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0.1. Version

ver:S

0.2. Introduction

In this note, I am going to give proofs to a few results about tensor products as well
as tensor, pseudoexterior, symmetric and exterior powers of k-modules (where k is a
commutative ring with 1). None of the results is new, as I have seen them used all
around literature as if they were well-known and/or completely trivial. I have not yet
found a place where they are actually proved (though I have not looked far), so I am
doing it here.



This note is not completely new: The first four Subsections , , and
as well as the proof of Proposition are lifted from my diploma thesis [3], while

Subsections and are translated from an additional section of [4] which was
written by me.

0.3. Basic conventions

Before we come to the actual body of this note, let us fix some conventions to prevent
misunderstandings from happening:

Convention 1. In this note, N will mean the set {0,1,2,3,...} (rather than the set
{1,2,3,...}, which is denoted by N by various other authors).

For each n € N, we let S,, denote the n-th symmetric group (defined as the group
of all permutations of the set {1,2,...,n}).

Convention 2. In this note, a ring will always mean an associative ring with 1. If
k is a commutative ring, then a k-algebra will mean a (not necessarily commutative,
but necessarily associative) k-algebra with 1. Sometimes we will use the word “alge-
bra” as an abbreviation for “k-algebra”. If L is a k-algebra, then a left L-module is
always supposed to be a left L-module on which the unity of L acts as the identity.
Whenever we use the tensor product sign ® without an index, we mean ®y.

0.4. Tensor products

The goal of this note is not to define tensor products; we assume that the reader already
knows what they are. But let us recall one possible way to define the tensor product

of several k-modules (assuming that the tensor product of two k-modules is already
defined):

Definition 3. Let k£ be a commutative ring. Let n € N.

Now, by induction over n, we are going to define a k-module V; @ Vo, ® --- ® V, for
any n arbitrary k-modules Vi, V5, ..., V,:

Induction base: For n =0, we define V; ® V5 ® --- ® V,, as the k-module k.
Induction step: Let p € N. Assuming that we have defined a k-module V; ® Vo ®

-+ ® V), for any p arbitrary k-modules Vi, Vs, ..., V,, we now define a k-module
ViaVo® - ® V,y for any p + 1 arbitrary k-modules Vi, Vo, ..., V41 by the
equation

Nehe - @Vu=e (el - ®V,). (1)

Here, V1 ® (V2 ® V3 ® --- ® V,11) is to be understood as the tensor product of the
k-module V; with the k-module Vo®@V3®---®@V,+1 (note that the k-module Vo ®@ V3 ®
-+ ® Vp41 is already defined because we assumed that we have defined a k-module
VioaV,®---®V, for any p arbitrary k-modules V4, V3, ..., V,). This completes the
inductive definition.

Thus we have defined a k-module V; ® V5 ® -+ ® V,, for any n arbitrary k-modules
Vi, Vo, ..., V, for any n € N. This k-module V}; @ Vo ® --- ® V,, is called the tensor
product of the k-modules Vi, Va, ..., V,.




Remark 4. (a) Definition [3|is not the only possible definition of the tensor prod-
uct of several k-modules. One could obtain a different definition by replacing the

equation () by
Viohw - @Vu=WNehe -V, ® V.

This definition would have given us a different k-module V; @ Vo ® - --®V,, for any n
arbitrary k-modules Vi, Vs, ..., V,, for any n € N than the one defined in Definition
Bl However, this k-module would still be canonically isomorphic to the one defined
in Definition [3} and thus it is commonly considered to be “more or less the same
k-module”.

There is yet another definition of V; @ Vo®- - -®V,,, which proceeds by taking the free
k-module on the set V; x V5 x - - - x V,, and factoring it modulo a certain submodule.
This definition gives yet another k-module V} ® V5 ® --- ® V,,, but this module is
also canonically isomorphic to the k-module V; ® Vo ® - - - ® V,, defined in Definition
BB, and thus can be considered to be “more or less the same k-module”.

(b) Definition |3 applied to n = 1, defines the tensor product of one k-module V}
as V1 ® k. This takes some getting used to, since it seems more natural to define
the tensor product of one k-module V; simply as V;. But this isn’t really different
because there is a canonical isomorphism of k-modules V; = V| ® k, so most people
consider V] to be “more or less the same k-module” as V; ® k.

Convention 5. A remark about notation is appropriate at this point:

There are two different conflicting notions of a “pure tensor” in a tensor product
VioV,®---®V, of n arbitrary k-modules Vi, V5, ..., V,,, where n > 1. The one
notion defines a “pure tensor” as an element of the form v ® T for some v € V; and
someT € VoR@Ve®---QV, E] The other notion defines a “pure tensor” as an
element of the form v ® vo ® - -+ ® v, for some (vy,va,...,v,) € Vi X Vo X -+- X V.
These two notions are not equivalent. In this note, we are going to yield right of
way to the second of these notions, i. e. we are going to define a pure tensor in
V1@ Vo®---®V, as an element of the form v ®uy®- - -®v,, for some (vy,vs,...,v,) €
Vi x Vo x -+ x V,. The first notion, however, will also be used - but we will not call
it a “pure tensor” but rather a “left-induced tensor”. Thus we define a left-induced
tensor in Vi @ Vo ® --- ® V,, as an element of the form v ® T for some v € V] and
some T €Vo®@Va®---®V,.

We note that the k-module V; @ Vo ® - - - ®V,, is generated by its left-induced tensors,
but also generated by its pure tensors.

We also recall the definition of the tensor product of several k-module homomor-
phisms (assuming that the notion of the tensor product of two k-module homomor-
phisms is already defined):

n fact, if we look at Definition [3| we see that the k-module Vi @ Vo ® --- ® V,, was defined as
MoV Vs - ®V,), so it is the k-module A® B where A=V; and B=V%e V- - V,.
Since the usual definition of a pure tensor in A ® B defines it as an element of the form v ® T for
some v € A and T € B, it thus is logical to say that a pure tensor in V; ® Vo ® - -+ ® V,, means an
element of the form v @ T forv e Viand T € Vo @ Va3 ®--- R V,.



Definition 6. Let £ be a commutative ring. Let n € N.

Now, by induction over n, we are going to define a k-module homomorphism f; ®
o R ViV -V, > Wi We®---®W, whenever Vi, V,, ..., V,, aren
arbitrary k-modules, Wy, Wy, ..., W,, are n arbitrary k-modules, and f; : V; — W7y,
fo: Vo= Ws, ..., frn: Vi, = W, are n arbitrary k-module homomorphisms:
Induction base: For n = 0, we define f1® fo®---® f,, as the identity map id : £ — k.
Induction step: Let p € N. Assume that we have defined a k-module homomorphism
[i@f® - @f : VIdVo®- @V, = W1 @We®---@W, whenever Vi, Vs, ..., V, are
p arbitrary k-modules, Wi, Ws, ..., W, are p arbitrary k-modules, and f; : V} — W7,
fo: Vo= Wy, ..., [, V, = W, are p arbitrary k-module homomorphisms. Now let
us define a k-module homomorphism f1 @ fo® - @ fpp1 : VIV ® - @ V1 —
Wi @ Wy ® -+ @ Wyt whenever Vi, Vo, ..., V41 are p + 1 arbitrary k-modules,
Wi, Wy, ..., Wpyq are p + 1 arbitrary k-modules, and f; : Vi — Wy, fo : Vo — Wy,
oy fp+1 0 Vg1 = Wypy are p 4 1 arbitrary k-module homomorphisms. Namely, we
define this homomorphism f; ® fo ® -+ ® fyr1 tobe i@ (fo® f3@ -+ @ fri1).
Here, f1 ® (fo ® f3® -+ ® fp11) is to be understood as the tensor product of the
k-module homomorphism f; : V3 — W; with the k-module homomorphism f, ®
530 @fm1 : Va@Va®---@ Vg = Wo@Ws® -+ ® W,y (note that the
k-module homomorphism fo ® f3 @ - @ fpp1 1 Va@ V@@ Vypy = Wo @ W3 ®
-+ ®@ W,y is already defined (because we assumed that we have defined a k-module
homomorphism fi® fo®--- @ f, : Vi@Vo®--- @V, = W, @We®---® W, whenever
Vi, Va, ..., V,, are p arbitrary k-modules, Wy, Wy, ..., W, are p arbitrary k-modules,
and f1 : Vi = Wy, fo 1 Vo = Why, ..., f, : V,, = W, are p arbitrary k-module
homomorphisms)). This completes the inductive definition.

Thus we have defined a k-module homomorphism f1® fo®- - -® f, : Vi@Vo®---®V,, —
Wy @ Wo ® --- ® W, whenever Vi, Vs, ..., V,, are n arbitrary k-modules, Wy, W,
..., W, are n arbitrary k-modules, and f; : Vi — Wy, fo : Vo — Wy, ..., [, :
V,, — W, are n arbitrary k-module homomorphisms. This k-module homomorphism
f1i® fo®---® f, is called the tensor product of the k-module homomorphisms f7,

f27 RS fn

Finally let us agree on a rather harmless abuse of notation:

Convention 7. Let k£ be a commutative ring. Let V be a k-module.
We are going to identify the three k-modules V ® k, k ® V and V with each other
(due to the canonical isomorphisms V — V @k and V — k@ V).

0.5. Tensor powers of k-modules

Next we define a particular case of tensor products of k-modules, namely the tensor
powers. Here is the classical definition of this notion:

Definition 8. Let k£ be a commutative ring. Let n € N. For any k-module V', we
define a k-module V" by V®" = V@V ®---® V. This k-module V®" is called

n times

the n-th tensor power of the k-module V.




Remark 9. Let k be a commutative ring, and let V be a k-module. Then, V®° = k
(because V" = V@V ®---®V = (tensor product of zero k-modules) = k ac-

0 times

cording to the induction base of Definition |3)) and V®! = V ® k (because V®! =
VeVe®---®V =V®k according to the induction step of Definition . Since we

1 times

identify V ® k with V, we thus have V®! = V.

