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What is this about?

@ From a modern point of view, Schubert calculus (a.k.a.
classical enumerative geometry, or Hilbert's 15th problem) is
about two cohomology rings:

H* | Gr(k,n) | and H* [ FI(n)
— ——

Grassmannian flag variety

(both varieties over C).
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@ From a modern point of view, Schubert calculus (a.k.a.
classical enumerative geometry, or Hilbert's 15th problem) is
about two cohomology rings:

H* | Gr(k,n) | and H* [ FI(n)
N—— S~~~
Grassmannian flag variety

(both varieties over C).
@ In this talk, we are concerned with the first.
@ Classical result: as rings,

H* (Gr (k, n))
= (symmetric polynomials in x, x2, . .., xx over Z)
S (hn—ks1s hnks2, -+ Bn)igear s

where the h; are complete homogeneous symmetric
polynomials (to be defined soon).
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Quantum cohomology of Gr(k, n)

@ (Small) Quantum cohomology is a deformation of
cohomology from the 1980-90s. For the Grassmannian, it is

QH* (Gr (k, n))

= (symmetric polynomials in x1,x2, ..., xx over Z[q])

/ (hn—k-i-la hn—k+27 ceey hn717 hn + (_1)k q)

ideal '
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@ (Small) Quantum cohomology is a deformation of
cohomology from the 1980-90s. For the Grassmannian, it is

QH* (Gr (k, n))
= (symmetric polynomials in x1,x2, ..., xx over Z[q])

/ (hn—k-i-la hn—k+27 ceey hn717 hn + (_1)k q)

ideal '

@ Many properties of classical cohomology still hold here.
In particular: QH* (Gr (k, n)) has a Z[q]-module basis
(3X)aep, , of (projected) Schur polynomials (to be defined
soon), with ranging over all partitions with < k parts and
each part < n— k. The structure constants are the
Gromov—-Witten invariants. References:
e Aaron Bertram, lonut Ciocan-Fontanine, William Fulton,
Quantum multiplication of Schur polynomials, 1999.
o Alexander Postnikov, Affine approach to quantum
Schubert calculus, 2005.
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Where are we going?

@ Goal: Deform H* (Gr (k, n)) using k parameters instead of
one, generalizing QH* (Gr (k, n)).
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Where are we going?

@ Goal: Deform H* (Gr (k, n)) using k parameters instead of
one, generalizing QH* (Gr (k, n)).

@ The new ring has no geometric interpretation known so far,
but various properties suggesting such an interpretation likely
exists.

@ | will now start from scratch and define standard notations
around symmetric polynomials, then introduce the deformed
cohomology ring algebraically.

@ There is a number of open questions and things to explore.
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A more general setting: P and S

@ Let k be a commutative ring.
Let N={0,1,2,...}. Let k e N.
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indeterminates over k.

@ For each k-tuple o € NK and each i € {1,2,...,k}, let a; be
the i-th entry of . Same for infinite sequences.

@ For each o € NX, let x* be the monomial Xyt x5 2 - -x,?k, and
let || be the degree oy + ap + - - - + ay of this monomial.

@ Let S denote the ring of symmetric polynomials in P.
These are the polynomials f € P satisfying

f(XlaX27 R 7Xk) =f (XU(1)7XO'(2)7 s 7X0(k))

for all permutations o of {1,2,..., k}.
@ Theorem (Artin <1944): The S-module P is free with basis

a H T <1l <2 <k \n
(X )ocEN“; a;<i for each i (or, informally: (1 Xoo o X ) )

Example: For k = 3, this basis is (1,X3,X§,X2,X2X3,X2X§).
5/36



Symmetric polynomials

@ The ring S of symmetric polynomials in P = k [x1, x2, . . . , X]
has several bases, usually indexed by certain sets of (integer)
partitions.

First, let us recall what partitions are:
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k-partitions: definition

@ A partition means a weakly decreasing sequence of
nonnegative integers that has only finitely many nonzero
entries.
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k-partitions: definition

@ A partition means a weakly decreasing sequence of
nonnegative integers that has only finitely many nonzero
entries.

Examples: (4,2,2,0,0,0,...) and (3,2,0,0,0,0,...) and
(5,0,0,0,0,0,...) are three partitions.
(2,3,2,0,0,0,...) and (2,1,1,1,...) are not.
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k-partitions: definition

@ A k-partition means a weakly decreasing k-tuple
()\1, Aoy, )\k) e Nk,
Examples: (4,2,2) and (3,2,0) and (5,0,0) are three
3-partitions.
(2,3,2) is not.

@ Thus there is a bijection

{k-partitions} — {partitions with at most k nonzero entries} ,
A= ()\1,)\2,...,)\/(,0,0,0,...).
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3-partitions.
(2,3,2) is not.

o If A € N¥ is a k-partition, then its Young diagram Y ()\) is
defined as a table made out of k left-aligned rows, where the
i-th row has \; boxes.

