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The Theory of Witt Vectors
Joseph Rabinoff

version of 7 May 2009 (posted on arXiv as arXiv:1409.7445v1)
Errata and addenda by Darij Grinberg

I will refer to the results appearing in the note “The Theory of Witt Vectors”
by the numbers under which they appear in this note (specifically, in its version
of May 7th, 20091).

10. Errata

• Page 2, proof of Lemma 1.4: Replace “ypi(p−n)” by “ypi−1(p−n)” (in the
displayed equation, just after the binomial coefficient).

• Page 4: “Letting X1, Y1, X2, Y2, . . . be indeterminates” should be “Letting
X0, X1, X1, Y1, X2, Y2, . . . be indeterminates”.

• Page 4, proof of Theorem 1.5: Throughout the proof, the indexing of the
Si is wrong: Every “Spi” should be replaced by “Si”; also, “S1”, “Sp” and
“Spn” should be “S0”, “S1” and “Sn”, respectively.

That said, of course, the notation you are using from §2 on is different.
Maybe it is worth pointing this out, that the Sk introduced in §1 are the Spk

(and not the Sk) in §2 and later.

• Page 4, proof of Theorem 1.5: In the last displayed equation of the proof,
replace “τ (x1)+ pτ (x1)” by “τ (x0)+ pτ (x1)”. Similarly, replace “τ (y1)+
pτ (y1)” by “τ (y0) + pτ (y1)”, and replace “τ (s̃1) + pτ (s̃1)” by “τ (s̃0) +
pτ (s̃1)”.

• Page 7: In the displayed equation “wn
(
(Sn)n∈P

)
= wn

(
(Xn)n∈P

)
+wn

(
(Yn)n∈P

)
”,

you are using the letter “n” in two different meanings (as an index and as
a variable). I suggest replacing it by “wm

(
(Sn)n∈P

)
= wm

(
(Xn)n∈P

)
+

wm
(
(Yn)n∈P

)
”.

• Page 7, Example 2.12: Replace “
n
∑

i=0
piXpn−i

i ” by “
n
∑

i=0
piXpn−i

pi ”.

• Page 8, Theorem 2.13: “reprsentatives”→ “representatives”.

• Page 8, proof of Theorem 2.13: Replace “x̃pi” and “ỹpi” by “x̃i” and “ỹi”,
respectively (in the third displayed equation of this proof).

1This version is exactly the version that is available on the arXiv under the identifier
arXiv:1409.7445v1; it also is exactly the version that used to be available at http://www.
math.harvard.edu/~rabinoff/misc/witt.pdf.
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• Page 10, proof of Lemma 3.2: Replace “yn ∈ Z [X1, . . . , Xn]” by “yn ∈
Z [x1, . . . , xn]”.

• Page 10, proof of Lemma 3.2: Replace “for some choice of xn ∈ A” by “for
some choice of xn ∈ B”.

• Page 12, proof of Theorem 2.6: When you say “The unicity of the ring
structure on W (A)”, it might be helpful to clarify that you are talking
about the unicity of the whole functor W, not of a single ring structure
W (A) considered in isolation. (I don’t think the latter would be unique,
without the functoriality requirement.)

• Page 12, proof of Theorem 2.6: I think your proof is missing a part: the
proof of the fact that every element of W (A) has an additive inverse (one of
the ring axioms). To prove this, I would again argue by functoriality (first
constructing the additive inverse of the Witt vector X = (X1, X2, X3, . . .) in
W (Q [X1, X2, X3, . . .]), then showing (using Lemma3.2) that its Witt coor-
dinates belong to Z [X1, X2, X3, . . .], then projecting it onto W (A) for any
A).

• Page 12, §3: I think it is worth explicitly stating (as a proposition?) the fact
that the bijection x 7→ fx : W (A) → Λ (A) introduced in Corollary 3.3 is a
ring homomorphism. This is easy to prove2, and used a few times in the
rest of your paper.

• Page 13, Proposition 4.5: Replace “sn =

{
xn if xn 6= 0
yn if yn 6= 0

” by “sn =

{
xn, if yn = 0;
yn, if xn = 0

”.

(Otherwise, you are making no claim about the case when both xn and yn
are 0.)

• Page 13, proof of Proposition 4.5: “the equality of polynomial equations”
→ “the equality of polynomials” maybe?

• Page 14, §5: “Verchiebung”→ “Verschiebung”.

• Page 15, Lemma 5.2: “two natural transformations”→ “two natural trans-
formations between group-valued functors”. (This is to clarify that the
natural transformations have to preserve the groups’ addition.)

• Page 15, proof of Lemma 5.2: “Let An = A [X1, X2, . . . , Xn]” should be “Let
An = K [X1, X2, . . . , Xn]”.

2It requires showing that fxy = fx ·̂ fy and fx+y = fx+̂ fy for any x, y ∈ W (A) (where ·̂ and +̂
are the multiplication and the addition in the ring Λ (A)), and that f1 = 1− t and f0 = 1.
Proving that fxy = fx ·̂ fy for any x, y ∈ W (A) is easy: it follows (by functoriality) from
fXY = fX ·̂ fY (where X and Y are as in the proof of Theorem 2.6), which was proven in the
proof of Theorem 2.6. Similarly, the other properties can be shown.

2



Errata to “The Theory of Witt Vectors” June 14, 2017

• Page 15, proof of Lemma 5.2: The notation An (for K [X1, X2, . . . , Xn]) con-
flicts with the notation A0 (for K [x]). I would suggest changing one of the
two notations.

• Page 15, proof of Lemma 5.2: “commutivity”→ “commutativity”.

• Page 19, proof of Proposition 5.10: Remove the sentence “By Proposition
5.9, we may assume that n and m are prime” (nothing wrong about it, but
it is unnecessary). Replace “Since m and n are distinct primes” by “Since
m and n are relatively prime”.

• Page 19, proof of Proposition 5.12: The letter “N” should be replaced by a
(operatorname, or mathrm-shaped) “N” several times (whenever it stands
for the norm map).

• Page 19, proof of Proposition 5.12: Replace “Now let n > 1” by “Now let
n ≥ 1”.

• Page 20, Theorem 5.14: “reprsentatives”→ “representatives”.

• Page 21, proof of Theorem 5.14: Replace all three summation signs by

“
∞
∑

n=0
”.

• Page 22, proof of Theorem 6.1: Replace “σm (y)” by “σm (x)” (after “so by
induction”).

• Page 22, proof of Theorem 6.1: Replace “σn (y) = σpi (y) ◦ σm (y)” by
“σn (x) = σpi (σm (x))”.

• Page 22, proof of Theorem 6.1: Replace “σn (y) ≡” by “σn (x) ≡” (twice).

• Page 22, proof of Theorem 6.1: Replace “σn (y)−” by “σn (x)−”.

• Page 24, §7: Replace “since is difficult” by “since it is difficult”.

• Page 25, proof of Lemma 7.3: In the first displayed equation of this proof,
add a “x” addend on the left hand side (the sum should start with x, not

with
xp

p
).

• Page 25, proof of Lemma 7.3: Replace “xpn
coefficient” by “xpn

-coefficient”.

• Page 25, proof of Lemma 7.3: After “p - s”, add “and s > 1”.

• Page 26, proof of Lemma 7.4: Replace “a pth power” by “a power of p”
(twice).

• Page 26, Lemma 7.5: Replace “ ∏
r≥1

” by “ ∏
r≥0

”.
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• Page 26, Lemma 7.5: I would suggest clarifying that the product ∏
r≥0

hexp
(

xpr tpr
)

is taken in A [[t]], not in Λ (A).

• Page 26, proof of Lemma 7.5: Replace every appearance of “ ∏
r≥1

”, “ ∏
n≥1

” or

“ ∏
m≥1

” by “ ∏
r≥0

”, “ ∏
n≥0

” or “ ∏
m≥0

”, respectively.

• Page 27, Theorem 7.6: Replace “ ∏
r≥1

” by “ ∏
r≥0

”.