Convention 10. Let k& be a commutative ring. Let n € N. Let V and V' be k-
modules, and let f : V — V' be a k-module homomorphism. Then, f®" denotes the
k-module homomorphism f® f® - @ f: VoV --- @V VoV .- -0V,

-
n times n times n times

Since V@V®---V =V and V'@V'®---@V' = V'"® this f" is thus a

g

n times n times
k-module homomorphism from V®" to V'™,

0.6. The tensor algebra

First let us agree on a convention which simplifies working with direct sums:

Convention 11. Let k£ be a commutative ring. Let S be a set. For every s € S,
let Vi be a k-module. For every t € S, we are going to identify the k-module V;

with the image of V; under the canonical injection V; — @ V;. This is an abuse of
ses
notation, but a relatively harmless one. It allows us to consider V; as a k-submodule

of the direct sum @ V.

ses

Secondly, we make a convention that simplifies working with the tensor powers of a
k-module:

Convention 12. Let k be a commutative ring. For every k-module V', every n € N
and every i € {0,1,...,n}, we are going to identify the k-module V® @ V@@=
with the k-module V®" (using the canonical isomorphism V& @ V&= = yen) n
other words, for every k-module V', every a € N and every b € N, we are going to
identify the k-module V®* @ V® with the k-module V®@+0),

The tensor powers V" of a k-module V' can be combined to a k-module ®V which
turns out to have an algebra structure: that of the so-called tensor algebra. Let us
recall its definition (which can easily shown to be well-defined):

Definition 13. Let k£ be a commutative ring.
(a) Let V be a k-module. The tensor algebra @V of V over k is defined to be the

k-algebra formed by the k-module @V =V VO V2 @ ... equipped with
ieN
a multiplication which is defined by

(@ 0 = (S )
i=0 neN ' (2)
for every (a;),cy € @ V® and (b;),cy € PV

ieN €N




(where for every n € N and every ¢ € {0,1,...,n}, the tensor a; ® b, ; €
V® @ Ver=) is considered as an element of V®" due to the canonical identifi-
cation V¥ ® V®r—) = V@ which was defined in Convention .

The k-module ®V itself (without the k-algebra structure) is called the tensor module
of V.

(b) Let V and W be two k-modules, and let f : V — W be a k-module homo-
morphism. The k-module homomorphisms f® : V¥ — W for all i € N can be
combined together to a k-module homomorphism from VE* @ VOl ¢ V2 ... to
W g Wel @ W2 @ ..., This homomorphism is called ®f. Since V¥ ¢ V®! ¢
V2. . = @V and WEOSWEoWe2g. .. = W, we see that this homomorphism
®f is a k-module homomorphism from ®V to ®W. Moreover, it follows easily from
that this ® f is actually a k-algebra homomorphism from ®V to @W.

(c) Let V be a k-module. Then, according to Convention we consider V®" as a

k-submodule of the direct sum @ V® = @V for every n € N. In particular, every
ieN

element of £ is considered to be an element of @V by means of the canonical embed-

ding k = V®° C ®V, and every element of V is considered to be an element of @V

by means of the canonical embedding V = V® C @V. The element 1 € k C ®V is

easily seen to be the unity of the tensor algebra ®V.

Remark 14. The formula (2 (which defines the multiplication on the tensor algebra
®V') is often put in words by saying that “the multiplication in the tensor algebra
®V is given by the tensor product”. This informal statement tempts many authors
(including myself in [2]) to use the sign ® for multiplication in the algebra ®V/,
that is, to write u ® v for the product of any two elements u and v of the tensor
algebra ®V. This notation, however, can collide with the notation u ® v for the
tensor product of two vectors u and v in a k-modulef] Due to this possibility of
collision, we are not going to use the sign ® for multiplication in the algebra ®V in
this paper. Instead we will use the sign - for this multiplication. However, due to
([2), we still have

(a-b=a®b for any n € N, any m € N, any a € V®" and any b € V&™),

(3)

n+m) by means of the identification

where a ®b is considered to be an element of V&(
of V& @ VO™ with V®n+m),
The k-algebra @V is also denoted by 7' (V') by many authors.

2For example, if z is a vector in the k-module V, then we can define two elements u and v of ®V
by u = 14z and v = 1 — z (where 1 and z are considered to be elements of ®V according
to Definition (c)), and while the product of these elements v and v in ®V is the element
(I42)-(1-2)=1-1-1-241-2—2®2=1—2Q 2 € QV, the tensor product of these elements
uw and v is the element (1+2)®@ (1 —z2) of (k@ V)@ (kdV)2kaV oV @ (V®V), which is
a different element of a totally different k-module. So if we would use one and the same notation
u®u for both the product of v and v in ®V" and the tensor product of w and vin (k@ V)@ (k@ V),
we would have ambiguous notations.



0.7. A variation on the nine lemma

The following fact is one of several algebraic statements related to the nine lemma, but
having both weaker assertions and weaker conditions. We record it here to use it later:

Proposition 15. Let k£ be a commutative ring. Let A, B, C' and D be k-modules,
andlet z: A—- B, y:A—C,z: B— D and w: C — D be k-linear maps such
that the diagram

Sy

x
—

AN

(4)

Q(qd_
U‘N—

—
w

commutes. Assume that Kerz C x (Kery). Further assume that y is surjective.
Then, Kerw = y (Ker z).

Proof of Proposition[15. We know that the diagram

A—5B

ok

commutes. In other words, woy = zo .
We have

w(y (Kerx)) = (woy)(Kerz) = (zox) (Kerz) =z | z(Kerz) | =2(0)=0

=zox =0

(since z is k-linear) ,

and thus y (Kerz) C Kerw. We will now prove that Kerw C y (Ker x):
Let ¢ € Kerw be arbitrary. Then, w (¢) = 0. Now, since y is surjective, there exists
some a € A such that ¢ = y (a). Consider this a. Then,

0=w :C() =w(y(a) = (woy)(a) = (z02)(a) = 2 (x(a)),

so that x(a) € Kerz C x(Kery). Thus, there exists some a’ € Kery such that
z (a) = z (a’). Consider this a’. Since x is k-linear, we have z (a — a') = 2 (a) —x (¢') =
——
—a(a)

z(a')—x(a') =0, so that a —a’ € Kerz. Thus, y (a —d’) € y (Kerz). But since

y(a—d)=y(a)— y (a') (since y is k-linear)
~— N~
=c =0 (since a’€Kery)
=c—0=c,

this rewrites as ¢ € y (Ker z).

We have thus shown that every ¢ € Kerw satisfies ¢ € y (Kerz). Thus, Kerw C
y (Ker z). Combined with y (Ker z) C Ker w, this yields Ker w = y (Ker z). This proves
Proposition [I5] O



Note that we would not lose any generality if we would replace k by Z in the statement
of Proposition , because every k-module is an abelian group, i. e., a Z-module (with
additional structure). We could actually generalize Proposition by replacing “k-
modules” by “groups” (not necessarily abelian), but we will not have any use for
Proposition [15]in this generality here.

0.8. Another diagram theorem about the nine lemma configuration

The next fact we will use is, again, about the nine lemma configuration:

Proposition 16. Let k£ be a ring. Let

Ay “ Ay 2 As 0 (5)
R

B, b B, b2 B 0

o o Cyp—22 Cs 0

be a commutative diagram of k-left modules. Assume that every row of the diagram
@ is an exact sequence, and that every column of the diagram @ is an exact
sequence. Then,

Ker (cy 0 vg) = Ker (v3 0 by) = by (By) + ug (Asg) .

Actually we will show something a bit stronger:

Proposition 17. Let k be a ring. Let

A —2 A, A (6)
B—"  B,—" B,

Ch ~ Cy = Cs

be a commutative diagram of k-left modules. Assume that every row of the diagram
(@ is an exact sequence, and that every column of the diagram (@ is an exact
sequence. Also assume that as is surjective. Then,

Ker (CQ @) UQ) = Ker (U3 @) bg) = bl (Bl) + Ug (AQ) .

Proof of Proposition[I7. Since @ is a commutative diagram, we have ¢y 0 v9 = v3 0 by
and by 0 uy = u3 ° as.

Since every row of the diagram @ is an exact sequence, we have by 0 by = 0.

Since every column of the diagram @ is an exact sequence, we have vz o uz = 0.



From cyovy = v30by, we conclude Ker (¢g 0 v9) = Ker (v3 0 by). Thus, it only remains
to prove that Ker (v3 0 by) = by (By) + ug (Az). Since by (By) + us (Ay) C Ker (v3 0 by)
is obvious (because

(v30bg) (by (By) + uz (A2))
= v3 (b2 (b1 (B1) + u2 (A2))) = v3 (b (b1 (B1))) + vs (b (u2 (A2)))

=v3 (bgObl)(Bl)) :(UgOb;Or’MQ)(AQ)
= U3 bg @) bl ) V3 O bQ O U9 (AQ) = U3 (O (Bl)) + V3 O U3 09 (AQ)
0
_ugoaz =0 =

=0+ Ooag
:o

), we must now only show that Ker (v3 0 by) C by (By) + us (As).

Let t € Ker(vzoby) be arbitrary. Then, (v30b)(t) = 0, so that vz (be (t)) =
(v30by) (t) = 0 and thus by (t) € Kervs = ugz(As) (because every column of the
diagram ([6) is an exact sequence). Thus, there exists some z € Az such that b, () =
ug (). Consider this z. Since ay : Ay — Aj is surjective, we have x = ay (2') for some
2’ € Ay. Consider this 2’. Now,

by (t — uz (2')) = b2 (t) — b2 (uz () = uz (z)—(by 0 up) () = w3 (x)—us | a2 (2') | =0,
(z) (baouz)(z’)
=us3(x =(bgous)(x =ugoas =z

ecause every row of the diagram @ is an exact
) € b1 (Bl) + U2 (AQ)
€bi1(B1) euz(Az)
We thus have shown that every ¢ € Ker (v 0 by) satisfies ¢t € by (By) + ug (Az).
Consequently, Ker (v30by) C by (By) + uz (Az). Combined with by (By) + ug (A2) C
O

so that t-l@( ) € Kerbg = bl (Bl> (
sequence). Thus, t =t — uy (2) + us (
—_——

Ker (v3 0 by), this yields Ker (v3 0 by) = by (B1)+usg (As). Comblned with Ker (¢g 0 vg)
Ker (v3 0 by), this now completes the proof of Proposition |1 .