Example: If k =6 and A\ = (5,5,3,2,0,0), then

Y (\) =

(Empty rows are invisible.)

7/36



k-partitions: definition

@ A k-partition means a weakly decreasing k-tuple
()\1, Aoy, >\k) e Nk,

Examples: (4,2,2) and (3,2,0) and (5,0,0) are three
3-partitions.
(2,3,2) is not.

o If A € NK is a k-partition, then its Young diagram Y (\) is
defined as a table made out of k left-aligned rows, where the
i-th row has \; boxes.

Example: If k =6 and A\ = (5,5,3,2,0,0), then

Y (\) =

(Empty rows are invisible.)
@ The same convention applies to partitions.
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Symmetric polynomials: the e-basis

@ For each m € Z, we let e, denote the m-th elementary
symmetric polynomial:

eém = E Xjy Xip * + * X, = E x* € S.
1<ih<ip<-<im<k ozG{O,l}k;
laf=m

(Thus, g =1, and e, = 0 when m < 0.)
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Symmetric polynomials: the e-basis

@ For each m € 7Z, we let e, denote the m-th elementary
symmetric polynomial:

em = Z Xjy Xip * + * X, = Z x*eS.
1<ih<ih<-<im<k OzG{O,l}k;
laj=m
(Thus, eg =1, and e, = 0 when m < 0.)
@ For each v = (v1,10,...,v) € Z' (e.g., a k-partition when
¢ = k), set
e =66, e, €S

@ Theorem (Gauss): The commutative k-algebra S is freely
generated by the elementary symmetric polynomials
e1,€,...,e (Thatis, it is generated by them, and they are
algebraically independent.)

e Equivalent restatement: (e))
is a basis of the k-module S.

@ Note that e, = 0 when m > k.

A is a partition whose entries are < k
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Symmetric polynomials: the h-bases

@ For each m € Z, we let h,, denote the m-th complete
homogeneous symmetric polynomial:

hy = E Xiy Xip *** Xjy = E x®eS.
1<ih < <--<im<k aENk;
faj=m

(Thus, hg =1, and h, = 0 when m < 0.)
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@ For each m € Z, we let h,, denote the m-th complete
homogeneous symmetric polynomial:

hy = Z Xiy Xip *** Xjy = Z x®eS.

1<ih < <--<im<k aENk;
laj=m
(Thus, hg =1, and h, = 0 when m < 0.)
@ For each v = (v1,1a,...,1) € Z* (e.g., a k-partition when

¢ =k), set
hy = hy by, -+ hy, € S.
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Symmetric polynomials: the h-bases

@ For each m € Z, we let h,, denote the m-th complete

homogeneous symmetric polynomial:

hm = Z Xiy Xip *** Xjy = Z x®eS.
1< << Sim<k aENK;
|a|=m
(Thus, hg =1, and h, = 0 when m < 0.)
@ For each v = (v1,1a,...,1) € Z* (e.g., a k-partition when
¢ =k), set
h, = hy hy,---hy,, €.

@ Theorem: The commutative k-algebra S is freely generated

by the complete homogeneous symmetric polynomials

hi, hy, ..., hy.

° EqUivaIent restatement: (hA))\ is a partition whose entries are < k
is a basis of the k-module S.
e Theorem: (h>\)/\ is a k-partition
(Another basis!)

is a basis of the k-module S.
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Symmetric polynomials: the s-basis (Schur polynomials)

@ For each k-partition A, we let sy be the \-th Schur
polynomial:

A+k—j
det <<X"J+ J)1 k k)
<i<k, 1<j<
s\ = S (alternant formula)

cet () )
1<i<k, 1<j<k

= det ((hy-i+)1cick, 1j<x)  (Jacobi-Trudi).
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Symmetric polynomials: the s-basis (Schur polynomials)

@ For each k-partition A, we let sy be the \-th Schur

polynomial:

ANi+k—j
det <XI-’+ J)
1<i<k, 1<j<k

cet () )
1<i<k, 1<j<k

= det ((hy-i+)1cick, 1j<x)  (Jacobi-Trudi).

(alternant formula)

S\ =

@ Theorem: The equality above holds, and sy is a symmetric

polynomial with nonnegative coefficients. Explicitly,

k
. (number of i’'siin T)
A= D [1x ,

T is a semistandard A-tableau /=1
with entries 1,2,...,

where a semistandard \-tableau with entries 1,2,..., k is a
way of putting an integer i € {1,2,..., k} into each box of
Y (A) such that the entries weakly increase along rows and

strictly increase along columns. 035
1



Symmetric polynomials: the s-basis (Schur polynomials)

@ For each k-partition A, we let sy be the \-th Schur
polynomial:

ANi+k—j
det <XI-’+ J)
1<i<k, 1<j<k

cet () )
1<i<k, 1<j<k

= det ((hy-i+)1cick, 1j<x)  (Jacobi-Trudi).