• Page 27, Theorem 7.6: I would suggest clarifying that the product ∏
r≥0

hexp
(

xpr tpr
)

is taken in A [[t]], not in Λ (A).

• Page 27: In “every element of Λ̂ (N ) := 1 +N [t] can be written uniquely
as a finite product ∏ (1− antn)”, I would replace the product sign “∏” by

“
∞
∏

n=0
” (as the reader would otherwise expect

∞
∏

n=1
instead). (Alternatively,

you can replace it by “
∞
∏

n=1
”, but then you’d need to replace “Λ̂ (N ) :=

1 +N [t]” by “Λ̂ (N ) := 1 + tN [t]”.)

11. Addenda

Let me now add some further properties of Witt vectors.
I shall use the notations of §2–§7 of your notes. In particular, the Witt polyno-

mials wn will be defined as in Definition 2.4 (not as in §1): namely, by

wn = ∑
d|n

dXn/d
d ∈ Z [{Xd : d | n}] .

Thus, if p is a prime and if n is a nonnegative integer, then the definition of wpn

yields

wpn = ∑
d|pn

dXpn/d
d =

n

∑
i=0

piXpn−i

pi (1)

(since the positive divisors of pn are p0, p1, . . . , pn).
Sam Raskin has pointed out to me that Theorem 6.6 can be generalized:

namely, the condition that L be perfect can be dropped from the definition of
a p-ring. In other words, the following holds:

Theorem 11.1. Let p be a prime. Let R be a ring equipped with a de-
creasing sequence R = a0 ⊃ a1 ⊃ a2 ⊃ a3 ⊃ · · · of ideals such that
(an · am ⊂ an+m for all n ≥ 0 and m ≥ 0). Equip R with the topology defined
by this sequence of ideals. Assume that R is Hausdorff and complete for this
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topology. Assume that the residue ring L = R/a1 has p · 1L = 0. Let π denote
the canonical projection R→ R/a1 = L.

Let K be a perfect ring of characteristic p. Let f : K → L be a ring homo-
morphism.

There exists a unique continuous ring homomorphism θ : Wp (K) → R
making the square

Wp (K)
θ //

w1
��

R

π
��

K
f

// L

(2)

commute.

Theorem 11.1 generalizes your Theorem 6.6.
The proof of Theorem 11.1 given below is (at least on a superficial level) quite

different from your proof of Theorem 6.6; it is inspired by the proof of [BriCon09,
Lemma 4.4.1] (thanks again to Sam Raskin for the reference).3

Before I prove Theorem 11.1, let me derive various facts that will be used in
its proof and (some of which) are of independent interest:

Proposition 11.2. Let R be a ring equipped with a decreasing se-
quence R = a0 ⊃ a1 ⊃ a2 ⊃ a3 ⊃ · · · of ideals such that
(an · am ⊂ an+m for all n ≥ 0 and m ≥ 0). Equip R with the topology defined
by this sequence of ideals. Assume that R is Hausdorff for this topology.

(a) We have
⋂

n≥0
an = 0.

(b) If u and v are two elements of R such that every i ≥ 0 satisfies u ≡
v mod ai, then u = v.

(c) For every n ≥ 0, let πn be the canonical projection R→ R/an.
Let A be a set, and let ϕ : A→ R and ψ : A→ R be two maps. Assume that

πn ◦ ϕ = πn ◦ ψ for every n ≥ 0. Then, ϕ = ψ.

Proof of Proposition 11.2. Recall the definition of the topology on R: A subset S of
R is said to be open if and only if for every s ∈ S, there exists an n ≥ 0 satisfying
s + an ⊂ S.

(a) Let u ∈ ⋂
n≥0

an. We shall show that u = 0.

Let P be an open subset of R containing u. Let Q be an open subset of R
containing 0. (We shall not use the fact that Q is open.)

The subset P of R is open. In other words, for every s ∈ P, there exists an
n ≥ 0 satisfying s + an ⊂ P (by the definition of the topology on R). Applying
this to s = u, we conclude that there exists an n ≥ 0 satisfying u + an ⊂ P. Let p
be this n. Thus, p ≥ 0 satisfies u + ap ⊂ P.

3As far as I recall, I devised this proof based on discussions with Sam Raskin at MIT in 2016.
Sam seems to have a cleaner and shorter proof, which I unfortunately have never had the
time to fully comprehend. Sorry, Sam, for making a mess of your ideas!
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On the other hand, 0 ∈ Q (since Q contains 0).
But u ∈ ⋂

n≥0
an ⊂ ap and thus u ≡ 0 mod ap. Hence, 0 ≡ u mod ap. In other

words, 0 ∈ u + ap ⊂ P. Combining this with 0 ∈ Q, we obtain 0 ∈ P∩Q. Hence,
the set P ∩Q contains at least one element (namely, 0). Thus, P ∩Q 6= ∅.

Now, forget that we fixed P and Q. We thus have shown that if P is an open
subset of R containing u, and if Q is an open subset of R containing 0, then
P ∩Q 6= ∅. Since the topological space R is Hausdorff, this shows that u = 0.

Now, forget that we fixed u. We thus have proven that every u ∈ ⋂
n≥0

an

satisfies u = 0. In other words,
⋂

n≥0
an = 0. This proves Proposition 11.2 (a).

(b) Let u and v be two elements of R such that every i ≥ 0 satisfies u ≡
v mod ai. Hence, every i ≥ 0 satisfies u− v ∈ ai (since u ≡ v mod ai). In other
words, u − v ∈ ⋂

i≥0
ai =

⋂
n≥0

an = 0 (by Proposition 11.2 (a)). In other words,

u− v = 0, so that u = v. This proves Proposition 11.2 (b).
(c) Let a ∈ A. Let n ≥ 0. Then, πn (ϕ (a)) = (πn ◦ ϕ)︸ ︷︷ ︸

=πn◦ψ

(a) = (πn ◦ ψ) (a) =

πn (ψ (a)). Since πn is the canonical projection R → R/an, this rewrites as
ϕ (a) ≡ ψ (a)mod an. In other words, ϕ (a)− ψ (a) ∈ an.

Now, forget that we fixed n. We thus have proven that ϕ (a)− ψ (a) ∈ an for
each n ≥ 0. Hence, ϕ (a)− ψ (a) ∈ ⋂

n≥0
an = 0 (by Proposition 11.2 (a)), so that

ϕ (a)− ψ (a) = 0 and thus ϕ (a) = ψ (a).
Now, forget that we fixed a. We have now shown that ϕ (a) = ψ (a) for each

a ∈ A. In other words, ϕ = ψ. This proves Proposition 11.2 (c).

Proposition 11.3. Let R be a ring equipped with a decreasing se-
quence R = a0 ⊃ a1 ⊃ a2 ⊃ a3 ⊃ · · · of ideals such that
(an · am ⊂ an+m for all n ≥ 0 and m ≥ 0). Equip R with the topology defined
by this sequence of ideals. Assume that R is Hausdorff for this topology. For
every n ≥ 0, let πn be the canonical projection R→ R/an.

Let A be a ring. Let γ : A → R be a map. Assume that the map πn ◦ γ :
A→ R/an is a ring homomorphism for each n ≥ 0. Then, the map γ is a ring
homomorphism.

Proof of Proposition 11.3. We need to show the following four claims:
Claim 1: We have γ (0A) = 0R.
Claim 2: We have γ (a) + γ (b) = γ (a + b) for any a ∈ A and b ∈ A.
Claim 3: We have γ (1A) = 1R.
Claim 4: We have γ (a) γ (b) = γ (ab) for any a ∈ A and b ∈ A.
We shall only prove Claim 4; all the other three claims can be proven in the

same vein.
Proof of Claim 4: Let a ∈ A and b ∈ A. Let n be a nonnegative integer. Then,

the map πn ◦γ : A→ R/an is a ring homomorphism (by our assumption). Thus,
(πn ◦ γ) (a) · (πn ◦ γ) (b) = (πn ◦ γ) (ab).
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Now, recall that πn is the canonical projection R → R/an, and thus a ring
homomorphism. Hence,

πn (γ (a) γ (b)) = πn (γ (a))︸ ︷︷ ︸
=(πn◦γ)(a)

·πn (γ (b))︸ ︷︷ ︸
=(πn◦γ)(b)

= (πn ◦ γ) (a) · (πn ◦ γ) (b)

= (πn ◦ γ) (ab) = πn (γ (ab)) .

