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Witt#1: The Burnside Theorem
[completed, not proofread]

Theorem 1, the Burnside theorem ([1], 19.10). Let G be a finite
group, and let X and Y be finite G-sets. Then, the following two assertions
A and B are equivalent:

Assertion A: We have X =Y, where = means isomorphism of G-sets.
Assertion B: Every subgroup H of G satisfies | X | = [Y|.

Remark. Here and in the following, the sign = means isomorphism of G-
sets.

Remark on notation. Whenever G is a group, and U is a G-set, we use the following
notations:

e If u € U is an element, then we let NV, denote the subgroup {¢g € G | gu = u}
of G.

e If u € U is an element, then we let Gu denote the subset {gu | g € G} of U.
Both Gu and U \ Gu are G-sets (with the G-action inherited from U), and the
G-set U is the disjoint union of these G-sets Gu and U \ Gu.

e If H is a subgroup of G, then we denote by U the subset {u € U | Hu = {u}} =
{ueU | HC N,}of U (where Hu denotes the subset {hu | h € H} of U), and
we denote by UM the subset {u € U | H = N,} of U. Obviously,

Ul ={ueU | HCN,} = U {fueU | L=N,} = U U'r.
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Besides, the sets U'l for all subgroups L of G satisfying H C L are pairwise
disjoint (because for any two distinct subgroups L; and Ly of G, the sets U'lt =
{fueU | Ly=N,} and U2 ={u e U | Ly = N,} are disjoint!). Thus,
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Proof of Theorem 1. The implication A = B is completely obvious, so all it
remains to verify is the implication B = A. In other words, it remains to prove that
if two finite G-sets X and Y are such that every subgroup H of G satisfies ‘X H ‘ = ‘YH |,
then X 2Y.

since any element u € Ul nU'L2 would satisfy L; = N, and Ly = N, in contradiction to L1 # Lo




We will now prove this claim by strong induction over |X|. So, let X and Y be
finite G-sets such that every subgroup H of G satisfies ‘X H | = ‘YH | We must show
that X 2Y. Our induction assumption states that

if X and Y are two finite G-sets such that ‘)? ‘ < |X| and such that
every subgroup H of G satisfies ’)?H‘ = ‘?H‘  then X =Y . (2)
First, let us prove that
‘X!H| = ’Y!H‘ for every subgroup H of G. (3)

In fact, let us verify (3) by strong induction over |G| — |H| (note that |G| — |H]| is
always a nonnegative integer, since H C (). So we choose a subgroup H of G, and we
want to prove that | X' | = [Y"| assuming that

}X!L‘ = |Y!L‘ holds for every subgroup L of G which satisfies |L| > |H|. (4)

In fact, (1) yields
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which yields |X'"| = |Y*|, because > | X' = > [Y*£| (since
L subgroup of G; L subgroup of G}
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every subgroup L of G such that H C L and L # H must satisfy |L| > |H|, and thus
‘X!L’ = ‘Y!L| due to (4)) and |XH‘ = |YH‘ Hence, (3) is proven.
We will now prove that

for any two elements x € X and y € Y satisfying N, = N, ,
we have Gz = Gy . (5)

In fact, define a map f : Gx — Gy as follows: For every element o« € Gz, choose
some g € G such that a = gz, and define f («) as gy. This definition is correct,
because for every element a € Gz, there exists some g € G such that a = gz (by the
definition of Gz), and even if different choices of g € G (for one fixed «) are possible,
they all lead to one and the same value of gy (in fact, if two elements ¢g; € G and
g2 € G both satisfy a = gy and a = gox for one and the same o € Gz, then g1y = gay
). Hence, for every element o € Ga and for every g € G such that a = gz, we have
f(a) = gy. In other words, we have f (gx) = gy for every ¢ € G (by applying the
preceding sentence to o = gx). This map f is a morphism of G-sets (since for every
a € Gz and every h € G, we have f (ha) = hf (o) 3).

’In fact, 12 = a = gox yields g, 'g1o = x, thus g5 'g1 € N,, hence g5 'g1 € N, (since N, = N,)
and thus gglgly = y and therefore g1y = goy.

3In fact, let g € G be such that a = gz (such g exists, since a € Gz); then, the definition of f
yields f (o) = gy, and thus f (ha) = f (hgz) =h \ggj/ =hf(a).

=f(a)



By interchanging x and y in the above, we can similarly define a map [’ : Gy — Gz
which satisfies f’ (gy) = gx for every g € G and which turns out to be a morphism of
G-sets as well.

The two maps f and f’ are mutually inverse (because f'o f =idg, * and similarly
fof =idg,). Hence, f: Gx — Gy is an isomorphism of G-sets. This proves (5).

Now, choose any z € X  ° Then, z € {u€ X | N,=N,} = X'N=. Thus,
X'"WNe £ & so that YN # @ (since | X'V| = |Y!Nl‘ by (3)). So choose some y € YN,
Then, y € YN = {u €Y | N, = N,}, so that N, = N,. Hence, (5) yields that the
G-sets Gz and Gy are isomorphic. Now, let us introduce the two G-sets X = X \ (Gz)

and Y =Y \ (Gy). Clearly,

X ’ < | X|. Besides, every subgroup H of G satisfies

])?H‘ = (X \ (G2))"| = (XH \ (Gm)H‘ - }XH]—’(Gx)H‘ (since (Gz)" XH>
=XH\(G)"

and similarly
7] = 1 =]
and thus ’)Z'H‘ = ‘?H’ (because |X*| = |Y#| by our assumption, and ‘(Gx)H’ =

‘(Gy)H‘ because of the isomorphy of the G-sets Gz and Gy). Hence, (2) yields Xy,

Now, the G-set X is the disjoint union of the G-sets Ga and X (since X = X \ (Gx)),
and the G-set Y is the disjoint union of the G-sets Gy and Y (since Y = Y \ (Gy)).
Hence, Gx = Gy and X~y yield X 2 Y. This proves the implication B = A, and
thus, the proof of Theorem 1 is complete.

Remark: 1t is known that G-sets are, in a certain way, analogous to representations of the group
G: Every G-set U canonically defines a permutation representation of G on the vector space k¢ (the
vector space of all functions from G to k) for every field k. Actually, it seems to me that G-sets can
be considered as representations of G over the field 1, whatever this means. From this point of view,
Theorem 1 appears as a kind of Fj-analogue of the known fact that, over C, any representation of a
finite group is uniquely determined by its character. (Remember that the character of a representation
over C, evaluated at some element g of the group G, is the dimension of the invariant space of g. Over
C, the set X9 becomes a replacement for the invariant space of g. However, the analogy stops
here because Theorem 1 needs all subgroups H and not just the cyclic ones. In fact, if we would

replace ”Every subgroup H” by ”Every cyclic subgroup H” in Theorem 1, we would already have
counterexamples for G = (Z/ (2Z))>.)
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4In fact, for every a € Gz, there exists some g € G such that a = gz (by the definition of Gx),
and thus

(ffof)@=Ff(f(@)=f|[fl92) | =1 (99) = g2 = a.
—
=gy
°If this is not possible (i. e., if X = &), then we are done anyway (since X = @ yields | X| = 0,
thus Y| = 0 since | X| = |X{1| = |Y{!}| = |Y| and therefore Y = &, yielding X 2 Y).
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