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Witt#4: Some computations with symmetric functions
[version 1.2 (1 May 2013), not completed, not proofread]

In this note, we will prove some of the formulae from section 9 of [1] which remain
unproven in [1]. First, some definitions:

Definition 1. We denote by N the set {0, 1, 2, ...} (and not the set {1, 2, 3, ...},
as Hazewinkel does in [1]).

Definition 2. Let I be an arbitrary countable set. (Note that throughout
most of section 9 of [1], it is silently assumed that I = {1, 2, 3, ...}.) Every
element α ∈ NI is a family of nonnegative integers, indexed by elements of
I. For every α ∈ NI and every i ∈ I, we denote by αi the i-th member of
the family α. Then, of course, every element α ∈ NI satisfies α = (αi)i∈I .

We denote by NIfin the subset{
α ∈ NI | only finitely many i ∈ I satisfy αi 6= 0

}
of NI . 1 Obviously, for every element α ∈ NIfin, the sum

∑
i∈I
αi is a well-

defined nonnegative integer (since only finitely many addends of this sum
are nonzero), so that we can define a function wt : NIfin → N by(

wtα =
∑
i∈I

αi for every α ∈ NIfin

)
.

Consider this function wt.

We consider the polynomial ring Z [ξi | i ∈ I] and the power series ring
Z [[ξi | i ∈ I]], where (ξi)i∈I is a family of pairwise distinct symbols indexed
by elements of I.

For every element α ∈ NIfin, we can define a polynomial ξα ∈ Z [ξi | i ∈ I]
by ξα =

∏
i∈I
ξαii (this product is well-defined, since only finitely many of its

factors are 6= 1). Such a polynomial ξα is called a monomial. We consider

1More generally, if A is any subset of N, then we will denote by AIfin the subset{
α ∈ AI | only finitely many i ∈ I satisfy αi 6= 0

}
of AI .
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the polynomial ring Z [ξi | i ∈ I] as a graded ring with unity2, with the n-th
graded component being the Z-module〈

ξα | α ∈ NIfin such that wtα = n
〉
.

An element of Z [ξi | i ∈ I] is said to be n-homogeneous (or homogeneous of
degree n) if it lies in the n-th graded component of Z [ξi | i ∈ I].

We consider the polynomial ring Z [ξi | i ∈ I] as a subring of the ring Z [[ξi | i ∈ I]]
of power series in the indeterminates ξi. We will now define a ring Z [ξi | i ∈ I]∞
that lies ”between these two rings” (i. e., that contains Z [ξi | i ∈ I] as a
subring, but is a subring of Z [[ξi | i ∈ I]]):

For every power series P ∈ Z [[ξi | i ∈ I]] and every α ∈ NIfin, we denote by
coeffα P the coefficient of the power series P before the monomial ξα. We
denote by Z [ξi | i ∈ I]∞ the subring{
P ∈ Z [[ξi | i ∈ I]] |

(
there exists some n ∈ N such that every α ∈ NIfin

with wtα ≥ n satisfies coeffα P = 0

)}
of Z [[ξi | i ∈ I]]. In other words, we define Z [ξi | i ∈ I]∞ as the ring of
all power series P ∈ Z [[ξi | i ∈ I]] where all monomials of sufficiently high
degree appear with zero coefficient.

This ring Z [ξi | i ∈ I]∞ is obviously a subring of Z [[ξi | i ∈ I]] (even a
proper subring, if I 6= ∅), but contains the ring Z [ξi | i ∈ I] as a subring
(and is larger than Z [ξi | i ∈ I] if I is an infinite set).

The difference between the rings Z [[ξi | i ∈ I]] and Z [ξi | i ∈ I]∞ is that the
ring Z [[ξi | i ∈ I]] contains power series like 1 + ξι + ξ2

ι + ξ3
ι + ... (where ι is

some element of I), while the ring Z [ξi | i ∈ I]∞ does not (since the power
series 1+ξι+ξ

2
ι +ξ3

ι +... contains monomials ξα with arbitrarily large degree
wtα). The difference between the rings Z [ξi | i ∈ I]∞ and Z [ξi | i ∈ I] is
that the ring Z [ξi | i ∈ I]∞ contains power series like

∑
i∈I
ξi, while the ring

Z [ξi | i ∈ I] does not, unless I is a finite set. The moral of the story is that
the elements of the ring Z [ξi | i ∈ I]∞ are something between power series
and polynomials: They may contain infinitely many monomials, but all
these monomials must have bounded (from above) degree. Of course, if I is
a finite set, then Z [ξi | i ∈ I]∞ = Z [ξi | i ∈ I] (since there are only finitely

2Remark. Different authors sometimes use different (and non-equivalent!) notions of a ”graded
ring with unity”. The one that we are using here is defined as follows:

Definition. A ”graded ring with unity” means a ring A with unity equipped with a family (An)n∈N
of subgroups of the additive group A satisfying 1 ∈ A0 and

(AnAm ⊆ An+m for every n ∈ N and m ∈ N) .

Also, we use the following notation:
Definition. If a ring A, equipped with a family (An)n∈N, is a graded ring, then the family (An)n∈N

is said to be the grading of this graded ring A.
Definition. If a ring A, equipped with a family (An)n∈N, is a graded ring, then, for each n ∈ N,

the group An is called the n-th graded component of the graded ring A.
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many monomials of each degree if I is a finite set). But if I is infinite, then
Z [ξi | i ∈ I]∞ is truly larger than Z [ξi | i ∈ I].

We consider the polynomial ring Z [ξi | i ∈ I]∞ as a graded ring with unity,
with the n-th graded component being the Z-module{
P ∈ Z [[ξi | i ∈ I]] | every α ∈ NIfin with wtα 6= n satisfies coeffα P = 0

}
.

An element of Z [ξi | i ∈ I]∞ is said to be n-homogeneous (or homogeneous
of degree n) if it lies in the n-th graded component of Z [ξi | i ∈ I]∞.

(Note that, unlike Z [ξi | i ∈ I] or Z [ξi | i ∈ I]∞, the ring of power series
Z [[ξi | i ∈ I]] does not naturally have a grading in our sense of this word.)

Definition 3. I define a partition as a sequence λ = (λ1, λ2, λ3, ...) ∈
N{1,2,3,...}fin of nonnegative integers satisfying λ1 ≥ λ2 ≥ λ3 ≥ .... This
definition of a partition is slightly different from the one given in [1], 9.30
- but these two definitions are easily seen to be equivalent. In fact, in [1],
9.30, Hazewinkel defines a partition as a finite sequence (λ1, λ2, ..., λn) of
nonnegative integers satisfying λ1 ≥ λ2 ≥ ... ≥ λn, and identifies any two
such partitions which only differ in the number of trailing zeroes3. But
any partition (λ1, λ2, ..., λn) in Hazewinkel’s sense can be extended to a

partition in my sense - i. e., to a sequence λ = (λ1, λ2, λ3, ...) ∈ N{1,2,3,...}fin

of nonnegative integers satisfying λ1 ≥ λ2 ≥ λ3 ≥ ... - by adding trailing
zeroes (i. e. by setting λi = 0 for all i > n), and conversely, any partition

λ = (λ1, λ2, λ3, ...) ∈ N{1,2,3,...}fin in my sense is an extension of a partition in
Hazewinkel’s sense by trailing zeroes (in fact, there exists some ν ∈ N such
that λν = λν+1 = λν+2 = ... = 0 4, so that the sequence λ = (λ1, λ2, λ3, ...)
is the extension of the finite sequence (λ1, λ2, ..., λν−1) by trailing zeroes).
This yields a one-to-one correspondence between partitions in my sense and
partitions in Hazewinkel’s sense, so these two notions of partition can be
regarded as equivalent.

We denote the set of all partitions by Par.

Definition 4. Let λ = (λ1, λ2, λ3, ...) be a partition (in my sense).

(a) Let α ∈ NIfin. Then, we write λ ∼ α (and we say that the family α is a
permutation of the partition λ) if and only if there exist

• a subset I ′ of I such that αi = 0 for every i ∈ I \ I ′,

• a subset N of {1, 2, 3, ...} such that λn = 0 for every n ∈ {1, 2, 3, ...} \N ,

• and a bijection Φ : N → I ′ such that αΦ(n) = λn for every n ∈ N .

3I. e., he identifies any partition (λ1, λ2, ..., λn) with the partition

λ1, λ2, ..., λn, 0, 0, ..., 0︸ ︷︷ ︸
m zeroes

 for

every m ∈ N.
4In fact, since λ ∈ N{1,2,3,...}fin , there exists some ν ∈ N such that λν = 0, and thus this ν satisfies

λν = λν+1 = λν+2 = ... = 0 (since λ1 ≥ λ2 ≥ λ3 ≥ ...).
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5 In other words, we write λ ∼ α if and only if the multiset [αi | i ∈ I]
and the multiset [λn | n ∈ {1, 2, 3, ...}] are ”equal up to the element 0 ”
(this means that they contain every element k 6= 0 the same number of
times, but may contain the element 0 differently often).6

In other words, we write λ ∼ α if and only if

|{i ∈ I | αi = k}| = |{n ∈ {1, 2, 3, ...} | λn = k}| for every k ∈ {1, 2, 3, ...}

(but not necessarily for k = 0).

Clearly,
if λ ∼ α, then wtλ = wtα. (1)

Besides,

for every α ∈ NIfin , there exists one and only

one partition λ satisfying λ ∼ α . (2)

(b) Let α ∈ NIfin. Then, we write λ � α if and only if λ ∼ α is false.

(c) We define a power series mλ ∈ Z [[ξi | i ∈ I]] by

mλ =
∑
α∈NIfin;
λ∼α

ξα.

Clearly, for every α ∈ NIfin, we have coeffα (mλ) =

{
1, if λ ∼ α;
0, if λ � α

. Thus,

the power series mλ lies in Z [ξi | i ∈ I]∞
7. This power series mλ is called

the monomial symmetric function associated to the partition λ. Actually,
this power series mλ is a polynomial (i. e., an element of Z [ξi | i ∈ I]) if I
is a finite set, but in the case of I being infinite, mλ is only a ”symmetric
function” (i. e., an element of Symm, as defined in the Appendix of [1]).

5If the set I is infinite, this definition is equivalent to the following simpler definition: We write
λ ∼ α if there exists a bijection Φ̃ : {1, 2, 3, ...} → I such that αΦ̃(n) = λn for every n ∈ {1, 2, 3, ...}.

However, if the set I is finite, then this simpler definition makes no sense (because there can never

be a bijection Φ̃ : {1, 2, 3, ...} → I).
6Here, we denote by [αi | i ∈ I] the multiset formed by writing down αi for every i ∈ I, and we

denote by [λn | n ∈ {1, 2, 3, ...}] the multiset formed by writing down λn for every n ∈ {1, 2, 3, ...}.
7Proof. Every α ∈ NIfin such that wtα ≥ wtλ + 1 satisfies λ � α (because otherwise, it would

satisfy λ ∼ α, so that

wtλ = wtα (by (1))

≥ wtλ+ 1 > wtλ,

which is absurd). Hence, every α ∈ NIfin such that wtα ≥ wtλ + 1 satisfies coeffα (mλ) ={
1, if λ ∼ α;
0, if λ � α

= 0 (since λ � α). Thus, there exists some n ∈ N such that every α ∈ NIfin with

wtα ≥ n satisfies coeffα (mλ) = 0 (in fact, take n = wtλ + 1). In other words, mλ ∈ Z [ξi | i ∈ I]∞
(by the definition of Z [ξi | i ∈ I]∞), qed.
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Here are some explicit examples for mλ where I = {1, 2, 3, ...}:

m(0) = 1 (note that (0) = (0, 0, 0, ...) is the zero partition) ;

m(1) = ξ1 + ξ2 + ξ3 + ξ4 + ...;

m(2) = ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4 + ...;

m(1,1) = ξ1ξ2 + ξ1ξ3 + ξ2ξ3 + ξ1ξ4 + ξ2ξ4 + ξ3ξ4 + ...;

m(2,1) = ξ2
1ξ2 + ξ1ξ

2
2 + ξ2

1ξ3 + ξ1ξ
2
3 + ξ2

2ξ3 + ξ2ξ
2
3 + ξ2

1ξ4 + ξ1ξ
2
4 + ξ2

2ξ4 + ξ2ξ
2
4 + ξ2

3ξ4 + ξ3ξ
2
4 + ...;

m(1,1,1) = ξ1ξ2ξ3 + ξ1ξ2ξ4 + ξ1ξ3ξ4 + ξ2ξ3ξ4 + ....

We note that for every partition λ, the power series mλ ∈ Z [ξi | i ∈ I]∞ is wtλ-
homogeneous. This is because every α ∈ NIfin with wtα 6= wtλ satisfies coeffα (mλ) = 0

(since wtα 6= wtλ yields λ � α 8 and thus coeffα (mλ) =

{
1, if λ ∼ α;
0, if λ � α

= 0).

Definition 5. Let λ be a partition. Let n be a positive integer. We define
a nonnegative integer mn (λ) by

mn (λ) = |{i ∈ {1, 2, 3, ...} | λi = n}| ,

where λ = (λ1, λ2, λ3, ...). This integer mn (λ) is the number of all blocks
of size n in the block representation of the partition λ.

We can define a map m : Par→ N{1,2,3,...}fin by

m (λ) = (m1 (λ) ,m2 (λ) ,m3 (λ) , ...) for all λ ∈ Par .

It is easy to see that this map m is a bijection. The inverse map m−1 :
N{1,2,3,...}fin → Par is given by

m−1 (a1, a2, a3, ...) = (1a1 , 2a2 , 3a3 , ...) for every (a1, a2, a3, ...) ∈ N{1,2,3,...}fin .

Here, (1a1 , 2a2 , 3a3 , ...) denotes the partitionν, ν, ..., ν︸ ︷︷ ︸
aν times

, ν − 1, ν − 1, ..., ν − 1︸ ︷︷ ︸
aν−1 times

, ..., 2, 2, ..., 2︸ ︷︷ ︸
a2 times

, 1, 1, ..., 1︸ ︷︷ ︸
a1 times

 ,

where ν is the maximal element of {1, 2, 3, ...} satisfying aν 6= 0.

Note that every partition λ ∈ Par satisfies

wtλ =
∞∑
k=1

kmk (λ) , (3)

since

wtλ =
∑

n∈{1,2,3,...}

λn =
∞∑
k=0

∑
n∈{1,2,3,...};

λn=k

k

︸ ︷︷ ︸
=|{n∈{1,2,3,...} | λn=k}|·k

=
∞∑
k=0

|{n ∈ {1, 2, 3, ...} | λn = k}|︸ ︷︷ ︸
=|{i∈{1,2,3,...} | λi=k}|

=mk(λ)

·k

=
∞∑
k=0

mk (λ) · k = m0 (λ) · 0︸ ︷︷ ︸
=0

+
∞∑
k=1

mk (λ) · k︸ ︷︷ ︸
=kmk(λ)

=
∞∑
k=1

kmk (λ) .

