Shuffle-compatibility of the descent set

Darij Grinberg (UMN)

8 March 2018 University of Illinois at Urbana-Champaign

```
slides: http:
//www.cip.ifi.lmu.de/~grinberg/algebra/urbana18a.pdf
paper: http:
//www.cip.ifi.lmu.de/~grinberg/algebra/gzshuf2.pdf
project: https://github.com/darijgr/gzshuf
```

Introduction

- This is an **expository** talk on a little part of the paper:
 - Ira M. Gessel, Yan Zhuang, *Shuffle-compatible* permutation statistics, arXiv:1706.00750.

Nothing here is my invention.

Introduction

- This is an **expository** talk on a little part of the paper:
 - Ira M. Gessel, Yan Zhuang, *Shuffle-compatible* permutation statistics, arXiv:1706.00750.

Nothing here is my invention.

For my own work, see the next talk.

Introduction

- This is an expository talk on a little part of the paper:
 - Ira M. Gessel, Yan Zhuang, Shuffle-compatible permutation statistics, arXiv:1706.00750.

Nothing here is my invention.

For my own work, see the next talk.

- I will sketch the proofs of Theorem 2.8 and of Theorem 6.1 from their paper.
- Unlike that paper, I will avoid any extraneous notation and theory here.

Permutations and descents

- Let $\mathbb{N} = \{0, 1, 2, \ldots\}.$
- For $n \in \mathbb{N}$, an *n-permutation* means a tuple of *n* distinct positive integers.

Example: (3,1,7) is a 3-permutation, but (2,1,2) is not. (**Caveat lector:** Not the usual meaning of "permutation".)

Permutations and descents

- Let $\mathbb{N} = \{0, 1, 2, \ldots\}$.
- For $n \in \mathbb{N}$, an *n-permutation* means a tuple of *n* distinct positive integers.
 - Example: (3,1,7) is a 3-permutation, but (2,1,2) is not. (**Caveat lector:** Not the usual meaning of "permutation".)
- If π is an *n*-permutation and $i \in \{1, 2, ..., n\}$, then π_i denotes the *i*-th entry of π .

Permutations and descents

- Let $\mathbb{N} = \{0, 1, 2, \ldots\}$.
- For $n \in \mathbb{N}$, an *n-permutation* means a tuple of *n* distinct positive integers.

Example: (3,1,7) is a 3-permutation, but (2,1,2) is not. (**Caveat lector:** Not the usual meaning of "permutation".)

- If π is an *n*-permutation and $i \in \{1, 2, ..., n\}$, then π_i denotes the *i*-th entry of π .
- If π is an n-permutation, then a *descent* of π means an $i \in \{1, 2, ..., n-1\}$ such that $\pi_i > \pi_{i+1}$.
- The *descent set* Des π of an *n*-permutation π is the set of all descents of π .

Example: Des $(3, 1, 5, 2, 4) = \{1, 3\}.$

Shuffles of permutations

- Let $m \in \mathbb{N}$, and let π be an m-permutation. Let $n \in \mathbb{N}$, and let σ be an n-permutation.
- We say that π and σ are *disjoint* if they have no letter in common.

Shuffles of permutations

- Let $m \in \mathbb{N}$, and let π be an m-permutation. Let $n \in \mathbb{N}$, and let σ be an n-permutation.
- We say that π and σ are *disjoint* if they have no letter in common.
- Assume that π and σ are disjoint. An (m+n)-permutation τ is called a *shuffle* of π and σ if both π and σ appear as subsequences of τ .

(And thus, no other letters can appear in τ .)

• **Example:** The shuffles of (4,1) and (2,5) are

$$(4,1,2,5),(4,2,1,5),(4,2,5,1),$$

 $(2,4,1,5),(2,4,5,1),(2,5,4,1).$

Shuffles of permutations

- Let $m \in \mathbb{N}$, and let π be an m-permutation. Let $n \in \mathbb{N}$, and let σ be an n-permutation.
- We say that π and σ are *disjoint* if they have no letter in common.
- Assume that π and σ are disjoint. An (m+n)-permutation τ is called a *shuffle* of π and σ if both π and σ appear as subsequences of τ .

(And thus, no other letters can appear in τ .)

• **Example:** The shuffles of (4,1) and (2,5) are

• Observe that π and σ have $\binom{m+n}{m}$ shuffles, in bijection with m-element subsets of $\{1, 2, \ldots, m+n\}$.

- The set \mathbb{N}^k of k-tuples is an additive monoid. (Keep in mind: $0 \in \mathbb{N}$.)
- If $\alpha = (a_1, a_2, \dots, a_k) \in \mathbb{N}^k$, then $|\alpha|$ is defined to be $a_1 + a_2 + \dots + a_k$.

- The set \mathbb{N}^k of k-tuples is an additive monoid. (Keep in mind: $0 \in \mathbb{N}$.)
- If $\alpha = (a_1, a_2, \dots, a_k) \in \mathbb{N}^k$, then $|\alpha|$ is defined to be $a_1 + a_2 + \dots + a_k$.
- For any $(a_1, a_2, ..., a_k) \in \mathbb{N}^k$, we define a set $\mathsf{PS}(a_1, a_2, ..., a_k)$ to be

$$\begin{aligned} & \{ a_1 + a_2 + \dots + a_i \mid 1 \le i \le k - 1 \} \\ &= \{ a_1, a_1 + a_2, \dots, a_1 + a_2 + \dots + a_{k-1} \} \, . \end{aligned}$$

(PS stands for "partial sums".)