Proof of Proposition[16 Since the diagram (F]) is commutative, the diagram (6]) must
also be commutative (because the diagram @ is a subdiagram of the diagram )
Also, the map as is surjective (since every row of the diagram is an exact se-
quence). Therefore, we can apply Proposition , and conclude that Ker (¢3 0 vg) =
Ker (v3 0 by) = by (By) 4 us (A2). This proves Proposition [16] O

0.9. Ker (f ® g) when f and g are surjective

Theorem 18. Let £ be a commutative ring. Let V, W, V/ and W’ be four k-
modules. Let f:V — V' and g : W — W’ be two surjective k-linear maps. Let iy
be the canonical inclusion Ker f — V. Let iy be the canonical inclusion Ker g — W.
Then,

Ker (f ® g) = (iv ® id) (Ker f) @ W) + (id ®@iw) (V @ (Kerg)) .




Remark 19. (a) In Theorem [18] the condition that f and g be surjective cannot
be removed (otherwise, V =Z, W = Z, V' = Z/AZ, W' = L/AZL, | = (z + 2z),
g= (x — %) would be a counterexample), but it can be replaced by some other con-
ditions (see Lemma[21]and Corollary 20]). (Here is a more complicated counterexam-
ple to show that having only g surjective is not yet enough: V =7, W = Z&®(Z /A7),
V=2, W =Z,/AL, f = (x> 2x), g= ((z,0) = 22+ a).)

(b) If the k-module V is flat in Theorem [I§ then the map id®iy is in-
jective (as can be easily seen), and therefore many people prefer to iden-
tify the image (id®iw) (V ® (Kerg)) with V ® (Kerg). Similarly, the image
(iv ®id) ((Ker f) @ W) can be identified with (Ker f) ® W when the k-module W
is flat. It is common among algebraists to perform these identifications when k is a
field (because when k is a field, both k-modules V' and W are flat), and sometimes
even when k is not, but we will not perform these identifications here.

Proof of Theorem[18 The sequence

0——Kerf—Ysv-—Tov 0

is exact (since iy is the inclusion map Ker f — V| while f is surjective). Since the
tensor product is right exact, this yields that

the sequences
(Ker f) ® (Ker g) w8 Ly (Ker g) v ® (Kerg) ——— 0,
(Ker f) @ W Vew L2

(Ker f) @ W’ VoW

fveid V'@ W ———0 and

iy ®id f®id

V'@ W —— (0 are exact

(7)

On the other hand, the sequence

0——Kerg -2 W LW 0

is exact (since iy is the inclusion map Kerg — W, while g is surjective). Since the
tensor product is right exact, this yields that

the sequences

(Ker f) @ (Ker g) —-=™ . (Ker f) @ W —<2  (Ker f) @ W' ———— 0,
Ve (Kerg) —= oV @ W —-2 V@ W ———0 and
id®g

V'@ (Kerg) By W V'@ W ———— 0 are exact

(8)

Now, the diagram

(Kerf)@(Kerg)%(Kerf)@W % (Ker f)@ W —— 0
iv®idl iv®idl iv®idl

V® (Ker g) —— o2 Vew &9 Vew 0
f®idl f®idl f®idl

V' ® (Ker g) — 25" VoW % VoW 0

10



is commutative (because

(iy @ id) o (id @iw
(iv ®id) o (id ®g
(f ®id) o (id @i
(f ®id) o (id ®g

=1y @iy = (Id®iw) o (iy ®id);
=1y ®¢g = (ld®g) o (iy ®@1id);

= f®iw = ([d®iw) o (f ®id);
= f®g=(id®g)o (f ®id)

— — —

). Every row of this diagram is an exact sequence (due to (§)), and every column of
this diagram is an exact sequence (due to ) Thus, Proposition (applied to the
diagram @D instead of the diagram ) yields that

Ker ((id®g) o (f ®id)) = Ker ((f ®id) o (id ®g))
= ([d®iw) (V& (Kerg)) + (iy ® id) ((Ker f) @ W).

Thus,
Ker (f®g) =Ker((f®id)o (id®g))
——
—(f®id)o(id @g)
= (ld®@iw) (V @ (Ker g)) + (iv ® id) ((Ker f) @ W)
= (iy ®id) (Ker f) @ W) 4+ (id ®iw) (V ® (Kerg)) .
This proves Theorem O

Let us notice a corollary of this theorem:

Corollary 20. Let k£ be a commutative ring. Let V, W, V' and W’ be four k-
modules. Let f:V — V' and g : W — W’ be two k-linear maps. Assume that
f (V) and W' are flat k-modules. Let iy be the canonical inclusion Ker f — V. Let
tw be the canonical inclusion Ker g — W. Then,

Ker (f ® g) = (iv ® id) (Ker f) @ W) + (id ®@iw ) (V @ (Kerg)) .

Note that this Corollary [20| does not require f or g to be surjective, but instead it
requires f (V') and W’ to be flat (which is always satisfied if & is a field, for example).
To show this, we first prove:

Lemma 21. Let k& be a commutative ring. Let V., W, V' and W’ be four k-modules.
Let f:V = V' and g : W — W' be two k-linear maps. Assume that V' is a flat
k-module, and that f is surjective. Let 7y, be the canonical inclusion Ker f — V.
Let iy be the canonical inclusion Ker g — W. Then,

Ker (f ® g) = (iv ® id) (Ker f) @ W) + (id ®@iw ) (V @ (Kerg)) .

Lemma 22. Let k be a commutative ring. Let V', W and A be three k-modules such
that the k-module A is flat. Let i : V' — W be an injective k-module homomorphism.
(a) The k-module homomorphism id®i : A®V — A® W is injective.
(b) The k-module homomorphism i ® id : V ® A — W ® A is injective.
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Proof of Lemma[29. Let p be the canonical projection p : W — W/ (i (V)). Then, p
is a surjective k-module homomorphism, and Kerp =i (V). Thus,

0 V— W —2 W,/ (i(V)) ——0 (10)

is a short exact sequence (since p is surjective, since i is injective, and since Kerp =
i (V)). Since tensoring with A is an exact functor (because A is a flat k-module), this
yields that

id @i id ®p
—_

0——AQV —— AW A (W,/ (i (V) ———0

is a short exact sequence. Therefore, id®i: A®V — A® W is injective. This proves

Lemma 22| (a).
Since is a short exact sequence, and since tensoring with A is an exact functor
(because A is a flat k-module), we find that

0— VoA jweoa_ P24

W,/ (@(V)) ®A——0

is a short exact sequence. Therefore, i ®id : V ® A — W ® A is injective. This proves

Lemma 22| (b). O
Proof of Lemma[21] Define a k-linear map g, : W — g (W) by

(91 (w) = g (w) for every w € W)

(this is well-defined since g (w) € g (W) for every w € W). Let my be the canonical
inclusion g (W) — W’. Clearly, every w € W satisfies

(mw o g1) (w) = my (g1 (w)) = g1 (w) (since myy is the canonical inclusion)
=g(w).

Thus, my o g1 = g.
Also, ¢ is surjective, because every x € g (W) satisfies z € g, (W) ﬂ Also,

Kerg=qweW | g(w) =0 ={weW | g (w) =0} =Kerg.
S~

=g1(w)

Thus, iy is the canonical inclusion Ker g; — W (since iy is the canonical inclusion
Ker g — W). Thus, Theorem [18| (applied to g (W) and g; instead of W’ and g) shows
that

Ker (f ® g1) = (iy ®@id) (Ker f) @ W) + (id ®iw) [ V @ (Ker gy)
=Kerg

= (iy ®id) (Ker f) @ W) + (id @iy ) (V @ (Kerg)) . (11)

3 Proof. Let x € g(W) be arbitrary. Then, there exists some w € W such that x = g (w). Consider
this w. Then, z = g (w) = g1 (w) € g1 (W), qged.
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Now, my is injective (since my is a canonical inclusion). Thus, applying Lemma
(a) to my, g(W), W’ and V' instead of 4, V, W and A, we obtain that the map
ideomy : V'@ g(W) — V' @ W is injective. In other words, Ker (id ®my,) = 0.

Now, it is known that whenever A, B, C, A, B’, C' are six k-modules, and « :
A—- B, :B—C,v:A — B and §: B — (' are four k-linear maps, then
(B o(a®y) = (Boa)® (dov). Applying this fact to A=V, B=V' C =V,
A=W,B =gW),C"=Wa=f g=id, v =g and 6 = my, we obtain

(idemw)o(f®g) = (idof)@ | mwog | = f®g.
=f =g

Now, let x € Ker (f ® g1) be arbitrary. Then, (f ® g1) () = 0. Now,

(fog) ()= (([demy)o (fegq)) (x)=(idemy) | (f®gqa) (z)
v \—,—/
=(id @mw )o(f@g1) ~

— (id@my) (0) =0,

so that x € Ker(f ® g). Thus we have seen that every = € Ker (f ® g1) satisfies
z € Ker (f ® g). In other words, Ker (f ® g1) C Ker (f ® g).
On the other hand, let y € Ker (f ® g) be arbitrary. Then,

(id@mw) ((f ® 1) (y)) = | (d@mw)o (f®g) | (y) =(f®g)(y) =0

i

=f®g

(since y € Ker (f ® g)), so that (f ® g1) (y) € Ker (id ®@my ) = 0. Thus, (f ® g1) (y) =
0, so that y € Ker (f ® g1). Thus we have shown that every y € Ker (f ® g) satisfies
y € Ker (f ® ¢1). In other words, Ker (f ® g) C Ker (f ® ¢1).

