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This is an addendum to section 5 of [1]. We recall the definition of the p-adic Witt
polynomials:

Definition. Let p be a prime. For every n ∈ N (where N means {0, 1, 2, ...}),
we define a polynomial wn ∈ Z [X0, X1, X2, ..., Xn] by

wn (X0, X1, ..., Xn) = Xpn

0 +pXpn−1

1 +p2Xpn−2

2 +...+pn−1Xp
n−1+pnXn =

n∑
k=0

pkXpn−k

k .

Since Z [X0, X1, X2, ..., Xn] is a subring of the ring Z [X0, X1, X2, ...] (this
is the polynomial ring over Z in the countably many indeterminates X0,
X1, X2, ...), this polynomial wn can also be considered as an element of
Z [X0, X1, X2, ...]. Regarding wn this way, we have

wn (X0, X1, X2, ...) =
n∑
k=0

pkXpn−k

k .

We will often write X for the sequence (X0, X1, X2, ...). Thus, wn (X) =
n∑
k=0

pkXpn−k

k .

These polynomials w0 (X) , w1 (X) , w2 (X) , ... are called the p-adic Witt
polynomials.1

A property of these polynomials has not been recorded in the text:

Theorem 1. Let τ ∈ Z [X0, X1, X2, ...] be a polynomial. Let n ∈ N. Then,
the following two assertions A and B are equivalent:

Assertion A: There exist polynomials τ0, τ1, ..., τn in Z [X0, X1, X2, ...] such
that

τ (X) = wn (τ0 (X) , τ1 (X) , ..., τn (X)) .

Assertion B: We have
∂

∂Xi

(τ (X)) ∈ pnZ [X0, X1, X2, ...] for every i ∈ N.

1Caution: These polynomials are referred to as w0, w1, w2, ... in Sections 5-8 of [1]. However,
beginning with Section 9 of [1], Hazewinkel uses the notations w1, w2, w3, ... for some different
polynomials (the so-called big Witt polynomials, defined by formula (9.25) in [1]), which are not the
same as our polynomials w1, w2, w3, ... (though they are related to them: in fact, the polynomial wk

that we have just defined here is the same as the polynomial which is called wpk in [1] from Section 9
on, up to a change of variables; however, the polynomial which is called wk from in [1] from Section
9 on is totally different and has nothing to do with our wk).
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Proof of Theorem 1. Proof of the implication A =⇒ B: Assume that Assertion A
holds, i. e., that there exist polynomials τ0, τ1, ..., τn in Z [X0, X1, X2, ...] such that

τ (X) = wn (τ0 (X) , τ1 (X) , ..., τn (X)) .

Then,

τ (X) = wn (τ0 (X) , τ1 (X) , ..., τn (X)) =
n∑
k=0

pk (τk (X))p
n−k

,

so that every i ∈ N satisfies

∂

∂Xi

(τ (X)) =
∂

∂Xi

n∑
k=0

pk (τk (X))p
n−k

=
n∑
k=0

pk
∂

∂Xi

(τk (X))p
n−k

︸ ︷︷ ︸
=pn−k(τk(X))p

n−k−1·
∂

∂Xi

(τk(X))

(by the chain rule, since

∂

∂Y

(
Y pn−k

)
=pn−kY pn−k−1)

=
n∑
k=0

pkpn−k︸ ︷︷ ︸
=pn

(τk (X))p
n−k−1 · ∂

∂Xi

(τk (X)) = pn
n∑
k=0

(τk (X))p
n−k−1 · ∂

∂Xi

(τk (X))︸ ︷︷ ︸
∈Z[X0,X1,X2,...]

∈ pnZ [X0, X1, X2, ...] ,

and thus Assertion B holds. This proves the implication A =⇒ B.
Proof of the implication B =⇒ A: Proving the implication B =⇒ A is equivalent

to proving the following fact:

Lemma: Let τ ∈ Z [X0, X1, X2, ...] be a polynomial. Let n ∈ N. If
∂

∂Xi

(τ (X)) ∈
pnZ [X0, X1, X2, ...] for every i ∈ N, then there exist polynomials τ0, τ1, ..., τn in
Z [X0, X1, X2, ...] such that

τ (X) = wn (τ0 (X) , τ1 (X) , ..., τn (X)) .

Proof of the Lemma: We will prove the Lemma by induction over n. For n = 0, the
Lemma is trivial (just set τ0 = τ and use w0 (X) = X0). Now to the induction step:
Given some n ∈ N such that n ≥ 1, we want to prove the Lemma for this n, and we
assume that it is already proven for n− 1 instead of n. So let τ ∈ Z [X0, X1, X2, ...] be

a polynomial such that
∂

∂Xi

(τ (X)) ∈ pnZ [X0, X1, X2, ...] for every i ∈ N. We must

find polynomials τ0, τ1, ..., τn in Z [X0, X1, X2, ...] such that

τ (X) = wn (τ0 (X) , τ1 (X) , ..., τn (X)) .