8since if λ ∼ α, then wtλ = wtα, contradicting wtα 6= wtλ

5



Definition 6. For every n ∈ N, we define a power series hn ∈ Z [[ξi | i ∈ I]]
by

hn =
∑

λ partition;
wtλ=n

mλ.

The sum
∑

λ partition;
wtλ=n

mλ is a finite sum (since there are only finitely many

partitions λ satisfying wtλ = n). Consequently, hn =
∑

λ partition;
wtλ=n

mλ is a

sum of finitely many mλ, and hence is an element of Z [ξi | i ∈ I]∞ (because
each mλ is an element of Z [ξi | i ∈ I]∞). Besides, the power series hn is
n-homogeneous 9. Again, this hn is a polynomial if I is a finite set, but
in the case of general I, this hn is solely a symmetric function.

It is easy to see that every n ∈ N satisfies

hn =
∑
α∈NIfin;
wtα=n

ξα (4)

(since

hn =
∑

λ partition;
wtλ=n

mλ =
∑

λ partition;
wtλ=n

∑
α∈NIfin;
λ∼α

ξα (by the definition of mλ)

=
∑
α∈NIfin

∑
λ partition;

wtλ=n;
λ∼α

ξα =
∑
α∈NIfin

∑
λ partition;

wtα=n;
λ∼α

ξα (since wtλ = wtα if λ ∼ α)

=
∑
α∈NIfin;
wtα=n

∑
λ partition;

λ∼α

ξα

︸ ︷︷ ︸
=ξα (by (2))

=
∑
α∈NIfin;
wtα=n

ξα

).

Definition 7. For every n ∈ N, we define a power series en ∈ Z [[ξi | i ∈ I]]
by en = m(1, 1, ..., 1)︸ ︷︷ ︸

n ones

. Then,

en = m(1, 1, ..., 1)︸ ︷︷ ︸
n ones

=
∑
α∈NIfin;

(1, 1, ..., 1)︸ ︷︷ ︸
n ones

∼α

ξα. (5)

9This is because hn is a finite sum of n-homogeneous power series (in fact, hn is the finite sum∑
λ partition;

wtλ=n

mλ, and for every partition λ satisfying wtλ = n, the power series mλ is n-homogeneous

(since mλ is wtλ-homogeneous, and wtλ = n)).
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We notice that en ∈ Z [ξi | i ∈ I]∞ (since en = m(1, 1, ..., 1)︸ ︷︷ ︸
n ones

∈ Z [ξi | i ∈ I]∞,

because mλ ∈ Z [ξi | i ∈ I]∞ for every partition λ), and that the power
series en is n-homogeneous (in fact, en = m(1, 1, ..., 1)︸ ︷︷ ︸

n ones

is wt (1, 1, ..., 1)︸ ︷︷ ︸
n ones

-

homogeneous, but wt (1, 1, ..., 1)︸ ︷︷ ︸
n ones

= 1 + 1 + ...+ 1︸ ︷︷ ︸
n ones

= n).

Now, if Pn (I) denotes the set of all n-element subsets of I, then there exists a
bijection

R : Pn (I)→

α ∈ NIfin | (1, 1, ..., 1)︸ ︷︷ ︸
n ones

∼ α

 ,

defined by

R (D) =

({
1, if i ∈ D;
0, if i /∈ D

)
i∈I

for every D ∈ Pn (I) .

This bijection satisfies

ξR(D) =
∏
i∈I

ξ
(R(D))i
i =

∏
i∈D

ξ
(R(D))i
i︸ ︷︷ ︸

=ξi, since

(R(D))i=

 1, if i ∈ D;
0, if i /∈ D =1

(since i∈D)

·
∏
i∈I\D

ξ
(R(D))i
i︸ ︷︷ ︸

=1, since

(R(D))i=

 1, if i ∈ D;
0, if i /∈ D =0

(since i/∈D)

=
∏
i∈D

ξi ·
∏
i∈I\D

1︸ ︷︷ ︸
=1

=
∏
i∈D

ξi

for every D ∈ Pn (I). Thus, (5) becomes

en =
∑
α∈NIfin;

(1, 1, ..., 1)︸ ︷︷ ︸
n ones

∼α

ξα =
∑

D∈Pn(I)

ξR(D)︸ ︷︷ ︸
=
∏
i∈D

ξi

(
here, we substituted R (D) for α,

since R is a bijection

)

=
∑

D∈Pn(I)

∏
i∈D

ξi. (6)

In other words, en is the sum of all possible products of n pairwise different variables
among the ξi (with each such product being taken only once).

Now, in the ring (Z [ξi | i ∈ I]∞) [[T ]], we have

∏
i∈I

(1− ξiT ) =
∞∑
d=0

(−1)d edT
d, (7)
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since

∏
i∈I

(1− ξiT )︸ ︷︷ ︸
=

1∑
j=0

(−ξiT )j

=
∏
i∈I

1∑
j=0

(−ξiT )j =
∑

α∈{0,1}Ifin

∏
i∈I

(−ξiT )αi︸ ︷︷ ︸
=
∏
i∈I;
αi=0

(−ξiT )αi ·
∏
i∈I;
αi=1

(−ξiT )αi

(by the product rule)

=
∑

α∈{0,1}Ifin

∏
i∈I;
αi=0

(−ξiT )αi︸ ︷︷ ︸
=1, since
αi=0

·
∏
i∈I;
αi=1

(−ξiT )αi︸ ︷︷ ︸
=−ξiT,

since αi=1

=
∑

α∈{0,1}Ifin

∏
i∈I;
αi=1

(−ξiT )

︸ ︷︷ ︸
=(−T )|{i∈I|αi=1}| ∏

i∈I;
αi=1

ξi

=
∑

α∈{0,1}Ifin

(−T )|{i∈I|αi=1}|
∏
i∈I;
αi=1

ξi

=
∞∑
d=0

∑
α∈{0,1}Ifin;

|{i∈I|αi=1}|=d

(−T )d
∏
i∈I;
αi=1

ξi =
∞∑
d=0

(−T )d
∑

α∈{0,1}Ifin;
|{i∈I|αi=1}|=d

∏
i∈I;
αi=1

ξi =
∞∑
d=0

(−T )d
∑
α∈NIfin;

(1, 1, ..., 1)︸ ︷︷ ︸
d ones

∼α

∏
i∈I;
αi=1

ξi

︸ ︷︷ ︸
=edsince

{
α ∈ {0, 1}Ifin | |{i ∈ I | αi = 1}| = d

}
=

α ∈ NIfin | (1, 1, ..., 1)︸ ︷︷ ︸
d ones

∼ α




=
∞∑
d=0

(−T )d ed =
∞∑
d=0

(−1)d edT
d.

Now we will prove a very easy identity - (9.37) in [1]:

Theorem 1 (the Wronski relations). (a) In the ring (Z [ξi | i ∈ I]∞) [[T ]]
of formal power series, we have

∏
i∈I

1

1− ξiT
=
∞∑
d=0

hdT
d. (8)

(b) In the ring Z [ξi | i ∈ I]∞, we have

∑
(i,j)∈N2;
i+j=n

(−1)i hiej =

{
0, if n ≥ 1;
1, if n = 0

(9)

for every n ∈ N.
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Proof of Theorem 1. (a) We have

∏
i∈I

1

1− ξiT
=
∏
i∈I

∞∑
j=0

(ξiT )j
(

since
1

1− ξiT
=
∞∑
j=0

(ξiT )j
)

=
∑
α∈NIfin

∏
i∈I

(ξiT )αi︸ ︷︷ ︸
=ξ

αi
i Tαi

(by the product rule)

=
∑
α∈NIfin

∏
i∈I

(ξαii T
αi) =

∑
α∈NIfin

(∏
i∈I

ξαii

)
︸ ︷︷ ︸

=ξα

(∏
i∈I

Tαi

)
︸ ︷︷ ︸

=T

∑
i∈I

αi
=Twtα

=
∑
α∈NIfin

ξα · Twtα =
∞∑
d=0

∑
α∈NIfin;
wtα=d

ξα

︸ ︷︷ ︸
=hd (by (4))

·T d =
∞∑
d=0

hdT
d,

and (8) is proven.
(b) In the ring (Z [ξi | i ∈ I]∞) [[T ]], we have

1 =
∏
i∈I

1

1− ξiT
·
∏
i∈I

(1− ξiT ) =

(
∞∑
d=0

hdT
d

)
·

(
∞∑
d=0

(−1)d edT
d

)
(by (8) and (7))

=
∞∑
d=0

∑
(i,j)∈N2;
i+j=d

hi (−1)j︸ ︷︷ ︸
=(−1)2i+j=(−1)i(−1)i+j

=(−1)i(−1)d,
since i+j=d

ejT
d =

∞∑
d=0

(−1)d
∑

(i,j)∈N2;
i+j=d

(−1)i hiejT
d.

Comparing the coefficients before T n of the power series on the left and on the right
hand side of this equation, we obtain{

0, if n ≥ 1;
1, if n = 0

= (−1)n
∑

(i,j)∈N2;
i+j=n

(−1)i hiej.

Thus, ∑
(i,j)∈N2;
i+j=n

(−1)i hiej = (−1)n ·
{

0, if n ≥ 1;
1, if n = 0

=

{
0, if n ≥ 1;
1, if n = 0

,

and therefore, (9) is proven. This completes the proof of Theorem 1.
The next formula that we want to prove is (9.44) in [1]. First, we need two more

definitions:

Definition 8. Let λ be a partition. Then, we define a power series hλ ∈
Z [ξi | i ∈ I]∞ by

hλ =
∞∏
n=1

hmn(λ)
n .

9



(This is actually a finite product, since only finitely many n ∈ {1, 2, 3, ...}
satisfy h

mn(λ)
n 6= 1, because only finitely many n ∈ {1, 2, 3, ...} satisfy

mn (λ) 6= 0.) This power series hλ can be written in a simpler way if we
write our partition λ in the form (λ1, λ2, ..., λm) for some m ∈ N; namely,

if λ = (λ1, λ2, ..., λm) , then hλ = hλ1hλ2 ...hλm (10)

(since if λ = (λ1, λ2, ..., λm), then

hλ1hλ2 ...hλm =
∏

i∈{1,2,...,m}

hλi =
∞∏
n=0

∏
i∈{1,2,...,m};

λi=n

hn =

 ∏
i∈{1,2,...,m};

λi=0

h0︸︷︷︸
=1

 ·
 ∞∏
n=1

∏
i∈{1,2,...,m};

λi=n

hn


=
∞∏
n=1

∏
i∈{1,2,...,m};

λi=n

hn

︸ ︷︷ ︸
=h
|{i∈{1,2,...,m} | λi=n}|
n

=h
mn(λ)
n

=
∞∏
n=1

hmn(λ)
n = hλ

). Hence, our definition of hλ agrees with the definition of hλ given by
Hazewinkel in [1], (9.36).

Note that the power series hλ is wtλ-homogeneous.10

Similarly to how we defined hλ using the already-defined symmetric func-
tions hn, we can define eλ using the en. Namely, for every partition λ, we
define a power series eλ ∈ Z [ξi | i ∈ I]∞ by

eλ =
∞∏
n=1

emn(λ)
n .

Again, this is actually a finite product. We can prove that

if λ = (λ1, λ2, ..., λm) , then eλ = eλ1eλ2 ...eλm (11)

(this is proven in exactly the same way as (10)). Hence, our definition of
eλ agrees with the definition of eλ given by Hazewinkel in [1], (9.36). The
power series eλ is wtλ-homogeneous11.

We notice that for every α ∈ NIfin, we have∑
λ∈Par;
λ∼α

hλ =
∏
i∈I

hαi and (12)

∑
λ∈Par;
λ∼α

eλ =
∏
i∈I

eαi . (13)

10In fact, if we write our partition λ in the form (λ1, λ2, ..., λm), then (10) yields hλ = hλ1
hλ2

...hλm
.

Since the power series hλi is λi-homogeneous for every i ∈ {1, 2, ...,m}, the product hλ1hλ2 ...hλm must
be a (λ1 + λ2 + ...+ λm)-homogeneous power series. But hλ1hλ2 ...hλm = hλ and λ1 + λ2 + ...+ λm =
wtλ. Thus, hλ is a wtλ-homogeneous power series, qed.

11This is proven in the same way as we showed that hλ is wtλ-homogeneous.
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Proof. Fix some α ∈ NIfin. Let λ be a partition satisfying λ ∼ α. Let us write our
partition λ in the form (λ1, λ2, λ3, ...). Since λ is a partition, there exists some ν ∈ N
such that λν = 0, and thus λν = λν+1 = λν+2 = ... = 0 (since λ1 ≥ λ2 ≥ λ3 ≥ ...), so
that λn = 0 for every integer n ≥ ν. But λ = (λ1, λ2, λ3, ...) = (λ1, λ2, ..., λν−1) (since
λn = 0 for every integer n ≥ ν). Thus, (10) yields hλ = hλ1hλ2 ...hλν−1 . On the other
hand, λ ∼ α yields that there exist:

• a subset I ′ of I such that αi = 0 for every i ∈ I \ I ′,

• a subset N of {1, 2, 3, ...} such that λn = 0 for every n ∈ {1, 2, 3, ...} \N ,

• and a bijection Φ : N → I ′ such that αΦ(n) = λn for every n ∈ N .

Consider this I ′, this N and this Φ. Since I ′ ⊆ I, we have

∏
i∈I

hαi =

(∏
i∈I′

hαi

)
·


∏
i∈I\I′

hαi︸︷︷︸
=1

(since i∈I\I′, so that
αi=0, thus hαi=h0=1)

 =
∏
i∈I′

hαi =
∏
n∈N

hαΦ(n)

(
here, we substituted Φ (n) for i in the product, since

Φ : N → I ′ is a bijection

)
=
∏
n∈N

hλn
(
since aΦ(n) = λn for every n ∈ N

)
.

Since N ⊆ {1, 2, 3, ...}, we have

∏
n∈{1,2,3,...}

hλn =

(∏
n∈N

hλn

)
·


∏

n∈{1,2,3,...}\N

hλn︸︷︷︸
=1

(since n∈{1,2,3,...}\N , thus
λn=0 and hence hλn=h0=1)

 =
∏
n∈N

hλn =
∏
i∈I

hαi ,

so that ∏
i∈I

hαi =
∏

n∈{1,2,3,...}

hλn =
∞∏
n=1

hλn

= hλ1hλ2 ...hλν−1

∞∏
n=ν

hλn︸︷︷︸
=1

(since λn=0 for n≥ν)

= hλ1hλ2 ...hλν−1 = hλ.