- The set \mathbb{N}^k of k-tuples is an additive monoid. (Keep in mind: $0 \in \mathbb{N}$.)
- If $\alpha = (a_1, a_2, \dots, a_k) \in \mathbb{N}^k$, then $|\alpha|$ is defined to be $a_1 + a_2 + \dots + a_k$.
- For any $(a_1, a_2, ..., a_k) \in \mathbb{N}^k$, we define a set $\mathsf{PS}(a_1, a_2, ..., a_k)$ to be

$$\begin{aligned} & \{ a_1 + a_2 + \dots + a_i \mid 1 \le i \le k - 1 \} \\ & = \{ a_1, a_1 + a_2, \dots, a_1 + a_2 + \dots + a_{k-1} \} \,. \end{aligned}$$

(PS stands for "partial sums".) (**Note:** PS $(\alpha) \subseteq \{0, 1, ..., |\alpha|\}$.)

- The set \mathbb{N}^k of k-tuples is an additive monoid. (Keep in mind: $0 \in \mathbb{N}$.)
- If $\alpha = (a_1, a_2, \dots, a_k) \in \mathbb{N}^k$, then $|\alpha|$ is defined to be $a_1 + a_2 + \dots + a_k$.
- For any $(a_1, a_2, ..., a_k) \in \mathbb{N}^k$, we define a set $\mathsf{PS}(a_1, a_2, ..., a_k)$ to be

$$\begin{aligned} & \{ a_1 + a_2 + \dots + a_i \mid 1 \le i \le k - 1 \} \\ & = \{ a_1, a_1 + a_2, \dots, a_1 + a_2 + \dots + a_{k-1} \} \,. \end{aligned}$$

(PS stands for "partial sums".) (**Note:** PS $(\alpha) \subseteq \{0, 1, ..., |\alpha|\}$.)

• Let $n \in \mathbb{N}$. A weak composition of n means an $\alpha \in \mathbb{N}^k$ satisfying $|\alpha| = n$.

• Let $m \in \mathbb{N}$, and let π be an m-permutation. Let $n \in \mathbb{N}$, and let σ be an n-permutation. Assume that π and σ are disjoint.

- Let $m \in \mathbb{N}$, and let π be an m-permutation. Let $n \in \mathbb{N}$, and let σ be an n-permutation. Assume that π and σ are disjoint.
- Let A be a subset of [m+n-1]. Here, [k] means $\{1,2,\ldots,k\}$ for each $k\in\mathbb{N}$.

- Let $m \in \mathbb{N}$, and let π be an m-permutation. Let $n \in \mathbb{N}$, and let σ be an n-permutation. Assume that π and σ are disjoint.
- Let A be a subset of [m+n-1]. Here, [k] means $\{1,2,\ldots,k\}$ for each $k\in\mathbb{N}$.
- How many shuffles τ of π and σ satisfy Des $\tau \subseteq A$?

- Let $m \in \mathbb{N}$, and let π be an m-permutation. Let $n \in \mathbb{N}$, and let σ be an n-permutation. Assume that π and σ are disjoint.
- Let A be a subset of [m+n-1]. Here, [k] means $\{1,2,\ldots,k\}$ for each $k\in\mathbb{N}$.
- How many shuffles τ of π and σ satisfy Des $\tau \subseteq A$?
- The following theorem by Gessel and Zhuang gives the answer.

- Let $m \in \mathbb{N}$, and let π be an m-permutation. Let $n \in \mathbb{N}$, and let σ be an n-permutation. Assume that π and σ are disjoint.
- Let A be a subset of [m+n-1]. Here, [k] means $\{1,2,\ldots,k\}$ for each $k\in\mathbb{N}$.
- Let L be a weak composition of m+n such that PS(L)=A. (Such L can easily be constructed.) Let k be such that $L \in \mathbb{N}^k$.
- Theorem (Gessel & Zhuang, arXiv:1706.00750, Theorem 2.8).

The number of shuffles τ of π and σ satisfying Des $\tau \subseteq A$ equals the number of pairs $(J, K) \in \mathbb{N}^k \times \mathbb{N}^k$ such that

- *J* is a weak composition of *m* satisfying Des $\pi \subseteq PS(J)$;
- K is a weak composition of n satisfying $Des \sigma \subseteq PS(K)$;
- we have J + K = L (in the monoid \mathbb{N}^k).

• Example: Let m=2 and $\pi=(4,1)$. Let n=2 and $\sigma=(2,5)$. The shuffles τ of π and σ are (4,1,2,5), (4,2,1,5), (4,2,5,1), (2,4,1,5), (2,4,5,1), (2,5,4,1).

• Example: Let m = 2 and $\pi = (4, 1)$. Let n = 2 and $\sigma = (2, 5)$.

The shuffles τ of π and σ are

Their descent sets Des τ are

$$\{1\}, \qquad \{1,2\}, \qquad \{1,3\}, \\ \{2\}, \qquad \{2,3\}, \qquad \{3\}.$$

• Example: Let m = 2 and $\pi = (4, 1)$. Let n = 2 and $\sigma = (2, 5)$.

The shuffles au of π and σ are

$$(4,1,2,5),(4,2,1,5),(4,2,5,1),$$

 $(2,4,1,5),(2,4,5,1),(2,5,4,1).$

Their descent sets Des τ are

$$\{1\}, \qquad \{1,2\}, \qquad \{1,3\}, \\ \{2\}, \qquad \{2,3\}, \qquad \{3\}.$$

Pick $A = \{3\}$. Then, the number of shuffles τ of π and σ satisfying Des $\tau \subseteq A$ is 1.

What about the other number?

• Example: Let m = 2 and $\pi = (4, 1)$. Let n = 2 and $\sigma = (2, 5)$.

The shuffles τ of π and σ are

$$(4,1,2,5),(4,2,1,5),(4,2,5,1),$$

 $(2,4,1,5),(2,4,5,1),(2,5,4,1).$

Their descent sets Des τ are

$$\{1\}, \qquad \{1,2\}, \qquad \{1,3\}, \\ \{2\}, \qquad \{2,3\}, \qquad \{3\}.$$

Pick $A = \{3\}$. Then, the number of shuffles τ of π and σ satisfying Des $\tau \subseteq A$ is 1.