In other words, γ (a) γ (b) ≡ γ (ab)mod an (since πn is the canonical projection
R→ R/an). In other words, γ (a) γ (b)− γ (ab) ∈ an.

Now, forget that we fixed n. We thus have shown that γ (a) γ (b)− γ (ab) ∈ an
for every n ≥ 0. Thus, γ (a) γ (b)− γ (ab) ∈ ⋂

n≥0
an = 0 (by Proposition 11.2 (a)).

In other words, γ (a) γ (b)− γ (ab) = 0, so that γ (a) γ (b) = γ (ab). This proves
Claim 4.

As we have said, the Claims 1, 2 and 3 can be shown by analogous arguments.
Thus, all four claims are proven, and the proof of Proposition 11.3 is complete.

Proposition 11.4. Let R be a ring equipped with a decreasing se-
quence R = a0 ⊃ a1 ⊃ a2 ⊃ a3 ⊃ · · · of ideals such that
(an · am ⊂ an+m for all n ≥ 0 and m ≥ 0). Equip R with the topology defined
by this sequence of ideals. For every n ≥ 0, let πn be the canonical projection
R→ R/an.

Let A be a topological space. Let ϕ : A→ R be a map. Assume that for each
n ≥ 0, the map πn ◦ ϕ : A → R/an is continuous (where R/an is equipped
with the discrete topology). Then, the map ϕ : A→ R is continuous.

Proof of Proposition 11.4. Recall the definition of the topology on R: A subset S of
R is said to be open if and only if for every s ∈ S, there exists an n ≥ 0 satisfying
s + an ⊂ S.

Let U be an open subset of R. We shall show that the subset ϕ−1 (U) of A is
open.

Indeed, let t ∈ ϕ−1 (U) be arbitrary. Thus, ϕ (t) ∈ U.
The subset U of R is open. In other words, for every s ∈ U, there exists an

n ≥ 0 satisfying s + an ⊂ U (by the definition of the topology on R). Applying
this to s = ϕ (t), we conclude that there exists an n ≥ 0 satisfying ϕ (t) + an ⊂ U.
Consider this n.

Consider the set R/an as a topological space, equipped with the discrete topol-
ogy. Then, each subset of R/an is open. In particular, the subset {πn (ϕ (t))} of
R/an is open.

By our assumption, the map πn ◦ ϕ : A → R/an is continuous. Thus, for
each open subset Q of R/an, the subset (πn ◦ ϕ)−1 (Q) of A is open. Applying
this to Q = {πn (ϕ (t))}, we conclude that the subset (πn ◦ ϕ)−1 ({πn (ϕ (t))})
of A is open (since the subset {πn (ϕ (t))} of R/an is open). Denote this subset
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(πn ◦ ϕ)−1 ({πn (ϕ (t))}) by G. Thus, G = (πn ◦ ϕ)−1 ({πn (ϕ (t))}) is an open
subset of A.

Furthermore, G ⊂ ϕ−1 (U) 4 and t ∈ G 5. Hence, G is an open neighbor-
hood of t (since G is open and satisfies t ∈ G) and is a subset of ϕ−1 (U) (since
G ⊂ ϕ−1 (U)). We thus have shown that there exists some open neighborhood
of t that is a subset of ϕ−1 (U) (namely, G).

Now, forget that we fixed t. We have now proven that for each t ∈ ϕ−1 (U),
there exists some open neighborhood of t that is a subset of ϕ−1 (U). This means
that the subset ϕ−1 (U) of A is open (by one of the criteria for openness).

Now, forget that we fixed U. We thus have shown that if U is an open subset
of R, then the subset ϕ−1 (U) of A is open. In other words, the map ϕ : A → R
is continuous. This proves Proposition 11.4.

Proposition 11.5. Let p be a positive integer. Let R be a ring equipped with a
decreasing sequence R = a0 ⊃ a1 ⊃ a2 ⊃ a3 ⊃ · · · of ideals such that

(an · am ⊂ an+m for all n ≥ 0 and m ≥ 0) . (3)

Assume that the residue ring L = R/a1 has p · 1L = 0.
(a) We have an

1 ⊂ an for every n ≥ 0.
(b) We have p · 1R ∈ a1 and pR ⊂ a1.
(c) We have pn · 1R ∈ an for every n ≥ 0.
(d) If x and y are two elements of R satisfying x ≡ y mod a1, then

xpi ≡ ypi
mod ai+1 for every i ≥ 0.

(e) Every u ∈ a1, every n ≥ 0 and every i ∈ {0, 1, . . . , n} satisfy piupn−i ∈ an.
(f) If a and b are two elements of R and i is a positive integer satisfying

a ≡ b mod ai, then
ap ≡ bp mod ai+1.

(g) We have pan−1 ⊂ an for every positive integer n.

Proof of Proposition 11.5. (a) Using (3), we can easily prove Proposition 11.5 (a)
(by induction on n). (The induction base follows from a0

1 ⊂ R = a0.)
(b) We have p · 1R ∈ a1 (since the projection of p · 1R onto R/a1 = L is p · 1L =

0) and thus pR = (p · 1R)︸ ︷︷ ︸
∈a1

R ⊂ a1R ⊂ a1 (since a1 is an ideal of R). This proves

4Proof. Let g ∈ G. Thus, g ∈ G = (πn ◦ ϕ)−1 ({πn (ϕ (t))}). Hence, (πn ◦ ϕ) (g) ∈ {πn (ϕ (t))},
so that (πn ◦ ϕ) (g) = πn (ϕ (t)). Hence, πn (ϕ (t)) = (πn ◦ ϕ) (g) = πn (ϕ (g)). In other
words, ϕ (t) ≡ ϕ (g)mod an (since πn is the canonical projection R → R/an). Thus, ϕ (g) ∈
ϕ (t) + an ⊂ U. Hence, g ∈ ϕ−1 (U).

Now, forget that we fixed g. We thus have proven that g ∈ ϕ−1 (U) for each g ∈ G. In
other words, G ⊂ ϕ−1 (U).

5Proof. We have (πn ◦ ϕ) (t) = πn (ϕ (t)) ∈ {πn (ϕ (t))} and thus t ∈
(πn ◦ ϕ)−1 ({πn (ϕ (t))}) = G.
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Proposition 11.5 (b).

(c) We have pn · 1R =

p · 1R︸ ︷︷ ︸
∈a1


n

∈ an
1 ⊂ an (by Proposition 11.5 (a)) for every

n ≥ 0. This proves Proposition 11.5 (c).
(g) Let n be a positive integer. Proposition 11.5 (b) yields pR ⊂ a1. Now,

p an−1︸︷︷︸
⊂Ran−1

⊂ pR︸︷︷︸
⊂a1

an−1 ⊂ a1 · an−1 ⊂ an (by (3), applied to 1 and n− 1 instead of n

and m). This proves Proposition 11.5 (g).
(f) Let a and b be two elements of R, and let i be a positive integer satisfying

a ≡ b mod ai.
Since i is a positive integer, we have i ≥ 1. Thus, ai ⊂ a1 (since a0 ⊃ a1 ⊃ a2 ⊃

a3 ⊃ · · · ).
Proposition 11.5 (b) yields p · 1R ∈ a1 and pR ⊂ a1.
It is well-known that every u ∈ R and v ∈ R and g ≥ 0 satisfy

ug − vg = (u− v)

(
g−1

∑
k=0

ukvg−1−k

)
. (4)

But a ≡ b mod ai. Hence, a− b ∈ ai ⊂ a1, so that a ≡ b mod a1. Also,

p−1

∑
k=0

ak︸︷︷︸
≡bk mod a1

(since a≡b mod a1)

bp−1−k ≡
p−1

∑
k=0

bkbp−1−k︸ ︷︷ ︸
=bp−1

=
p−1

∑
k=0

bp−1 = pbp−1

= p · 1R︸ ︷︷ ︸
≡0 mod a1

(since p·1R∈a1)

bp−1 ≡ 0 mod a1;

thus,
p−1
∑

k=0
akbp−1−k ∈ a1. Now, (4) (applied to a = u, b = v and g = p) yields

ap − bp = (a− b)︸ ︷︷ ︸
∈ai

(
p−1

∑
k=0

akbp−1−k

)
︸ ︷︷ ︸

∈a1

∈ aia1 ⊂ ai+1

(by (3), applied to n = i and m = 1). In other words, ap ≡ bp mod ai+1. This
proves Proposition 11.5 (f).