Combined with Ker (f ® g1) € Ker (f ® g), this yields Ker (f ® g) = Ker (f ® g1).
Thus, becomes

Ker (f ® g) = (iv ®id) ((Ker f) @ W) + (id ®@iw ) (V @ (Kerg)) .
This proves Lemma [21] O
Proof of Corollary[20, Define a k-linear map f, : V. — f (V) by

(f1 (v) = f(v) for every v € V)

(this is well-defined since f (v) € f (V) for every v € V). Let my be the canonical
inclusion f (V) — V'. Clearly, every v € V satisfies

(my o f1) (v) =my (f1 (v)) = f1 (v) (since my is the canonical inclusion)

=f(v).
Thus, my o f1 = f.
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Also, f; is surjective, because every x € f (V) satisfies z € f; (V) E| Also,

Ker f = UEV|\\(£)):0 ={veV | fi(v) =0} =Ker fi.
filv

~

Thus, iy is the canonical inclusion Ker f; — V (since iy is the canonical inclusion
Ker f — V). Thus, Lemma [21] (applied to f (V) and f; instead of V' and f) shows
that

Ker (f1 ® g) = (iy ®id) | (Ker f1) @W | + (id ®iw) (V @ (Ker g))
=Ker f

= (iy ®id) (Ker f) @ W) + (id ®@iw) (V @ (Kerg)). (12)

Now, my is injective (since my is a canonical inclusion). Thus, applying Lemma
(b) to my, f(V), V' and W' instead of 4, V, W and A, we obtain that the map
my ®id: f (V)@ W' — V' ® W’ is injective. In other words, Ker (my ® id) = 0.

Now, it is known that whenever A, B, C, A, B’, C' are six k-modules, and « :
A—- B, :B—C,v:A — B and § : B — (' are four k-linear maps, then
(B®d)o(a®y)=(Boa)®(do). Applying this fact to A=V, B=f(V),C =V,
A=W, B =W, C"=W,a=f,=my,v=gand § =id, we obtain

(my ®@id) o (fi ®g) = (my o f1) ® (idog) = f® g.
T ~——
= :g
Now, let x € Ker (f; ® g) be arbitrary. Then, (f; ® g) (z) = 0. Now,

(f@g) (z)=(my®id)e(fi®g))(x)=(my®id) | (1 ®g)(x)
N—— ~——
=(my ®id)o(f1®9) =0

= (my ®id) (0) =0,

so that * € Ker(f ®g). Thus we have seen that every x € Ker(f; ® g) satisfies
z € Ker (f ® g). In other words, Ker (f; ® g) C Ker (f ® g).
On the other hand, let y € Ker (f ® g) be arbitrary. Then,

(my ®@id) (i®g)(y) = | (mv@id)o(fivg) | (v) =(f®g)(y) =0

~ J/
-~

=f®g

(since y € Ker (f ® g)), so that (f; ® g) (v) € Ker (my ®id) = 0. Thus, (f1 ® g) (y) =
0, so that y € Ker (f; ® g). Thus we have shown that every y € Ker (f ® g) satisfies
y € Ker (f; ® g). In other words, Ker (f ® g) C Ker (f; ® g).

Combined with Ker (f; ® g) C Ker (f ® g), this yields Ker (f ® g) = Ker (f1 ® g).
Thus, becomes

Ker (f @ g) = (iv @id) ((Ker f) @ W) + (id @iw) (V' @ (Ker g)) .
This proves Corollary [20] O

4Proof. Let x € f (V) be arbitrary. Then, there exists some v € V such that z = f (v). Consider
this v. Then, z = f (v) = f1 (v) € f1(V), qed.
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We notice a triviality on tensor products of surjective maps:

Lemma 23. Let k& be a commutative ring. Let V., W, V' and W’ be four k-modules.
Let f:V — V'and g : W — W’ be two surjective k-linear maps. Then, the map
fRqg: VoW — V' ® W is surjective.

Proof of Lemma[23. Let T € V' @ W’ be arbitrary. Then, we can write the tensor T

in the form T' = > a; ® f3; for some n € N, some elements «, s, ..., o, of V' and
i=1

some elements (31, 5o, ..., 8, of W’. Consider this n, these oy, as, ..., a, and these

617 527 HRRE) Bn

For every i € {1,2,...,n}, there exists some v; € V such that a; = f (v;) (since f is
surjective). Consider this v;.

For every i € {1,2,...,n}, there exists some w; € W such that 5, = g (w;) (since g
is surjective). Consider this w;.

Now,

Tzi;&@\ﬁi/ZZf(Ui)®g(wi):Z(f®9)(vz‘®wi)

=l=f)  =gw) TP —(feg)miew) T
=(f®g) (Z v; ® w,-) (since f ® g is k-linear)
=1

E(fag(VeWw).

So we have proven that every T' € V' @ W’ satisfies T € (f ® g) (V ® W). Thus,
f ® g is surjective, so that Lemma [23] is proven. O]

0.10. Extension to n modules

We can trivially generalize Lemma [23| to several k-modules:

Lemma 24. Let k be a commutative ring. Let n € N. For any ¢ € {1,2,...,n},
let V; and V/ be two k-modules, and let f; : V; — V! be a surjective k-module
homomorphism. Then, the map f1® fo®---®f, : Vi@Vh®---®V, = V/eV,®- -V
is surjective.

Proof of Lemma[2{ We are going to prove Lemma [24] by induction over n:

Induction base: For n = 0, Lemma [24] holds (because for n = 0, the map f; ® fo ®
@ VIV @V, > V@ V]®---® V! is the identity map id : £ — k and
therefore surjective). Thus, the induction base is complete.

Induction step: Let p € N be arbitrary. Assume that Lemma [24] holds for n = p.

Now let us prove that Lemma holds for n = p+ 1. So let V; and V; be two
k-modules for every i € {1,2,...,p+ 1}, and let f; : V; — V/ be a surjective k-module
homomorphism for every ¢ € {1,2,...,p+ 1}.

According to Definition 6| we have f1 ® fo @+ ® fpy1 = L@ (fo®@ f3Q -+ ® fp1)

We know that V; and V; are two k-modules for every i € {1,2,...,p+ 1}. Thus, V;
and V' are two k-modules for every i € {2,3,...,p+ 1}. Substituting ¢+ 1 for ¢ in this
fact, we obtain that V1, and V}' | are two k-modules for every i € {1,2,...,p}.
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We know that f; : V; — V/ is a surjective k-module homomorphism for every i €
{1,2,...,p+ 1}. Thus, f; : V; = V/ is a surjective k-module homomorphism for every
i € {2,3,...,p+ 1}. Substituting ¢ + 1 for ¢ in this fact, we obtain that f;;; is a
surjective k-module homomorphism for every i € {1,2,...,p}.

Applying Lemma [24] to p, Vii1, V/,; and fi41 instead of n, V;, V/' and f; (this is
allowed, because we have assumed that Lemma [24] holds for n = p), we see that the
map fo ® f3 ® -+ ® fpy1 iIs surjective.

We know that f; : V; — V/ is a surjective k-module homomorphism for every i €
{1,2,...,p+ 1}. Applying this to i = 1, we conclude that f; : V; — V] is a surjective
k-module homomorphism.

Applying Lemma 23 to V = Vi, V! = V|, W = V@ V3@ --- @V, W =
VioVi®- @V, f=fiaad g = o ® f3 ® -+ @ fpy1, we now conclude
that the map f1 @ (fo ® f3®---® fpi1) is surjective. Since fi @ fo ® -+ @ fpy1 =
[H@(f2® f3®--® fp1), this yields that the map f1 ® fo ® -+ ® f,41 1Is surjective.

We have thus proven that if V; and V; are two k-modules for every i € {1,2,...,p+ 1},
and f; : V; — V/ is a surjective k-module homomorphism for every i € {1,2,...,p+ 1},
then the map f1® o ® - @ fr1 VIO V@ - @V > V@ Vi@ - @ V], is
surjective. In other words, we have proven that Lemma [24] holds for n = p + 1. This
completes the induction step, and thus Lemma [24] is proven. O

Now let us extend Theorem [18§ to n modules:

Theorem 25. Let k be a commutative ring. Let n € N. For any i € {1,2,...,n},
let V; and V/ be two k-modules, and let f; : V; — V! be a surjective k-module
homomorphism. For any i € {1,2,...,n}, let i; be the canonical inclusion Ker f; —
V;. Then,

Ker(fi® fa®:--® fn)
=Y |ideide - ®ideL eideide - ®id

i—1 times n—i times

VeV V1@ Ker ;) Vi1 Vi ®---@V,). (13)

Before we show this, we need an (almost trivial) lemma:

Lemma 26. Let £ be a commutative ring. Let n € N. Let A and B be two k-
modules. For any i € {1,2,...,n}, let B; be a k-submodule of B. Let B’ be the

k-submodule > B; of B.

i=1
For any k-module C' and any k-submodule D of C', we let incp ¢ denote the canonical
inclusion map D — C.