What about the other number? We must pick a weak composition L of m+n=4 such that $PS(L)=A=\{3\}$. We can take L=(3,1) (or $L=(3,0,0,\ldots,0,1)$ for any number of 0's). Let's pick L=(3,1).

• **Example:** Let m = 2 and $\pi = (4, 1)$.

Let n = 2 and $\sigma = (2, 5)$.

So we have $A = \{3\}$ and L = (3, 1).

We want to find the number of pairs (J, K) such that

- J is a weak composition of m satisfying $Des \pi \subseteq PS(J)$;
- K is a weak composition of n satisfying $Des \sigma \subseteq PS(K)$;
- we have J + K = L (in the monoid \mathbb{N}^k).

• Example: Let m=2 and $\pi=(4,1)$.

Let n = 2 and $\sigma = (2, 5)$.

So we have $A = \{3\}$ and L = (3, 1).

We want to find the number of pairs (J, K) such that

- J is a weak composition of m satisfying $\operatorname{Des} \pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying Des $\sigma \subseteq PS(K)$;
- we have J + K = L (in the monoid \mathbb{N}^k).

			requirements
J	?	?	$ J = m$, PS $J \supseteq Des \pi$
+ K	?	?	$ K = n$, PS $K \supseteq Des \sigma$
=L	3	1	

• Example: Let m=2 and $\pi=(4,1)$.

Let n = 2 and $\sigma = (2, 5)$.

So we have $A = \{3\}$ and L = (3, 1).

We want to find the number of pairs (J, K) such that

- J is a weak composition of m satisfying $Des \pi \subseteq PS(J)$;
- K is a weak composition of n satisfying $Des \sigma \subseteq PS(K)$;
- we have J + K = L (in the monoid \mathbb{N}^k).

			requirements
J	?	?	$ J =2, \ PS J\supseteq\{1\}$
+ K	?	?	$ K = 2$, $PS K \supseteq \{\}$
= L	3	1	

• Example: Let m=2 and $\pi=(4,1)$.

Let n = 2 and $\sigma = (2, 5)$.

So we have $A = \{3\}$ and L = (3, 1).

We want to find the number of pairs (J, K) such that

- J is a weak composition of m satisfying $Des \pi \subseteq PS(J)$;
- K is a weak composition of n satisfying $Des \sigma \subseteq PS(K)$;
- we have J + K = L (in the monoid \mathbb{N}^k).

			requirements
J	1	1	$ J =2, PSJ\supseteq\{1\}$
+ K	?	?	$ J = 2$, PS $J \supseteq \{1\}$ $ K = 2$, PS $K \supseteq \{\}$
=L	3	1	

• Example: Let m=2 and $\pi=(4,1)$.

Let n = 2 and $\sigma = (2, 5)$.

So we have $A = \{3\}$ and L = (3, 1).

We want to find the number of pairs (J, K) such that

- J is a weak composition of m satisfying $\operatorname{Des} \pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying Des $\sigma \subseteq PS(K)$;
- we have J + K = L (in the monoid \mathbb{N}^k).

			requirements
J	1	1	$ J =2, \ PS J\supseteq\{1\}$
+ K	2	0	$ K = 2$, $PSK \supseteq \{\}$
= L	3	1	

• Example: Let m = 2 and $\pi = (4, 1)$. Let n = 2 and $\sigma = (2, 5)$.

So we have $A = \{3\}$ and L = (3, 1).

We want to find the number of pairs (J, K) such that

- J is a weak composition of m satisfying $Des \pi \subseteq PS(J)$;
- K is a weak composition of n satisfying $Des \sigma \subseteq PS(K)$;
- we have J + K = L (in the monoid \mathbb{N}^k).

Let's solve this:

			requirements
J	1	1	$ J =2, PSJ\supseteq\{1\}$
+ K	2	0	$ K = 2$, PS $K \supseteq \{\}$
=L	3	1	

Thus, there is exactly 1 solution, as the Theorem predicts.

• Example: Let m=2 and $\pi=(4,1)$. Let n=2 and $\sigma=(2,5)$. The shuffles τ of π and σ are (4,1,2,5), (4,2,1,5), (4,2,5,1), (2,4,1,5), (2,4,5,1), (2,5,4,1).

• Example: Let m = 2 and $\pi = (4, 1)$. Let n = 2 and $\sigma = (2, 5)$.

The shuffles τ of π and σ are

Their descent sets Des au are

• Example: Let m = 2 and $\pi = (4, 1)$. Let n = 2 and $\sigma = (2, 5)$.

The shuffles au of π and σ are

$$(4,1,2,5),(4,2,1,5),(4,2,5,1),$$

 $(2,4,1,5),(2,4,5,1),(2,5,4,1).$

Their descent sets Des au are

$$\{1\}, \qquad \{1,2\}, \qquad \{1,3\}, \\ \{2\}, \qquad \{2,3\}, \qquad \{3\}.$$

Pick $A = \{2,3\}$. Then, the number of shuffles τ of π and σ satisfying Des $\tau \subseteq A$ is 3.

What about the other number?

• Example: Let m = 2 and $\pi = (4, 1)$. Let n = 2 and $\sigma = (2, 5)$.

The shuffles au of π and σ are

$$(4,1,2,5),(4,2,1,5),(4,2,5,1),$$

 $(2,4,1,5),(2,4,5,1),(2,5,4,1).$

Their descent sets Des τ are

$$\{1\}, \qquad \{1,2\}, \qquad \{1,3\}, \\ \{2\}, \qquad \{2,3\}, \qquad \{3\}.$$

Pick $A = \{2,3\}$. Then, the number of shuffles τ of π and σ satisfying Des $\tau \subseteq A$ is 3.

What about the other number? We must pick a weak composition L of m+n=4 such that PS $(L)=A=\{2,3\}$. We can take L=(2,1,1) (or $L=(2,0,0,\ldots,0,1,0,0,\ldots,0,1)$ for any number of 0's). Let's pick L=(2,1,1).