Now forget that we fixed λ. We thus have shown that
∏
i∈I
hαi = hλ for every partition

λ satisfying λ ∼ α. Thus, ∑
λ∈Par;
λ∼α

∏
i∈I

hαi =
∑
λ∈Par;
λ∼α

hλ. (14)

11



But for any fixed α ∈ NIfin, there exists one and only one partition λ satisfying λ ∼ α
(by (2)), and therefore we have

∑
λ∈Par;
λ∼α

∏
i∈I
hαi =

∏
i∈I
hαi . Hence, (14) rewrites as

∏
i∈I

hαi =
∑
λ∈Par;
λ∼α

hλ,

and this proves (12). The proof for (13) is exactly similar (we just have to replace h
by e). This completes the proofs of (12) and (13).

Before we proceed further, we must introduce a simple notation relating to power
series. In fact, we will often want to apply one and the same power series to different
sets of variables. Here is our notation for that:

Definition 9. For every partition λ ∈ Par, we denote by mλ (ξ) the el-
ement mλ of the ring Z [ξi | i ∈ I]∞, and by mλ (η) the ”corresponding”
element of the ring Z [ηj | j ∈ J ]∞ (that is, the power series we would ob-
tain if we would replace the set I by the set J and the indeterminates ξi
by the indeterminates ηj in the definition of mλ).

12 Similarly, we
denote by hλ (ξ) the element hλ of the ring Z [ξi | i ∈ I]∞, and by hλ (η)
the ”corresponding” element of the ring Z [ηj | j ∈ J ]∞ (that is, the power
series we would obtain if we would replace the set I by the set J and the
indeterminates ξi by the indeterminates ηj in the definition of hλ).

Also, for every n ∈ N, we denote by hn (ξ) the element hn of the ring
Z [ξi | i ∈ I]∞, and by hn (η) the ”corresponding” element of the ring Z [ηj | j ∈ J ]∞
(that is, the power series we would obtain if we would replace the set I by
the set J and the indeterminates ξi by the indeterminates ηj in the defini-
tion of hn).

Now, we are approaching a proof of formula (9.44) in [1]. First, we need one remark
about power series:

Let A be a commutative ring with unity. Assume that for every partition λ, we
have given some element αλ of A. Then, in the ring A [[T ]] of power series in the
indeterminate T over A,

the infinite sum
∑
λ∈Par

αλT
wtλ is convergent (15)

(with respect to the (T )-adic topology on the ring A [[T ]]). This is because this infinite

12Explicitly, this means that

mλ (ξ) = mλ =
∑

α∈NI
fin;

λ∼α

ξα, while mλ (η) =
∑

β∈NJ
fin;

λ∼β

ηβ ,

where ηβ stands for
∏
j∈J

η
βj

j (just as ξα stands for
∏
i∈I

ξαi
i ).

12



sum
∑
λ∈Par

αλT
wtλ rewrites as

∑
λ∈Par

αλT
wtλ =

∞∑
n=0

∑
λ∈Par;
wtλ=n

αλ

︸ ︷︷ ︸
this is a finite sum of elements

of A, since there are only finitely
many partitions λ such that wtλ=n

T n.

Now, we present the formula (9.44) from [1] in a slightly generalized form13:

Theorem 2. Let I and J be two countable sets. In the ring(
(Z [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞

)
[[T ]], we have∑

λ∈Par

hλ (ξ)mλ (η)Twtλ =
∏

(i,j)∈I×J

1

1− ξiηjT
.

14

Proof of Theorem 2. For every λ ∈ Par, the power series mλ (η) ∈ Z [ηj | j ∈ J ]∞
is defined as the power series we would obtain if we would replace the set I by the set
J and the indeterminates ξi by the indeterminates ηj in the definition of mλ. But the
definition of mλ is

mλ =
∑
α∈NIfin;
λ∼α

ξα,

and thus, replacing I by J and ξi by ηj in this definition, we obtain

mλ (η) =
∑
α∈NJfin;
λ∼α

ηα,

where the polynomial ηα ∈ Z [ηj | j ∈ J ] is defined by ηα =
∏
j∈J

η
αj
j . Hence,

∑
λ∈Par

hλ (ξ)mλ (η)Twtλ =
∑
λ∈Par

hλ (ξ)
∑
α∈NJfin;
λ∼α

ηα Twtλ︸︷︷︸
=Twtα,

since λ∼α
yields wtλ=wtα

=
∑
λ∈Par

hλ (ξ)
∑
α∈NJfin;
λ∼α

ηαTwtα

=
∑
α∈NJfin

ηαTwtα
∑
λ∈Par;
λ∼α

hλ (ξ) . (16)

13Actually, our Theorem 2 is slightly more general than formula (9.44) in [1], since formula (9.44) in
[1] follows from our Theorem 2 by setting T equal to 1. However, in turn, our Theorem 2 follows from
formula in [1] by replacing ηj by Tηj , so we do not win much generality by introducing the variable
T . The main reason for the introduction of the variable T in Theorem 2 is to make the convergence
of the sum

∑
λ∈Par

hλ (ξ)mλ (η)Twtλ more obvious.

14The sum
∑

λ∈Par

hλ (ξ)mλ (η)Twtλ is convergent according to (15).

13



But
∑

λ∈Par;
λ∼α

hλ =
∏
j∈J

hαj for every α ∈ NJfin (this is simply the equation (12), with

I replaced by J). In other words,
∑

λ∈Par;
λ∼α

hλ (ξ) =
∏
j∈J

hαj (ξ) (since hλ = hλ (ξ) and

hαj = hαj (ξ)). Hence, (16) becomes∑
λ∈Par

hλ (ξ)mλ (η)Twtλ =
∑
α∈NJfin

ηα︸︷︷︸
=
∏
j∈J

η
αj
j

Twtα︸ ︷︷ ︸
=T

∑
j∈J

αj

=
∏
j∈J

Tαj

∏
j∈J

hαj (ξ) =
∑
α∈NJfin

∏
j∈J

η
αj
j

∏
j∈J

Tαj
∏
j∈J

hαj (ξ)

=
∑
α∈NJfin

∏
j∈J

η
αj
j T

αjhαj (ξ) =
∏
j∈J

(∑
a∈N

ηajT
aha (ξ)

)
(17)

(by the product rule). But for every j ∈ J , we have∑
a∈N

ηajT
aha (ξ) =

∑
a∈N

ha (ξ)︸ ︷︷ ︸
=ha

ηajT
a︸︷︷︸

=(ηjT )a

=
∑
a∈N

ha (ηjT )a =
∑
d∈N

hd (ηjT )d

=
∞∑
d=0

hd (ηjT )d =
∏
i∈I

1

1− ξiηjT

(since
∏
i∈I

1

1− ξiηjT
=
∞∑
d=0

hd (ηjT )d, which follows from substituting ηjT for T in (8)),

and thus (17) becomes∑
λ∈Par

hλ (ξ)mλ (η)Twtλ =
∏
j∈J

∏
i∈I

1

1− ξiηjT
=

∏
(i,j)∈I×J

1

1− ξiηjT
.

Thus, Theorem 2 is proven.
We will prove some more identities later, but first we recall the definition and basic

properties of the ”power sum” symmetric functions pn:

Definition 10. For every n ∈ N, we define a power series pn ∈ Z [[ξi | i ∈ I]]
by pn = m(n).

We notice that pn ∈ Z [ξi | i ∈ I]∞ (since pn = m(n) ∈ Z [ξi | i ∈ I]∞, be-
cause mλ ∈ Z [ξi | i ∈ I]∞ for every partition λ), and that the power se-
ries pn is n-homogeneous (in fact, pn = m(n) is wt (n)-homogeneous, but
wt (n) = n).

It is easy to see that

pn =
∑
i∈I

ξni for every n ∈ {1, 2, 3, ...} (18)

(but not for n = 0, unless |I| = 1 15).

15This is because p0 = m(0) = 1, whereas
∑
i∈I

ξ0
i is undefined for infinite sets I (and distinct from 1

even when I is finite, unless |I| = 1). This is a reason why most authors prefer not to define p0 at
all. However, we define p0 to be 1 here, since this makes Definition 11 a little bit simpler. But let us
remember that (18) does not hold for n = 0, and that our convention p0 = 1 is not compatible with
the convention that Hazewinkel uses in [1] (in fact, Hazewinkel sets p0 to be 0 in [1], (9.58)).
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Proof. Fix n ∈ {1, 2, 3, ...}. For every j ∈ I, we define a family enj ∈ NIfin by enj =({
n, if i = j;
0, if i 6= j

)
i∈I

. In other words, we let enj be the family whose j-th component is

n and whose other components are all 0. It is clear that these families enj for different
j (but fixed n ∈ {1, 2, 3, ...}) are all pairwise different, and that these families enj are
the only families α ∈ NIfin satisfying (n) ∼ α. Hence,

∑
α∈NIfin;
(n)∼α

ξα =
∑
j∈I

ξe
n
j =

∑
j∈I

ξnj

since ξe
n
j =

∏
i∈I

ξ
(enj )i
i =

∏
i∈I

ξ

 n, if i = j;
0, if i 6= j

i = ξnj

 .

Thus,

pn = m(n) =
∑
α∈NIfin;
(n)∼α

ξα =
∑
j∈I

ξnj =
∑
i∈I

ξni ,

and consequently, (18) is proven.
Let us now verify the so-called Newton relations (formulae (9.59) and (9.57) in [1]):

Theorem 3 (the Newton relations). (a) In the ring (Z [ξi | i ∈ I]∞) [[T ]]
of formal power series, we have16

∞∑
n=1

pnT
n = T

d

dT
log (H (T )) =

TH ′ (T )

H (T )
, (19)

where the power series H (T ) ∈ (Z [ξi | i ∈ I]∞) [[T ]] is defined by

H (T ) =
∏
i∈I

1

1− ξiT
=
∞∑
d=0

hdT
d

(where we are using
∏
i∈I

1

1− ξiT
=
∞∑
d=0

hdT
d, which holds because of Theorem

1 (a)).

(b) In the ring Z [ξi | i ∈ I]∞, we have

nhn =
n−1∑
i=0

hipn−i (20)

for every n ∈ N.

16It should be remarked that the logarithmic derivative
d

dT
log (H (T )) is well-defined in the ring

(Z [ξi | i ∈ I]∞) [[T ]] even though the logarithm log (H (T )) itself is not defined in this ring. In general,
if A is a commutative ring with unity, and f ∈ A [[T ]] is a formal power series with constant term

1, then the logarithmic derivative
d

dT
log f of f is defined as the formal power series

f ′

f
, no matter

whether the logarithm log f is well-defined in A [[T ]] or not.
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Proof of Theorem 3. Let us work in the ring (Q [[ξi | i ∈ I]]) [[T ]]. (In this ring,
logarithms like log (H (T )) are well-defined, and not just logarithmic derivatives like
d

dT
log (H (T )).)

Since H (T ) =
∏
i∈I

1

1− ξiT
, we have

T
d

dT
log (H (T )) = T

d

dT
log

(∏
i∈I

1

1− ξiT

)
︸ ︷︷ ︸

=
∑
i∈I

log
1

1− ξiT

= T
d

dT

∑
i∈I

log
1

1− ξiT︸ ︷︷ ︸
=− log(1−ξiT )

= T
d

dT

∑
i∈I

(− log (1− ξiT ))︸ ︷︷ ︸
=
∞∑
n=1

1

n
(ξiT )n due to the

power series −log(1−X)=
∞∑
n=1

1

n
Xn

= T
d

dT

∑
i∈I

∞∑
n=1

1

n
(ξiT )n

= T
∑
i∈I

∞∑
n=1

1

n

d

dT
(ξiT )n︸ ︷︷ ︸

=nξni T
n−1

= T
∑
i∈I

∞∑
n=1

ξni T
n−1 =

∑
i∈I

∞∑
n=1

ξni T
n

=
∞∑
n=1

∑
i∈I

ξni︸ ︷︷ ︸
=pn by (18)

T n =
∞∑
n=1

pnT
n.

Besides, T
d

dT
log (H (T )) =

TH ′ (T )

H (T )
, since the well-known formula for the logarithmic

derivative yields
d

dT
log (H (T )) =

H ′ (T )

H (T )
. Thus, Theorem 3 (a) is proven.

(b) We have

H ′ (T ) =
d

dT
H (T ) =

d

dT

∞∑
d=0

hdT
d

(
since H (T ) =

∞∑
d=0

hdT
d

)

=
∞∑
d=0

hddT
d−1

(where dT d−1 is considered to be 0 for d = 0) and thus

TH ′ (T ) = T
∞∑
d=0

hddT
d−1 =

∞∑
d=0

hddT
d =

∞∑
n=0

hnnT
n. (21)

Now, (19) yields
∞∑
n=1

pnT
n =

TH ′ (T )

H (T )
, so that

TH ′ (T ) = H (T )︸ ︷︷ ︸
=
∞∑
d=0

hdT d

·
∞∑
n=1

pnT
n

︸ ︷︷ ︸
=
∞∑
u=1

puTu

=
∞∑
d=0

hdT
d ·

∞∑
u=1

puT
u =

∞∑
n=0

n−1∑
i=0

hipn−iT
n

16



(by the definition of the product of two power series). Comparing this with (21), we
see that

∞∑
n=0

hnnT
n =

∞∑
n=0

n−1∑
i=0

hipn−iT
n.

Thus, every n ∈ N satisfies

hnn =
n−1∑
i=0

hipn−i.

This proves Theorem 3 (b).
The Wronski relations (Theorem 1) relate the sequences (hn)n∈N and (en)n∈N, and

the Newton relations (Theorem 3) relate the sequences (hn)n∈N and (pn)p∈{1,2,3,...}. Now
we shall prove the so-called summed Viete relations, which relate the sequences (en)n∈N
and (pn)p∈{1,2,3,...}, thus completing the circle.

Theorem 4 (the summed Viete relations). (a) In the ring (Z [ξi | i ∈ I]∞) [[T ]]
of formal power series, we have17

∞∑
n=1

pnT
n = −T d

dT
log (E (T )) = −TE

′ (T )

E (T )
, (22)

where the power series E (T ) ∈ (Z [ξi | i ∈ I]∞) [[T ]] is defined by

E (T ) =
∏
i∈I

(1− ξiT ) =
∞∑
d=0

(−1)d edT
d

(where we are using
∏
i∈I

(1− ξiT ) =
∞∑
d=0

(−1)d edT
d, which holds because of

(7)).

(b) In the ring Z [ξi | i ∈ I]∞, we have

nen =
n−1∑
i=0

(−1)n−i+1 eipn−i. (23)

for every n ∈ N.