Then,

n

(id®incp p) (A® B) = (id®@incp,s) (A® B;)

i=1

(as k-submodules of A ® B).
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Proof of Lemma[20. Since Y B; = B’, we have B; C B’ for every i € {1,2,...,n}.
i=1

The maps incg, g : B; — B for all i € {1,2,...,n} give rise to a map Y incp, p :
i=1

P B; — B. Similarly, the maps id®incg, p: A® B, - A® B for alli € {1,2,...,n}

=1

give rise to a map Zld@lnCB B: @(A@B) — A® B.
=1
Since the tensor product is known to commute with direct sums, there is a canonical

k-module isomorphism A & (@ B; ) — @ (A® B;). Denote this isomorphism by I.
By the universal property of this I, the dlagram

(&n) oo

Xn: (id®incBi}B)

i=1

n
id®(z inCBi,B

i=1

A®B

commutes. In other words,

d® (Z incBi,B> = (Z (id®inCBi,B)> o Ia

((Z (id@im&,w) OI> <A ®(@ B)>
(2 (id® iIlCBi,B)> \<I (A ® <E|? Bi> > )

-

so that

(e (mne]) (22 (@2)) -

n

69 (A®B;)

i=1
(since I is an isomorphism)

= ( (id®incBin)) (é (A®Bi))

Z (id®incg, 5) (A® B;) . (14)

=1

\E

On the other hand, the maps incp, g : B; — B’ for all i« € {1,2,...,n} (these

maps are Well defined since B; C B’ for every i € {1,2,...,n}) give rise to a map
Z incp, pr : @B — B'. Every i € {1,2,...,n} satisfies incp, p = incp g oincg, g/, S0
=1 =1

that

n n n
E incBi’B/:E (incp poincg, pr) = incp g o E incg, g | -

=1 =1 =1
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Hence,

n n
id ® E incp, p =id® | incp po g incp, pr
i=1

i=1

— <ld ® inCB/7B) @) <1d ® (Z inCBi’B/>>
i=1

as maps from A ® ( Bi> to A® B (where id always denotes id4). Hence,
=1

(2

ol @e))
= ((id ®incp p) o (id ® (}; incBi,B,> ) ) (A ®n(g? Bi) )
— (id ®incp p) ( (id ® (; incBi7B/> ) (A ® (E_]? B,) > ) . (15)

But since incp, g is the inclusion map B; — B’ for every i € {1,2,...,n}, it is clear

that the image of the map ) incp, g : @ B; — B’ is
: N

=1 =

3

1=

B; = B’. In other words, the
=1

n n n
map »  incg, g : @ B; — B’ is surjective. Hence, the map id ® <ZincBi,B/) A®
=1 i=1 i=1

(@ BZ) — A® B’ is surjective as well (by Lemma appliedtoV =A, V' = A, W =
i=1

n

P B, W =B f=idand g = ) incp, p'), so that | id® (Z incBi,B/>> <A ® <@ BZ>> =
i=1 i=1 i=1 i=1
A® B'. Thus, simplifies to

<1d® (zn: inCBi,B>> <A &® (é Bz)) = (id@iHCB/’B) (A &® B/) .

Compared with , we obtain

n

Y (id®@incs, ) (A® B) = (id®incp p) (A® B).

i=1
This proves Lemma [26] m

Another lemma:

Lemma 27. Let A, B and C be three k-modules. Let f : B — C be a k-module
map. Then,

(def)(A® B) = (id®incf(3)7c) (A® (f(B)))
as k-submodules of A® C.
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Proof of Lemma[27 We define a map ' : B — f(B) b
(f' (z) = f () for every x € B).

(This map is well-defined, since f (z) € f(B) for every x € B.) Then, every z € B
satisfies

f(z) = f'(z) = incyp)c (f () = (incymcof’) (x).
Thus, f = incyp),cof’. Hence,

id®f =1d® (incyp)cof’) = (ild®incyp)c) o (Id®f),
where id means id4. Thus,

(id®f) (A® B) = ((i[d®incyn),c) o (idef)) (A® B)
= (ld®incyp)c) (([dRf) (A® B)). (16)

Now, the map f' : B — f(B) is Surjectiveﬂ so that the map id®f : A® B —
A® (f(B)) is surjective as well (by Lemma applied to A, A, B, f(B), id, f’
instead of V', V', W, W', f. g, respectively). Thus, (id®f")(A® B) = A® (f (B)).
Hence, becomes

(id®f) (A® B) = (id®incyp)c) (A (f (B))).
This proves Lemma [27] O

Proof of Theorem [25. We are going to prove Theorem [25] by induction over n:
Induction base: For n = 0, Theorem [25 holds (because for n = 0, the map f; ® fo ®
R VIV V, = V/eV,® - @V, is the identity map id : k — k

and therefore its kernel Ker (f; ® fo ® -+ ® f,,) is 0, while the right hand side of

is also 0 when n = 0). Thus, the induction base is complete.
Induction step: Let p € N be arbitrary. Assume that Theorem [25| holds for n = p.
Now let us prove that Theorem [25| holds for n = p + 1. So let V; and V; be two
k-modules for every i € {1,2,...,p+ 1}, and let f; : V; — V! be a surjective k-module

homomorphism for every ¢ € {1,2,...,p+ 1}.

According to Definition |§|, we have i@ fo® - @ fr1 =i (2@ fs5 @+ ® fri1)-
We know that f; : V; — V/ is a surjective k-module homomorphism for every i €

{1,2,...,p+1}. Thus, f; : V; — V/ is a surjective k-module homomorphism for

every i € {2,3,...,p+ 1}. Substituting ¢ + 1 for ¢ in this fact, we obtain that f;

is a surjective k-module homomorphism for every i« € {1,2,...,p}. Thus, Lemma

(applied to p, Viy1, Vi, and fi4q instead of n, V;, V/ and f;) yields that the map

fa® f3®@ -+ ® fpi1 is surjective. On the other hand, the map f; is surjective (since f;

is surjective for every i € {1,2,...,p+ 1}).

Now let V- =Vi, V! =W;, f = f1 and iy = i;. Then, f is a surjective k-linear map

(since f; is a surjective k-linear map), and ¢y is the canonical inclusion Ker f — V

(since iy = iy is the canonical inclusion Ker f; — ;).

®Proof. Let y € f(B). Then, there exists some x € B such that y = f (x) (by the definition of
f(B)). Consider this x. Then, f'(z) = f(z) = y.
Hence, we have shown that for every y € f(B), there exists some x € B such that y = f' (z).
In other words, the map f’: B — f (B) is surjective, ged.
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Further let W = Vb, @ V3@ - @ Vo, W = W @ W5 ® --- ® Wypq and g =
fo® fs®---® fpy1. Then, g is a surjective k-linear map (since fo ® f3 @ -+ @ fpi1
is a surjective k-linear map). Let iy be the canonical inclusion Kerg — W. Then,
Theorem [18] yields

Ker (f ® g) = (iy ® id) (Ker f) @ W) + (id @iy ) (V & (Kerg)). (17)

Note that V = Vi and W = Vo@Vs®- - @V yield VOW = Vio(V, @ Vs ® - @ Vygr) =
VioaVe®@:- @ Vp.

We now define some more abbreviations. For every i € {1,2,...,p+ 1}, let K;
denote the k-module

Viohe o Vig@Kerfi) @Vigg @Vipp @+ @ Vi1,
For every i € {1,2,...,p+ 1}, let x; denote the k-linear map

AR ©ideL ®ideide---@id: K — Ve W

~
i—1 times p+1—i times

(this is well-defined since K; = V1 @ Vo ®@---@V,.1 @ (Ker fi) @ Vi1 @ Vipo @ - - - @ Vg
and VoW=Viaealh® V).
For every i € {2,3,...,p+ 1}, let M; denote the k-module

VeV - V1@ Kerfi)) @V @ Vi ®--- @ V.
For every i € {2,3,...,p+ 1}, let y; denote the k-linear map

deide- - @idel, ®ideide- - @id: M; - W

i—2 times p+1—i times

(this is well-defined since M; = V@ V3®@--- @ V1 @ (Ker i) @ Vi1 @ Vija @ - - - @V
and W=V, @V3® - ® Vpq1).

For any k-module C' and any k-submodule D of C', we let incp ¢« denote the canonical
inclusion map D — C. Then,

incger f;,1; = (the canonical inclusion map Ker f; = V;) =1;
for every i € {1,2,...,p+ 1}. On the other hand,
inckergw = (the canonical inclusion map Kerg — W) =iy

(by definition of iy ).
Applying Theorem 25 to p, Vi1, VY, and fiq instead of n, V;, V/ and f; (this is
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allowed, because we have assumed that Theorem [25| holds for n = p), we see that

Ker (fo® fs® -+ @ fps1)

p
=) (d®Rid® - ®id®im ©deide - ®id

i—1 times

p—1i times

Voa@oVs@--- @V, ® (Ker fit1) @ Vipao @ Vigs ®@ - @ Vpi1)
p+1
=> |ideide-- ®idei, ®ideid® - ®id
i*Q\ i—2 times p— i+1 times )
7
£VQ®V§® "®V;—1®(Kerfi)®‘/i+1®V;+2®"'®‘/p+1)/

—M;
(here, we substituted ¢ for i + 1 in the sum)

Since fo ® fs @ -+ ® fpr1 = g, this rewrites as

p+1
Kerg = Z i (M) Z i1 (M) (18)
=2
(here, we substituted ¢ for 7 — 1). But now it is easy to see that

p+1

(id ®iw) (V @ (Ker g)) Zmz i) - (19)

Proof of (19). Let i € {2,3,...,p+ 1}. Then,

—id®id®--- ©ide, 2ideide-- ®id

Vv
i—1 times

~
p+1—1 times

=id® [dRId®---®id®; ®idRid®---®id

=id ®u;
i—2 times p+lj'times
ag
and
Ki=VioWhe @V 10 Kefi) Vi1 @ Vi@ - @V
=V @KoV - @V1@Kerfi)@ Vi1 @ Vi@ - ® V1)

=V :‘]\}i

Thus,

ki (1) = (id @) (V @ M,)

(id@incy, oy w) (V @ (s (M)
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(by Lemma [27] applied to A=V, B=M,;, C =W and f = ;).
But since p; (M;) C Kerg (by (18)), we have

INCy, (), W = INCKer g, © INCpiy(M;) Ker g
—
—iw
since any three k-modules A, B, C such that A C B C C satisfy
Incy ¢ = INCp,c ©Incy

= tw © IMCpu;(M;) Kerg -

Now forget that we fixed i € {2,3,...,p+ 1}. Due to (18], we can apply Lemma
ton=p, A=V, B=W, B'=Kerg and B; = ;41 (M;41). Applying it yields that

p
(id @ inckergw) (V @ (Kerg)) = > (i[d@inc,,,, ey w) (V & (i1 (Mig1)))
i=1
p+l
= ([d@inc,anw) (V@ (1 (M)
= :H:'(rKi)
(here, we substituted ¢ for ¢ + 1 in the sum)
P+l
=i (K,
i=2

and thus is proven.
On the other hand, we defined the k-module K; as

Vo, @Viy@Kerfi) Vi1 @Vipa® - @ Vo

for every i € {1,2,...,p+ 1}. Applied to i = 1, this yields

K = (Ker f1)@Va@Vs@- @V, = [ Ker fi |@(Va@Vz®-- @ V1) = (Ker f)oW.

