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Witt#1: The Burnside Theorem
[completed, not proofread]

Theorem 1, the Burnside theorem ([1], 19.10). Let G be a finite
group, and let X and Y be finite G-sets. Then, the following two assertions
A and B are equivalent:

Assertion A: We have X ∼= Y , where ∼= means isomorphism of G-sets.

Assertion B: Every subgroup H of G satisfies
∣∣XH

∣∣ =
∣∣Y H

∣∣.
Remark. Here and in the following, the sign ∼= means isomorphism of G-
sets.

Remark on notation. Whenever G is a group, and U is a G-set, we use the following
notations:

• If u ∈ U is an element, then we let Nu denote the subgroup {g ∈ G | gu = u}
of G.

• If u ∈ U is an element, then we let Gu denote the subset {gu | g ∈ G} of U .
Both Gu and U \ Gu are G-sets (with the G-action inherited from U), and the
G-set U is the disjoint union of these G-sets Gu and U \Gu.

• If H is a subgroup of G, then we denote by UH the subset {u ∈ U | Hu = {u}} =
{u ∈ U | H ⊆ Nu} of U (where Hu denotes the subset {hu | h ∈ H} of U), and
we denote by U !H the subset {u ∈ U | H = Nu} of U . Obviously,

UH = {u ∈ U | H ⊆ Nu} =
⋃

L subgroup of G;
H⊆L

{u ∈ U | L = Nu}︸ ︷︷ ︸
=U !L

=
⋃

L subgroup of G;
H⊆L

U !L.

Besides, the sets U !L for all subgroups L of G satisfying H ⊆ L are pairwise
disjoint (because for any two distinct subgroups L1 and L2 of G, the sets U !L1 =
{u ∈ U | L1 = Nu} and U !L2 = {u ∈ U | L2 = Nu} are disjoint1). Thus,∣∣UH

∣∣ =
∑

L subgroup of G;
H⊆L

∣∣U !L
∣∣ =

∣∣U !H
∣∣ +

∑
L subgroup of G;

H⊆L; L6=H

∣∣U !L
∣∣ . (1)

Proof of Theorem 1. The implication A =⇒ B is completely obvious, so all it
remains to verify is the implication B =⇒ A. In other words, it remains to prove that
if two finite G-sets X and Y are such that every subgroup H of G satisfies

∣∣XH
∣∣ =

∣∣Y H
∣∣,

then X ∼= Y .

1since any element u ∈ U !L1∩U !L2 would satisfy L1 = Nu and L2 = Nu in contradiction to L1 6= L2
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We will now prove this claim by strong induction over |X|. So, let X and Y be
finite G-sets such that every subgroup H of G satisfies

∣∣XH
∣∣ =

∣∣Y H
∣∣. We must show

that X ∼= Y . Our induction assumption states that

if X̃ and Ỹ are two finite G-sets such that
∣∣∣X̃∣∣∣ < |X| and such that

every subgroup H of G satisfies
∣∣∣X̃H

∣∣∣ =
∣∣∣Ỹ H

∣∣∣ , then X̃ = Ỹ . (2)

First, let us prove that∣∣X !H
∣∣ =

∣∣Y !H
∣∣ for every subgroup H of G. (3)

In fact, let us verify (3) by strong induction over |G| − |H| (note that |G| − |H| is
always a nonnegative integer, since H ⊆ G). So we choose a subgroup H of G, and we
want to prove that

∣∣X !H
∣∣ =

∣∣Y !H
∣∣, assuming that∣∣X !L

∣∣ =
∣∣Y !L

∣∣ holds for every subgroup L of G which satisfies |L| > |H| . (4)

In fact, (1) yields∣∣XH
∣∣ =

∣∣X !H
∣∣+ ∑

L subgroup of G;
H⊆L; L6=H

∣∣X !L
∣∣ and

∣∣Y H
∣∣ =

∣∣Y !H
∣∣+ ∑

L subgroup of G;
H⊆L; L6=H

∣∣Y !L
∣∣ ,

which yields
∣∣X !H

∣∣ =
∣∣Y !H

∣∣, because
∑

L subgroup of G;
H⊆L; L6=H

∣∣X !L
∣∣ =

∑
L subgroup of G;

H⊆L; L6=H

∣∣Y !L
∣∣ (since

every subgroup L of G such that H ⊆ L and L 6= H must satisfy |L| > |H|, and thus∣∣X !L
∣∣ =

∣∣Y !L
∣∣ due to (4)) and

∣∣XH
∣∣ =

∣∣Y H
∣∣. Hence, (3) is proven.