Proof of Theorem 4. Let us work in the ring (Q [[ξi | i ∈ I]]) [[T ]]. (In this ring,
logarithms like log (E (T )) are well-defined, and not just logarithmic derivatives like
d

dT
log (E (T )).)

17It should be remarked that the logarithmic derivative
d

dT
log (E (T )) is well-defined in the ring

(Z [ξi | i ∈ I]∞) [[T ]] even though the logarithm log (E (T )) itself is not defined in this ring. In general,
if A is a commutative ring with unity, and f ∈ A [[T ]] is a formal power series with constant term

1, then the logarithmic derivative
d

dT
log f of f is defined as the formal power series

f ′

f
, no matter

whether the logarithm log f is well-defined in A [[T ]] or not.

17



(a) We have

E (T ) =
∏
i∈I

(1− ξiT ) =


∏
i∈I

1

1− ξiT︸ ︷︷ ︸
=H(T )


−1

= (H (T ))−1 ,

and thus log (E (T )) = log
(
(H (T ))−1) = − log (H (T )). Consequently,

−T d

dT
log (E (T )) = −T d

dT
(− log (H (T ))) = T

d

dT
log (H (T )) =

∞∑
n=1

pnT
n

(by (19)). Besides, −T d

dT
log (E (T )) = −TE

′ (T )

E (T )
, since the well-known formula for

the logarithmic derivative yields
d

dT
log (E (T )) =

E ′ (T )

E (T )
. Thus, Theorem 4 (a) is

proven.
(b) We have

E ′ (T ) =
d

dT
E (T ) =

d

dT

∞∑
d=0

(−1)d edT
d

(
since E (T ) =

∞∑
d=0

(−1)d edT
d

)

=
∞∑
d=0

(−1)d eddT
d−1

(where dT d−1 is considered to be 0 for d = 0) and thus

−TE ′ (T ) = −T
∞∑
d=0

(−1)d eddT
d−1 = −

∞∑
d=0

(−1)d eddT
d = −

∞∑
n=0

(−1)n ennT
n

=
∞∑
n=0

(−1)n+1 ennT
n. (24)

Now, (22) yields
∞∑
n=1

pnT
n = −TE

′ (T )

E (T )
, so that

−TE ′ (T ) = E (T )︸ ︷︷ ︸
=
∞∑
d=0

(−1)dedT d

·
∞∑
n=1

pnT
n

︸ ︷︷ ︸
=
∞∑
u=1

puTu

=
∞∑
d=0

(−1)d edT
d·
∞∑
u=1

puT
u =

∞∑
n=0

n−1∑
i=0

(−1)i eipn−iT
n

(by the definition of the product of two power series). Comparing this with (24), we
see that

∞∑
n=0

(−1)n+1 ennT
n =

∞∑
n=0

n−1∑
i=0

(−1)i eipn−iT
n.
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Thus, every n ∈ N satisfies

(−1)n+1 enn =
n−1∑
i=0

(−1)i eipn−i.

Upon multiplication by (−1)n+1, this becomes

enn =
n−1∑
i=0

(−1)n−i+1 eipn−i.

This proves Theorem 4 (b).
We need some more definitions now:

Definition 11. Let λ be a partition. Then, we define a power series
pλ ∈ Z [ξi | i ∈ I]∞ by

pλ =
∞∏
n=1

pmn(λ)
n .

(This is actually a finite product, since only finitely many n ∈ {1, 2, 3, ...}
satisfy p

mn(λ)
n 6= 1, because only finitely many n ∈ {1, 2, 3, ...} satisfy

mn (λ) 6= 0.) This power series pλ can be written in a simpler way if we
write our partition λ in the form (λ1, λ2, ..., λm) for some m ∈ N; namely,

if λ = (λ1, λ2, ..., λm) , then pλ = pλ1pλ2 ...pλm (25)

(we recall that p0 is supposed to mean 1). This is proven in the same way
as we showed (10). Hence, our definition of pλ agrees with the definition of
pλ given by Hazewinkel in [1], (9.61).

The power series pλ is wtλ-homogeneous18.

We notice that for every α ∈ NIfin, we have∑
λ∈Par;
λ∼α

pλ =
∏
i∈I

pαi (26)

(again, remembering that p0 was defined as 1). The proof of this equation is exactly
the same as that of (12) (but with h replaced by p throughout the proof).

Definition 12. For every partition λ ∈ Par, we denote by pλ (ξ) the
element pλ of the ring Z [ξi | i ∈ I]∞, and by pλ (η) the ”corresponding”
element of the ring Z [ηj | j ∈ J ]∞ (that is, the power series we would obtain
if we would replace the set I by the set J and the indeterminates ξi by the
indeterminates ηj in the definition of pλ).

Besides, for every n ∈ N, we denote by pn (ξ) the element pn of the
ring Z [ξi | i ∈ I]∞, and by pn (η) the ”corresponding” element of the ring

18This is proven in the same way as we showed that hλ is wtλ-homogeneous.
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Z [ηj | j ∈ J ]∞ (that is, the power series we would obtain if we would re-
place the set I by the set J and the indeterminates ξi by the indeterminates
ηj in the definition of pn).

Definition 13. For every partition λ ∈ Par, we denote by zλ the nonneg-
ative integer defined by

zλ =
∞∏
n=1

nmn(λ) (mn (λ))!.

This product is actually finite, because only finitely many n ∈ {1, 2, 3, ...}
satisfy nmn(λ) (mn (λ))! 6= 1 (since nmn(λ) (mn (λ))! 6= 1 yields mn (λ) 6= 0,
and only finitely many n ∈ {1, 2, 3, ...} satisfy mn (λ) 6= 0).

We now come to another formula from [1] - with a generalization:

Theorem 5. Let I and J be two countable sets.

(a) In the ring
(
(Q [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞

)
[[T ]], we have∑

λ∈Par

z−1
λ pλ (ξ) pλ (η)Twtλ =

∏
(i,j)∈I×J

1

1− ξiηjT
. (27)

19

(b) In the ring
((

(Q [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞
)

[[T ]]
)

[[S]], we have∑
λ∈Par

z−1
λ Smsumλpλ (ξ) pλ (η)Twtλ =

∏
(i,j)∈I×J

(
1

1− ξiηjT

)S
(28)

20, where the function msum : Par→ N is defined by

msumλ = m1 (λ)+m2 (λ)+m3 (λ)+... =
∞∑
k=1

mk (λ) for every partition λ.

Here, for any power series P ∈
((

(Q [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞
)

[[T ]]
)

[[S]]
with constant term 1, the power series P S ∈

((
(Q [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞

)
[[T ]]

)
[[S]]

is defined by P S = exp (S logP ) (where logP is computed using the log (1 +X) =
∞∑
k=1

(−1)k−1

k
Xk formula).

Note that Theorem 5 (a), upon substitution of 1 for T , becomes the formula (9.62)
in [1], while Theorem 5 (b) is a generalization which doesn’t occur in [1].

Proof of Theorem 5. (b) We have∑
λ∈Par

z−1
λ Smsumλpλ (ξ) pλ (η)Twtλ

=
∑

a∈N{1,2,3,...}fin

z−1
m−1(a)S

msum(m−1(a))pm−1(a) (ξ) pm−1(a) (η)Twt(m−1(a)) (29)

19The sum
∑

λ∈Par

z−1
λ pλ (ξ) pλ (η)Twtλ is convergent according to (15).

20The sum
∑

λ∈Par

z−1
λ Smsumλpλ (ξ) pλ (η)Twtλ is convergent according to (15).
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(here, we substituted m−1 (a) for λ, since m : Par → N{1,2,3,...}fin is a bijection). Now,

every a ∈ N{1,2,3,...}fin satisfies

mn

(
m−1 (a)

)
= an for every n ∈ {1, 2, 3, ...} (30)

(since the definition of the map m yields that(
m1

(
m−1 (a)

)
,m2

(
m−1 (a)

)
,m3

(
m−1 (a)

)
, ...
)

= m
(
m−1 (a)

)
= a = (a1, a2, a3, ...)

), and thus

zm−1(a) =
∞∏
n=1

kmn(m
−1(a)) (mn

(
m−1 (a)

))
! =

∞∏
n=1

nanan!

(by (30)), further

msum
(
m−1 (a)

)
=
∞∑
k=1

mk

(
m−1 (a)

)︸ ︷︷ ︸
=ak by (30)

=
∞∑
k=1

ak, so that

Smsum(m−1(a)) = S

∞∑
k=1

ak
=
∞∏
k=1

Sak =
∞∏
n=1

San ,

furthermore

wt
(
m−1 (a)

)
=
∞∑
k=1

kmk

(
m−1 (a)

)︸ ︷︷ ︸
=ak by (30)

(by (3))

=
∞∑
k=1

kak, so that

Twt(m−1(a)) = T

∞∑
k=1

kak
=
∞∏
k=1

T kak =
∞∏
k=1

(
T k
)ak =

∞∏
n=1

(T n)an ,

and finally

pm−1(a) =
∞∏
n=1

p
mn(m−1(a))
n (by the definition of pλ for λ ∈ Par)

=
∞∏
n=1

pann (by (30)) . (31)

This rewrites as

pm−1(a) (ξ) =
∞∏
n=1

(pn (ξ))an .

On the other hand, replacing the set I by the set J and the variables ξi by the variables
ηj in (31), we obtain

pm−1(a) (η) =
∞∏
n=1

(pn (η))an .
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Thus, (29) transforms into∑
λ∈Par

z−1
λ Smsumλpλ (ξ) pλ (η)Twtλ

=
∑

a∈N{1,2,3,...}fin

 zm−1(a)︸ ︷︷ ︸
=
∞∏
n=1

nanan!


−1

Smsum(m−1(a))︸ ︷︷ ︸
=
∞∏
n=1

San

pm−1(a) (ξ)︸ ︷︷ ︸
=
∞∏
n=1

(pn(ξ))an

pm−1(a) (η)︸ ︷︷ ︸
=
∞∏
n=1

(pn(η))an

Twt(m−1(a))︸ ︷︷ ︸
=
∞∏
n=1

(Tn)an

=
∑

a∈N{1,2,3,...}fin

(
∞∏
n=1

nanan!

)−1 ∞∏
n=1

San
∞∏
n=1

(pn (ξ))an
∞∏
n=1

(pn (η))an
∞∏
n=1

(T n)an

=
∑

a∈N{1,2,3,...}fin

∞∏
n=1

(nanan!)−1 San (pn (ξ))an (pn (η))an (T n)an

=
∞∏
n=1


∑
a∈N

(naa!)−1 Sa (pn (ξ))a (pn (η))a (T n)a︸ ︷︷ ︸
=

1

a!

STn· 1
n
pn(ξ)pn(η)

a

 (by the product rule)

=
∞∏
n=1


∑
a∈N

1

a!

(
ST n · 1

n
pn (ξ) pn (η)

)a
︸ ︷︷ ︸

=exp

STn· 1
n
pn(ξ)pn(η)




=
∞∏
n=1

exp

(
ST n · 1

n
pn (ξ) pn (η)

)

= exp

(
∞∑
n=1

ST n · 1

n
pn (ξ) pn (η)

)
= exp

(
S ·

∞∑
n=1

1

n
T npn (ξ) pn (η)

)
. (32)

But for every n ∈ {1, 2, 3, ...}, we know that pn =
∑
i∈I
ξni (by (18)), which rewrites as

pn (ξ) =
∑
i∈I
ξni . If we replace the set I by J and the variables ξi by ηj in this formula,
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we obtain pn (η) =
∑
j∈J

ηnj . Thus,

∞∑
n=1

1

n
T npn (ξ) pn (η) =

∞∑
n=1

1

n
T n
∑
i∈I

ξni ·
∑
j∈J

ηnj︸ ︷︷ ︸
=

∑
(i,j)∈I×J

ξni η
n
j

=
∞∑
n=1

1

n
T n

∑
(i,j)∈I×J

ξni η
n
j

=
∑

(i,j)∈I×J

∞∑
n=1

1

n
ξni η

n
j T

n︸ ︷︷ ︸
=(ξiηjT )n

=
∑

(i,j)∈I×J

∞∑
n=1

1

n
(ξiηjT )n︸ ︷︷ ︸

=− log(1−ξiηjT ) due to the

formula
∞∑
n=1

1

n
Xn=− log(1−X)

=
∑

(i,j)∈I×J

(− log (1− ξiηjT ))︸ ︷︷ ︸
=log

1

1− ξiηjT

=
∑

(i,j)∈I×J

log
1

1− ξiηjT
.

Therefore, (32) becomes∑
λ∈Par

z−1
λ pλ (ξ) pλ (η)Twtλ = exp

S · ∑
(i,j)∈I×J

log
1

1− ξiηjT

 =
∏

(i,j)∈I×J

exp

(
S · log

1

1− ξiηjT

)
︸ ︷︷ ︸

=

 1

1− ξiηjT

S

=
∏

(i,j)∈I×J

(
1

1− ξiηjT

)S
.

This proves Theorem 5 (b).
Theorem 5 (a) trivially follows from Theorem 5 (b) by evaluating at S = 1.
A useful corollary from Theorem 5 is the following fact:

Theorem 6. Let I be a countable set. In the ring Q [ξi | i ∈ I]∞, we have∑
λ∈Par;
wtλ=n

z−1
λ pλ = hn for every n ∈ N (33)

and ∑
λ∈Par;
wtλ=n

z−1
λ (−1)msumλ pλ = (−1)n en for every n ∈ N, (34)

where the map msum : Par→ N is defined as in Theorem 5 (b).