• Example: Let m = 2 and $\pi = (4, 1)$. Let n = 2 and $\sigma = (2, 5)$.

So we have $A = \{2,3\}$ and L = (2,1,1).

We want to find the number of pairs (J, K) such that

- J is a weak composition of m satisfying $Des \pi \subseteq PS(J)$;
- K is a weak composition of n satisfying $Des \sigma \subseteq PS(K)$;
- we have J + K = L (in the monoid \mathbb{N}^k).

• **Example:** Let m = 2 and $\pi = (4, 1)$.

Let n = 2 and $\sigma = (2, 5)$.

So we have $A = \{2,3\}$ and L = (2,1,1).

We want to find the number of pairs (J, K) such that

- J is a weak composition of m satisfying $\operatorname{Des} \pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying Des $\sigma \subseteq PS(K)$;
- we have J + K = L (in the monoid \mathbb{N}^k).

				requirements
J	?	?	?	$ J = m$, PS $J \supseteq \text{Des } \pi$ $ K = n$, PS $K \supseteq \text{Des } \sigma$
+ K	?	?	?	$ K = n$, PS $K \supseteq Des \sigma$
=L	2	1	1	

• Example: Let m = 2 and $\pi = (4, 1)$. Let n = 2 and $\sigma = (2, 5)$.

So we have $A = \{2,3\}$ and L = (2,1,1).

We want to find the number of pairs (J, K) such that

- J is a weak composition of m satisfying $\operatorname{Des} \pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying Des $\sigma \subseteq PS(K)$;
- we have J + K = L (in the monoid \mathbb{N}^k).

				requirements
J	?	?	?	$ J = 2$, PS $J \supseteq \{1\}$ $ K = 2$, PS $K \supseteq \{\}$
+ <i>K</i>	?	?	?	$ K = 2$, PS $K \supseteq \{\}$
= L	2	1	1	

• **Example:** Let m = 2 and $\pi = (4, 1)$.

Let n = 2 and $\sigma = (2, 5)$.

So we have $A = \{2,3\}$ and L = (2,1,1).

We want to find the number of pairs (J, K) such that

- J is a weak composition of m satisfying $\operatorname{Des} \pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying Des $\sigma \subseteq PS(K)$;
- we have J + K = L (in the monoid \mathbb{N}^k).

Let's solve this:

				requirements
J	1	1	0	$ J =2, PS J\supseteq\{1\}$
+ <i>K</i>	1	0	1	$ J = 2$, PS $J \supseteq \{1\}$ $ K = 2$, PS $K \supseteq \{\}$
=L	2	1	1	

• **Example:** Let m = 2 and $\pi = (4, 1)$.

Let n = 2 and $\sigma = (2, 5)$.

So we have $A = \{2,3\}$ and L = (2,1,1).

We want to find the number of pairs (J, K) such that

- J is a weak composition of m satisfying $\operatorname{Des} \pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying Des $\sigma \subseteq PS(K)$;
- we have J + K = L (in the monoid \mathbb{N}^k).

Let's solve this:

				requirements
J	1	0	1	$ J =2, \ \ PS J\supseteq\{1\}$
+ <i>K</i>	1	1	0	$ J = 2$, PS $J \supseteq \{1\}$ $ K = 2$, PS $K \supseteq \{\}$
=L	2	1	1	

• Example: Let m = 2 and $\pi = (4, 1)$. Let n = 2 and $\sigma = (2, 5)$.

So we have $A = \{2,3\}$ and L = (2,1,1).

We want to find the number of pairs (J, K) such that

- J is a weak composition of m satisfying $\operatorname{Des} \pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying Des $\sigma \subseteq PS(K)$;
- we have J + K = L (in the monoid \mathbb{N}^k).

Let's solve this:

				requirements
J	0	1	1	$ J = 2$, PS $J \supseteq \{1\}$ $ K = 2$, PS $K \supseteq \{\}$
+ K	2	0	0	$ K = 2$, PS $K \supseteq \{\}$
=L	2	1	1	

• Example: Let m = 2 and $\pi = (4, 1)$. Let n = 2 and $\sigma = (2, 5)$.

So we have $A = \{2,3\}$ and L = (2,1,1).

We want to find the number of pairs (J, K) such that

- *J* is a weak composition of *m* satisfying Des $\pi \subseteq PS(J)$;
- K is a weak composition of n satisfying $Des \sigma \subseteq PS(K)$;
- we have J + K = L (in the monoid \mathbb{N}^k).

Let's solve this:

				requirements
J	0	1	1	$ J = 2$, PS $J \supseteq \{1\}$ $ K = 2$, PS $K \supseteq \{\}$
+ <i>K</i>	2	0	0	$ K = 2$, PS $K \supseteq \{\}$
=L	2	1	1	

Thus, there are 3 solutions, as the Theorem predicts.

- Let $m \in \mathbb{N}$, and let π be an m-permutation. Let $n \in \mathbb{N}$, and let σ be an n-permutation. Assume that π and σ are disjoint.
- Let A be a subset of [m+n-1].
- Let L be a weak composition of m+n such that PS(L)=A. Let k be such that $L \in \mathbb{N}^k$.
- Theorem (Gessel & Zhuang, from previous slide). The number of shuffles τ of π and σ satisfying Des $\tau \subseteq A$ equals the number of pairs $(J, K) \in \mathbb{N}^k \times \mathbb{N}^k$ such that
 - J is a weak composition of m satisfying $\operatorname{Des} \pi \subseteq \operatorname{PS}(J)$;
 - K is a weak composition of n satisfying Des $\sigma \subseteq PS(K)$;
 - we have J + K = L (in the monoid \mathbb{N}^k).

- Let $m \in \mathbb{N}$, and let π be an m-permutation. Let $n \in \mathbb{N}$, and let σ be an n-permutation. Assume that π and σ are disjoint.
- Let A be a subset of [m+n-1].
- Let L be a weak composition of m+n such that PS(L)=A. Let k be such that $L \in \mathbb{N}^k$.
- Corollary.