(d) Proposition 11.5 (d) can be proven by induction over i, similarly to the
proof of Lemma 1.4. However, let me sketch a slightly different proof, for the
sake of diversity. We proceed by induction over i. The case of i = 0 is obvious.
The induction step proceeds as follows: Let i ≥ 1, and assume that xpi−1 ≡
ypi−1

mod ai. We must show that xpi ≡ ypi
mod ai+1.

9



Errata to “The Theory of Witt Vectors” June 14, 2017

Set a = xpi−1
and b = ypi−1

. Then, a = xpi−1 ≡ ypi−1
= b mod ai. Hence,

Proposition 11.5 (f) yields ap ≡ bp mod ai+1. Since a = xpi−1
, we have ap =(

xpi−1
)p

= xpi
. Similarly, bp = ypi

. Thus, xpi
= ap ≡ bp = ypi

mod ai+1. This
completes the induction step; thus, Proposition 11.5 (d) is proven.

(e) Let u ∈ a1, n ≥ 0 and i ∈ {0, 1, . . . , n}. We have u ∈ a1, so that u ≡
0 mod a1. Thus, Proposition 11.5 (d) (applied to u, 0 and n− i instead of x, y and
i) yields upn−i ≡ 0pn−i

= 0 mod a(n−i)+1 (since pn−i is a positive integer). Thus,

upn−i ∈ a(n−i)+1 ⊂ an−i. Now,

pi upn−i︸︷︷︸
∈an−i⊂Ran−i

∈ piR︸︷︷︸
=pi·1RR

an−i = pi · 1R︸ ︷︷ ︸
∈ai

(by Proposition 11.5 (c),
applied to i instead of n)

Ran−i

⊂ ai Ran−i︸ ︷︷ ︸
⊂an−i

(since an−i is an
ideal of R)

⊂ aian−i ⊂ an

(by (3), applied to i and n− i instead of n and m). This proves Proposition 11.5
(e).

The following proposition is just the fundamental theorem on homomorphisms
(in a slight disguise):

Proposition 11.6. Let A, B and C be three rings. Let ϕ : A→ B be a surjective
ring homomorphism. Let ψ : A → C be a ring homomorphism such that
ψ (Ker ϕ) = 0. Then, there exists a unique ring homomorphism ζ : B → C
such that ζ ◦ ϕ = ψ.

Proof of Proposition 11.6. The surjective ring homomorphism ϕ : A → B induces
a canonical ring isomorphism B ∼= A/ Ker ϕ. Thus, the ring B and the ring ho-
momorphism ϕ : A→ B satisfy the universal property of the quotient A/ Ker ϕ.
But this is precisely the statement of Proposition 11.6.

Proposition 11.7. Let p be a prime. Let R be a ring equipped with a de-
creasing sequence R = a0 ⊃ a1 ⊃ a2 ⊃ a3 ⊃ · · · of ideals such that
(an · am ⊂ an+m for all n ≥ 0 and m ≥ 0). Assume that the residue ring L =
R/a1 has p · 1L = 0. Let π denote the canonical projection R→ R/a1 = L. For
every n ≥ 0, let πn be the canonical projection R→ R/an.

Let n ≥ 0. There exists a unique ring homomorphism w̃pn : Wp (L)→ R/an
such that the diagram

Wp (R)
wpn

//

Wp(π)
��

R

πn
��

Wp (L)
w̃pn

// R/an

(5)

10
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commutes.

Proof of Proposition 11.7. The map π : R → L is surjective (being a projection).
Hence, the map Wp (π) : Wp (R) → Wp (L) is also surjective6. Furthermore, this
map Wp (π) is a ring homomorphism (since π is a ring homomorphism).

Now, let x ∈ Ker
(
Wp (π)

)
. We are going to show that wpn (x) ∈ an.

Indeed, the definition of Wp (π) yields(
Wp (π)

)
(x) = (π (xm))m∈Pp

.

Hence, (π (xm))m∈Pp
=
(
Wp (π)

)
(x) = 0 (since x ∈ Ker

(
Wp (π)

)
). In other

words, π (xm) = 0 for every m ∈ Pp. In other words,

xm ∈ a1 for every m ∈ Pp (6)

(because π is the canonical projection R → R/a1, and therefore the equality
π (xm) = 0 means that xm ∈ a1).

Every i ∈ {0, 1, . . . , n} satisfies pi ∈ Pp and thus xpi ∈ a1 (by (6), applied to
m = pi), so that

pixpn−i

pi ∈ an (7)

(by Proposition 11.5 (e), applied to u = xpi).
From (1), we obtain

wpn (x) =
n

∑
i=0

pixpn−i

pi︸ ︷︷ ︸
∈an

(by (7))

∈
n

∑
i=0

an ⊂ an.

Thus, πn
(
wpn (x)

)
= 0 (since πn is the canonical projection R → R/an). Hence,(

πn ◦ wpn
)
(x) = πn

(
wpn (x)

)
= 0.

Now, forget that we fixed x. We thus have shown that(
πn ◦ wpn

)
(x) = 0 for every x ∈ Ker

(
Wp (π)

)
.

In other words, (
πn ◦ wpn

) (
Ker

(
Wp (π)

))
= 0.

6Proof. Recall that Wp (R) = RPp (as sets) and Wp (L) = LPp (as sets). The map Wp (π) is defined
by

Wp (π)
(
(an)n∈Pp

)
= (π (an))n∈Pp

for every (an)n∈Pp
∈Wp (R) .

In other words, the map Wp (π) : Wp (R) → Wp (L) is identical with the map ∏
q∈Pp

π : RPp →

LPp . But the latter map is clearly surjective (since the map π is surjective). Hence, the former
map is surjective. Qed.

11
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On the other hand, wpn : Wp (R)→ R is a ring homomorphism (by Theorem 2.6
(ii), applied to R, Pp and pn instead of A, P and n). The map πn : R → R/an
also is a ring homomorphism (being the canonical projection). Hence, the map
πn ◦ wpn : Wp (R) → R/an is a ring homomorphism (being the composition of
two ring homomorphisms).

Thus, Proposition 11.6 (applied to A = Wp (R), B = Wp (L), C = R/an, ϕ =
Wp (π) and ψ = πn ◦ wpn) yields that there exists a unique ring homomorphism
ζ : Wp (L) → R/an such that ζ ◦Wp (π) = πn ◦ wpn . Renaming ζ as w̃pn in this
statement, we obtain the following: There exists a unique ring homomorphism
w̃pn : Wp (L) → R/an such that w̃pn ◦Wp (π) = πn ◦ wpn . In other words, there
exists a unique ring homomorphism w̃pn : Wp (L)→ R/an such that the diagram
(5) commutes. This proves Proposition 11.7.

Definition 11.8. Let K and R be two rings. A map ϕ : K → R
is said to be multiplicative if and only if it satisfies ϕ (1) = 1 and
(ϕ (ab) = ϕ (a) ϕ (b) for every a ∈ K and b ∈ K).

Proposition 11.9. Let K and R be two rings. Let ϕ : K → R be a multiplicative
map. Let v ∈ K and i ≥ 0. Then, ϕ

(
vi) = (ϕ (v))i.