Proof of Theorem 6. Let J = {1}. Theorem 5 (b) yields that (28) holds in(
(Q [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞

)
[[S]]. Now, we have∏

(i,j)∈I×J

(
1

1− ξiηjT

)S
=
∏
i∈I

∏
j∈J

(
1

1− ξiηjT

)S
︸ ︷︷ ︸

=

 1

1− ξiη1T

S ,
since J={1}

=
∏
i∈I

(
1

1− ξiη1T

)S
. (35)
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Besides, for every n ∈ {1, 2, 3, ...}, we have

pn (η) =
∑
j∈J

ηnj

(by (18), with the set I replaced by J and the indeterminates ξi replaced by ηj)

= ηn1

(since J = {1}). Hence, every λ ∈ Par satisfies

pλ (η) =
∞∏
n=1

(pn (η))mn(λ) =
∞∏
n=1

(ηn1 )mn(λ) =
∞∏
n=1

η
nmn(λ)
1 = η

∞∑
n=1

nmn(λ)

1 = ηwtλ
1

(since
∞∑
n=1

nmn (λ) =
∞∑
k=1

kmk (λ) = wtλ by (3)). Using this equation and (35), we can

rewrite (27) as ∑
λ∈Par

z−1
λ Smsumλpλ (ξ) ηwtλ

1 Twtλ =
∏
i∈I

(
1

1− ξiη1T

)S
. (36)

This holds in the ring
((

(Q [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞
)

[[T ]]
)

[[S]]. But

(Q [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞ = (Q [ξi | i ∈ I]∞) [ηj | j ∈ J ] (since J = {1} is a finite set)

= (Q [ξi | i ∈ I]∞) [η1] (since J = {1}) ,

and therefore, (36) holds in the ring (((Q [ξi | i ∈ I]∞) [η1]) [[T ]]) [[S]].
By the universal property of a polynomial ring, there exists a ring homomorphism

(Q [ξi | i ∈ I]∞) [η1]→ Q [ξi | i ∈ I]∞

that leaves each element of Q [ξi | i ∈ I]∞ invariant and maps η1 to 1. This homomor-
phism extends to a continuous21 ring homomorphism

(((Q [ξi | i ∈ I]∞) [η1]) [[T ]]) [[S]]→ ((Q [ξi | i ∈ I]∞) [[T ]]) [[S]]

that leaves each element of Q [ξi | i ∈ I]∞ invariant and maps η1, T and S to 1, T and S,
respectively. This homomorphism respects infinite sums and infinite products (since it
is continuous), and thus it maps

∑
λ∈Par

z−1
λ Smsumλpλ (ξ) ηwtλ

1 Twtλ to
∑
λ∈Par

z−1
λ Smsumλpλ (ξ) 1wtλTwtλ

and maps
∏
i∈I

(
1

1− ξiη1T

)S
to
∏
i∈I

(
1

1− ξi · 1T

)S
. Therefore, upon applying this ho-

momorphism to the equation (36), we obtain∑
λ∈Par

z−1
λ Smsumλpλ (ξ) 1wtλTwtλ =

∏
i∈I

(
1

1− ξi · 1T

)S
.

This simplifies to ∑
λ∈Par

z−1
λ Smsumλpλ (ξ)Twtλ =

∏
i∈I

(
1

1− ξiT

)S
.

21Here, ”continuous” means ”continuous with respect to the (T, S)-adic topologies on the two rings”.
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Since ∑
λ∈Par

z−1
λ Smsumλpλ (ξ)Twtλ =

∞∑
n=0

∑
λ∈Par;
wtλ=n

z−1
λ Smsumλ pλ (ξ)︸ ︷︷ ︸

=pλ

Twtλ︸︷︷︸
=Tn

(since wtλ=n)

=
∞∑
n=0

∑
λ∈Par;
wtλ=n

z−1
λ SmsumλpλT

n,

this rewrites as
∞∑
n=0

∑
λ∈Par;
wtλ=n

z−1
λ SmsumλpλT

n =
∏
i∈I

(
1

1− ξiT

)S
. (37)

Evaluating this identity at S = 1 yields22

∞∑
n=0

∑
λ∈Par;
wtλ=n

z−1
λ pλT

n =
∏
i∈I

1

1− ξiT
.

Since ∏
i∈I

1

1− ξiT
=
∞∑
d=0

hdT
d (by (8))

=
∞∑
n=0

hnT
n,

this rewrites as
∞∑
n=0

∑
λ∈Par;
wtλ=n

z−1
λ pλT

n =
∞∑
n=0

hnT
n.

Comparing coefficients in this equation, we obtain∑
λ∈Par;
wtλ=n

z−1
λ pλ = hn for every n ∈ N.

Thus, (33) is proven.
On the other hand, evaluating the identity (37) at S = −1, we get

∞∑
n=0

∑
λ∈Par;
wtλ=n

z−1
λ (−1)msumλ pλT

n =
∏
i∈I

(
1

1− ξiT

)−1

.

22This is a bit sloppy formulation - in fact, (37) is not even a polynomial identity in S, so it is not
really clear what ”evaluating it at S = 1” means. But what I mean is: if we replace S by 1 throughout
the proof of (37), we arrive at

∞∑
n=0

∑
λ∈Par;
wtλ=n

z−1
λ pλT

n =
∏
i∈I

1

1− ξiT
.
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Since ∏
i∈I

(
1

1− ξiT

)−1

=
∏
i∈I

(1− ξiT ) =
∞∑
d=0

(−1)d edT
d (by (7))

=
∞∑
n=0

(−1)n enT
n,

this rewrites as

∞∑
n=0

∑
λ∈Par;
wtλ=n

z−1
λ (−1)msumλ pλT

n =
∞∑
n=0

(−1)n enT
n.

Comparing coefficients in this equation, we obtain∑
λ∈Par;
wtλ=n

z−1
λ (−1)msumλ pλ = (−1)n en for every n ∈ N.

Thus, (34) is proven.
Now it is time to introduce some more elements of Z [ξi | i ∈ I]∞, namely the power

series x1, x2, .... They are rather difficult to define directly, so we define them by means
of a theorem:

Theorem 7. Let A be a commutative ring with unity. Let (ρ0, ρ1, ρ2, ...) ∈
AN be a sequence of elements of A such that ρ0 = 1.

(a) There exists one and only one sequence (X1, X2, X3, ...) ∈ A{1,2,3,...} of
elements of A that satisfies the equation

∞∏
d=1

(
1−XdT

d
)−1

=
∞∑
n=0

ρnT
n (38)

in the ring A [[T ]]. 23

23Note that the infinite product
∞∏
d=1

(
1− xdT d

)−1
converges (with respect to the (T )-adic topol-

ogy on the ring A [[T ]]) for every sequence (x1, x2, x3, ...) ∈ A{1,2,3,...}. In fact, the sequence(
m∏
d=1

(
1− xdT d

)−1
)
m∈N

is a Cauchy sequence.

Proof. Let n ∈ N. Let a and b be two integers such that a ≥ n and b ≥ n. Then, since a ≥ n, we
have

a∏
d=1

(
1− xdT d

)−1
=

(
n−1∏
d=1

(
1− xdT d

)−1

)
·


a∏

d=n

 1− xdT d︸ ︷︷ ︸
≡1 mod(Tn)
(since d≥n)


−1

≡

(
n−1∏
d=1

(
1− xdT d

)−1

)
·

(
a∏

d=n

1−1

)
︸ ︷︷ ︸

=1

=

n−1∏
d=1

(
1− xdT d

)−1
mod (Tn) .
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(b) Assume that the ring A is graded, and that

(for every n ∈ N, the element ρn lies in the n-th graded component of A) .
(39)

Then, the unique sequence (X1, X2, X3, ...) ∈ A{1,2,3,...} that satisfies (38)
has the property that

(for every n ∈ {1, 2, 3, ...} , the element Xn lies in the n-th graded component of A) .
(40)

Proof of Theorem 7. (a) In order to establish Theorem 7 (a), we must prove two
assertions:

Assertion 1: There exists a sequence (X1, X2, X3, ...) ∈ A{1,2,3,...} of elements of A
that satisfies the equation

∞∏
d=1

(
1−XdT

d
)−1

=
∞∑
n=0

ρnT
n

in the ring A [[T ]].

Similarly,
b∏

d=1

(
1− xdT d

)−1 ≡
n−1∏
d=1

(
1− xdT d

)−1
mod (Tn). Hence,

a∏
d=1

(
1− xdT d

)−1 ≡
n−1∏
d=1

(
1− xdT d

)−1 ≡
b∏

d=1

(
1− xdT d

)−1
mod (Tn) .

Now, forget that we fixed a and b. We thus have proven that any two integers a and b such that
a ≥ n and b ≥ n satisfy

a∏
d=1

(
1− xdT d

)−1 ≡
b∏

d=1

(
1− xdT d

)−1
mod (Tn) .

Hence, there exists an N ∈ N such that any two integers a and b such that a ≥ N and b ≥ N satisfy

a∏
d=1

(
1− xdT d

)−1 ≡
b∏

d=1

(
1− xdT d

)−1
mod (Tn)

(namely, N = n).
Now, forget that we fixed n. We thus have shown that for every n ∈ N, there exists an N ∈ N such

that any two integers a and b such that a ≥ N and b ≥ N satisfy

a∏
d=1

(
1− xdT d

)−1 ≡
b∏

d=1

(
1− xdT d

)−1
mod (Tn)

In other words, the sequence

(
m∏
d=1

(
1− xdT d

)−1
)
m∈N

is a Cauchy sequence (with respect to the

(T )-adic topology on the ring A [[T ]]). Hence, this sequence converges (since A [[T ]] is complete with

respect to the (T )-adic topology). In other words, the infinite product
∞∏
d=1

(
1− xdT d

)−1
converges,

qed.
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Assertion 2: If (X1, X2, X3, ...) ∈ A{1,2,3,...} and (Y1, Y2, Y3, ...) ∈ A{1,2,3,...} are two
sequences of elements of A that satisfy the equations

∞∏
d=1

(
1−XdT

d
)−1

=
∞∑
n=0

ρnT
n and (41)

∞∏
d=1

(
1− YdT d

)−1
=
∞∑
n=0

ρnT
n (42)

in the ring A [[T ]], then (X1, X2, X3, ...) = (Y1, Y2, Y3, ...).
Once both Assertions 1 and 2 are proven, Theorem 7 (a) will ensue (since Assertion

1 yields the existence of the required sequence (X1, X2, X3, ...), while Assertion 2 yields
the uniqueness thereof). So it remains to prove Assertions 1 and 2.

Proof of Assertion 1. We construct the required sequence (X1, X2, X3, ...) ∈ A{1,2,3,...}
by recursion: Let m ∈ {1, 2, 3, ...} be given. We want to define an element Xm ∈ A,
assuming that the elements X1, X2, ..., Xm−1 are already defined.

We define Xm as the coefficient before Tm of the power series

∞∑
n=0

ρnT
n ·

m−1∏
d=1

(
1−XdT

d
)
. (43)

This way, we have recursively defined a sequence (X1, X2, X3, ...) ∈ A{1,2,3,...}.
We now will show that every m ∈ N satisfies

m∏
d=1

(
1−XdT

d
)−1 ≡

∞∑
n=0

ρnT
n mod

(
Tm+1

)
, (44)

where (Tm+1) means the ideal Tm+1 ·A [[T ]] of the ring A [[T ]] (so that the congruence
of two power series modulo Tm+1 simply means that they are equal in all of their terms
in which T occurs in a power less than m+ 1).

We will prove (44) by induction over m. First, the induction base is clear, since

for m = 0, the congruence (44) is true (because the left hand side,
m∏
d=1

(
1−XdT

d
)−1

,

is an empty product and therefore = 1, while the right hand side is
∞∑
n=0

ρnT
n and thus

congruent to ρ0 = 1 modulo (T 1)). Now we come to the induction step: Let m ∈ N be
such that m > 0. We want to prove (44), assuming that (44) holds with m replaced
by m− 1.

We have assumed that (44) holds with m replaced by m − 1; in other words, we
have assumed that

m−1∏
d=1

(
1−XdT

d
)−1 ≡

∞∑
n=0

ρnT
n mod (Tm) .

Multiplication by
m−1∏
d=1

(
1−XdT

d
)

yields

1 ≡
∞∑
n=0

ρnT
n ·

m−1∏
d=1

(
1−XdT

d
)

mod (Tm) .
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Since 1 ≡ (1−XmT
m)−1 mod (Tm) (because 1−XmT

m ≡ 1 mod (Tm)), this becomes

(1−XmT
m)−1 ≡

∞∑
n=0

ρnT
n ·

m−1∏
d=1

(
1−XdT

d
)

mod (Tm) .

In other words, the power series (43) is congruent to the power series (1−XmT
m)−1

modulo the ideal (Tm). This means that the coefficients of the power series (43)
before T 0, T 1, ..., Tm−1 are equal to the corresponding coefficients of the power se-
ries (1−XmT

m)−1. But the coefficient of the power series (43) before Tm is also
equal to the corresponding coefficient of the power series (1−XmT

m)−1 (because
the coefficient of the power series (43) before Tm is Xm (by our definition of Xm),
and the coefficient of the power series (1−XmT

m)−1 before Tm is also Xm (since

(1−XmT
m)−1 =

∞∑
k=0

(XmT
m)k)). Hence, the coefficients of the power series (43) be-

fore T 0, T 1, ..., Tm are equal to the corresponding coefficients of the power series
(1−XmT

m)−1. In other words, the power series (43) is congruent to (1−XmT
m)−1

modulo the ideal (Tm+1). This means that

(1−XmT
m)−1 ≡

∞∑
n=0

ρnT
n ·

m−1∏
d=1

(
1−XdT

d
)

mod
(
Tm+1

)
.

Multiplying this congruence by
m−1∏
d=1

(
1−XdT

d
)−1

yields (44) (since (1−XmT
m)−1 ·

m−1∏
d=1

(
1−XdT

d
)−1

=
m∏
d=1

(
1−XdT

d
)−1

). Hence, (44) is proven, and our induction is

complete.

Now, we have lim
m→∞

m∏
d=1

(
1−XdT

d
)−1

=
∞∑
n=0

ρnT
n (where the limit is taken with

respect to the (T )-adic topology on the ring A [[T ]]), since for every N ∈ N, there
exists some ν ∈ N such that

m∏
d=1

(
1−XdT

d
)−1 ≡

∞∑
n=0

ρnT
n mod

(
TN
)

for every m ≥ ν (in fact, this holds for ν = N − 1 24). Hence, the sequence
(X1, X2, X3, ...) ∈ A{1,2,3,...} that we constructed satisfies

∞∏
d=1

(
1−XdT

d
)−1

= lim
m→∞

m∏
d=1

(
1−XdT

d
)−1

=
∞∑
n=0

ρnT
n.

Consequently, Assertion 1 is proven.
Proof of Assertion 2. Let (X1, X2, X3, ...) ∈ A{1,2,3,...} and (Y1, Y2, Y3, ...) ∈ A{1,2,3,...}

be two sequences of elements of A that satisfy the equations (41) and (42). We are
now going to prove that Xn = Yn for every n ∈ {1, 2, 3, ...}.

24because of (44), and since any two elements that are congruent to each other modulo
(
Tm+1

)
must automatically be congruent to each other modulo

(
TN
)

(since m+1 ≥ ν+1 = (N − 1)+1 = N)
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In fact, we are going to prove this by strong induction over n. So we fix some
n ∈ {1, 2, 3, ...}, and we try to prove that Xn = Yn, assuming that we have already
proved that Xd = Yd for every d ∈ {1, 2, 3, ...} satisfying d < n.

The equation (41) yields

∞∑
n=0

ρnT
n =

∞∏
d=1

(
1−XdT

d
)−1

=
n−1∏
d=1

(
1−XdT

d
)−1 · (1−XnT

n)−1 ·
∞∏

d=n+1


1−XdT

d︸ ︷︷ ︸
≡1 mod(Tn+1),

since T d≡0 mod(Tn+1)
because of d≥n+1



−1

≡
n−1∏
d=1

(
1−XdT

d
)−1 · (1−XnT

n)−1 mod
(
T n+1

)
.