@ Theorem: The equality above holds, and sy is a symmetric
polynomial with nonnegative coefficients.
@ Theorem: (s)) is a basis of the k-module S.

(alternant formula)

S\ =

A is a k-partition
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Symmetric polynomials: Littlewood-Richardson coefficients

@ If A and p are two k-partitions, then the product sys, can be
again written as a k-linear combination of Schur polynomials
(since these form a basis):

— v
SAS, = E SWZ
v is a k-partition

where the C/\u lie in k. These c/\ are called the
Littlewood-Richardson coeffICIents
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Symmetric polynomials: Littlewood-Richardson coefficients

@ If A and p are two k-partitions, then the product sys, can be
again written as a k-linear combination of Schur polynomials
(since these form a basis):

S\Sy = Z Cius,,,
v is a k-partition
where the C/\u lie in k. These c/\ are called the
Littlewood-Richardson coeffICIents
® Theorem: These Littlewood-Richardson coefficients c} , are
nonnegative integers (and count something).
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Symmetric polynomials: Schur polynomials for non-partitions

@ We have defined

sy = det <(h/\i*"+f)1§i§k, 1§fﬁk>

for k-partitions A.
Apply the same definition to arbitrary \ € Zk.
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e Proposition: If o € Z¥, then s, is either 0 or equals +sy for
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@ We have defined

sy = det <(h/\i*’.+j)1§i§k, 1§j§k>

for k-partitions .
Apply the same definition to arbitrary \ € Zk.

e Proposition: If o € Z¥, then s, is either 0 or equals +sy for
some k-partition \.
More precisely: Let
B=(a1+(k—1),a0+(k—=2),...,ak+ (k — k)).

o If 5 has a negative entry, then s, = 0.

e If 5 has two equal entries, then s, = 0.

o Otherwise, let v be the k-tuple obtained by sorting 3 in
decreasing order, and let o be the permutation of the
indices that causes this sorting. Let )\ be the k-partition
(m—(k=1),72—(k—=2),...,7% — (k= k)). Then,
sa = (—1)7 sy.
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Symmetric polynomials: Schur polynomials for non-partitions

@ We have defined

sy = det <(h/\i*’.+j)1§i§k, 1§j§k>

for k-partitions .
Apply the same definition to arbitrary \ € Zk.

e Proposition: If o € Z¥, then s, is either 0 or equals +sy for
some k-partition \.
More precisely: Let
B=(a1+(k—1),a0+(k—=2),...,ak+ (k — k)).

o If 5 has a negative entry, then s, = 0.

e If 5 has two equal entries, then s, = 0.

o Otherwise, let v be the k-tuple obtained by sorting 3 in
decreasing order, and let o be the permutation of the
indices that causes this sorting. Let )\ be the k-partition
(m—(k=1),72—(k—=2),...,7% — (k= k)). Then,
sa = (—1)7 sy.

@ Also, the alternant formula still holds if all A\; + (k — i) are

> 0. 12/36



A more general setting: a;,as,...,ax and J

@ Pick any integer n > k.
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A more general setting: a;,as,...,ax and J

@ Pick any integer n > k.

@ Let a1,a,...,ax € P such that dega; < n— k + i for all i.
(For example, this holds if a; € k.)

@ Let J be the ideal of P generated by the k differences
hn—k+1 — a1, hp—ky2 —az, ..., hnp—ak.

@ Theorem (G.): The k-module P,J is free with basis

Y
(X )aeNk; a;<n—k-+i for each i

(informally: ( 1<"_k+1x2<"_k+2 - xn<”>)

where the overline = means “projection” onto whatever
quotient we need (here: from P onto P, J).
(This basis has n(n—1)---(n— k + 1) elements.)
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A slightly less general setting: symmetric a;, as, ..., ax and J

e FROM NOW ON, assume that aj,as,...,ax € S.
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A slightly less general setting: symmetric a;, as, ..., ax and J

e FROM NOW ON, assume that a;,a),...,ax € S.
@ Let / be the ideal of S generated by the k differences

hn—k+1— a1, hp—ky2 —az, ..., hnp—ak.