Proof of Proposition 11.9. This follows by straightforward induction on i.

Proposition 11.10. Let p be a prime. Let R be a ring equipped with a de-
creasing sequence R = a0 ⊃ a1 ⊃ a2 ⊃ a3 ⊃ · · · of ideals such that
(an · am ⊂ an+m for all n ≥ 0 and m ≥ 0). Equip R with the topology defined
by this sequence of ideals. Assume that R is Hausdorff for this topology.

Assume that the residue ring L = R/a1 has p · 1L = 0. Let π denote the
canonical projection R→ R/a1 = L.

Let K be a perfect ring of characteristic p. Let f : K → L be any map. Then,
there exists at most one multiplicative map r : K → R satisfying

(π (r (a)) = f (a) for every a ∈ K) . (8)

Proof of Proposition 11.10. We need to show that if r1 and r2 are two multiplicative
maps r : K → R satisfying (8), then r1 = r2.

So let r1 and r2 be two multiplicative maps r : K → R satisfying (8). We must
show that r1 = r2.

Let u ∈ K. Let n ≥ 0. Then, the element u1/pn
of K is well-defined (since K

is a perfect ring of characteristic p). Moreover, r1 is multiplicative; thus, Propo-

sition 11.9 (applied to ϕ = r1, v = u1/pn
and i = pn) yields r1

((
u1/pn

)pn)
=(

r1

(
u1/pn

))pn

. Since
(

u1/pn
)pn

= u, this rewrites as r1 (u) =
(

r1

(
u1/pn

))pn

.

Similarly, r2 (u) =
(

r2

(
u1/pn

))pn

.

12
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But the map r1 satisfies (8). Hence, (8) (applied to r = r1 and a = u1/pn
) yields

π
(

r1

(
u1/pn

))
= f

(
u1/pn

)
. Similarly, π

(
r2

(
u1/pn

))
= f

(
u1/pn

)
. Hence,

π
(

r1

(
u1/pn

))
= f

(
u1/pn

)
= π

(
r2

(
u1/pn

))
. In other words, r1

(
u1/pn

)
≡

r2

(
u1/pn

)
mod a1 (since π is the canonical projection R→ R/a1). Hence, Propo-

sition 11.5 (d) (applied to x = r1

(
u1/pn

)
, y = r2

(
u1/pn

)
and i = n) yields(

r1

(
u1/pn

))pn

≡
(

r2

(
u1/pn

))pn

mod an+1. Thus,

r1 (u) =
(

r1

(
u1/pn

))pn

≡
(

r2

(
u1/pn

))pn

= r2 (u)mod an+1.

Thus, r1 (u)− r2 (u) ∈ an+1 ⊂ an.
Now, forget that we fixed n. We thus have shown that r1 (u)− r2 (u) ∈ an for

every n ≥ 0. In other words, r1 (u) − r2 (u) ∈
⋂

n≥0
an = 0 (by Proposition 11.2

(a)). In other words, r1 (u)− r2 (u) = 0, so that r1 (u) = r2 (u).
Now, forget that we fixed u. We thus have shown that r1 (u) = r2 (u) for

every u ∈ K. In other words, r1 = r2. This completes the proof of Proposition
11.10.

Theorem 11.11. Let p be a prime. Let R be a ring equipped with a de-
creasing sequence R = a0 ⊃ a1 ⊃ a2 ⊃ a3 ⊃ · · · of ideals such that
(an · am ⊂ an+m for all n ≥ 0 and m ≥ 0). Equip R with the topology defined
by this sequence of ideals. Assume that R is Hausdorff and complete for this
topology. Assume that the residue ring L = R/a1 has p · 1L = 0. Let π denote
the canonical projection R→ R/a1 = L.

Let K be a perfect ring of characteristic p. Let f : K → L be a ring homo-
morphism.

There exists a unique multiplicative map r : K → R satisfying

(π (r (a)) = f (a) for every a ∈ K) . (9)

Theorem 11.11 is a generalization of the existence of a Teichmüller system of
representatives for a perfect ring7.

Proof of Theorem 11.11. Proposition 11.5 (b) shows that p · 1R ∈ a1 and pR ⊂ a1.
The map π is surjective (since it is the canonical projection R→ R/a1).
Proposition 11.10 shows that there exists at most one multiplicative map r :

K → R satisfying (9). It thus remains to prove that there exists at least one such
map. In other words, it remains to construct such a map.

7More precisely: If we apply it to L = K and f = idK, where R is a p-ring with residue
ring K, then we recover the classical result that there exists a unique Teichmüller system of
representatives K → R.

13
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Let a ∈ K. Then, the element a1/pi
of K is defined for every i ∈ {0, 1, 2, . . .}

(since K is a perfect ring of characteristic p).
For every i ∈ {0, 1, 2, . . .}, choose some gi ∈ R such that π (gi) = f

(
a1/pi

)
.

(This is well-defined, since π is surjective.) Thus, a sequence (g0, g1, g2, . . .) ∈ R∞

of elements of R is defined. We have

gpi

i ≡ gpi+1

i+1 mod ai+1 for every i ≥ 0. (10)

8 Thus, the sequence
(

gp0

0 , gp1

1 , gp2

2 , . . .
)

is Cauchy with respect to the topology

on R. Hence, the limit lim
n→∞

gpn

n is defined. Denote this limit by g′. Thus, g′ =

lim
n→∞

gpn

n . From (10), we obtain

g′ ≡ gpi

i mod ai+1 for every i ≥ 0. (11)

We notice the following fact: If u ∈ R and i ∈ {0, 1, 2, . . .} are such that
π (u) = f

(
a1/pi

)
, then

g′ ≡ upi
mod ai+1. (12)

9

The value of g′ does not depend on the choice of the elements gi
10. We

denote this value of g′ by r (a) (to stress its dependence on a). It has the property

8Proof of (10): Let i ≥ 0. The definition of gi yields π (gi) = f
(

a1/pi
)

. The definition of gi+1

yields π (gi+1) = f
(

a1/pi+1
)

. Hence,

π
(

gp
i+1

)
=

 π (gi+1)︸ ︷︷ ︸
= f
(

a1/pi+1
)


p

=
(

f
(

a1/pi+1
))p

= f

(a1/pi+1
)p

︸ ︷︷ ︸
=a1/pi


(since f is a ring homomorphism)

= f
(

a1/pi
)
= π (gi) .

In other words, gp
i+1 ≡ gi mod a1. Hence, Proposition 11.5 (d) (applied to x = gp

i+1 and y = gi)

yields
(

gp
i+1

)pi

≡ gpi

i mod ai+1. Now, gpi+1

i+1 =
(

gp
i+1

)pi

≡ gpi

i mod ai+1. This proves (10).
9Proof of (12): Let u ∈ R and i ∈ {0, 1, 2, . . .} be such that π (u) = f

(
a1/pi

)
. From π (u) =

f
(

a1/pi
)
= π (gi), we obtain u ≡ gi mod a1. Hence, Proposition 11.5 (d) (applied to x = u

and y = gi) yields upi ≡ gpi

i mod ai+1. Now, upi ≡ gpi

i ≡ g′mod ai+1 (by (11)). This proves
(12).

10Proof. We need to show that if g′1 and g′2 are two possible values of g′, then g′1 = g′2.
Indeed, let g′1 and g′2 be two possible values of g′. Let i ∈ {0, 1, 2, . . .}. Pick any u ∈ R

satisfying π (u) = f
(

a1/pi
)

(such a u exists, since π is surjective). Then, (12) (applied to

14
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that if u ∈ R and i ∈ {0, 1, 2, . . .} are such that π (u) = f
(

a1/pi
)

, then

r (a) ≡ upi
mod ai+1 (13)

(indeed, this is just a restatement of (12) using the new notation r (a) for g′).
Now, forget that we fixed a. We thus have defined an element r (a) ∈ R for

each a ∈ K, and noticed that this element satisfies (13). Thus, we have defined a
map r : K → R such that every a ∈ K satisfies (13). In order to prove Theorem
11.11, it remains to prove that this map r is multiplicative and satisfies (9).