Multiplying this congruence with

(
∞∑
n=0

ρnT
n

)−1

·(1−XnT
n) (the power series

∞∑
n=0

ρnT
n

is indeed invertible, since its coefficient before T 0 is ρ0 = 1), we obtain

1−XnT
n ≡

(
∞∑
n=0

ρnT
n

)−1

·
n−1∏
d=1

(
1−XdT

d
)−1

mod
(
T n+1

)
,

so that

XnT
n ≡ 1−

(
∞∑
n=0

ρnT
n

)−1

·
n−1∏
d=1

(
1−XdT

d
)−1

mod
(
T n+1

)
. (45)

Similarly,

YnT
n ≡ 1−

(
∞∑
n=0

ρnT
n

)−1

·
n−1∏
d=1

(
1− YdT d

)−1
mod

(
T n+1

)
. (46)

Thus,

XnT
n ≡ 1−

(
∞∑
n=0

ρnT
n

)−1

·
n−1∏
d=1

(
1−XdT

d
)−1

(by (45))

= 1−

(
∞∑
n=0

ρnT
n

)−1

·
n−1∏
d=1

(
1− YdT d

)−1

(since Xd = Yd for every d ∈ {1, 2, 3, ...} satisfying d < n)

≡ YnT
n mod

(
T n+1

)
(by (46)) .

In other words, the power series XnT
n− YnT n must belong to the ideal (T n+1). But a

power series belonging to the ideal (T n+1) must have its coefficient before T n equal to
0. Thus, the power series XnT

n−YnT n has its coefficient before T n equal to 0. In other
words, Xn − Yn = 0 (since Xn − Yn is the coefficient of the power series XnT

n − YnT n
before T n), and therefore Xn = Yn. This completes our induction step.
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We have therefore shown thatXn = Yn for every n ∈ {1, 2, 3, ...}. Thus, (X1, X2, X3, ...) =
(Y1, Y2, Y3, ...). This proves Assertion 2.

As both Assertions 1 and 2 are verified now, Theorem 7 (a) is proven.
(b) Let us introduce a notation: A power series α ∈ A [[T ]] is said to be equigraded

if and only if

(for every n ∈ N, the coefficient of α before T n lies in the n-th graded component of A) .

It is easy to see that

{α ∈ A [[T ]] | the power series α is equigraded}

is a subring of A [[T ]] (for a proof of this, see [2], Theorem 1 (a)). In other words,
the sum, the difference and the product of finitely many equigraded power series are
equigraded as well, and the two power series 0 and 1 are both equigraded.

Now, let us prove Theorem 7 (b). The unique sequence (X1, X2, X3, ...) ∈ A{1,2,3,...}
that satisfies (38) was recursively constructed in the proof of Assertion 1 above; ac-
cording to that construction, this sequence satisfies

(Xm is the coefficient before Tm of the power series (43)) (47)

for every m ∈ {1, 2, 3, ...}.
Now, we are going to prove (40) by strong induction over n. That is, we fix some

n ∈ {1, 2, 3, ...}, and we want to show that Xn lies in the n-th graded component of
A, assuming that Xd lies in the d-th graded component of A for every d ∈ {1, 2, 3, ...}
satisfying d < n.

For every d ∈ {1, 2, 3, ...} satisfying d < n, the power series XdT
d is equigraded

(since Xd lies in the d-th graded component of A, according to our assumption), and
thus the power series 1 − XdT

d is equigraded, too (because it is the difference of the

two equigraded power series 1 and XdT
d). Hence, the power series

m−1∏
d=1

(
1−XdT

d
)

is the product of finitely many equigraded power series, and thus it is equigraded as

well. Besides, the power series
∞∑
n=0

ρnT
n is equigraded (by (39)). Therefore, the power

series (43) is the product of two equigraded power series, and therefore equigraded as
well. Consequently, the coefficient before T n of the power series (43) lies in the n-th
graded component of A. But the coefficient before T n of the power series (43) is Xn

(due to (47), applied to m = n). Thus, Xn lies in the n-th graded component of A.
This completes our induction, and thus (40) is proven. In other words, Theorem 7 (b)
is proven.

Theorem 7 (a) makes the following definition possible:

Definition 14. There exists one and only one sequence (X1, X2, X3, ...) ∈
(Z [ξi | i ∈ I]∞){1,2,3,...} of elements of Z [ξi | i ∈ I]∞ that satisfies the equa-
tion

∞∏
d=1

(
1−XdT

d
)−1

=
∞∑
n=0

hnT
n
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in the ring (Z [ξi | i ∈ I]∞) [[T ]]. 25 This sequence will be denoted by
(x1, x2, x3, ...) from now on until the end of this note. Hence, this sequence
(x1, x2, x3, ...) satisfies

∞∏
d=1

(
1− xdT d

)−1
=
∞∑
n=0

hnT
n (48)

This way, we have defined a sequence (x1, x2, x3, ...) of power series. Note
that this definition agrees with the definition of (x1, x2, x3, ...) given in [1],
(9.64).

Besides, we define a power series x0 ∈ Z [ξi | i ∈ I]∞ by x0 = 1.

We notice a first property of the power series x0, x1, x2, ...: For every n ∈ N, the
power series xn ∈ Z [ξi | i ∈ I]∞ is homogeneous of degree n. 26

Now, we are going to define a power series xλ for every partition λ as a product
of xn’s in the same way as we defined hλ as a product of hn’s, as we defined eλ as a
product of en’s, and as we defined pλ as a product of pn’s.27

Definition 15. Let λ be a partition. Then, we define a power series
xλ ∈ Z [ξi | i ∈ I]∞ by

xλ =
∞∏
n=1

xmn(λ)
n .

(This is actually a finite product, since only finitely many n ∈ {1, 2, 3, ...}
satisfy x

mn(λ)
n 6= 1, because only finitely many n ∈ {1, 2, 3, ...} satisfy

mn (λ) 6= 0.) This power series xλ can be written in a simpler way if we
write our partition λ in the form (λ1, λ2, ..., λm) for some m ∈ N; namely,

if λ = (λ1, λ2, ..., λm) , then xλ = xλ1xλ2 ...xλm (49)

(we recall that x0 is supposed to mean 1). This is proven in the same way
as we showed (10). Hence, our definition of xλ agrees with the definition of
xλ given by Hazewinkel in [1], (9.66).

25This follows from Theorem 7 (a), applied to A = Z [ξi | i ∈ I]∞ and (ρ0, ρ1, ρ2, ...) =
(h0, h1, h2, ...).

26Proof. Recall that (x1, x2, x3, ...) is the unique sequence (X1, X2, X3, ...) ∈ (Z [ξi | i ∈ I]∞)
{1,2,3,...}

of elements of Z [ξi | i ∈ I]∞ that satisfies the equation

∞∏
d=1

(
1−XdT

d
)−1

=

∞∑
n=0

hnT
n

in the ring (Z [ξi | i ∈ I]∞) [[T ]]. Thus, Theorem 7 (b), applied to A = Z [ξi | i ∈ I]∞ and
(ρ0, ρ1, ρ2, ...) = (h0, h1, h2, ...), yields that for every n ∈ {1, 2, 3, ...}, the element xn lies in the n-
th graded component of Z [ξi | i ∈ I]∞ (because for every n ∈ N, the element hn lies in the n-th
graded component of Z [ξi | i ∈ I]∞, since hn is a homogeneous power series of degree n). In other
words, for every n ∈ {1, 2, 3, ...}, the power series xn is homogeneous of degree n. This holds for n = 0,
as well (since x0 = 1 is clearly homogeneous of degree 0), so we can conclude that for every n ∈ N,
the power series xn is homogeneous of degree n, qed.

27Actually we are copying the definition of pλ verbatim, just replacing every p by x and changing
the reference to [1].
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The power series xλ is wtλ-homogeneous28.

We notice that for every α ∈ NIfin, we have∑
λ∈Par;
λ∼α

xλ =
∏
i∈I

xαi (50)

(again, remembering that x0 was defined as 1). The proof of this equation is exactly
the same as that of (12) (but with h replaced by x throughout the proof).

Our next definition will be a simple notation:

Definition 16. Let P ∈ Z [ξi | i ∈ I]∞ be a power series. Let n ∈
{1, 2, 3, ...}. Then, we define a power series P (ξn) ∈ Z [ξi | i ∈ I]∞ as fol-
lows: If we write the power series P in the form P =

∑
α∈NIfin

Pα · ξα (with Pα

being an element of Z for every α ∈ NIfin), then the power series P (ξn) is
defined as

∑
α∈NIfin

Pα · ξnα. Here, nα means the family (nαi)i∈I ∈ NIfin.

Informally speaking, the power series P (ξn) is what we obtain if we replace
every variable ξi by its n-th power ξni in the power series P .

Note that P (ξ1) = P for every power series P ∈ Z [ξi | i ∈ I]∞.
Next, we are going to define yet some more power series (but this time, they are

not defined in the same way as hλ, eλ, pλ and xλ):

Definition 17. Let λ be a partition. Then, we define a power series
rλ ∈ Z [ξi | i ∈ I]∞ by

rλ =
∞∏
n=1

hmn(λ) (ξn) .

(This product
∞∏
n=1

hmn(λ) (ξn) is a finite product, since hmn(λ) (ξn) = 1 for

all but finitely many n ∈ {1, 2, 3, ...}, since mn (λ) = 0 for all but finitely
many n, and if mn (λ) = 0, then hmn(λ)︸ ︷︷ ︸

=h0=1

(ξn) = 1.) Note that this definition

of rλ is the same as the one given by Hazewinkel in [1], 9.63.

For every partition λ, the power series rλ is wtλ-homogeneous.29

Now, we will show an identity relating the power series xλ and rλ:

28This is proven in the same way as we showed that hλ is wtλ-homogeneous.
29In fact, for every n ∈ {1, 2, 3, ...}, the power series hmn(λ) is mn (λ)-homogeneous, and thus the

power series hmn(λ) (ξn) is nmn (λ)-homogeneous (since for every k ∈ N and every k-homogeneous
power series α ∈ Z [ξi | i ∈ I]∞, the power series α (ξn) is nk-homogeneous). Hence, the prod-

uct
∞∏
n=1

hmn(λ) (ξn) is
∞∑
n=1

nmn (λ)-homogeneous. Since
∞∏
n=1

hmn(λ) (ξn) = rλ and
∞∑
n=1

nmn (λ) =

∞∑
k=1

kmk (λ) = wtλ, this means that rλ is wtλ-homogeneous, qed.
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Theorem 8. Let I and J be two countable sets. In the ring(
(Z [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞

)
[[T ]], we have∑

λ∈Par

xλ (ξ) rλ (η)Twtλ =
∏

(i,j)∈I×J

1

1− ξiηjT
.

30

Before we start proving this theorem, let us recall a standard fact from the theory
of formal power series:

Power series substitution rule. If A is a commutative ring with unity, and
P ∈ A [[T ]] is a power series with constant term 0, then there exists a continuous31

ring homomorphism evT,P : A [[T ]]→ A [[T ]] which maps T to P and is the identity on
the ring A.

(In fact, this homomorphism evT,P is defined by evT,P

(
∞∑
n=0

anT
n

)
=
∞∑
n=0

anP
n for

every power series
∞∑
n=0

anT
n ∈ A [[T ]] with ai ∈ A for all i ∈ N. The infinite sum

∞∑
n=0

anP
n is convergent, because for any n ∈ N, the power series anP

n has no monomial

of degree < n.)
Proof of Theorem 8. We have∑

λ∈Par

xλ (ξ) rλ (η)Twtλ =
∑

a∈N{1,2,3,...}fin

xm−1(a) (ξ) rm−1(a) (η)Twt(m−1(a)) (51)

(here, we substituted m−1 (a) for λ, since m : Par → N{1,2,3,...}fin is a bijection). Now,

every a ∈ N{1,2,3,...}fin satisfies Twt(m−1(a)) =
∞∏
n=1

(T n)an (as we have seen during the proof

of Theorem 5) and furthermore

xm−1(a) =
∞∏
n=1

x
mn(m−1(a))
n (by the definition of xλ for λ ∈ Par)

=
∞∏
n=1

xann (by (30)) .

In other words,

xm−1(a) (ξ) =
∞∏
n=1

(xn (ξ))an .

Besides,

rm−1(a) =
∞∏
n=1

hmn(m−1(a)) (ξn) (by the definition of rλ for λ ∈ Par)

=
∞∏
n=1

han (ξn) (by (30)) .

30The sum
∑

λ∈Par

xλ (ξ) rλ (η)Twtλ is convergent according to (15).

31Here, ”continuous” means ”continuous with respect to the (T )-adic topology on the ring A [[T ]]”.
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Replacing the set I by the set J and the variables ξi by the variables ηj in this equation,
we obtain

rm−1(a) (η) =
∞∏
n=1

han (ηn)

(where han (ηn) is defined in the same way as han (ξn), but with the set I replaced by
J and the variables ξi replaced by ηj). Thus, (51) transforms into∑

λ∈Par

xλ (ξ) rλ (η)Twtλ

=
∑

a∈N{1,2,3,...}fin

xm−1(a) (ξ)︸ ︷︷ ︸
=
∞∏
n=1

(xn(ξ))an

rm−1(a) (η)︸ ︷︷ ︸
=
∞∏
n=1

han (ηn)

Twt(m−1(a))︸ ︷︷ ︸
=
∞∏
n=1

(Tn)an

=
∑

a∈N{1,2,3,...}fin

∞∏
n=1

(xn (ξ))an
∞∏
n=1

han (ηn)
∞∏
n=1

(T n)an

=
∑

a∈N{1,2,3,...}fin

∞∏
n=1

(xn (ξ))an han (ηn) (T n)an

=
∞∏
n=1

∑
a∈N

(xn (ξ))a ha (ηn) (T n)a︸ ︷︷ ︸
=ha(ηn)(xn(ξ)Tn)a

 (by the product rule)

=
∞∏
n=1

(∑
a∈N

ha (ηn) (xn (ξ)T n)a
)
. (52)

Now, fix n ∈ {1, 2, 3, ...}. We are going to simplify the term
∑
a∈N

ha (ηn) (xn (ξ)T n)a.

First, we remember that (8) yields∏
i∈I

1

1− ξiT
=
∞∑
d=0

hdT
d =

∞∑
a=0

haT
a =

∑
a∈N

haT
a.

Replacing the variables ξi by the variables ξni in this equation, we obtain∏
i∈I

1

1− ξni T
=
∑
a∈N

ha (ξn)T a.