(Same differences as for J, but we are generating an ideal of
S now.)
o Letw=(n—k,n—k,...,n— k) and

-~

k entries
Pin={Xis a k-partition | A\ < n— k}
= {k-partitions A C w}.
@ Here, for two k-partitions o and 3, we say that o C 3 if and
only if a; < B; for all i.
@ Theorem (G.): The k-module S,/I is free with basis
(Q)AEP/W :
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An even less general setting: constant a;, ap, ..., ax

e FROM NOW ON, assume that aj,a,...,a, € k.
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An even less general setting: constant a;, ap, ..., ax

e FROM NOW ON, assume that aj,a,...,a, € k.
@ This setting still is general enough to encompass ...

e classical cohomology: If k = Z and
ay=ay=---=ax =0, then § I/ becomes the
cohomology ring H* (Gr (k, n)); the basis (Q))\GPM
corresponds to the Schubert classes.

o quantum cohomology: If k = Z[q] and
ag=a=---=a,_1=0and ak:—(—l)kq, then
S /| becomes the quantum cohomology ring

QH* (Gr (k, n)).
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@ This setting still is general enough to encompass ...

e classical cohomology: If k = Z and
ay=ay=---=ax =0, then § I/ becomes the
cohomology ring H* (Gr (k, n)); the basis (Q))\GPM
corresponds to the Schubert classes.

o quantum cohomology: If k = Z[q] and
ag=a=---=a,_1=0and ak:—(—l)kq, then
S /| becomes the quantum cohomology ring
QH* (Gr (k, n)).

@ The above theorem lets us work in these rings (and more
generally) without relying on geometry.
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@ Recall that (5)),cp, , is a basis of the k-module S,//.
For each p € Py p, let coeff, : §,/I — k send each element to
its 5,,-coordinate wrt this basis.

@ For every k-partition v = (v1,vs,...,vk) € Py, we define

vWe=(n—k—wvi,n—k—vi_1,...,n—k —11) € Pk

This k-partition vV is called the complement of v.

@ For any three k-partitions a, 8,7 € Py, let
8o B, = coeff v (5,53) € k.

These generalize the Littlewood—Richardson coefficients and
(3-point) Gromov—Witten invariants.
@ Theorem (G.): For any «, 3,7 € P, we have

8a,8y = 8a,y,8 = 8B,a,y = BBy,a = By, = &v.8a
= coeff,, (5,535;) .

o Equivalent restatement: Each v € P , and f € S 7/ satisfy
coeff,, (5,f) = coeff,v (f).
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The h-basis

@ Theorem (G.): The k-module S, /I is free with basis

(h)sep.,

17/36



The h-basis

@ Theorem (G.): The k-module S, /I is free with basis

(h)sep.,

@ The transfer matrix between the two bases (5)),cp, = and
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order, but seems hard to describe.
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The h-basis

@ Theorem (G.): The k-module S, /I is free with basis

(h)sep.,

@ The transfer matrix between the two bases (5)),cp, = and
(FA) AP, is unitriangular wrt the “size-then-anti-dominance”
order, but seems hard to describe.

o Proposition (G.): Let m be a positive integer. Then,

k-1 _
hogm = (_1)J ak—jW7
j=0
where (m, /) :=(m,1,1,...,1,0,0,0,...) (a hook-shaped
——
j ones

k-partition).
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The Pieri rule for symmetric polynomials

o If @ and 3 are two k-partitions, then we say that o/ is a
horizontal strip if and only if the Young diagram Y () is
obtained from Y (/3) by adding some (possibly none) extra
boxes with no two of these new boxes lying in the same

column.

Example: If k =4 and o =(5,3,2,1) and 8 = (3,2,2,0),

then o/ is a horizontal strip, since

Y (6) =

with no two X's in the same column.

c

X[X]Z v ()

X
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The Pieri rule for symmetric polynomials

o If @ and 3 are two k-partitions, then we say that o/ is a
horizontal strip if and only if the Young diagram Y () is
obtained from Y (/3) by adding some (possibly none) extra
boxes with no two of these new boxes lying in the same
column.

@ Equivalently, /3 is a horizontal strip if and only if

o1 >Pr>ar>Pr>az > > oy > Py

@ Furthermore, given j € N, we say that o[ is a horizontal
J-strip if oo/ 3 is a horizontal strip and |o| — | 5| = J.
@ Theorem (Pieri). Let A\ be a k-partition. Let j € N. Then,

S)\hj = Z Su-

W is a k-partition;
w/ N\ is a
horizontal j-strip

18/36



A Pieri rule for S 7/

o Theorem (G.): Let A € Py ,. Let j € {0,1,...,n— k}.
Then,

k

EUEEED DEEE T S VD D S 2

HEPY n; i=1 vCA

w/ A is a
horizontal j-strip
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A Pieri rule for S 7/

o Theorem (G.): Let A € Py ,. Let j € {0,1,...,n— k}.
Then,

k

EUEEED DEEE T S VD D S 2

HEPY n; i=1 vCA

w/ A is a
horizontal j-strip

@ This generalizes the h-Pieri rule from Bertram,

. . A

Ciocan-Fontanine and Fulton, but note that Cn—k—jt1,1-1) 0
may be > 1.
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A Pieri rule for S /I: example

o Example: For n =7 and k = 3, we have

S@43.2)he =Sa43) + a1 (5(4,2) +53621) + 5(3,3))
—a (5(4,1) +502,2,1) T 5311t 25(3,2))
+ a3 (5(2,2) +3502,1,1) T 5(3,1)) .
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A Pieri rule for S /I: example

o Example: For n =7 and k = 3, we have

S@43.2)he =Sa43) + a1 (5(4,2) +53621) + 5(3,3))
—a (5(4,1) +502,2,1) T 5311t 25(3,2))
+ a3 (5(2,2) +3502,1,1) T 5(3,1)) .