Proof that r is multiplicative: We have r (1) = 1 11. Also, r (ab) = r (a) r (b) for
every a ∈ K and b ∈ K 12. Hence, the map r is multiplicative.

g′1 instead of g′) yields g′1 ≡ upi
mod ai+1 (since g′1 is one possible value of g′). Similarly,

g′2 ≡ upi
mod ai+1. Thus, g′1 ≡ upi ≡ g′2 mod ai+1. In other words, g′1 − g′2 ∈ ai+1 ⊂ ai, so that

g′1 ≡ g′2 mod ai.
Now, forget that we fixed i. We thus have proven that g′1 ≡ g′2 mod ai for each i ∈
{0, 1, 2, . . .}. Hence, g′1 = g′2 (by Proposition 11.2 (b), applied to u = g′1 and v = g′2), qed.

11Proof. Let i ∈ {0, 1, 2, . . .}. Then, f

11/pi︸︷︷︸
=1

 = f (1) = 1 (since f is a ring homomorphism),

and thus π (1) = 1 = f
(

11/pi
)

. Hence, (13) (applied to a = 1 and u = 1) yields r (1) ≡ 1pi
=

1 mod ai+1. Thus, r (1)− 1 ∈ ai+1 ⊂ ai, so that r (1) ≡ 1 mod ai.
Now, forget that we fixed i. We thus have shown that r (1) ≡ 1 mod ai for every i ∈
{0, 1, 2, . . .}. Hence, r (1) = 1 (by Proposition 11.2 (b), applied to u = r (1) and v = 1), qed.

12Proof. Let a ∈ K and b ∈ K. Let i ∈ {0, 1, 2, . . .}.
Pick some u ∈ R such that π (u) = f

(
a1/pi

)
. (Such a u exists, since π is surjective.) Hence,

(13) yields r (a) ≡ upi
mod ai+1.

Pick some v ∈ R such that π (v) = f
(

b1/pi
)

. (Such a v exists, since π is surjective.) Hence,

(13) (applied to b and v instead of a and u) yields r (b) ≡ vpi
mod ai+1.

Now,

π (uv) = π (u)︸ ︷︷ ︸
= f
(

a1/pi
) π (v)︸ ︷︷ ︸
= f
(

b1/pi
) = f

(
a1/pi

)
f
(

b1/pi
)

= f

a1/pi
b1/pi︸ ︷︷ ︸

=(ab)1/pi

 (since f is a ring homomorphism)

= f
(
(ab)1/pi)

.

Thus, (13) (applied to ab and uv instead of a and u) yields r (ab) ≡ (uv)pi
=

upi︸︷︷︸
≡r(a)modai+1

vpi︸︷︷︸
≡r(b)modai+1

≡ r (a) r (b)mod ai+1. Thus, r (ab)− r (a) r (b) ∈ ai+1 ⊂ ai, so that

r (ab) ≡ r (a) r (b)mod ai.
Now, forget that we fixed i. We thus have shown that r (ab) ≡ r (a) r (b)mod ai for all

i ∈ {0, 1, 2, . . .}. Thus, r (ab) = r (a) r (b) (by Proposition 11.2 (b), applied to u = r (ab) and
v = r (a) r (b)), qed.
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Proof that r satisfies (9): Let a ∈ K. Pick some u ∈ R such that π (u) = f (a).

(Such a u exists, since π is surjective.) Now, π (u) = f

 a︸︷︷︸
=a1=a1/p0

 = f
(

a1/p0
)

.

Hence, (13) (applied to i = 0) yields r (a) ≡ up0
= u1 = u mod a1. Hence,

π (r (a)) = π (u) = f (a). Thus, (9) is proven.
So we have defined a map r : K → R, and showed that this map r is multi-

plicative and satisfies (9). Thus, we have constructed the map r whose existence
was alleged in Theorem 11.11. This proves Theorem 11.11.

Lemma 11.12. Let p be a prime. Let K be a perfect ring of characteristic p.
Let x ∈ Wp (K). Then, there exist two elements y and z of Wp (K) such that
x = yp + pz.

Proof of Lemma 11.12. The ring K is a perfect ring of characteristic p. Hence, an
element x1/p

m of K is well-defined for every m ∈ Pp. Now, define a ∈ Wp (K) by

a =
(

x1/p
m

)
m∈Pp

. Then, am = x1/p
m for every m ∈ Pp. In other words, ap

m = xm for

every m ∈ Pp.
Let b = Fp (a). Then, Proposition 5.12 (applied to Pp, K, a and b instead of P,

A, x and y) yields the following:

1. We have bm ≡ ap
m mod pK for every m ∈ Pp.

2. We have Fp (a) ≡ ap mod pWp (K).

We have Fp (a) ≡ ap mod pWp (K). In other words, there exists some c ∈
Wp (K) such that Fp (a) = ap + pc. Consider this c.

We have pK = 0 (since K has characteristic p). Now, for every m ∈ Pp, we
have bm ≡ ap

m mod pK, thus bm = ap
m (since pK = 0), hence bm = ap

m = xm
(since ap

m = xm). Therefore, b = x. Comparing this with b = Fp (a), we obtain
Fp (a) = x. Thus, x = Fp (a) = ap + pc. Hence, there exist two elements y and z
of Wp (K) such that x = yp + pz (namely, y = a and z = c). This proves Lemma
11.12.

Proposition 11.13. Let p be a prime. Let R be a ring equipped with a de-
creasing sequence R = a0 ⊃ a1 ⊃ a2 ⊃ a3 ⊃ · · · of ideals such that
(an · am ⊂ an+m for all n ≥ 0 and m ≥ 0). Equip R with the topology defined
by this sequence of ideals. Assume that R is Hausdorff for this topology.

Assume that the residue ring L = R/a1 has p · 1L = 0. Let π denote the
canonical projection R→ R/a1 = L.

Let K be a perfect ring of characteristic p. Let G : Wp (K)→ L be any map.
Then, there exists at most one ring homomorphism θ : Wp (K) → R such

that π ◦ θ = G.

16



Errata to “The Theory of Witt Vectors” June 14, 2017

Proof of Proposition 11.13. We need to show that if θ1 and θ2 are two ring homo-
morphisms θ : Wp (K)→ R such that π ◦ θ = G, then θ1 = θ2.

So let θ1 and θ2 be two ring homomorphisms θ : Wp (K) → R such that
π ◦ θ = G. We must show that θ1 = θ2.

Define the maps πn for all n ≥ 0 as in Proposition 11.2 (c).
We first observe that

π1 ◦ θ1 = π1 ◦ θ2. (14)
13

We shall show that

πn ◦ θ1 = πn ◦ θ2 for every n ≥ 0. (15)

Proof of (15): We shall prove (15) by induction on n:
Induction base: The map π0 is the canonical projection R → R/a0 = 0 (since

a0 = R). Hence, any two maps become equal when composed with π0. In
particular, we thus have π0 ◦ θ1 = π0 ◦ θ2. In other words, (15) holds for n = 0.
This completes the induction base.

Induction step: Let N be a positive integer. Assume that (15) holds for n =
N − 1. We must show that (15) holds for n = N. In other words, we need to
prove that πN ◦ θ1 = πN ◦ θ2.

If N = 1, then this follows immediately from (14). Hence, we WLOG assume
that N 6= 1. Hence, N ≥ 2 (since N is a positive integer). Thus, N − 1 is a
positive integer.

We have assumed that (15) holds for n = N − 1. In other words, πN−1 ◦ θ1 =
πN−1 ◦ θ2. For every a ∈Wp (K), we have

θ1 (a) ≡ θ2 (a)mod aN−1 (16)

14 and
(θ1 (a))p ≡ (θ2 (a))p mod aN (17)

15 and
pθ1 (a) ≡ pθ2 (a)mod aN (18)

13Proof of (14): Both maps π1 and π are defined as the canonical projection R → R/a1. Hence,
these two maps are equal. In other words, π1 = π.