Replacing the set I by the set J and the variables ξi by the variables ηj in this equation,
we obtain ∏

j∈J

1

1− ηnj T
=
∑
a∈N

ha (ηn)T a. (53)

This is an equality in the ring
(
(Z [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞

)
[[T ]]. According to the

power series substitution rule (applied to A = (Z [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞ and P =
xn (ξ)T n), there exists a continuous32 ring homomorphism(

(Z [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞
)

[[T ]]→
(
(Z [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞

)
[[T ]]

32Here, ”continuous” means ”continuous with respect to the (T )-adic topology on the ring(
(Z [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞

)
[[T ]]”.
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which maps T to xn (ξ)T n and is the identity on the ring (Z [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞.
This homomorphism respects infinite sums and infinite products (since it is continu-

ous), and thus it maps
∏
j∈J

1

1− ηnj T
to
∏
j∈J

1

1− ηnj xn (ξ)T n
and maps

∑
a∈N

ha (ηn)T a to∑
a∈N

ha (ηn) (xn (ξ)T n)a. Therefore, upon applying this homomorphism to the equation

(53), we obtain ∏
j∈J

1

1− ηnj xn (ξ)T n
=
∑
a∈N

ha (ηn) (xn (ξ)T n)a . (54)

Now forget that we fixed n. The equality (52) becomes

∑
λ∈Par

xλ (ξ) rλ (η)Twtλ =
∞∏
n=1


∑
a∈N

ha (ηn) (xn (ξ)T n)a︸ ︷︷ ︸
=
∏
j∈J

1

1− ηnj xn (ξ)T n

by (54)



=
∞∏
n=1

∏
j∈J

1

1− ηnj xn (ξ)T n
=
∏
j∈J

∞∏
n=1

1

1− ηnj xn (ξ)T n
=
∏
j∈J

∞∏
n=1

1− ηnj xn (ξ)T n︸ ︷︷ ︸
=xn(ξ)(ηjT )n


−1

=
∏
j∈J

∞∏
n=1

(1− xn (ξ) (ηjT )n)
−1

=
∏
j∈J

∞∏
d=1

(
1− xd (ξ) (ηjT )d

)−1

(55)

(here we substituted d for n in the second product) .

Now, fix some j ∈ J . Note that

∞∏
d=1

(
1− xdT d

)−1
=
∏
i∈I

1

1− ξiT
(56)

(since

∞∏
d=1

(
1− xdT d

)−1
=
∞∑
n=0

hnT
n (by (48))

=
∞∑
d=0

hdT
d =

∏
i∈I

1

1− ξiT
(by (8))

). According to the power series substitution rule (applied toA = (Z [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞
and P = ηjT ), there exists a continuous33 ring homomorphism(

(Z [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞
)

[[T ]]→
(
(Z [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞

)
[[T ]]

33Here, ”continuous” means ”continuous with respect to the (T )-adic topology on the ring(
(Z [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞

)
[[T ]]”.
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which maps T to ηjT and is the identity on the ring (Z [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞.
This homomorphism respects infinite products (since it is continuous), and thus it

maps
∞∏
d=1

(
1− xdT d

)−1
to
∞∏
d=1

(
1− xd · (ηjT )d

)−1

and maps
∏
i∈I

1

1− ξiT
to
∏
i∈I

1

1− ξiηjT
.

Therefore, upon applying this homomorphism to the equation (56), we obtain

∞∏
d=1

(
1− xd · (ηjT )d

)−1

=
∏
i∈I

1

1− ξiηjT
.

In other words,
∞∏
d=1

(
1− xd (ξ) (ηjT )d

)−1

=
∏
i∈I

1

1− ξiηjT

(since xd = xd (ξ)). Thus, (55) becomes

∑
λ∈Par

xλ (ξ) rλ (η)Twtλ =
∏
j∈J

∞∏
d=1

(
1− xd (ξ) (ηjT )d

)−1

︸ ︷︷ ︸
=
∏
i∈I

1

1− ξiηjT

=
∏
j∈J

∏
i∈I

1

1− ξiηjT

=
∏

(i,j)∈I×J

1

1− ξiηjT
.

This proves Theorem 8.
Combining Theorem 8 with Theorem 9.42 in [1] yields the relations (9.70) in [1].
Theorem 8 can be generalized. In order to formulate this generalization, we will

have to generalize Definitions 14, 15 and 17. But first, we generalize the sequence
of power series (h0, h1, h2, ...) in such a way that we get a sequence of power series(
h

[α]
0 , h

[α]
1 , h

[α]
2 , ...

)
defined for every α ∈ Z which coincides with (h0, h1, h2, ...) if α = 1

and coincides with
(
(−1)0 e0, (−1)1 e1, (−1)2 e2, ...

)
if α = −1.

Before we define this sequence
(
h

[α]
0 , h

[α]
1 , h

[α]
2 , ...

)
, we notice that the power series

∞∑
n=0

hnT
n ∈ (Z [ξi | i ∈ I]∞) [[T ]] is invertible (because its coefficient before T 0 is h0 =

1). Hence, it makes sense to speak of

(
∞∑
n=0

hnT
n

)α
for every α ∈ Z.

Definition 18. Let α ∈ Z. There exists one and only one sequence(
h

[α]
0 , h

[α]
1 , h

[α]
2 , ...

)
∈ (Z [ξi | i ∈ I]∞)N 34 of elements of Z [ξi | i ∈ I]∞

that satisfies the equation

∞∑
n=0

h[α]
n T

n =

(
∞∑
n=0

hnT
n

)α

(57)

34Note that the upper index [α] in h
[α]
0 , h

[α]
1 , h

[α]
2 , ... is not an exponent. It is just an index that

reminds us that the power series h
[α]
0 , h

[α]
1 , h

[α]
2 , ... depend upon α.
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in the ring (Z [ξi | i ∈ I]∞) [[T ]]. 35 This sequence will be denoted by(
h

[α]
0 , h

[α]
1 , h

[α]
2 , ...

)
henceforth until the end of this note.

Examples: 1) The sequence
(
h

[1]
0 , h

[1]
1 , h

[1]
2 , ...

)
is identical to the sequence (h0, h1, h2, ...).

This is because (57) yields

∞∑
n=0

h[1]
n T

n =

(
∞∑
n=0

hnT
n

)1

=
∞∑
n=0

hnT
n,

and comparing coefficients, we obtain that h
[1]
n = hn for every n ∈ N, and therefore(

h
[1]
0 , h

[1]
1 , h

[1]
2 , ...

)
= (h0, h1, h2, ...).

2) The sequence
(
h

[−1]
0 , h

[−1]
1 , h

[−1]
2 , ...

)
is identical to the sequence

(
(−1)0 e0, (−1)1 e1, (−1)2 e2, ...

)
.

This is because (57) yields

∞∑
n=0

h[−1]
n T n =

(
∞∑
n=0

hnT
n

)−1

=

(
∞∑
d=0

hdT
d

)−1

=

(∏
i∈I

1

1− ξiT

)−1

(
since (8) yields

∞∑
d=0

hdT
d =

∏
i∈I

1

1− ξiT

)

=
∏
i∈I

(1− ξiT ) =
∞∑
d=0

(−1)d edT
d (by (7))

=
∞∑
n=0

(−1)n enT
n,

and comparing coefficients, we obtain that h
[−1]
n = (−1)n en for every n ∈ N, and

therefore
(
h

[−1]
0 , h

[−1]
1 , h

[−1]
2 , ...

)
=
(
(−1)0 e0, (−1)1 e1, (−1)2 e2, ...

)
.

3) The sequence
(
h

[0]
0 , h

[0]
1 , h

[0]
2 , ...

)
is identical to the sequence

1, 0, 0, ...︸ ︷︷ ︸
only zeroes

. This

is because (57) yields
∞∑
n=0

h[0]
n T

n =

(
∞∑
n=0

hnT
n

)0

= 1,

and comparing coefficients, we obtain h
[0]
n =

{
1, if n = 0;
0, if n > 0

for every n ∈ N, and

consequently,
(
h

[0]
0 , h

[0]
1 , h

[0]
2 , ...

)
=

1, 0, 0, ...︸ ︷︷ ︸
only zeroes

.

35This is clear, because

( ∞∑
n=0

hnT
n

)α
is a power series in the indeterminate T over the ring

Z [ξi | i ∈ I]∞.
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We notice that for every α ∈ Z and every n ∈ N, the power series h
[α]
n is n-

homogeneous.36 Also, for every α ∈ Z, we have h
[α]
0 = 1 (since h

[α]
0 is the coefficient of

the power series

(
∞∑
n=0

hnT
n

)α
before T 0 (according to (57)), and the coefficient of the

power series

(
∞∑
n=0

hnT
n

)α
before T 0 is 1 37).

Now comes a generalization of Definition 14:

Definition 19. Let α ∈ Z. There exists one and only one sequence
(X1, X2, X3, ...) ∈ (Z [ξi | i ∈ I]∞){1,2,3,...} of elements of Z [ξi | i ∈ I]∞ that
satisfies the equation

∞∏
d=1

(
1−XdT

d
)−1

=
∞∑
n=0

h[α]
n T

n (58)

in the ring (Z [ξi | i ∈ I]∞) [[T ]]. 38 This sequence will be denoted by(
x

[α]
1 , x

[α]
2 , x

[α]
3 , ...

)
39 from now on until the end of this note. Hence,

this sequence
(
x

[α]
1 , x

[α]
2 , x

[α]
3 , ...

)
satisfies

∞∏
d=1

(
1− x[α]

d T
d
)−1

=
∞∑
n=0

h[α]
n T

n (59)

This way, for every α ∈ Z, we have defined a sequence
(
x

[α]
1 , x

[α]
2 , x

[α]
3 , ...

)
of power series.

Besides, we define a power series x
[α]
0 ∈ Z [ξi | i ∈ I]∞ by x

[α]
0 = 1.

36In fact, using the notion of ”equigraded power series” that we have introduced in the proof of
Theorem 7 (b), we notice that if P is an invertible equigraded power series, then Pα is an equigraded
power series for every α ∈ Z. (For a proof of this fact, see [2], Theorem 1 (d)). Hence, since we

know that the power series
∞∑
n=0

hnT
n ∈ (Z [ξi | i ∈ I]∞) [[T ]] is equigraded (because hn lies in the n-th

graded component of Z [ξi | i ∈ I]∞ for every n ∈ N, since hn is an n-homogeneous power series for

every n ∈ N), we can conclude that the power series

( ∞∑
n=0

hnT
n

)α
is equigraded as well, and therefore

h
[α]
n lies in the n-th graded component of Z [ξi | i ∈ I]∞ for every n ∈ N (since (57) yields that h

[α]
n is

the coefficient of the power series

( ∞∑
n=0

hnT
n

)α
before Tn). In other words, the power series h

[α]
n is

n-homogeneous for every n ∈ N.

37because in general, the coefficient of a power series

( ∞∑
n=0

unT
n

)α
before T 0 is uα0 , and thus the

coefficient of the power series

( ∞∑
n=0

hnT
n

)α
before T 0 is hα0 = 1α = 1

38This follows from Theorem 7 (a), applied to A = Z [ξi | i ∈ I]∞ and (ρ0, ρ1, ρ2, ...) =(
h

[α]
0 , h

[α]
1 , h

[α]
2 , ...

)
.

39Note that the upper index [α] in x
[α]
1 , x

[α]
2 , x

[α]
3 , ... is not an exponent. It is just an index that

reminds us that the power series x
[α]
1 , x

[α]
2 , x

[α]
3 , ... depend upon α.
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Examples: 1) The sequence
(
x

[0]
1 , x

[0]
2 , x

[0]
3 , ...

)
is identical with (0, 0, 0, ...). This is

because the sequence
(
x

[0]
1 , x

[0]
2 , x

[0]
3 , ...

)
was defined as the only sequence (X1, X2, X3, ...) ∈

(Z [ξi | i ∈ I]∞){1,2,3,...} of elements of Z [ξi | i ∈ I]∞ that satisfies the equation (58), but
the sequence (X1, X2, X3, ...) = (0, 0, 0, ...) does satisfy this equation40.

2) The sequence
(
x

[1]
1 , x

[1]
2 , x

[1]
3 , ...

)
is identical with the sequence (x1, x2, x3, ...) de-

fined in Definition 14.41 In other words, x
[1]
n = xn for every n ∈ {1, 2, 3, ...}. Since it is

also clear that x
[1]
0 = x0, we can therefore conclude that x

[1]
n = xn for every n ∈ N.

We notice a first property of the power series x
[α]
0 , x

[α]
1 , x

[α]
2 , ...: For every α ∈ Z

and n ∈ N, the power series x
[α]
n ∈ Z [ξi | i ∈ I]∞ is homogeneous of degree n. 42

Now, we are going to generalize Definition 15 in order to define a power series x
[α]
λ

for every partition λ:

Definition 20. Let α ∈ Z. Let λ be a partition. Then, we define a power
series x

[α]
λ ∈ Z [ξi | i ∈ I]∞ by

x
[α]
λ =

∞∏
n=1

(
x[α]
n

)mn(λ)
.

(This is actually a finite product, since only finitely many n ∈ {1, 2, 3, ...}

satisfy
(
x

[α]
n

)mn(λ)

6= 1, because only finitely many n ∈ {1, 2, 3, ...} satisfy

mn (λ) 6= 0.) This power series x
[α]
λ can be written in a simpler way if we

write our partition λ in the form (λ1, λ2, ..., λm) for some m ∈ N; namely,

if λ = (λ1, λ2, ..., λm) , then x
[α]
λ = x

[α]
λ1
x

[α]
λ2
...x

[α]
λm

(60)

40since
∞∏
d=1

1− 0T d︸ ︷︷ ︸
=1

−1

=

∞∏
d=1

1−1 = 1 =

∞∑
n=0

h[0]
n T

n

41This is because Definition 14 is the particular case of Definition 19 for α = 1 (since(
h

[1]
0 , h

[1]
1 , h

[1]
2 , ...

)
= (h0, h1, h2, ...)).

42Proof. Recall that
(
x

[α]
1 , x

[α]
2 , x

[α]
3 , ...

)
is the unique sequence (X1, X2, X3, ...) ∈

(Z [ξi | i ∈ I]∞)
{1,2,3,...}

of elements of Z [ξi | i ∈ I]∞ that satisfies the equation

∞∏
d=1

(
1−XdT

d
)−1

=

∞∑
n=0

h[α]
n Tn

in the ring (Z [ξi | i ∈ I]∞) [[T ]]. Thus, Theorem 7 (b), applied to A = Z [ξi | i ∈ I]∞ and

(ρ0, ρ1, ρ2, ...) =
(
h

[α]
0 , h

[α]
1 , h

[α]
2 , ...