@ Multiplying by e; appears harder: For n =5 and k = 3, we
have

S(2,2,1)€2 = a15(2,2)—2a252,1)+a3 (% + 5(1,1))+3§%—231825T)-
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A “rim hook algorithm”

e For QH* (Gr (k, n)), Bertram, Ciocan-Fontanine and Fulton
give a “rim hook algorithm” that rewrites an arbitrary 5, as
(—1)s°m'Ething gsomethingss with \ € Py .

Is there such a thing for S 71?7
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(_1)something qsomething§ with \ € Pk n
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If n=06 and k = 3, then

S(4,43) = 335( 1) — 231325( 2) T 315(3) + a35(32) — 3253 3)-

Looks hopeless...
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A “rim hook algorithm”

@ For QH* (Gr (k, n)), Bertram, Ciocan-Fontanine and Fulton
give a “rim hook algorithm” that rewrites an arbitrary 5, as
(_1)something qsomething§ with A € Py .

Is there such a thing for S /17
If n=16 and k = 3, then

Sfa3) = 35(1) — 22122502) + 3153) + 3532) ~ 256.3)

@ Theorem (G.): Let p be a k-partition with g3 > n— k. Let
W= {/\:()\17)\2,--~7)\k) €ZF | M= —n
and \; — p; € {0,1} forall i € {2,3,... k}}.

(Not all elements of W are k-partitions, but all belong to Z,
so we know how to define s for them.)
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A “rim hook algorithm”

e For QH* (Gr (k, n)), Bertram, Ciocan-Fontanine and Fulton
give a “rim hook algorithm” that rewrites an arbitrary 5, as
(_1)something qsomething§ with \ € Pk n
Is there such a thing for S 71?7
If n=06 and k = 3, then

S(4,43) = a%s( 1) — 231325( 2) T 315( ) T a353,2) — 3253 3)-

@ Theorem (G.): Let u be a k-partition with 3 > n— k. Let
W = {A:()\l,)\g,...,)\k) €ZFK | M =p1—n
and \; — p; € {0,1} forall i €{2,3,...,k}}.
Then,

k
=307 Y s
j=1

Aew
A=kl = (" k+J)
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Positivity?

o Conjecture: Let b; = (—=1)"*"1a; for each i € {1,2,..., k}.
Let A\, u, v € Py . Then, (—1)"\|+|“|_|l" coeff, (535,) is a
polynomial in by, b, ..., bx with coefficients in N.

@ Verified for all n < 8 using SageMath.

@ This would generalize positivity of Gromov—Witten invariants.
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@ Theorem (G.): The k-module S, /I is free with basis

(MN)rep,., >

where

my = (the sum of all distinct permutations of

the monomial xl)‘lxz)‘2 . -x,i‘k>

is a monomial symmetric polynomial.
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@ What are the structure constants?
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a; = 0).
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@ Theorem (G.): The k-module S, /I is free with basis

(MN)rep,., >

where

my = (the sum of all distinct permutations of

. A
the monomial xl)‘lx;‘2 . -xkk>

is a monomial symmetric polynomial.
@ What are the structure constants?
o The family (px),cp, , built of the power-sum symmetric

functions p, is not generally a basis (not even if k = Q and
a; = 0).
@ What about other bases? Forgotten symmetric functions?
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More questions

@ Question: Does S/ have a geometric meaning? If not, why
does it behave so nicely?
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More questions

@ Question: Does S/ have a geometric meaning? If not, why
does it behave so nicely?

@ Question: What if we replace the generators h,_x1; — a;j of
our ideals by pp—kti —a;i ?

@ Question: Do other properties of QH* (Gr (k, n)) generalize
to S/17?
Computations show that Postnikov's “curious duality” and
“cyclic hidden symmetry” and Bertram et al's
Gr (k, n) > Gr(n — k, n) duality do not generalize (at least
not in any straightforward way).

@ Question: Is there an analogous generalization of
QH* (FI(n)) ? Is it connected to Fulton's “universal Schubert
polynomials”?

@ Question: Is there an equivariant analogue?