Let NNfin denote the set
{

(j0, j1, j2, ...) ∈ NN | only finitely many k ∈ N satisfy jk 6= 0
}

.

Then, τ has a unique representation in the form τ (X) =
∑

(j0,j1,j2,...)∈NNfin

t(j0,j1,j2,...)X
j0
0 X

j1
1 X

j2
2 ...

with t(j0,j1,j2,...) ∈ Z for every (j0, j1, j2, ...) ∈ NNfin (in fact, every polynomial in Z [X0, X1, X2, ...]
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has a unique representation of this kind). Every i ∈ N satisfies

∂

∂Xi

(τ (X)) =
∂

∂Xi

 ∑
(j0,j1,j2,...)∈NNfin

t(j0,j1,j2,...)X
j0
0 X

j1
1 X

j2
2 ...


=

∑
(j0,j1,j2,...)∈NNfin

t(j0,j1,j2,...)X
j0
0 X

j1
1 X

j2
2 ...X

ji−1

i−1

(
∂

∂Xi

Xji
i

)
X
ji+1

i+1 ...

=
∑

(j0,j1,j2,...)∈NNfin

t(j0,j1,j2,...)X
j0
0 X

j1
1 X

j2
2 ...X

ji−1

i−1

(
jiX

ji−1
i

)
X
ji+1

i+1 ...

=
∑

(j0,j1,j2,...)∈NNfin

jit(j0,j1,j2,...)X
j0
0 X

j1
1 X

j2
2 ...X

ji−1

i−1 X
ji−1
i X

ji+1

i+1 ....

Hence, for every (j0, j1, j2, ...) ∈ NNfin, the coefficient of the polynomial
∂

∂Xi

(τ (X)) be-

fore the monomialXj0
0 X

j1
1 X

j2
2 ...X

ji−1

i−1 X
ji−1
i X

ji+1

i+1 ... is jit(j0,j1,j2,...). Therefore,
∂

∂Xi

(τ (X)) ∈

pnZ [X0, X1, X2, ...] rewrites as jit(j0,j1,j2,...) ∈ pnZ for every (j0, j1, j2, ...) ∈ NNfin (because
a polynomial in Z [X0, X1, X2, ...] lies in pnZ [X0, X1, X2, ...] if and only if each of its
coefficients lies in pnZ). In particular, this yields that

for every (j0, j1, j2, ...) ∈ NNfin satisfying p - t(j0,j1,j2,...), we have ji�pn ∈ Z for every i ∈ N
(1)

(because jit(j0,j1,j2,...) ∈ pnZ and p - t(j0,j1,j2,...) lead to ji ∈ pnZ, since p is a prime).
We also notice that

a ≡ ap
n

mod p for every a ∈ Z (2)

(since Fermat’s Little Theorem yields ap
k ≡

(
ap

k
)p

= ap
k+1

mod p for every k ∈ N, and

thus by induction we get ap
0 ≡ ap

n
mod p).

Now, define a polynomial ρ ∈ Z [X0, X1, X2, ...] by

ρ (X) =
∑

(j0,j1,j2,...)∈NNfin;
p-t(j0,j1,j2,...)

t(j0,j1,j2,...)X
j0�pn
0 Xj1�pn

1 Xj2�pn
2 ...
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(this is actually a polynomial because of (1)). Then,

τ (X) =
∑

(j0,j1,j2,...)∈NNfin

t(j0,j1,j2,...)X
j0
0 X

j1
1 X

j2
2 ...

=
∑

(j0,j1,j2,...)∈NNfin;
p|t(j0,j1,j2,...)

t(j0,j1,j2,...)︸ ︷︷ ︸
≡0 mod p, since
p|t(j0,j1,j2,...)

Xj0
0 X

j1
1 X

j2
2 ...+

∑
(j0,j1,j2,...)∈NNfin;
p-t(j0,j1,j2,...)

t(j0,j1,j2,...)X
j0
0 X

j1
1 X

j2
2 ...

≡
∑

(j0,j1,j2,...)∈NNfin;
p|t(j0,j1,j2,...)

0Xj0
0 X

j1
1 X

j2
2 ...

︸ ︷︷ ︸
=0

+
∑

(j0,j1,j2,...)∈NNfin;
p-t(j0,j1,j2,...)

t(j0,j1,j2,...)X
j0
0 X

j1
1 X

j2
2 ...

=
∑

(j0,j1,j2,...)∈NNfin;
p-t(j0,j1,j2,...)

t(j0,j1,j2,...)︸ ︷︷ ︸
≡tp

n

(j0,j1,j2,...)
mod p,

due to (2)

Xj0
0 X

j1
1 X

j2
2 ...︸ ︷︷ ︸

=
(
X

j0�pn

0 X
j1�pn

1 X
j2�pn

2 ...
)pn

(this makes sense because ji�pn∈Z for every i∈N
(by (1), since p-t(j0,j1,j2,...)))

≡
∑

(j0,j1,j2,...)∈NNfin;
p-t(j0,j1,j2,...)

tp
n

(j0,j1,j2,...)