The number of shuffles τ of π and σ satisfying $\mathrm{Des}\,\tau\subseteq A$ depends only on m, n, $\mathrm{Des}\,\pi$, $\mathrm{Des}\,\sigma$ and A (but not on π and σ themselves).

- Let $m \in \mathbb{N}$, and let π be an m-permutation. Let $n \in \mathbb{N}$, and let σ be an n-permutation. Assume that π and σ are disjoint.
- Let A be a subset of [m+n-1].
- Let L be a weak composition of m+n such that PS(L)=A. Let k be such that $L \in \mathbb{N}^k$.

Corollary.

The number of shuffles τ of π and σ satisfying $\mathrm{Des}\,\tau\subseteq A$ depends only on m, n, $\mathrm{Des}\,\pi$, $\mathrm{Des}\,\sigma$ and A (but not on π and σ themselves).

Corollary.

The number of shuffles τ of π and σ satisfying $\mathrm{Des}\,\tau=A$ depends only on m, n, $\mathrm{Des}\,\pi$, $\mathrm{Des}\,\sigma$ and A (but not on π and σ themselves).

(Follows from previous corollary by induction on |A|.)

- Let $m \in \mathbb{N}$, and let π be an m-permutation. Let $n \in \mathbb{N}$, and let σ be an n-permutation. Assume that π and σ are disjoint.
- Let A be a subset of [m+n-1].
- Let L be a weak composition of m+n such that PS(L)=A. Let k be such that $L \in \mathbb{N}^k$.

Corollary.

The number of shuffles τ of π and σ satisfying $\mathrm{Des}\,\tau\subseteq A$ depends only on m, n, $\mathrm{Des}\,\pi$, $\mathrm{Des}\,\sigma$ and A (but not on π and σ themselves).

Corollary.

The number of shuffles τ of π and σ satisfying $\mathrm{Des}\,\tau=A$ depends only on m, n, $\mathrm{Des}\,\pi$, $\mathrm{Des}\,\sigma$ and A (but not on π and σ themselves).

(Follows from previous corollary by induction on |A|.) Gessel and Zhuang say that this makes Des shuffle-compatible. See the next talk for more about this.

Shuffle-compatibility of Des: proof, 1

- Let $m \in \mathbb{N}$, and let π be an m-permutation. Let $n \in \mathbb{N}$, and let σ be an n-permutation. Assume that π and σ are disjoint.
- Let A be a subset of [m+n-1].
- Let L be a weak composition of m+n such that PS (L)=A. Let k be such that $L \in \mathbb{N}^k$.
- To prove the Theorem, let us restate it using shorthands:

Shuffle-compatibility of Des: proof, 1

- Let $m \in \mathbb{N}$, and let π be an m-permutation. Let $n \in \mathbb{N}$, and let σ be an n-permutation. Assume that π and σ are disjoint.
- Let A be a subset of [m+n-1].
- Let L be a weak composition of m+n such that PS (L)=A. Let k be such that $L \in \mathbb{N}^k$.
- A *good shuffle* shall mean a shuffle τ of π and σ satisfying Des $\tau \subseteq A$.
- A good pair shall mean a pair $(J,K) \in \mathbb{N}^k \times \mathbb{N}^k$ such that
 - J is a weak composition of m satisfying $\operatorname{Des} \pi \subseteq \operatorname{PS}(J)$;
 - K is a weak composition of n satisfying Des $\sigma \subseteq PS(K)$;
 - we have J + K = L (in the monoid \mathbb{N}^k).
- Theorem (Gessel & Zhuang, from previous slide).
 The number of good shuffles equals the number of good pairs.

Shuffle-compatibility of Des: proof, 1

- Let $m \in \mathbb{N}$, and let π be an m-permutation. Let $n \in \mathbb{N}$, and let σ be an n-permutation. Assume that π and σ are disjoint.
- Let A be a subset of [m+n-1].
- Let L be a weak composition of m+n such that PS (L)=A. Let k be such that $L \in \mathbb{N}^k$.
- A *good shuffle* shall mean a shuffle τ of π and σ satisfying Des $\tau \subseteq A$.
- ullet A $good\ pair\ shall\ mean\ a\ pair\ <math>(J,K)\in\mathbb{N}^k imes\mathbb{N}^k$ such that
 - J is a weak composition of m satisfying $\operatorname{Des} \pi \subseteq \operatorname{PS}(J)$;
 - K is a weak composition of n satisfying $Des \sigma \subseteq PS(K)$;
 - we have J + K = L (in the monoid \mathbb{N}^k).
- Theorem (Gessel & Zhuang, from previous slide).
 The number of good shuffles equals the number of good pairs.
- For a proof, we need bijections

 $\{\mathsf{good}\ \mathsf{shuffles}\} \rightleftarrows \{\mathsf{good}\ \mathsf{pairs}\}$.

Shuffle-compatibility of Des: **proof, 2**: ←

- We construct the map {good pairs} → {good shuffles}:
- Let (J,K) be a good pair. Thus, $(J,K) \in \mathbb{N}^k \times \mathbb{N}^k$ and
 - J is a weak composition of m satisfying $\operatorname{Des} \pi \subseteq \operatorname{PS}(J)$;
 - K is a weak composition of n satisfying $Des \sigma \subseteq PS(K)$;
 - we have J + K = L (in the monoid \mathbb{N}^k).

Shuffle-compatibility of Des: **proof, 2**: ←

- We construct the map {good pairs} → {good shuffles}:
- ullet Let (J,K) be a good pair. Thus, $(J,K)\in\mathbb{N}^k imes\mathbb{N}^k$ and
 - J is a weak composition of m satisfying $Des \pi \subseteq PS(J)$;
 - K is a weak composition of n satisfying $Des \sigma \subseteq PS(K)$;
 - we have J + K = L (in the monoid \mathbb{N}^k).
- Write J as $J=(j_1,j_2,\ldots,j_k)$, and K as $K=(k_1,k_2,\ldots,k_k)$ (sorry).