We know that θ1 is a ring homomorphism θ : Wp (K) → R such that π ◦ θ = G. Hence,
π ◦ θ1 = G. The same argument (applied to θ2 instead of θ1) shows that π ◦ θ2 = G. Hence,
π ◦ θ1 = G = π ◦ θ2. In light of π1 = π, this rewrites as π1 ◦ θ1 = π1 ◦ θ2. This proves (14).

14Proof of (16): Let a ∈Wp (K). Then,

πN−1 (θ1 (a)) = (πN−1 ◦ θ1)︸ ︷︷ ︸
=πN−1◦θ2

(a) = (πN−1 ◦ θ2) (a) = πN−1 (θ2 (a)) .

In other words, θ1 (a) ≡ θ2 (a)mod aN−1 (since πN−1 is the canonical projection R →
R/aN−1). This proves (16).

15Proof of (17): Let a ∈ Wp (K). From (16), we have θ1 (a) ≡ θ2 (a)mod aN−1. Thus, Propo-
sition 11.5 (f) (applied to θ1 (a), θ2 (a) and N − 1 instead of a, b and i) yields (θ1 (a))p ≡
(θ2 (a))p mod a(N−1)+1. In other words, (θ1 (a))p ≡ (θ2 (a))p mod aN . This proves (17).

17
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16.
Proposition 11.5 (b) yields pR ⊂ a1.
Let x ∈ Wp (K). Lemma 11.12 shows that there exist two elements y and z of

Wp (K) such that x = yp + pz. Consider these y and z. Applying the map θ1 to
the equality x = yp + pz, we find

θ1 (x) = θ1 (yp + pz) = (θ1 (y))
p + pθ1 (z) (19)

(since θ1 is a ring homomorphism). The same argument (applied to θ2 instead
of θ1) shows that

θ2 (x) = (θ2 (y))
p + pθ2 (z) . (20)

Now, (19) becomes

θ1 (x) = (θ1 (y))
p︸ ︷︷ ︸

≡(θ2(y))
p mod aN

(by (17), applied to a=y)

+ pθ1 (z)︸ ︷︷ ︸
≡pθ2(z)mod aN

(by (18), applied to a=z)

≡ (θ2 (y))
p + pθ2 (z) = θ2 (x)mod aN

(by (20)). In other words, πN (θ1 (x)) = πN (θ2 (x)). Thus, (πN ◦ θ1) (x) =
πN (θ1 (x)) = πN (θ2 (x)) = (πN ◦ θ2) (x).

Now, forget that we fixed x. We thus have proven that (πN ◦ θ1) (x) = (πN ◦ θ2) (x)
for every x ∈ Wp (K). In other words, πN ◦ θ1 = πN ◦ θ2. This completes the
induction step. The induction proof of (15) is thus complete.

Proposition 11.2 (c) (applied to A = Wp (K), ϕ = θ1 and ψ = θ2) thus yields
θ1 = θ2. This completes the proof of Proposition 11.13.

Proof of Theorem 11.1. Proposition 11.5 (b) shows that p · 1R ∈ a1 and pR ⊂ a1.
The map π is surjective (since it is the canonical projection R→ R/a1).
Theorem 11.11 shows that there exists a unique multiplicative map r : K → R

satisfying (9). Consider this r.
The ring K is perfect of characteristic p. Hence, an element v1/pn

of K is well-
defined for each v ∈ K and each n ≥ 0. In particular, an element x1/pn

pn of K is
well-defined for each x ∈Wp (K) and each n ≥ 0.

Define a map Θ : Wp (K)→ R by(
Θ (x) = ∑

n≥0
r
(

x1/pn

pn

)
pn for every x ∈Wp (K)

)
.

16Proof of (18): Let a ∈ Wp (K). From (16), we have θ1 (a) ≡ θ2 (a)mod aN−1. In other words,
θ1 (a)− θ2 (a) ∈ aN−1. Now,

pθ1 (a)− pθ2 (a) = p (θ1 (a)− θ2 (a))︸ ︷︷ ︸
∈aN−1

∈ paN−1 ⊂ aN

(by Proposition 11.5 (g), applied to n = N). Thus, pθ1 (a) ≡ pθ2 (a)mod aN . This proves (18).

18
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This is well-defined (because the infinite sum ∑
n≥0

r
(

x1/pn

pn

)
pn converges17). More-

over, the square (2) commutes for θ = Θ. 18

Notice that every x ∈Wp (K) satisfies

Θ (x) ≡
i

∑
k=0

r
(

x1/pk

pk

)
pk mod ai+1 for every i ≥ −1. (22)

19

For every n ≥ 0, let πn be the canonical projection R → R/an. Then, every

17since r
(

x1/pn

pn

)
pn = r

(
x1/pn

pn

)
pn · 1R︸ ︷︷ ︸
∈an

(by Proposition 11.5 (c))

∈ an for every n ≥ 0

18Proof. Let x ∈Wp (K). Every n ≥ 1 satisfies

r
(

x1/pn

pn

)
pn = pn︸︷︷︸

=ppn−1

r
(

x1/pn

pn

)
= p pn−1r

(
x1/pn

pn

)
︸ ︷︷ ︸

∈R

∈ pR ⊂ a1

and thus
π
(

r
(

x1/pn

pn

)
pn
)
= 0 (21)

(since π is the canonical projection R→ R/a1). Now,

(π ◦Θ) (x) = π

 Θ (x)︸ ︷︷ ︸
= ∑

n≥0
r
(

x1/pn
pn

)
pn

 = π

(
∑
n≥0

r
(

x1/pn

pn

)
pn

)
= ∑

n≥0
π
(

r
(

x1/pn

pn

)
pn
)

= π

r
(

x1/p0

p0

)
p0︸ ︷︷ ︸

=r(x1)1=r(x1)

+ ∑
n≥1

π
(

r
(

x1/pn

pn

)
pn
)

︸ ︷︷ ︸
=0

(by (21))

= π (r (x1)) + ∑
n≥1

0︸ ︷︷ ︸
=0

= π (r (x1)) = f (x1)

(by (9), applied to a = x1). Comparing this with

( f ◦ w1) (x) = f

w1 (x)︸ ︷︷ ︸
=x1

 = f (x1) ,

we obtain (π ◦Θ) (x) = ( f ◦ w1) (x). Since we have proven this for every x ∈ Wp (K), we
thus conclude that π ◦Θ = f ◦ w1. In other words, π ◦ θ = f ◦ w1 for θ = Θ. In other words,
the square (2) commutes for θ = Θ.

19Proof of (22): Let x ∈ Wp (K) and i ≥ −1. Then, Proposition 11.5 (c) yields that pn · 1R ∈ an for

19
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x ∈Wp (K) and n ≥ 0 satisfy

(πn ◦Θ) (x) = πn

(
n

∑
i=0

pi
(

r
(

x1/pn

pi

))pn−i
)

. (23)

20 Hence, for every n ≥ 0, the map πn ◦ Θ : Wp (K) → R/an is continuous

every n ≥ 0. Now,

Θ (x) = ∑
n≥0

r
(

x1/pn

pn

)
pn =

i

∑
n=0

r
(

x1/pn

pn

)
pn + ∑

n≥i+1
r
(

x1/pn

pn

)
pn︸ ︷︷ ︸

=r
(

x1/pn
pn

)
pn ·1R

=
i

∑
n=0

r
(

x1/pn

pn

)
pn + ∑

n≥i+1
r
(

x1/pn

pn

)
pn · 1R︸ ︷︷ ︸
∈an⊂ai+1

(since n≥i+1)

∈
i

∑
n=0

r
(

x1/pn

pn

)
pn + ∑

n≥i+1
r
(

x1/pn

pn

)
ai+1︸ ︷︷ ︸

⊂ai+1

⊂
i

∑
n=0

r
(

x1/pn

pn

)
pn + ai+1.

In other words, Θ (x) ≡
i

∑
n=0

r
(

x1/pn

pn

)
pn mod ai+1. Renaming the summation index n as k in

this congruence, we obtain Θ (x) ≡
i

∑
k=0

r
(

x1/pk

pk

)
pk mod ai+1, qed.