@ Question: What about quotients of the quasisymmetric
polynomials?
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Si-module structure

@ The symmetric group Sy acts on P, with invariant ring S.
@ What is the Sx-module structure on P,/ J 7

@ Almost-theorem (G., needs to be checked): Assume that
k is a Q-algebra. Then, as Sg-modules,

) (VW

P/ (P/PS*)X <’<

)

~—~

regular rep

where PS™ is the ideal of P generated by symmetric
polynomials with constant term 0.
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Deforming symmetric functions, 1

@ Let us recall symmetric functions (not polynomials) now;
we'll need them soon anyway.

S := {symmetric polynomials in xq,x2,...,Xk};

A := {symmetric functions in x1, x2, X3,...}.
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Deforming symmetric functions, 1

@ Let us recall symmetric functions (not polynomials) now;
we'll need them soon anyway.

S := {symmetric polynomials in xq,x2,...,Xk};
A := {symmetric functions in x1, x2, X3,...}.

@ We use standard notations for symmetric functions, but in

boldface:
e = elementary symmetric,
h = complete homogeneous,
s = Schur (or skew Schur).
@ We have
S=N/ (k1 €kt2, €k43, ---)igears  thus
S/I=N/(hp_gy1—a1, hp_yy2—a2, ..., h,—a

€x+r1, ©€ky2, €k43, "')ideal'

@ So why not replace the e; by e; — b; too?
26 /36



Deforming symmetric functions, 2

@ Theorem (G.): Assume that aj, as, ..., ax as well as
b1, by, bs, ... are elements of k. Then,

N/ (hp_ky1—a1, hp_pio—az, ..., h,—a,

€x41 — b1, €ky2 — by, €443 — bs, .. ')ideal

is a free k-module with basis (5x),cp, -
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On the proofs, 1

@ Proofs of all the above (except for the Sk-action and the
my-basis) can be found in

o Darij Grinberg, A basis for a quotient of symmetric
polynomials (draft), http://www.cip.ifi.lmu.de/
~grinberg/algebra/basisquot.pdf .
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(XT)aeNk; a;j<n—k+i for each i-
(This was already outlined in Aldo Conca, Christian
Krattenthaler, Junzo Watanabe, Regular Sequences of
Symmetric Polynomials, 2009.)

28/36


http://www.cip.ifi.lmu.de/~grinberg/algebra/basisquot.pdf
http://www.cip.ifi.lmu.de/~grinberg/algebra/basisquot.pdf
http://www.numdam.org/article/RSMUP_2009__121__179_0.pdf
http://www.numdam.org/article/RSMUP_2009__121__179_0.pdf
http://www.numdam.org/article/RSMUP_2009__121__179_0.pdf

On the proofs, 1

@ Proofs of all the above (except for the Sk-action and the
my-basis) can be found in
o Darij Grinberg, A basis for a quotient of symmetric
polynomials (draft), http://www.cip.ifi.lmu.de/
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o Main ideas:
o Use Grobner bases to show that P /J is free with basis
(XT)aeNk; a;j<n—k+i for each i-
(This was already outlined in Aldo Conca, Christian
Krattenthaler, Junzo Watanabe, Regular Sequences of
Symmetric Polynomials, 2009.)
e Using that 4+ Jacobi—Trudi, show that S 7/ is free with

basis (Q)AePk,,,-
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On the proofs, 1

@ Proofs of all the above (except for the Sk-action and the
my-basis) can be found in
o Darij Grinberg, A basis for a quotient of symmetric
polynomials (draft), http://www.cip.ifi.lmu.de/
~grinberg/algebra/basisquot.pdf .
o Main ideas:
o Use Grobner bases to show that P /J is free with basis
(XT)aeNk; a;j<n—k+i for each i-
(This was already outlined in Aldo Conca, Christian
Krattenthaler, Junzo Watanabe, Regular Sequences of
Symmetric Polynomials, 2009.)
e Using that 4+ Jacobi—Trudi, show that S 7/ is free with

basis (Sx)\ep, - .
o As for the rest, compute in A... a lot.
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Grobner bases, 1: the degree-lexicographic order

@ A brief introduction to Grobner bases is appropriate here.
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Grobner bases, 1: the degree-lexicographic order

@ A brief introduction to Grobner bases is appropriate here.
@ Grobner bases are “particularly uncomplicated” generating
sets for ideals in polynomial rings.
(But take the word “basis” with a grain of salt — they can
have redundant elements, for example.)
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Grobner bases, 1: the degree-lexicographic order