)
, yields that for every n ∈ {1, 2, 3, ...}, the element x

[α]
n lies in

the n-th graded component of Z [ξi | i ∈ I]∞ (because for every n ∈ N, the element h
[α]
n lies in the

n-th graded component of Z [ξi | i ∈ I]∞, since h
[α]
n is a homogeneous power series of degree n). In

other words, for every n ∈ {1, 2, 3, ...}, the power series x
[α]
n is homogeneous of degree n. This holds

for n = 0, as well (since x
[α]
0 = 1 is clearly homogeneous of degree 0), so we can conclude that for

every n ∈ N, the power series x
[α]
n is homogeneous of degree n, qed.
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(we recall that x
[α]
0 is supposed to mean 1). This is proven in the same way

as we showed (10).

In particular, x
[1]
λ = xλ for every partition λ, because the definition of xλ

(Definition 15) is the particular case of the definition of x
[α]
λ for α = 1 (since

x
[1]
n = xn for every n ∈ N).

The power series x
[α]
λ is wtλ-homogeneous43.

So we have generalized Definition 15. Next, we generalize Definition 17:

Definition 21. Let α ∈ Z. Let λ be a partition. Then, we define a power
series r

[α]
λ ∈ Z [ξi | i ∈ I]∞ by

r
[α]
λ =

∞∏
n=1

h
[α]
mn(λ) (ξn) .

(This product
∞∏
n=1

h
[α]
mn(λ) (ξn) is a finite product, since h

[α]
mn(λ) (ξn) = 1 for

all but finitely many n ∈ {1, 2, 3, ...}, since mn (λ) = 0 for all but finitely

many n, and if mn (λ) = 0, then h
[α]
mn(λ)︸ ︷︷ ︸

=h
[α]
0 =1

(ξn) = 1.)

Note that r
[1]
λ = rλ for every partition λ. This is because the definition of

rλ (Definition 17) is the particular case of the definition of r
[α]
λ for α = 1

(since
(
h

[1]
0 , h

[1]
1 , h

[1]
2 , ...

)
= (h0, h1, h2, ...)).

For every partition λ, the power series rλ is wtλ-homogeneous.44

Finally, let us introduce a trivial notation:

Definition 22. Let α ∈ Z. For every partition λ ∈ Par, we denote by
h

[α]
λ (ξ) the element h

[α]
λ of the ring Z [ξi | i ∈ I]∞, and by h

[α]
λ (η) the ”cor-

responding” element of the ring Z [ηj | j ∈ J ]∞ (that is, the power series
we would obtain if we would replace the set I by the set J and the inde-
terminates ξi by the indeterminates ηj in the definition of h

[α]
λ ). Similarly,

we define the power series h
[α]
n (ξ), h

[α]
n (η), x

[α]
n (ξ), x

[α]
n (η), x

[α]
λ (ξ), x

[α]
λ (η),

r
[α]
λ (ξ) and r

[α]
λ (η).

Now, we will show an identity relating the power series x
[α]
λ and r

[α]
λ , generalizing

Theorem 8:

43This is proven in the same way as we showed that hλ is wtλ-homogeneous.
44In fact, for every n ∈ {1, 2, 3, ...}, the power series h

[α]
mn(λ) is mn (λ)-homogeneous, and thus the

power series h
[α]
mn(λ) (ξn) is nmn (λ)-homogeneous (since for every k ∈ N and every k-homogeneous

power series γ ∈ Z [ξi | i ∈ I]∞, the power series γ (ξn) is nk-homogeneous). Hence, the prod-

uct
∞∏
n=1

h
[α]
mn(λ) (ξn) is

∞∑
n=1

nmn (λ)-homogeneous. Since
∞∏
n=1

h
[α]
mn(λ) (ξn) = r

[α]
λ and

∞∑
n=1

nmn (λ) =

∞∑
k=1

kmk (λ) = wtλ, this means that r
[α]
λ is wtλ-homogeneous, qed.

41



Theorem 9. Let α ∈ Z and β ∈ Z. Let I and J be two countable sets. In
the ring

(
(Z [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞

)
[[T ]], we have

∑
λ∈Par

x
[α]
λ (ξ) r

[β]
λ (η)Twtλ =

 ∏
(i,j)∈I×J

1

1− ξiηjT

αβ

.

45

The proof of this theorem is completely analogous to that of Theorem 8; it was
mostly copy-pasted from the latter. Again, we will use the power series substitution
rule.

Proof of Theorem 9. We have∑
λ∈Par

x
[α]
λ (ξ) r

[β]
λ (η)Twtλ =

∑
a∈N{1,2,3,...}fin

x
[α]

m−1(a) (ξ) r
[β]

m−1(a) (η)Twt(m−1(a)) (61)

(here, we substituted m−1 (a) for λ, since m : Par → N{1,2,3,...}fin is a bijection). Now,

every a ∈ N{1,2,3,...}fin satisfies Twt(m−1(a)) =
∞∏
n=1

(T n)an (as we have seen during the proof

of Theorem 5) and furthermore

x
[α]

m−1(a) =
∞∏
n=1

(
x[α]
n

)mn(m−1(a))
(

by the definition of x
[α]
λ for λ ∈ Par

)
=
∞∏
n=1

(
x[α]
n

)an
(by (30)) .

In other words,

x
[α]

m−1(a) (ξ) =
∞∏
n=1

(
x[α]
n (ξ)

)an
.

Besides,

r
[β]

m−1(a) =
∞∏
n=1

h
[β]

mn(m−1(a)) (ξn)

 in fact, we have r
[β]
λ =

∞∏
n=1

h
[β]
mn(λ) (ξn) for every λ ∈ Par ,

according to the definition of r
[α]
λ (with α replaced by β)


=
∞∏
n=1

h[β]
an (ξn) (by (30)) .

Replacing the set I by the set J and the variables ξi by the variables ηj in this equation,
we obtain

r
[β]

m−1(a) (η) =
∞∏
n=1

h[β]
an (ηn)

45The sum
∑

λ∈Par

x
[α]
λ (ξ) r

[β]
λ (η)Twtλ is convergent according to (15).
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(where h
[β]
an (ηn) is defined in the same way as h

[β]
an (ξn), but with the set I replaced by

J and the variables ξi replaced by ηj). Thus, (61) transforms into∑
λ∈Par

x
[α]
λ (ξ) r

[β]
λ (η)Twtλ

=
∑

a∈N{1,2,3,...}fin

x
[α]

m−1(a) (ξ)︸ ︷︷ ︸
=
∞∏
n=1

(
x

[α]
n (ξ)

)an
r

[β]

m−1(a) (η)︸ ︷︷ ︸
=
∞∏
n=1

h
[β]
an (ηn)

Twt(m−1(a))︸ ︷︷ ︸
=
∞∏
n=1

(Tn)an

=
∑

a∈N{1,2,3,...}fin

∞∏
n=1

(
x[α]
n (ξ)

)an ∞∏
n=1

h[β]
an (ηn)

∞∏
n=1

(T n)an

=
∑

a∈N{1,2,3,...}fin

∞∏
n=1

(
x[α]
n (ξ)

)an
h[β]
an (ηn) (T n)an

=
∞∏
n=1

∑
a∈N

(
x[α]
n (ξ)

)a
h[β]
a (ηn) (T n)a︸ ︷︷ ︸

=h
[β]
a (ηn)

(
x

[α]
n (ξ)Tn

)a

 (by the product rule)

=
∞∏
n=1

(∑
a∈N

h[β]
a (ηn)

(
x[α]
n (ξ)T n

)a)
. (62)

Now, fix n ∈ {1, 2, 3, ...}. We will simplify the term
∑
a∈N

h
[β]
a (ηn)

(
x

[α]
n (ξ)T n

)a
.

First,

∏
i∈I

(
1

1− ξiT

)β
=

(∏
i∈I

1

1− ξiT

)β

=

(
∞∑
d=0

hdT
d

)β

(by (8))

=

(
∞∑
n=0

hnT
n

)β

=
∞∑
n=0

h[β]
n T

n

since
∞∑
n=0

h[β]
n T

n =

(
∞∑
n=0

hnT
n

)β

by (57), applied to β instead of α


=
∞∑
a=0

h[β]
a T

a =
∑
a∈N

h[β]
a T

a.

Replacing the variables ξi by the variables ξni in this equation, we obtain∏
i∈I

(
1

1− ξni T

)β
=
∑
a∈N

h[β]
a (ξn)T a.

Replacing the set I by the set J and the variables ξi by the variables ηj in this equation,
we obtain ∏

j∈J

(
1

1− ηnj T

)β
=
∑
a∈N

h[β]
a (ηn)T a. (63)
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This is an equality in the ring
(
(Z [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞

)
[[T ]]. According to the

power series substitution rule (applied to A = (Z [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞ and P =

x
[α]
n (ξ)T n), there exists a continuous46 ring homomorphism(

(Z [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞
)

[[T ]]→
(
(Z [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞

)
[[T ]]

which maps T to x
[α]
n (ξ)T n and is the identity on the ring (Z [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞.

This homomorphism respects infinite sums and infinite products (since it is continuous),

and thus it maps
∏
j∈J

(
1

1− ηnj T

)β
to
∏
j∈J

(
1

1− ηnj x
[α]
n (ξ)T n

)β

and maps
∑
a∈N

h
[β]
a (ηn)T a

to
∑
a∈N

h
[β]
a (ηn)

(
x

[α]
n (ξ)T n

)a
. Therefore, upon applying this homomorphism to the

equation (63), we obtain

∏
j∈J

(
1

1− ηnj x
[α]
n (ξ)T n

)β

=
∑
a∈N

h[β]
a (ηn)

(
x[α]
n (ξ)T n

)a
. (64)

Now, forget that we fixed n. The equality (62) becomes

∑
λ∈Par

x
[α]
λ (ξ) r

[β]
λ (η)Twtλ =

∞∏
n=1



∑
a∈N

h[β]
a (ηn)

(
x[α]
n (ξ)T n

)a
︸ ︷︷ ︸
=
∏
j∈J

 1

1− ηnj x
[α]
n (ξ)T n


β

by (64)


=
∞∏
n=1

∏
j∈J

(
1

1− ηnj x
[α]
n (ξ)T n

)β

=
∏
j∈J

∞∏
n=1

(
1

1− ηnj x
[α]
n (ξ)T n

)β

=
∏
j∈J

(
∞∏
n=1

1

1− ηnj x
[α]
n (ξ)T n

)β

=
∏
j∈J

 ∞∏
n=1

1− ηnj x[α]
n (ξ)T n︸ ︷︷ ︸

=x
[α]
n (ξ)(ηjT )n


−1

β

=
∏
j∈J

(
∞∏
n=1

(
1− x[α]

n (ξ) (ηjT )n
)−1

)β

=
∏
j∈J

(
∞∏
d=1

(
1− x[α]

d (ξ) (ηjT )d
)−1
)β

(65)

(here we substituted d for n in the second product) .

Now, fix some j ∈ J . Note that

∞∏
d=1

(
1− x[α]

d T
d
)−1

=
∏
i∈I

(
1

1− ξiT

)α
(66)

46Here, ”continuous” means ”continuous with respect to the (T )-adic topology on the ring(
(Z [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞

)
[[T ]]”.
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(since
∞∏
d=1

(
1− x[α]

d T
d
)−1

=
∞∑
n=0

h[α]
n T

n (by (59))

=

(
∞∑
n=0

hnT
n

)α

(by (57))

=

(
∞∑
d=0

hdT
d

)α

=

(∏
i∈I

1

1− ξiT

)α (
since

∞∑
d=0

hdT
d =

∏
i∈I

1

1− ξiT
by (8)

)

=
∏
i∈I

(
1

1− ξiT

)α
). According to the power series substitution rule (applied toA = (Z [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞
and P = ηjT ), there exists a continuous47 ring homomorphism(

(Z [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞
)

[[T ]]→
(
(Z [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞

)
[[T ]]

which maps T to ηjT and is the identity on the ring (Z [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞. This
homomorphism respects infinite products (since it is continuous), and thus it maps
∞∏
d=1

(
1− x[α]

d T
d
)−1

to
∞∏
d=1

(
1− x[α]

d · (ηjT )d
)−1

and maps
∏
i∈I

(
1

1− ξiT

)α
to
∏
i∈I

(
1

1− ξiηjT

)α
.

Therefore, upon applying this homomorphism to the equation (66), we obtain
∞∏
d=1

(
1− x[α]

d · (ηjT )d
)−1

=
∏
i∈I

(
1

1− ξiηjT

)α
.

In other words,
∞∏
d=1

(
1− x[α]

d (ξ) (ηjT )d
)−1

=
∏
i∈I

(
1

1− ξiηjT

)α
(67)

(since x
[α]
d = x

[α]
d (ξ)). Thus, (65) becomes

∑
λ∈Par

x
[α]
λ (ξ) r

[β]
λ (η)Twtλ =

∏
j∈J


∞∏
d=1

(
1− x[α]

d (ξ) (ηjT )d
)−1

︸ ︷︷ ︸
=
∏
i∈I

 1

1− ξiηjT

α
(by (67))



β

=
∏
j∈J

(∏
i∈I

(
1

1− ξiηjT

)α)β

=
∏
j∈J

∏
i∈I

((
1

1− ξiηjT

)α)β
=

∏
(i,j)∈I×J

((
1

1− ξiηjT

)α)β

=
∏

(i,j)∈I×J

(
1

1− ξiηjT

)αβ
.

47Here, ”continuous” means ”continuous with respect to the (T )-adic topology on the ring(
(Z [ξi | i ∈ I]∞) [ηj | j ∈ J ]∞

)
[[T ]]”.
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This proves Theorem 9.
Theorem 8 is the particular case of Theorem 9 for α = β = 1 (since x

[1]
λ = xλ and

r
[1]
λ = rλ for every partition λ). Using Theorem 9.42 in [1], we can use Theorem 8 to

conclude that 〈xλ, rκ〉 = δλ,κ for any two partitions λ and κ (where 〈·, ·〉 denotes the
Hall inner product, defined in [1], 9.40). In the same way, we can use Theorem 9 to

conclude that
〈
x

[−1]
λ , r

[−1]
κ

〉
= δλ,κ for any two partitions λ and κ.

We can also generalize Theorem 9 by replacing Z by any binomial ring (see [1],
17.19 for the definition of a binomial ring). The reason why we need the ring to be

binomial is that otherwise,

(
∞∑
n=0

hnT
n

)α
would not be well-defined (we can define the

α-th power of a power series only if the binomial coefficients

(
α

k

)
exist in our ring),

and thus h
[α]
n and x

[α]
n would not be well-defined either.

References

[1] Michiel Hazewinkel, Witt vectors. Part 1, revised version: 20 April 2008.
http://arxiv.org/abs/0804.3888v1

[2] Darij Grinberg: Witt#4a: Equigraded power series.
http://www.cip.ifi.lmu.de/~grinberg/algebra/witt4a.pdf

46

http://arxiv.org/abs/0804.3888v1
http://www.cip.ifi.lmu.de/~grinberg/algebra/witt4a.pdf