N

-~

—f —
(20)
We further defined the map k; as

dRid®- - ©ide,ideid- - 0id: K, > VoW

~
i—1 times p+1—i times

for every i € {1,2,...,p+ 1}. Applied to i = 1, this yields

fi=1®idede- - ®id= i ®|ideide - ®id| =iy @id. (21
N \ / A o

Vv Vv
p+1—1 times =iy p+1—1 times

~
=id
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Now, becomes

Ker (f®g) = (iy ®id) \(Ker He W+ (id ®iw) (Yr® (Ker g))}

—r1 (by (2) =K, (by (20) pt1
k1 (by ) 1 (by ) :22 ki (K;) (by )

p+1 p+1

= K1 (Kl) -+ Zlﬂ (KZ) = ZK}Z' (Kz> .

Since
f ® g =hH®(L0f/Q0 ®ft1) =L@ fr® & for1,
=~ ~~
=f1 =fo®@f3® @ fpt+1

this rewrites as

Ker (fi® fa® - @ fps1)

p+1
i=1
- :ld RIAR -+ X 1d/®ii®ld RIAR -+ ® 1(1 =V10Ve®--@V;i_1®(Ker f;)QVit1®Vij2®@-®@Vpi1
ifl‘t,imes p+177times
p+1
=> |ideide - ®ideL®ideide - ®id
i=1 i—1 times p+1—i times

ViaVe @ Vi@ Ker fi) @ Vip1 @ Vi @ -+ @ Vipgr)

We thus have proven that holds for n = p 4+ 1. This completes the induction
step. Thus, the induction proof of Theorem [25|is complete. O

0.11. The tensor algebra case

Before we actually come to the tensor algebra, let us bring Theorem [25|to a nicer form
when all the f; are equal:

Theorem 28. Let k be a commutative ring. Let n € N. Let V and V' be two
k-modules, and let f : V' — V' be a surjective k-module homomorphism. Let i be
the canonical inclusion Ker f — V. Then,

n

Ker (f5) = (idysu-n @i @ idysn-y) (VEOD @ (Ker f) @ VEr9) - (22)

i=1

Notice that the left hand side of the equation is a subset of V®" while the i-th
addend on the right hand side is a subset of V201 @ V @ V=9 To make sense of
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the equation , the set V®" thus must be equal to V-1 @ V @ V"= for every
i€ {1,2,...,n}. Fortunately, this is guaranteed by Convention ﬁ
For the proof of Theorem we will use one more convention:

Convention 29. Let k£ be a commutative ring, and let A, B and C be three k-
modules. Then, we identify the k-module (A ® B) ® C' with the k-module A ®
(B ® C) by means of the k-module isomorphism

(AB)®@C —-A® (B (),
(a®@b)@c—a® (b®c).

Note that we will only use Convention 29| in the proof of Theorem [28 but nowhere
else in this text.

Remark 30. As a consequence of Convention [29, it can be easily seen that the
tensor product V; ® Vo ® --- ® V,, of any k-modules Vi, V5, ..., V,, can be computed
by means of any bracketing. For instance, when n = 4, this means that

Vio(Voe(VzeVy)) = (heV;)eVy)=Viel)e (V3 V,)
=VeoVaV;)oVi=(heoWh Vi) eV,

for any four k-modules Vi, Vo, V3, V.

Remark 31. Convention [29 is compatible with Convention 12} In fact, Conven-
tions 29 and [7] combined make Convention [12] redundant, in the following sense: If
we identify (A ® B)®C with A® (B ® C) for all k-modules A, B and C (as in Con-
vention , and identify V ® k, k® V and V for all k-modules V' (as in Convention
7)), then automatically V®* @ V® becomes identical with V®@*+ for all k-modules
V and a € N and b € N (and this identification is the same as the one given in

Convention .

Proof of Theorem 28, During this proof, we are going to use Convention [29
Now, we apply Theorem 25(to V; =V, V! =V’ f; = f and i, = i. As a result, we

6In fact, using Convention [12} we have

®(i-1) ®(n—i)
\% ® |4 V
=V®! (by Remark 9]
— V®(i—1) ® V®l ®V®(TL—Z)
—_——
=V®(i~1+1) (by Convention [L2)
= YOI+ gy®n-i) _ y®i g y&n—i) _ yy&(itn=i) (by Convention [12)
—y®i
—yen,
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obtain

Ker f®f®---®f

n times

n

d |ideide-- ®ideieideide - ®id
i1 ~~ ~~

i—1 times n—i times

VeaVe Ve KefloVeoVe -V |.  (23)

i—1 times

n—i times

Now, since we are using Convention 29 we can write

VoaVe Ve EeflaVeaVe oV

i—1 times

n—1t times

=|VeVe -V |oEaf)e |VoVe -V

i—1 times

n—i times

-~

~
=V ®3E-1)

=V ®(n—1)

and correspondingly

dRide- 0ideieideid®-- ®id

i—1 times

n—i times

= |deid®---®id | ®ie [deid®---id

i—1 times

n—i times

J/ N
-~

:id\/@(i* 1)

= idyei-1n @1 Q@ idyem-q

-~

:idv®("*i)
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for every ¢ € {1,2,...,n}. Now, since f®" = f® f®--- ® f, we have

n times

Ker(f®") =Ker | f@f®---®f

n times

=> |ideide - Rideirideid® - ®id

i—1 times n—i times

:idv®(i7 1) ®i®idv®(n7i)

VoV oVeKafleVeVe -V

i—1 times n—i times

=V®(-Dg(Ker f)@V®n—1)

(by (23))

=) (idyecn @i @idyen—o) (VD @ (Ker f) @ VOO

i=1
This proves Theorem O

Now, our claim about the tensor algebra:

Theorem 32. Let k£ be a commutative ring. Let V and V' be two k-modules, and
let f:V — V'’ be a surjective k-module homomorphism. Then, the kernel of the
map ®f : @V — V' is

Ker (®f) = (®V) - (Ker f) - (®V).

Here, Ker f is considered a k-submodule of ®V by means of the inclusion Ker f C
V=V®CgV.

We are going to derive this theorem from Theorem For this we need the following

lemma:

Lemma 33. Let k be a commutative ring. Let n € N. Let ¢ € {0,1,...,n}. Let V

be a k-module, and let W be a k-submodule of V. Let i be the canonical inclusion
W — V. Then,

(idyewn @i @ idyen-n) (VOO @ W @ VEr—) = yei-b . . yeh-i,
where we identify V®" with a k-submodule of ®V as in Definition |13 (c).
To prove this lemma, we make a convention:

Convention 34. (a) Whenever £ is a commutative ring, M is a k-module, and S’ is
a subset of M, we denote by (S) the k-submodule of M generated by the elements
of S. This k-submodule (S) is called the k-linear span (or simply the k-span) of S.
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(b) Whenever k is a commutative ring, M is a k-module, ® is a set, and P : & — M is
a map (not necessarily a linear map), we denote by (P (v) | v € ®) the k-submodule
({P(v) | ved}) of M. (In other words, (P (v) | v € ®) is the k-submodule of
M generated by the elements P (v) for all v € ®.)

Note that some authors use the notation (S) for various other things (e. g., the
two-sided ideal generated by S, or the Lie subalgebra generated by S), but we will only
use it for the k-submodule generated by S (as defined in Convention[34] (a)).

The following fact was proven in [3], §1.7 (but is basically trivial):

Proposition 35. Let k£ be a commutative ring. Let M be a k-module. Let S be a
subset of M.

(a) Let @ be a k-submodule of M such that S C Q. Then, (S) C Q.
(b) Let R be a k-module, and f : M — R be a k-module homomorphism. Then,

F({8)) = {f ().
Now let us come to the proof of Lemma |33}

Proof of Lemma|[33 The tensor product V(=Y @ W @ V&= is generated (as a k-
module) by its pure tensors. In other words,
Ve o W@ ver-i = <u Quew | (u,v,w)e VO x W x V®(”_i)>
=({u®vew | (uyv,w)e Vil x W x yer-il)

Thus,

(idyei-1) R @ idyem—i) (V®(i—1) QW ® V®(n—i))
= (idv®(i71) R ® id‘/@(nﬂ')) (<{u RvRw ‘ (u, v, U)) c V®(i—1) < W x V®(n_l)}>)
= <<idv®(i71) R ® idV@(nfi)> ({U Qv w ‘ (U, v, w) c Ve o 17 % V®(n7i)})>

by Proposition (b), applied to M = Vei-1) g W g Ven-i,
R = V@TL’ f = idV®(i*1) ®1 ® 1dv®(n71) and
S={u@vew | (uuv,w) e Ve x W x yer-]

Since

(idyes-n ®i@idpen—) ({u@v@w | (u,v,w) € VI x W x VEr=I1)

(

= ¢ (idyee-n @i @idyen-n) (u@v@w) | (u,v,w) € VEED x W x 70—

- i

. =idy, g (i—1) (w)®i(V)®id|, g (n—i) (W)
.