20Proof of (23): Let x ∈Wp (K) and n ≥ 0. Applying (22) to i = n, we obtain

Θ (x) ≡
n

∑
k=0

r
(

x1/pk

pk

)
pk =

n

∑
k=0

pkr
(

x1/pk

pk

)
=

n

∑
i=0

pir
(

x1/pi

pi

)
mod an+1.

In other words, Θ (x)−
n
∑

i=0
pir
(

x1/pi

pi

)
∈ an+1 ⊂ an, so that

Θ (x) ≡
n

∑
i=0

pir
(

x1/pi

pi

)
mod an. (24)

Now, fix i ∈ {0, 1, . . . , n}. Recall that the map r is multiplicative. Thus, Proposition 11.9

(applied to r, x1/pn

pi and pn−i instead of ϕ, v and i) yields r
((

x1/pn

pi

)pn−i)
=
(

r
(

x1/pn

pi

))pn−i

.

Hence,

(
r
(

x1/pn

pi

))pn−i

= r


(

x1/pn

pi

)pn−i

︸ ︷︷ ︸
=xpn−i/pn

pi =x1/pi

pi

 = r
(

x1/pi

pi

)
. (25)

Now, forget that we fixed i. Thus, we have shown that (25) holds for each i ∈ {0, 1, . . . , n}.

20
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(where R/an is equipped with the discrete topology)21. Therefore, Proposition
11.4 (applied to A = Wp (K) and ϕ = Θ) shows that the map Θ : Wp (K)→ R is
continuous.

Now, fix a nonnegative integer n.
Let ω denote the map K → K, u 7→ up. Thus, ω is the Frobenius homomor-

phism of the ring K, and is a ring homomorphism (since the ring K has charac-
teristic p) and invertible (since the ring K is perfect). Hence, its inverse map ω−1

is also a ring homomorphism. Thus, the map ω−n is also a ring homomorphism.
It is easy to see that

ω−i (v) = v1/pi
for every v ∈ K and i ≥ 0. (26)

22 We have (
f ◦ω−n) (v) = π

(
r
(

v1/pn
))

(27)

for each v ∈ K. 23

Now, (24) becomes

Θ (x) ≡
n

∑
i=0

pi r
(

x1/pi

pi

)
︸ ︷︷ ︸

=

(
r
(

x1/pn

pi

))pn−i

(by (25))

=
n

∑
i=0

pi
(

r
(

x1/pn

pi

))pn−i

mod an.

In other words, πn (Θ (x)) = πn

(
n
∑

i=0
pi
(

r
(

x1/pn

pi

))pn−i)
(since πn is the canonical projection

R→ R/an). Thus,

(πn ◦Θ) (x) = πn (Θ (x)) = πn

(
n

∑
i=0

pi
(

r
(

x1/pn

pi

))pn−i
)

,

and so (23) is proven.
21Proof. Let n ≥ 0. Then, for every x ∈ Wp (K), the formula (23) expresses (πn ◦Θ) (x) through

the first N + 1 coordinates xp0 , xp1 , . . . , xpN of x. Hence, (πn ◦Θ) (x) depends only on the first
N + 1 coordinates xp0 , xp1 , . . . , xpN of x. Thus, the map πn ◦Θ : Wp (K)→ R/an is continuous
(by the definition of the topology on Wp (K)). Qed.

22Proof of (26): We have ω (v) = vp for every v ∈ K. Thus, ω−1 (v) = v1/p for every v ∈ K. Thus,
we can easily see (by a straightforward induction over i) that ω−i (v) = v1/pi

for every v ∈ K
and i ≥ 0. Thus, (26) is proven.

23Proof of (27): Let v ∈ K. Then,

(
f ◦ω−n) (v) = f

 ω−n (v)︸ ︷︷ ︸
=v1/pn

(by (26), applied to i=n)

 = f
(

v1/pn
)
= π

(
r
(

v1/pn
))

(because (9) (applied to a = v1/pn
) yields π

(
r
(

v1/pn
))

= f
(

v1/pn
)

). This proves (27).

21
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Proposition 11.7 shows that there exists a unique ring homomorphism w̃pn :
Wp (L)→ R/an such that the diagram (5) commutes. Consider this w̃pn .

But f ◦ ω−n : K → L is a ring homomorphism (since both f and ω−n are ring
homomorphisms). Thus, Wp ( f ◦ω−n) : Wp (K) → Wp (L) is a ring homomor-
phism as well. Now, we shall show that

w̃pn ◦Wp
(

f ◦ω−n) = πn ◦Θ. (28)

Proof of (28): Let x ∈Wp (K). The definition of Wp ( f ◦ω−n) yields

(
Wp
(

f ◦ω−n)) (x) =


(

f ◦ω−n) (xm)︸ ︷︷ ︸
=π
(

r
(

x1/pn
m

))
(by (27), applied

to v=xm)


m∈Pp

=
(

π
(

r
(

x1/pn

m

)))
m∈Pp

. (29)

On the other hand, define y ∈ Wp (R) by y =
(

r
(

x1/pn

m

))
m∈Pp

. Then, the

definition of Wp (π) yields(
Wp (π)

)
(y) =

(
π
(

r
(

x1/pn

m

)))
m∈Pp

=
(
Wp
(

f ◦ω−n)) (x) (by (29)) .

Applying the map w̃pn : Wp (L)→ R/an to both sides of this equality, we obtain

w̃pn
((

Wp (π)
)
(y)
)
= w̃pn

((
Wp
(

f ◦ω−n)) (x)
)
=
(
w̃pn ◦Wp

(
f ◦ω−n)) (x) .

Thus,(
w̃pn ◦Wp

(
f ◦ω−n)) (x) = w̃pn

((
Wp (π)

)
(y)
)
=
(
w̃pn ◦Wp (π)

)︸ ︷︷ ︸
=πn◦wpn

(since the diagram (5)
commutes)

(y)

=
(
πn ◦ wpn

)
(y) = πn

(
wpn (y)

)
. (30)

On the other hand, (1) yields

wpn (y) =
n

∑
i=0

pi
(

r
(

x1/pn

pi

))pn−i (
since y =

(
r
(

x1/pn

m

))
m∈Pp

)
.

Applying the map πn to both sides of this equality, we obtain

πn
(
wpn (y)

)
= πn

(
n

∑
i=0

pi
(

r
(

x1/pn

pi

))pn−i
)

= (πn ◦Θ) (x)

22
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(by (23)). Hence, (30) becomes(
w̃pn ◦Wp

(
f ◦ω−n)) (x) = πn

(
wpn (y)

)
= (πn ◦Θ) (x) . (31)

Now, forget that we fixed x. We thus have proven (31) for each x ∈Wp (K). In
other words, we have w̃pn ◦Wp ( f ◦ω−n) = πn ◦Θ. Thus, (28) is proven.

Now, the map w̃pn ◦Wp ( f ◦ω−n) is a ring homomorphism (since it is the
composition of the two ring homomorphisms w̃pn and Wp ( f ◦ω−n)). In view of
(28), this rewrites as follows: The map πn ◦Θ is a ring homomorphism.

Now, forget that we fixed n. We thus have shown that the map πn ◦Θ is a ring
homomorphism for each n ≥ 0. Hence, Proposition 11.3 (applied to A = Wp (K)
and γ = Θ) shows that Θ : Wp (K) → R is a ring homomorphism. Hence, there
exists a continuous ring homomorphism θ : Wp (K) → R making the square (2)
commute (namely, θ = Θ).

It thus only remains to show that there exists at most one such homomor-
phism. It will clearly be enough to prove that there exists at most one ring ho-
momorphism θ : Wp (K) → R making the square (2) commute. In other words,
it will be enough to prove that there exists at most one ring homomorphism
θ : Wp (K)→ R such that π ◦ θ = f ◦w1. But this follows from Proposition 11.13
(applied to G = f ◦ w1). Thus, the proof of Theorem 11.1 is complete.
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