homomorphism respects infinite products (since it is continuous), and thus it maps
oo

el ~ - Ly RN
d];[l (1 Ty Td> to H (1 a: (mT)) andmapsienl(l_&T) toz‘eHI(l—fij) )

Therefore, upon applylng this homomorphism to the equation , we obtain

= [a] a\ ! 1 “
(= 0m) =TT ()

d=1 ier M &ini T
In other words,

o0

T ©wr) T (=t7) (67)

d
(since 21 = 21 (¢)). Thus, becomes

, o\ B
> alt @ =TT [TT (1 -« © 1)) =H<H (—1—;%7’))

A€Par jeJ Sl:l , jeJ
Vl N
=l
iel 1 — 5177]
(by (67))

() ) - T ()

t,j)elxJ
H ( : T)aﬁ
- 1 —&n; .

(i,5)eIxJ

4THere, ”continuous” means ”continuous with respect to the (T)-adic topology on the ring

(Z[& i€ )i lie ) (T
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This proves Theorem 9.
Theorem 8 is the particular case of Theorem 9 for o = f = 1 (since x&l] =z, and

r&” = r, for every partition ). Using Theorem 9.42 in [1], we can use Theorem 8 to
conclude that (xy,7,) = d), for any two partitions A and x (where (-,-) denotes the

Hall inner product, defined in [1], 9.40). In the same way, we can use Theorem 9 to
conclude that <l’[>\_1], r,L_l]> = 0y, for any two partitions A and .

We can also generalize Theorem 9 by replacing Z by any binomial ring (see [1],
17.19 for the definition of a binomial ring). The reason why we need the ring to be

binomial is that otherwise, <Z hnT") would not be well-defined (we can define the
n=0

a
a-th power of a power series only if the binomial coefficients ( k) exist in our ring),

and thus hif ] and acy[za } would not be well-defined either.
References

[1] Michiel Hazewinkel, Witt vectors. Part 1, revised version: 20 April 2008.
http://arxiv.org/abs/0804.3888v1

[2] Darij Grinberg: Witt#4a: Equigraded power series.
http://www.cip.ifi.lmu.de/~grinberg/algebra/witt4a.pdf

46


http://arxiv.org/abs/0804.3888v1
http://www.cip.ifi.lmu.de/~grinberg/algebra/witt4a.pdf