@ A monomial order is a total order on the monomials in P with
the properties that
o 1 < m for each monomial m;
o a < b implies am < bm for any monomials a, b, m;
o the order is well-founded (i.e., we can do induction over

it).
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@ A monomial order is a total order on the monomials in P with
the properties that
o 1 < m for each monomial m;
o a < b implies am < bm for any monomials a, b, m;
o the order is well-founded (i.e., we can do induction over
it).
@ The degree-lexicographic order is the monomial order defined
as follows: Two monomials a = x{"x32 - - - x.* and
b= xlﬁle2 . -xfk satisfy a > b if and only if
o either dega > deghb
o or dega = deg b and the smallest i satisfying o # 3;

satisfies a; > [3;.
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@ A monomial order is a total order on the monomials in P with
the properties that
o 1 < m for each monomial m;
o a < b implies am < bm for any monomials a, b, m;
o the order is well-founded (i.e., we can do induction over
it).
@ The degree-lexicographic order is the monomial order defined
as follows: Two monomials a = x{"x32 - - - x.* and
b= xlﬁlxg2 . -xfk satisfy a > b if and only if
o either dega > deghb
o or dega = deg b and the smallest i satisfying o # 3;
satisfies a; > [3;.
@ Given a monomial order,
e each nonzero polynomial f € P has a well-defined leading
monomial (= the highest monomial appearing in f).
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the properties that
o 1 < m for each monomial m;
o a < b implies am < bm for any monomials a, b, m;
o the order is well-founded (i.e., we can do induction over
it).
@ The degree-lexicographic order is the monomial order defined
as follows: Two monomials a = x{"x32 - - - x.* and
b= xlﬁlxg2 . -xfk satisfy a > b if and only if
o either dega > deghb
o or dega = deg b and the smallest i satisfying o # 3;
satisfies a; > [3;.
@ Given a monomial order,
e each nonzero polynomial f € P has a well-defined leading
monomial (= the highest monomial appearing in f).
e a polynomial f is called quasi-monic if the coefficient of
its leading term in f is invertible.
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Grobner bases, 2: What is a Grobner basis?

@ If Z is an ideal of P, then a Grébner basis of Z (for a fixed
monomial order) means a family (f;);. of quasi-monic
polynomials that

e generates Z, and
e has the property that the leading monomial of any

nonzero f € T is divisible by the leading monomial of
some f;.
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the leading term y3 of the polynomial y3 — z3 € Z is not
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Grobner bases, 2: What is a Grobner basis?

@ If Z is an ideal of P, then a Grébner basis of Z (for a fixed
monomial order) means a family (f;);. of quasi-monic
polynomials that

e generates Z, and

e has the property that the leading monomial of any
nonzero f € Z is divisible by the leading monomial of
some f;.

o Example: Let kK = 3, and rename xy, x2,x3 as x, y, z. Use the
degree-lexicographic order. Let Z be the ideal generated by

x2 —yz,y? — zx,z*> — xy. Then:

o The triple (x* — yz,y? — zx, 22 — xy) is not a Grobner
basis of Z, since its leading monomials are x2,xz,xy, but
the leading term y3 of the polynomial y3 — z3 € Z is not
divisible by any of them.

e The quadruple (y3 — 23, x% —yz,xy — 2%, xz — y2) is a
Grobner basis of Z. (Thanks SageMath, and whatever
packages it uses for this.)

2
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Grobner bases, 3: Buchberger’s first criterion

@ Note: Our definition of Grobner basis is a straightforward
generalization of the usual one, since k may not be a field.
Note that some texts use different generalizations!
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@ Theorem (Buchberger’s first criterion). Let Z be an ideal
of P.
Let (f;);cc be a family of quasi-monic polynomials that
generates 7.
Assume that the leading monomials of all the f; are mutually
coprime (i.e., each indeterminate appears in the leading
monomial of f; for at most one i € G).
Then, (f);c¢ is a Grobner basis of Z.
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Grobner bases, 3: Buchberger’s first criterion

@ Note: Our definition of Grobner basis is a straightforward

generalization of the usual one, since k may not be a field.
Note that some texts use different generalizations!

Theorem (Buchberger’s first criterion). Let Z be an ideal
of P.

Let (f;);cc be a family of quasi-monic polynomials that
generates 7.

Assume that the leading monomials of all the f; are mutually
coprime (i.e., each indeterminate appears in the leading
monomial of f; for at most one i € G).

Then, (f);c¢ is a Grobner basis of Z.

Example: Let kK = 3, and rename x1, x2, x3 as x, y, z. Use the
degree-lexicographic order. Let Z be the ideal generated by

x3 —yz,y® — zx,z3 — xy. Then, (x3 —yz,y3 —zx, 2% — xy)
is a Grobner basis of Z, since its leading monomials x3, y3, z

are mutually coprime.