= idyei-y (1)@  i(v) Didyemn- (w) | (u,v,w) € VO x W x yer-i
— ~~ —

=u =v (since i is the =w
\ inclusion map)

={uevew | (uv,w) e VeI x W x yer=i1
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this rewrites as

(idyewn ®i @ idysn-y) (VEID @ W @ VEr—)
={uovew | (uv,w)e VeI o W % V®("*i)}>
= <u Quow | (u,v,w)e VeI « 7 x V@(nﬂ')> _ (24)

On the other hand,
VEED W v = (ypew | (uv,w) € VECD W x VEESDY o (25)

where the - sign stands for multiplication inside the k-algebra ®@V. But for every
(u,v,w) € VD x W x V=) we have u-v-w = u®v @ w , so that (25))
becomes
Ve . vErT) = (yguew | (u,v,w) € VEITD x W x Ver=i)
= (idyei-1 ®i ® idyem-») (VI @ W @ V=)

by (24))). This proves Lemma |33| OJ
(by p

Proof of Theorem [33. Let i be the canonical inclusion Ker f — V.
We have

®V = @ Ve = Z Ve (since direct sums are sums) (26)
ieN ieN
= Z Vi (here, we renamed the index i as j). (27)
jeN

But the map ®f is defined as the direct sum of the k-module homomorphisms

" Proof. We have u € V(=Y and v € W CV = V@ Hence, u-v=u®v (by , applied to u, v,
i—1 and 1 instead of a, b, n and m) and thus u-v = _u ® v € VO~ gyel = i
- =~
evel-1y  eyel
Combined with w € V&™) this leads to (u ®v)-w = (u ® v) @ w (by , applied to u®v, w, 1
and n — ¢ instead of a, b, n and m). Thus, v -v w=(URV) - Ww=(URV) AW =uR v w, qed.
=uQu
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FOLL VO W for all i € N. Hence,

Ker (®f) = @ Ker f®Z = Z Ker (f®i) (since direct sums are sums)
ieN ieN
= Z Ker (f©") (here, we renamed the index i as n in the sum)
neN
=3 ) (idyse-n ®i @ idyen-i) (VD @ (Ker f) @ V) (by (22))
neN =1

=V®(E-1).(Ker f)-V&®n—9)
(by Lemma applied to W=Ker f)

= ZZVW V. (Ker f) - Vor=i) = ZZV@ (Ker f) - y&n=tD)

neN =1 neN =0 = ®(n—1-1i)

(here, we substituted ¢ + 1 for 7 in the second sum)

n—1
— Z Z V®i . (Ker f) . V®(n—1—i)

neN =0
n—1 0-1
=D > VE(Ker f) - VOO 4 N VO (Ker f) - VOO
neN; =0 =0
n>1 ~ ~~ -

=(empty sum)=0

n—1 n
=) D VO (Ker f) - VEOTT = NN VEL (Ker f) - VECTY

neN; =0 neN i=0
n>1 N——
=> X

1€ENpEN;

n>t

(here, we substituted n for n — 1 in the first sum)

=D > VO (Ker f) - V) =3 "NV (Ker f) -V

€N neN; i€eN jeN
n>t

(here, we substituted j for n — ¢ in the second sum)

— <Z v@i) - (Ker f) - (Z v®j> = (@V) - (Ker f) - (®V).

ieN jeN
~——
=QV =QV

This proves Theorem O

0.12. The pseudoexterior algebra

We are now going to introduce the pseudoexterior algebra Exter V' of a k-module
V. There are two ways to do this: one is by constructing Exter V' as a direct sum
of pseudoexterior powers Exter" V' (so these pseudoexterior powers must be defined
first); the other is by directly constructing Exter V' as a quotient of the tensor algebra
®V modulo a certain two-sided ideal (and then we can construct the pseudoexterior
powers Exter" V' as homogeneous components of this Exter V). It is not immediately
clear (although not difficult) to prove that these two ways yield one and the same (up
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to canonical isomorphism) k-algebra Exter V. We are going to reconcile these two ways
by first proving some properties of the two-sided ideal that we want to factor the tensor
algebra ®V by; once these are shown, it will be easy to see that both definitions of
Exter V' are the same. We delay the definition of Exter V' until that moment. So let us
first define the pseudoexterior powers Exter” V:

Definition 36. Let k be a commutative ring. Let V' be a k-module. Let n € N.
Let @, (V) be the k-submodule

<Ul®vz®---®vn—(—1)”@0(1)®’UJ(2)®---®Ug(n) | ((v1,v2,...,0,),0) € VT X Sn>

of the k-module V®" (where we are using Convention , and are denoting the n-th
symmetric group by S,).

The factor k-module V®" /@, (V) is called the n-th pseudoexterior power of the
k-module V' and will be denoted by Exter" V. We denote by extery,, the canon-
ical projection V¥ — Ve /Q, (V) = Exter" V. Clearly, this map extery,, is a
surjective k-module homomorphism.

Warning 37. This n-th pseudoexterior power Exter" V is called pseudoexterior
for a reason: it is not exactly the same as the n-th exterior power A"V (which we
will introduce in Definition . While the difference between Exter" V' and A"V is
not that large (in particular, they are identic when 2 is invertible in k, as Theorem
will show), this difference exists and should not be forgotten.

Most literature only works with the n-th exterior power A"V, because the n-th pseu-
doexterior power Exter” V' is much less interesting in the general case. However,
a number of texts which are only concerned with the case when 2 is invertible in &
define the n-th exterior power A"V by our Definition [36} i. e., what they call the
n-th exterior power A"V is what we call the n-th pseudoexterior power Exter" V.
Fortunately this does not conflict with our notation as long as 2 is invertible in k
(because when 2 is invertible in k, Theorem [82| (c) yields A"V = Exter" V).

This is not the pseudoexterior algebra Exter V' yet, but only the n-th pseudoexterior
power Exter" V' we will compose the pseudoexterior algebra from these later. First,
here is an alternative description of the module @, (V') from this definition:

Proposition 38. Let £ be a commutative ring. Let V' be a k-module. Let n € N.
Then,

[y

Qn(V)=) (@@ @y + 1) @ U2 @ @piy | (v1,02,...,0,) €V,

=1

where 7; denotes the transposition (i,i 4+ 1) € S,,.

This proposition is classical and can be concluded from the definition of @, (V') and
the fact that the transpositions 7y, 7o, ..., 7,_1 generate the symmetric group S,,. Here
are the details of this proof:

Proof of Proposition[38. Let T denote the subset
{111 RV Q- QU — (—1)01)0(1) @ Vs2) @+ + & Vg(n) | ((Ul,vg,...,vn) ,U) e V" x Sn}
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of V¥, Then,

(T) =({r1®v2 @+ @ vn — (=1)7 V(1) @ Vp(2) @+ @ Ugmy | ((01,02,...,05),0) €V" x S, })
= (11 @U@ @V — (—1)7 V(1) ® Vg2) @+ @ Vo(y | ((v1,02,...,0,),0) €V X S,)

=Q, (V) (by Definition [36]) .
On the other hand,
V@V ® - QUp — (—1)7V5(1) QUs(2) @+ - R Uy €T (28)
for every ((vq,ve,...,v,),0) € V" xS,
(since

T = {vl®v2®---®vn— (—1)7 Vo) ® Vo(2) @ -+ @ Up(y | ((v1,02,...,0,),0) € V" X Sn}

)

On the other hand, let Z denote the k-submodule
n—1
Z</U1 ®/U2 ® e ®Un +UTi(1) ®UTi(2) ® e ®’U7_i(n) | (U17U27. .. ,Un) < Vn>
i=1

of V¥, Then,

(@U@ @ Uy + Un(1) @ Ur(2) @+ DUy | (v1,0,...,0,) €VT) S Z (29)
for every I € {1,2,...,n —1}. Now,

{wi @ws @+ @ Wy, + Wy1) @ Wry(2) @ -+ @ Wiy | (W1, w0, ..., w,) €V"}

= {U1®Uz®---®vn+vﬁ(1)®UTI(2)®'-'®UTI(n) | (v1,v2,...,0,) € V”}

(here, we renamed (wy,wa, ..., wy,) as (vy,va, ..., 0,))

C <{v1 RV ® - Q Uy + V1) @ Un(2) ® - @ VUr(n) | (V1,02,...,Un) € V”}>

= (V@ ® Uy + Vry(1) @ Vpy(2) @+ +* @ Uryny | (V1,03,...,0,) EVYC Z
for every I € {1,2,...,n — 1}. Thus,

W1 QW @+ @ Wy + Wry(1) @ Wr(2) X+ @ Wry(n) € £
for every (wq,ws,...,w,) € V" and every I € {1,2,...,n—1}. (30)

We are now going to show that Z = (T').
First, let us prove that Z C (T'). In fact, every i € {1,2,...,n — 1} satisfies

{'Ul RV ® - Q Uy + V1) ®Un2) @+ DUnny | (V1,02,...,0,) € V"} c(T)
(since every (vy,vs,...,v,) € V" satisfies

U1 ®U2 ® ®Un+/UTi(1) ®U7'i(2) ® ®/UTZ‘(7Z)

J/

== (= D)vr (1) BVr; () BV ()
=01 Q- QU — (_1) Uri(1) @ VUry(2) @+ & Ury(n)
Y T
=(-1)"i
(since 7; is a transposition,

so that (—1)7i=—1)
=0 @V® @V — (1) V1) @ Vry(2) ® - @ VUpy(m)

erT (due to ([28)), applied to ((vi,va,...,v,),7;) instead of ((vi,vs,...,0,),0))
C(T)
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). Now,

n—1
Z=3 (0n®@u® @y +n0) OVr) @+ @ Urgy | (01,03,...,0,) € V")
=1

J/

c(r)
n—1
C (T) C(T) (since (T) is a k-module).
i=1

Now, let us show that (T") C Z. To that aim, we will show that 7' C Z.

In fact, let ((v1,v,...,v,),0) € V" x S, be arbitrary. Then, (vy,va,...,v,) € V"
and o € 5,. Now, it is known that every element of the symmetric group 5,, can be writ-
ten as a product of some transpositions from the set {7, 7, ...,7,_1}. Applying this
to the element o € S, we conclude that o can be written as a product of some trans-
positions from the set {7y, 7,...,7,—1}. In other words, there exists a natural number
m € N and a sequence (iq,i,...,0,) € {1,2,...,n — 1}" such that 0 = 73,75, - - 7,
Consider this m and this (41,2, ...,iy,). For every j € {0,1,...,m}, let o; denote the
permutation 7;, 7, -7, € S,. Thus, 09 = 7,7, -+ - 73, = (empty product) = id and
Om = Ty Tiy** Ti,, = 0. Moreover, every j € {1,2,...,m} satisfies (—=1)" " v,,_ 1) ®

m
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Vo, 1) @+ @ Vo, () — (=1)7 gy (1) @ Uy 2) @ -+ @ gy € Z. [ Thus,

§ \((_1)%_1 Vo;—1(1) ® Vo;_1(2) - ® Voj_1(n) — (_1)01' Uoj(1) ® Vo;(2) Q- & /U‘Tj("))j < 2 :Z
j=1 ~~ j=1
ez

(since Z is a k-module). Since

> (D)7 0, (1) @ Va1 2) @+ @ V() — (—1)7 Vo 1) @ Vy(2) @ -+ @ V()
j=1

=0 @V ® QU — (—1)7 Vp(1) @ Up(2) ® + ** ® Upr() (31)
EL this rewrites as
MRV QU — (—1)7 Vp(1) ® VUp(2) @+ @ Vpn) € Z.