- We construct the map {good pairs} → {good shuffles}:
- Let (J,K) be a good pair. Thus, $(J,K) \in \mathbb{N}^k \times \mathbb{N}^k$ and
 - J is a weak composition of m satisfying $Des \pi \subseteq PS(J)$;
 - K is a weak composition of n satisfying $Des \sigma \subseteq PS(K)$;
 - we have J + K = L (in the monoid \mathbb{N}^k).
- Write J as $J = (j_1, j_2, ..., j_k)$, and K as $K = (k_1, k_2, ..., k_k)$ (sorry).
- For each $p \in [k-1]$, insert a bar ("|") between the $(j_1+j_2+\cdots+j_p)$ -th letter of π and the next one.

Example: If m=8 and J=(3,2,0,2,1,0), then we get $\pi_1\pi_2\pi_3 \mid \pi_4\pi_5 \mid \mid \pi_6\pi_7 \mid \pi_8 \mid$.

Shuffle-compatibility of Des: **proof, 2**: ←

- We construct the map {good pairs} → {good shuffles}:
- Let (J,K) be a good pair. Thus, $(J,K) \in \mathbb{N}^k \times \mathbb{N}^k$ and
 - J is a weak composition of m satisfying $Des \pi \subseteq PS(J)$;
 - K is a weak composition of n satisfying $Des \sigma \subseteq PS(K)$;
 - we have J + K = L (in the monoid \mathbb{N}^k).
- Write J as $J = (j_1, j_2, ..., j_k)$, and K as $K = (k_1, k_2, ..., k_k)$ (sorry).
- For each $p \in [k-1]$, insert a bar ("|") between the $(j_1+j_2+\cdots+j_p)$ -th letter of π and the next one.
- These bars subdivide π into k blocks (some empty), each increasing (since $\text{Des }\pi\subseteq \text{PS }(J)$).

- We construct the map {good pairs} → {good shuffles}:
- Let (J,K) be a good pair. Thus, $(J,K) \in \mathbb{N}^k \times \mathbb{N}^k$ and
 - *J* is a weak composition of *m* satisfying Des $\pi \subseteq PS(J)$;
 - K is a weak composition of n satisfying Des $\sigma \subseteq PS(K)$;
 - we have J + K = L (in the monoid \mathbb{N}^k).
- Write J as $J = (j_1, j_2, ..., j_k)$, and K as $K = (k_1, k_2, ..., k_k)$ (sorry).
- For each $p \in [k-1]$, insert a bar ("|") between the $(j_1+j_2+\cdots+j_p)$ -th letter of π and the next one.
- These bars subdivide π into k blocks (some empty), each increasing (since $\text{Des }\pi\subseteq \mathsf{PS}\,(J)$).
- Similarly, subdivide σ into k increasing blocks using K.

- We construct the map {good pairs} → {good shuffles}:
- ullet Let (J,K) be a good pair. Thus, $(J,K)\in\mathbb{N}^k imes\mathbb{N}^k$ and
 - J is a weak composition of m satisfying $Des \pi \subseteq PS(J)$;
 - K is a weak composition of n satisfying $Des \sigma \subseteq PS(K)$;
 - we have J + K = L (in the monoid \mathbb{N}^k).
- Write J as $J=(j_1,j_2,\ldots,j_k)$, and K as $K=(k_1,k_2,\ldots,k_k)$ (sorry).
- For each $p \in [k-1]$, insert a bar ("|") between the $(j_1+j_2+\cdots+j_p)$ -th letter of π and the next one.
- These bars subdivide π into k blocks (some empty), each increasing (since $\text{Des }\pi\subseteq \mathsf{PS}\,(J)$).
- Similarly, subdivide σ into k increasing blocks using K.
- Now, for each $i \in [k]$, let
 - $\pi^{(i)}$ be the *i*-th block of π ;
 - $\sigma^{(i)}$ be the *i*-th block of σ ;
 - $\tau^{(i)}$ be the unique increasing shuffle of $\pi^{(i)}$ and $\sigma^{(i)}$.

Shuffle-compatibility of Des: **proof, 2**: ←

- We construct the map {good pairs} → {good shuffles}:
- ullet Let (J,K) be a good pair. Thus, $(J,K)\in\mathbb{N}^k imes\mathbb{N}^k$ and
 - *J* is a weak composition of *m* satisfying Des $\pi \subseteq PS(J)$;
 - K is a weak composition of n satisfying $Des \sigma \subseteq PS(K)$;
 - we have J + K = L (in the monoid \mathbb{N}^k).
- Write J as $J=(j_1,j_2,\ldots,j_k)$, and K as $K=(k_1,k_2,\ldots,k_k)$ (sorry).
- For each $p \in [k-1]$, insert a bar ("|") between the $(j_1 + j_2 + \cdots + j_p)$ -th letter of π and the next one.
- These bars subdivide π into k blocks (some empty), each increasing (since $\text{Des }\pi\subseteq \mathsf{PS}\,(J)$).
- Similarly, subdivide σ into k increasing blocks using K.
- Now, for each $i \in [k]$, let
 - $\pi^{(i)}$ be the *i*-th block of π ;
 - $\sigma^{(i)}$ be the *i*-th block of σ ;
 - $\tau^{(i)}$ be the unique increasing shuffle of $\pi^{(i)}$ and $\sigma^{(i)}$.

Then, the concatenation $\pi^{(1)}\pi^{(2)}\cdots\pi^{(k)}$ is a good shuffle.