3
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Grobner bases, 4: Macaulay’s basis theorem

@ Theorem (Macaulay’s basis theorem). Let Z be an ideal of
P that has a Grobner basis (f;);cc. A monomial m will be
called reduced if it is not divisible by the leading term of any
f;. Then, the projections of the reduced monomials form a
basis of the k-module P /T.
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@ Theorem (Macaulay’s basis theorem). Let Z be an ideal of
P that has a Grobner basis (f;);cc. A monomial m will be
called reduced if it is not divisible by the leading term of any
f;. Then, the projections of the reduced monomials form a
basis of the k-module P /T.

o Example: Let k = 3, and rename xy, x2, x3 as x, ¥, z. Use the
degree-lexicographic order. Let Z be the ideal generated by
x3 —yz,y® — zx, 23 — xy. Then, (X3 —yz,y3 —zx, 23 — xy)
is a Grobner basis of 7.

Thus, (x"yfzZ is a basis of P/ Z.
ij.0<3

o Example: Let k = 3, and rename xy, x2, x3 as x, y, z. Use the
degree-lexicographic order. Let Z be the ideal generated by

x? — yz,y? — zx,z%> — xy. Then,

(y3 — 23, x% —yz,xy — 2%, xz — y2) is a Grobner basis of 7.

Thus, (X) U (yl'izf>j<3 is a basis of P/Z.
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On the proofs, 2: the Grobner basis argument

@ It is easy to prove the identity

-1
hp (i) = (=1)f et (x1..i-1) hp—t (x1.4)

t

Il
o

foralli€{1,2,...,k+ 1} and pe N.
Here, x5 ) means Xa, Xa41, - - -, Xp-

@ Use this to show that

i-1
(hn—k-',-i (xik) = > (1) er (x1.i-1) ait>
ie{1,2,...,k}

t=0
is a Grobner basis of the ideal J wrt the degree-lexicographic

order.

@ Thus, Macaulay’s basis theorem shows that
(X¥)weNk: a;<n—k-rifor cach i 1S @ basis of the k-module P,/ J.
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® How to prove that S,/ is free with basis (5x)\cp, . 7
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@ How to prove that §,/I is free with basis (53)cp, , 7

@ Jacobi-Trudi lets you recursively reduce each Sy with A ¢ Py ,
into smaller 5,'s.
= (Q)AEPM spans S/I.

@ On the other hand, (x%)
S-module (Artin).

o Combining these yields that (s\x¥)cp, . aeNk; a;<i for each i
spans P/IP =P,/ J.

@ But we also know that the family (x®)
is a basis of P/ J.

@ What can you say if a k-module has a basis (a,),.\ and a
spanning family (b,),c of the same finite size
(IU] = V| < 00)?
Easy exercise: You can say that (by),c is also a basis.

a€ENK; a;<i for each i spans P as an

aENK; aj<n—k+i for each i

34/36



On the proofs, 3: the first basis of S 7/

@ How to prove that §,/I is free with basis (53)cp, , 7

@ Jacobi-Trudi lets you recursively reduce each Sy with A ¢ Py ,
into smaller 5,'s.
— (Q)AEPM spans S /1.

@ On the other hand, (x%)
S-module (Artin).

o Combining these yields that (s\x¥)cp, . aeNk; a;<i for each i
spans P/IP =P,/ J.

@ But we also know that the family (x¥),cnk. o.<n ki for each i
is a basis of P/ J.

@ What can you say if a k-module has a basis (a,),.\ and a
spanning family (b,),c of the same finite size
(IU] = V| < 00)?
Easy exercise: You can say that (by),c is also a basis.

o Thus, (W))\EP@,; a€NkK; a;<i for each i is a basis of P/J.

a€ENK; a;<i for each i spans P as an

34/36



On the proofs, 3: the first basis of S 7/

How to prove that S,/I is free with basis (5)),cp, , ?
Jacobi-Trudi lets you recursively reduce each Sy with A ¢ Py ,
into smaller 5,'s.

— (Q)AEPM spans S /1.

On the other hand, (x%)
S-module (Artin).
Combining these yields that (S\X¥)5cp, . aenk; a;<i for each i
spans P/IP =P,/ J.

But we also know that the family (X%) enk. .<nkti for each i
is a basis of P/ J.

What can you say if a k-module has a basis (a,),.,, and a
spanning family (b,),c of the same finite size

(IU] = V| < 00)?

Easy exercise: You can say that (by),c is also a basis.
Thus, (W))\EP@,; a€NkK; a;<i for each i is a basis of P/J.
— (Q)AGPM is a basis of S /1.

a€ENK; a;<i for each i spans P as an
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On the proofs, 4: Bernstein’s identity

@ The rest of the proofs are long computations inside A, using
various identities for symmetric functions.
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On the proofs, 4: Bernstein’s identity

@ The rest of the proofs are long computations inside A, using
various identities for symmetric functions.

@ Maybe the most important one:
Bernstein’s identity: Let )\ be a partition. Let m € Z be
such that m > Aq1. Then,

Z (=1) hpyi () sy = S(m, A1, A2, 03,00.) ¢
ieN

Here, f1g means “g skewed by f" (so that (SM)J' S\ =S\ pu)-
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