We will now prove that

for any two elements x ∈ X and y ∈ Y satisfying Nx = Ny ,

we have Gx ∼= Gy . (5)

In fact, define a map f : Gx → Gy as follows: For every element α ∈ Gx, choose
some g ∈ G such that α = gx, and define f (α) as gy. This definition is correct,
because for every element α ∈ Gx, there exists some g ∈ G such that α = gx (by the
definition of Gx), and even if different choices of g ∈ G (for one fixed α) are possible,
they all lead to one and the same value of gy (in fact, if two elements g1 ∈ G and
g2 ∈ G both satisfy α = g1x and α = g2x for one and the same α ∈ Gx, then g1y = g2y
2). Hence, for every element α ∈ Gx and for every g ∈ G such that α = gx, we have
f (α) = gy. In other words, we have f (gx) = gy for every g ∈ G (by applying the
preceding sentence to α = gx). This map f is a morphism of G-sets (since for every
α ∈ Gx and every h ∈ G, we have f (hα) = hf (α) 3).

2In fact, g1x = α = g2x yields g−1
2 g1x = x, thus g−1

2 g1 ∈ Nx, hence g−1
2 g1 ∈ Ny (since Nx = Ny)

and thus g−1
2 g1y = y and therefore g1y = g2y.

3In fact, let g ∈ G be such that α = gx (such g exists, since α ∈ Gx); then, the definition of f
yields f (α) = gy, and thus f (hα) = f (hgx) = h gy︸︷︷︸

=f(α)

= hf (α) .
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By interchanging x and y in the above, we can similarly define a map f ′ : Gy → Gx
which satisfies f ′ (gy) = gx for every g ∈ G and which turns out to be a morphism of
G-sets as well.

The two maps f and f ′ are mutually inverse (because f ′◦f = idGx
4 and similarly

f ◦ f ′ = idGy). Hence, f : Gx → Gy is an isomorphism of G-sets. This proves (5).
Now, choose any x ∈ X 5. Then, x ∈ {u ∈ X | Nx = Nu} = X !Nx . Thus,

X !Nx 6= ∅, so that Y !Nx 6= ∅ (since
∣∣X !Nx

∣∣ =
∣∣Y !Nx

∣∣ by (3)). So choose some y ∈ Y !Nx .
Then, y ∈ Y !Nx = {u ∈ Y | Nx = Nu} , so that Nx = Ny. Hence, (5) yields that the

G-sets Gx and Gy are isomorphic. Now, let us introduce the two G-sets X̃ = X \ (Gx)

and Ỹ = Y \ (Gy). Clearly,
∣∣∣X̃∣∣∣ < |X|. Besides, every subgroup H of G satisfies

∣∣∣X̃H
∣∣∣ =

∣∣∣∣∣∣∣(X \ (Gx))H︸ ︷︷ ︸
=XH\(Gx)H

∣∣∣∣∣∣∣ =
∣∣∣XH \ (Gx)H

∣∣∣ =
∣∣XH

∣∣−∣∣∣(Gx)H
∣∣∣ (

since (Gx)H ⊆ XH
)

and similarly ∣∣∣Ỹ H
∣∣∣ =

∣∣Y H
∣∣− ∣∣∣(Gy)H

∣∣∣
and thus

∣∣∣X̃H
∣∣∣ =

∣∣∣Ỹ H
∣∣∣ (because

∣∣XH
∣∣ =

∣∣Y H
∣∣ by our assumption, and

∣∣∣(Gx)H
∣∣∣ =∣∣∣(Gy)H

∣∣∣ because of the isomorphy of the G-sets Gx and Gy). Hence, (2) yields X̃ ∼= Ỹ .

Now, the G-set X is the disjoint union of the G-sets Gx and X̃ (since X̃ = X \ (Gx)),

and the G-set Y is the disjoint union of the G-sets Gy and Ỹ (since Ỹ = Y \ (Gy)).

Hence, Gx ∼= Gy and X̃ ∼= Ỹ yield X ∼= Y . This proves the implication B =⇒ A, and
thus, the proof of Theorem 1 is complete.

Remark: It is known that G-sets are, in a certain way, analogous to representations of the group
G: Every G-set U canonically defines a permutation representation of G on the vector space kG (the
vector space of all functions from G to k) for every field k. Actually, it seems to me that G-sets can
be considered as representations of G over the field F1, whatever this means. From this point of view,
Theorem 1 appears as a kind of F1-analogue of the known fact that, over C, any representation of a
finite group is uniquely determined by its character. (Remember that the character of a representation
over C, evaluated at some element g of the group G, is the dimension of the invariant space of g. Over
C, the set X〈g〉 becomes a replacement for the invariant space of g. However, the analogy stops
here because Theorem 1 needs all subgroups H and not just the cyclic ones. In fact, if we would
replace ”Every subgroup H” by ”Every cyclic subgroup H” in Theorem 1, we would already have
counterexamples for G = (Z� (2Z))2.)
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4In fact, for every α ∈ Gx, there exists some g ∈ G such that α = gx (by the definition of Gx),
and thus

(f ′ ◦ f) (α) = f ′ (f (α)) = f ′

f (gx)︸ ︷︷ ︸
=gy

 = f ′ (gy) = gx = α.

5If this is not possible (i. e., if X = ∅), then we are done anyway (since X = ∅ yields |X| = 0,
thus |Y | = 0 since |X| =

∣∣X{1}
∣∣ =

∣∣Y {1}
∣∣ = |Y | and therefore Y = ∅, yielding X ∼= Y ).
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