Shuffle-compatibility of Des: proof, 2: ←

- We construct the map $\{good pairs\} \rightarrow \{good shuffles\}$:
- Let (J, K) be a good pair. Thus, $(J, K) \in \mathbb{N}^k \times \mathbb{N}^k$ and
 - J is a weak composition of m satisfying $Des \pi \subseteq PS(J)$;
 - K is a weak composition of n satisfying Des σ ⊆ PS (K);
 we have J + K = L (in the monoid N^k).
- Write J as $J = (j_1, j_2, ..., j_k)$, and K as $K = (k_1, k_2, ..., k_k)$ (sorry).
- For each $p \in [k-1]$, insert a bar ("|") between the $(j_1 + j_2 + \cdots + j_p)$ -th letter of π and the next one.
- These bars subdivide π into k blocks (some empty), each increasing (since $\text{Des }\pi\subseteq \mathsf{PS}\,(J)$).
- Similarly, subdivide σ into k increasing blocks using K.
- Now, for each $i \in [k]$, let
 - $\pi^{(i)}$ be the *i*-th block of π :
 - $\sigma^{(i)}$ be the *i*-th block of σ ;
 - $\tau^{(i)}$ be the unique increasing shuffle of $\pi^{(i)}$ and $\sigma^{(i)}$.

Then, the concatenation $\pi^{(1)}\pi^{(2)}\cdots\pi^{(k)}$ is a good shuffle. So we have found a map $\{\text{good pairs}\}\rightarrow\{\text{good shuffles}\}$.

- We now construct the map $\{good shuffles\} \rightarrow \{good pairs\}$:
- Let τ be a good shuffle. Thus, τ is a shuffle of π and σ satisfying Des $\tau \subseteq A$.

- $\bullet \ \mbox{We now construct the map } \{\mbox{good shuffles}\} \rightarrow \{\mbox{good pairs}\} :$
- Let τ be a good shuffle. Thus, τ is a shuffle of π and σ satisfying Des $\tau \subseteq A$.
- Write L as $L = (I_1, I_2, ..., I_k)$.

- We now construct the map $\{good shuffles\} \rightarrow \{good pairs\}$:
- Let τ be a good shuffle. Thus, τ is a shuffle of π and σ satisfying Des $\tau \subseteq A$.
- Write L as $L = (I_1, I_2, ..., I_k)$.
- For each p∈ [k-1], insert a bar ("|") between the (I₁ + I₂ + ··· + I_p)-th letter of τ and the next one.
 (The positions of these bars are the elements of A, though they might have multiplicities.)

- We now construct the map $\{good shuffles\} \rightarrow \{good pairs\}$:
- Let τ be a good shuffle. Thus, τ is a shuffle of π and σ satisfying Des $\tau \subseteq A$.
- Write L as $L = (I_1, I_2, ..., I_k)$.
- For each $p \in [k-1]$, insert a bar ("|") between the $(l_1 + l_2 + \cdots + l_p)$ -th letter of τ and the next one.
- These bars subdivide τ into k blocks (some empty), each increasing (since $\text{Des } \tau \subseteq A = \text{PS } (L)$).

- We now construct the map $\{good shuffles\} \rightarrow \{good pairs\}$:
- Let τ be a good shuffle. Thus, τ is a shuffle of π and σ satisfying Des $\tau \subseteq A$.
- Write L as $L = (I_1, I_2, ..., I_k)$.
- For each $p \in [k-1]$, insert a bar ("|") between the $(l_1 + l_2 + \cdots + l_p)$ -th letter of τ and the next one.
- These bars subdivide τ into k blocks (some empty), each increasing (since $\text{Des } \tau \subseteq A = \text{PS } (L)$).
- Let $J=(j_1,j_2,\ldots,j_k)$, where j_p is the number of letters in the p-th block of τ that come from π .

- We now construct the map $\{good shuffles\} \rightarrow \{good pairs\}$:
- Let τ be a good shuffle. Thus, τ is a shuffle of π and σ satisfying Des $\tau \subseteq A$.
- Write L as $L = (I_1, I_2, ..., I_k)$.
- For each $p \in [k-1]$, insert a bar ("|") between the $(l_1 + l_2 + \cdots + l_p)$ -th letter of τ and the next one.
- These bars subdivide τ into k blocks (some empty), each increasing (since $\text{Des } \tau \subseteq A = \text{PS } (L)$).
- Let $J = (j_1, j_2, \dots, j_k)$, where j_p is the number of letters in the p-th block of τ that come from π .
- Similarly define K.

- We now construct the map $\{good shuffles\} \rightarrow \{good pairs\}$:
- Let τ be a good shuffle. Thus, τ is a shuffle of π and σ satisfying Des $\tau \subseteq A$.
- Write L as $L = (I_1, I_2, ..., I_k)$.
- For each $p \in [k-1]$, insert a bar ("|") between the $(l_1 + l_2 + \cdots + l_p)$ -th letter of τ and the next one.
- These bars subdivide τ into k blocks (some empty), each increasing (since $\text{Des } \tau \subseteq A = \text{PS } (L)$).
- Let $J = (j_1, j_2, \dots, j_k)$, where j_p is the number of letters in the p-th block of τ that come from π .
- Similarly define *K*.
- Then, (J, K) is a good pair.

- We now construct the map $\{good shuffles\} \rightarrow \{good pairs\}$:
- Let τ be a good shuffle. Thus, τ is a shuffle of π and σ satisfying Des $\tau \subseteq A$.
- Write L as $L = (I_1, I_2, ..., I_k)$.
- For each $p \in [k-1]$, insert a bar ("|") between the $(l_1 + l_2 + \cdots + l_p)$ -th letter of τ and the next one.
- These bars subdivide τ into k blocks (some empty), each increasing (since $\text{Des } \tau \subseteq A = \text{PS } (L)$).
- Let $J = (j_1, j_2, \dots, j_k)$, where j_p is the number of letters in the p-th block of τ that come from π .
- Similarly define K.
- Then, (J, K) is a good pair.
 So we have found a map {good shuffles} → {good pairs}.