(
Xj0�pn

0 Xj1�pn
1 Xj2�pn

2 ...
)pn

=
∑

(j0,j1,j2,...)∈NNfin;
p-t(j0,j1,j2,...)

(
t(j0,j1,j2,...)X

j0�pn
0 Xj1�pn

1 Xj2�pn
2 ...

)pn

≡


∑

(j0,j1,j2,...)∈NNfin;
p-t(j0,j1,j2,...)

t(j0,j1,j2,...)X
j0�pn
0 Xj1�pn

1 Xj2�pn
2 ...

︸ ︷︷ ︸
=ρ(X)



pn

 since
∑
s∈S

ap
n

s ≡
(∑
s∈S

as

)pn
mod p for any family

(as)s∈S of elements of any commutative ring


= (ρ (X))p

n

mod p

(where ”mod p” is shorthand for ”mod pZ [X0, X1, X2, ...]”). Hence, τ (X)−(ρ (X))p
n

∈
pZ [X0, X1, X2, ...]. Therefore, we can define a polynomial τ̃ ∈ Z [X0, X1, X2, ...] by

τ (X)− (ρ (X))p
n

= pτ̃ (X) .
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For every i ∈ N, we have

p
∂

∂Xi

(τ̃ (X)) =
∂

∂Xi

 pτ̃ (X)︸ ︷︷ ︸
=τ(X)−(ρ(X))p

n

 =
∂

∂Xi

(
τ (X)− (ρ (X))p

n
)

=
∂

∂Xi

(τ (X))− ∂

∂Xi

(
(ρ (X))p

n
)

︸ ︷︷ ︸
=pn(ρ(X))p

n−1
∂

∂Xi

(ρ(X))

(by the chain rule, since
∂

∂Y
(Y pn)=pnY pn−1)

=
∂

∂Xi

(τ (X))︸ ︷︷ ︸
∈pnZ[X0,X1,X2,...]

−pn (ρ (X))p
n−1 ∂

∂Xi

(ρ (X))︸ ︷︷ ︸
∈Z[X0,X1,X2,...]

∈ pnZ [X0, X1, X2, ...]− pnZ [X0, X1, X2, ...]

⊆ pnZ [X0, X1, X2, ...] (since pnZ [X0, X1, X2, ...] is a Z-module) ,

so that
∂

∂Xi

(τ̃ (X)) ∈ 1

p
pnZ [X0, X1, X2, ...] = pn−1Z [X0, X1, X2, ...] .

Therefore, we can apply the Lemma with n−1 instead of n and with τ̃ instead of τ (in
fact, the Lemma with n−1 instead of n is guaranteed to hold by our induction assump-
tion), and we obtain that there exist polynomials τ̃0, τ̃1, ..., τ̃n−1 in Z [X0, X1, X2, ...]
such that

τ̃ (X) = wn−1 (τ̃0 (X) , τ̃1 (X) , ..., τ̃n−1 (X)) .

In other words,

τ̃ (X) = wn−1 (τ̃0 (X) , τ̃1 (X) , ..., τ̃n−1 (X)) =
n−1∑
k=0

pk (τ̃k (X))p
(n−1)−k

.

Now, define polynomials τ0, τ1, ..., τn in Z [X0, X1, X2, ...] by(
τk =

{
ρ, if k = 0;
τ̃k−1, if k > 0

for every k ∈ {0, 1, ..., n}
)
.
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Then,

wn (τ0 (X) , τ1 (X) , ..., τn (X))

=
n∑
k=0

pk (τk (X))p
n−k

= p0︸︷︷︸
=1

 τ0︸︷︷︸
=ρ

(X)

pn−0

+
n∑
k=1

pk︸︷︷︸
=ppk−1

 τk︸︷︷︸
=τ̃k−1

(X)

pn−k

= (ρ (X))p
n−0

+
n∑
k=1

ppk−1 (τ̃k−1 (X))p
n−k︸ ︷︷ ︸

=(τ̃k−1(X))p
(n−1)−(k−1)

= (ρ (X))p
n−0

+
n∑
k=1

ppk−1 (τ̃k−1 (X))p
(n−1)−(k−1)

= (ρ (X))p
n−0

+
n−1∑
k=0

ppk (τ̃k (X))p
(n−1)−k

(here we substituted k for k − 1 in the sum)

= (ρ (X))p
n

+ p
n−1∑
k=0

pk (τ̃k (X))p
(n−1)−k

︸ ︷︷ ︸
=τ̃(X)

= (ρ (X))p
n

+ pτ̃ (X)︸ ︷︷ ︸
=τ(X)−(ρ(X))p

n

= τ (X) .

This proves our Lemma (i. e., the induction is complete), and thus, the implication
B =⇒ A is established.

Altogether, we have proven the implications A =⇒ B and B =⇒ A. Consequently,
Assertions A and B are equivalent. Theorem 1 is now proven.

Remark: While it is tempting to believe that our Theorem 1 yields Theorem 5.2
from [1], this doesn’t seem to be the case.2
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