- We now construct the map $\{good shuffles\} \rightarrow \{good pairs\}$:
- Let τ be a good shuffle. Thus, τ is a shuffle of π and σ satisfying Des $\tau \subseteq A$.
- Write L as $L = (l_1, l_2, ..., l_k)$.
- For each $p \in [k-1]$, insert a bar ("|") between the $(l_1 + l_2 + \cdots + l_p)$ -th letter of τ and the next one.
- These bars subdivide τ into k blocks (some empty), each increasing (since $\text{Des } \tau \subseteq A = \text{PS } (L)$).
- Let $J = (j_1, j_2, \dots, j_k)$, where j_p is the number of letters in the p-th block of τ that come from π .
- Similarly define K.
- Then, (J, K) is a good pair. So we have found a map $\{\text{good shuffles}\} \rightarrow \{\text{good pairs}\}$.
- The two maps constructed are mutually inverse bijections

$$\{\mathsf{good}\ \mathsf{shuffles}\} \rightleftarrows \{\mathsf{good}\ \mathsf{pairs}\}\,;$$

so the theorem is proven.

The hollowed-out descent sets $Des_{i,j} \pi$

Fix i ∈ N and j ∈ N.
 For any n and any n-permutation π, we define the hollowed-out descent set Des_{i,j} π by

$$\mathsf{Des}_{i,j} \pi = (\mathsf{Des} \pi) \cap (\{1,2,\ldots,i\} \cup \{n-1,n-2,\ldots,n-j\}).$$

The hollowed-out descent sets $Des_{i,j} \pi$

Fix i ∈ N and j ∈ N.
 For any n and any n-permutation π, we define the hollowed-out descent set Des_{i,j} π by

$$\mathsf{Des}_{i,j} \pi = (\mathsf{Des} \pi) \cap (\{1,2,\ldots,i\} \cup \{n-1,n-2,\ldots,n-j\}).$$

Thus, $\operatorname{Des}_{i,j} \pi$ is the set of all descents of π that are among the i first or j last possible positions for a descent to be in.

Shuffle-compatibility of $Des_{i,j}$: statement

- Let $m \in \mathbb{N}$, and let π be an m-permutation. Let $n \in \mathbb{N}$, and let σ be an n-permutation. Assume that π and σ are disjoint.
- Let *B* be a subset of $\{1, 2, ..., i\} \cup \{m+n-1, m+n-2, ..., m+n-j\}.$
- Let $A = B \cup \{i+1, i+2, \dots, m+n-j-1\}.$
- Let L be a weak composition of m+n such that PS(L)=A. Let k be such that $L \in \mathbb{N}^k$.
- Theorem (Gessel & Zhuang, arXiv:1706.00750, Theorem 6.1).

The number of shuffles τ of π and σ satisfying $\operatorname{Des}_{i,j} \tau \subseteq B$ equals the number of pairs $(J,K) \in \mathbb{N}^k \times \mathbb{N}^k$ such that

- J is a weak composition of m satisfying $Des_{i,j} \pi \subseteq PS(J)$;
- K is a weak composition of n satisfying $Des_{i,j} \sigma \subseteq PS(K)$;
- we have J + K = L (in the monoid \mathbb{N}^k).

Shuffle-compatibility of $Des_{i,j}$: proof

- We can derive this Theorem from the previous Theorem. This relies on the following three observations:
 - We have $\operatorname{Des}_{i,j} \tau \subseteq B$ if and only if $\operatorname{Des} \tau \subseteq A$.
 - For any weak composition J of m satisfying $J \leq L$ (that is, each entry of J is \leq to the corresponding entry of L), we have $\operatorname{Des}_{i,j} \pi \subseteq \operatorname{PS}(J)$ if and only if $\operatorname{Des} \pi \subseteq \operatorname{PS}(J)$.
 - A similar statement about weak compositions K of n.

Shuffle-compatibility of $Des_{i,j}$: proof

- We can derive this Theorem from the previous Theorem. This relies on the following three observations:
 - We have $\operatorname{Des}_{i,j} \tau \subseteq B$ if and only if $\operatorname{Des} \tau \subseteq A$.
 - For any weak composition J of m satisfying $J \leq L$ (that is, each entry of J is \leq to the corresponding entry of L), we have $\operatorname{Des}_{i,j} \pi \subseteq \operatorname{PS}(J)$ if and only if $\operatorname{Des} \pi \subseteq \operatorname{PS}(J)$.
 - ullet A similar statement about weak compositions K of n.
- The first observation is obvious.

Shuffle-compatibility of $Des_{i,j}$: proof

- We can derive this Theorem from the previous Theorem.
 This relies on the following three observations:
 - We have $\operatorname{Des}_{i,j} \tau \subseteq B$ if and only if $\operatorname{Des} \tau \subseteq A$.
 - For any weak composition J of m satisfying $J \leq L$ (that is, each entry of J is \leq to the corresponding entry of L), we have $\operatorname{Des}_{i,i} \pi \subseteq \operatorname{PS}(J)$ if and only if $\operatorname{Des} \pi \subseteq \operatorname{PS}(J)$.
 - A similar statement about weak compositions K of n.
- Proof of the second observation: Since PS $(L) = A \supseteq \{i+1, i+2, \ldots, m+n-j-1\}$, the composition L has the form

$$L = ($$
 (some numbers with sum $\leq i + 1)$, (a sequence of 0's and 1's), (some numbers with sum $\leq j + 1)$).

Since $J \le L$, it follows that J also has this form. In other words, $PS(J) \supseteq \{i+1, i+2, \ldots, m-j-1\}$. Hence, the second observation follows.

Thanks

Thanks to Ira Gessel and Yan Zhuang for initiating this direction (and for helpful discussions), and to Alex Yong for an invitation to UIUC.

And thanks to you for attending!

```
slides: http:
//www.cip.ifi.lmu.de/~grinberg/algebra/urbana18a.pdf
paper: http:
//www.cip.ifi.lmu.de/~grinberg/algebra/gzshuf2.pdf
project: https://github.com/darijgr/gzshuf
```