We have thus shown that every ((vy,va,...,v,),0) € V™" X S, satisfies v QU ®- -+ ®
v, — (=1)7 Vg(1) @ Vg(2) @+ + @ Vp(ny € 4. Thus,

{U1®U2®"'®Un— (_1>UUU(1)®UJ(2)®"'®Uo'(n) ‘ ((U17U27"'7vn)70-) evn X Sn} g Z.

8 Proof. Let j € {1,2,...,m} be arbitrary. Then,

0j-1 Ti
~—~—
=TigTigTij_q
(by the formula o;=T;; TiyT;

3
applied to j—1 instead of j)

i = Tiy Tig "'TijflTij =Ty Tig * " Tiy

J:Uj7

so that o; = 0;_17;;. Denote i; by I. Then, 0; = 0;_17;; rewrites as 0; = o;_171. Thus,

(17 = ()77 = (1) (1" = (-7

=—1 (since 71 is a transposition)

Now, define an n-tuple (wi,ws,...,w,) € V™ by (wp = Ug,_,(p) for every p € {1,2,... ,n})

Then, (wy,ws,...,w,) = (vajfl(l),vojil(g), ce, vgjil(n)), so that w1 @ w2 ® -+ @ Wn = Vg,_, (1) ®
Vo, 1(2) @ " @ Vg, (n)- On the other hand, every £ € {1,2,...,n} satisfies

Wry(6) = Vo (r1(8)) (by the formula w, = vy, ,(,), applied to p = 71 (€))
= U, (¢) since 0j_1 (11 (§)) = (0j-171) (§) = 05 (§)

Thus, (Wey (1), Wr(2)s - - Wry(n)) = (Vo (1)5 Vory (2)5 - - 3 Vory (n) ) > SO that wey (1) @ Wy (2) @ - - @ Wiy () =
Vo, (1) @ Vo;(2) @ O Vg ()

Now,

(=17 e, ;1) Ve, _12) @ ®Ug,_y(n) — (1) 05,1) @ Vo, 2) @+ @ Vg, (m)

=W QUWaR---Qwy, =—(—1)73-1

S Wy (1) OWrp (2) @ OWry (n)

(D)7 wr @wa @ - @ wp — (= (=17 ) wr(1) @ Wry2) @+ @ Wy
(D7 (w1 @ w2 @ -+ @ Wy + Wy (1) @ Wry(2) @ -+ @ Wry(n)) € Z (since Z is a k-module) ,
€Z (by (30))

qed.
9 Proof of . We distinguish between two cases: the case when m > 0, and the case when m = 0.
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Since {v1 Rua® -+ @V — (—1) Up(1) ®Vo(2) @ - @ VUp(n) | ((V1,02,...,0,),0) € V" X Sn} =
T, this rewrites as T C Z. Proposition [35| (a) (applied to V¥ T and Z instead of M,
S and @) thus yields that (I") C Z. Combined with Z C (T'), this yields Z = (T).

In the case when m > 0, we have

NE

(1) g, (1) ® Vg, (2) @+ @ Vg, 1 (n) — (—1)7 Vg, (1) @ Vy2) @ -+ © Vg, (m))

.
Il

m

"oy 1 (1) @ Vo, _y(2) @ Vo _y(n) — Z (=1)% V(1) ® Vo (2) @+ * @ Vg (m)
j=1

<
I
—

I
MS ’—‘A
T

=

m—

1) 05,(1) @ Vo (2) @+ ® Vg (m)
=0

m—1
=(=1)7005( (1) BV (2) @+ BV (n) + Z: (=1)%9 05, (1) BV (2) @BV (n)

- D (1) 05, 1) ® Voy(2) @ @ Uy )

Jj=1

m—1

(=179 00, (1) Qo (2) @+ @V (n) F(=1) 7™ Vg, (1) BVery, (2) @+ OV (m)

j=1

(here, we substituted j for j — 1 in the first sum)

m—1
= (71)00 'Uoo(l) ®Uoo(2) ®"'®’Uoo(n) + (71)0_7’ Ugj(l) ®Uaj(2) ®"'®U0j(n)
=1
m—1
—1)% V(1) @ Uy (2) @+ @ gy + (= 1) Vg (1) © Vo (2) @7+ @ Vo )
j=1
= (=) Voo(1) ® Vog(2) @+ @ Voy (n) = (D7 vo,.(1) @V, (2) @ @ Vg, (n)
=1 (since og=id) =01 QU2® QU =(—-1)° =V (1) Vi (2) @+ Vg ()
(since op=id yields (since opm=0) (since o,,=0)

Voo (1) Vo (2) @ Vs (n) =Vid(1) @Vid(2) @ BVid(n)
=01 QV2®--QUp)

=01 @V2® - Q Uy — (—1)7 V1) ® Vp(2) @+ ® Vg(n)>

so that is proven in the case when m > 0.
In the case when m = 0, we have

NE

(D)7 Vo, (1) @ Vo 2) @ @ Vo, y(m) — (1) o, (1) @ Vo (2) @+ @ Vo, ()

<.
Il

1
= (empty sum) =0
(

1) via1) ® viag) @ -+ ® viam) — (—1)" via) @ via) @+ ® Via(n)

—1 =01 QU2 @ QUp

=(—1)705(1) V0 (2) R+ Vs (n)
(since m=0 leads to o,,=00, so that
id=oco=0m=0)

=0 @U@ @y — (—1)7 V1) @ VUg(2) @+ ® Vg (n)
so that (31)) is proven in the case when m = 0.
31

Thus, (31f) is proven in both possible cases. This completes the proof of .
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We now have

n—1
Z<U1 QU+ @V + Vpy(1) D Vry(2) @+ @ VUryny | (V1,025 ,0n) € V”>
i=1

=Z= <T> :Qn(v)
This proves Proposition |38| O

A trivial corollary from Proposition [38}
Corollary 39. Let k be a commutative ring. Let V' be a k-module. Then,

Q- (V) = <U1 X Vg + V2 ® V1 | (Ul,Ug) S V2>

Proof of Corollary[39. Applying Proposition [3§ to n = 2, we obtain

2—-1

QQ (V) = Z <U1 X vg + Un(l) &® UTZ-(Q) ‘ (Ul, ’Uz) € V2>

=1
= (V1 @ Vs + V(1) O Ury(2) | (v1,02) €V =(v1 ®@ua+v2 @0y | (v1,02) € V?)

(since 71 (1) = 2 and 71 (2) = 1). This proves Corollary [39} O

Next something very basic:

Lemma 40. Let £ be a commutative. Let P be a k-algebra.
(a) Let X and Y be two sets, and a : X — P and b: Y — P be two maps. Then,

(a(x) | e X)-(by) [ yeY)=(a(x)b(y) | (z,y) € X xY).

(b) Let X, Y and Z be three sets, and a : X — P, b:Y — Pand c: Z — P be
three maps. Then,

(a(z) | € X)-(b(y) | yeY) (c(z) | z€2)
=(a(x)b(y)c(z) | (z,y,2) € X XY x Z).

Proof of Lemma[{( (a) Let X' =(a(z) | x€ X)and Y' = (b(y) | y€Y).
We will now prove that X'Y" C (a(z)b(y) | (x,y) € X xY) and
(a(z)b(y) | (z,y) e X xY)CX'Y"
Proof of X'Y' C (a(z)b(y) | (z,y) € X xY):
By the definition of the product of two k-submodules, we have

XY =(pqg | (p,q) €X' xY")=({pg | (p,q) € X' xY'}). (32)

Now, let (p,q) € X' x Y’ be arbitrary. Then, p € X' = (a(x) | = € X), so that we
can find some n € N, some elements x1, xs, ..., , of X and some elements Ay, A, .

.y
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An of k such that p = > N\a(x;). Consider this n, these x4, x, ..., 2, and these Aq,

=1
Aoy s A
Since (p,q) € X' xY', wehave ¢ € Y' = (b(y) | y € Y), so that we can find some
m € N, some elements y1, ya, ..., Yy of Y and some elements pq, po, ..., py of k such

that ¢ = > p;b(y;). Consider this m, these y1, ya, ..., ym and these py, o, ..., fim.
j=1

Since p = Y Na(z;) and ¢ = Y p;b(y;), we have
£ —

=1 7
pg = Aia () - 1b (y;) = Aift; a(zi) b (y;)
; ; by, 2; alw)b ;)
e{a(@)b(y) | (z,y)eXxY}
C{a(@)b(y) | (z,y)eXxY})
=(a(x)b(y) | (z,y)eXxY)
CY D (a(2)b(y) | (z,y) € X xY)
i=1 j=1
Cla(x)b(y) | (x,y) € X xY) (since (a(z)b(y) | (x,y) € X xY) is a k-module) .

Since this holds for all (p,q) € X’ x Y’, we have thus proven that

{pg | (pg) € X' xY'}Cla(x)b(y) | (z,9) € X xY).

Therefore, Proposition |35 (a) (applied to P, {pq | (p,q) € X' x Y’} and
(a(z)b(y) | (z,y) € X xY) instead of M, S and Q) yields that

{pa | (@) € X' xY'}) Cla(z)bly) | (z,y) € X xY).
Combined with , this yields
XY Cla(x)b(y) | (v,y) € X xY).

We have thus proven that X'Y' C (a (z)b(y) | (z,y) € X xY).
Proof of (a(z)b(y) | (z,y) € X xY) C X'Y’: We have

X'=(a(z) | veX)={a(z) | zeX})2{a(2) | z€X}.

Thus, a (z) € X’ for every z € X. Similarly, b (y) € Y’ for every y € Y.

Now, let (z,y) € X x Y be arbitrary. Then, x € X and y € Y, so that a (z) € X’
and b (y) € Y’ (as we just have seen). Hence, a (z)b(y) € X'Y".

We have thus shown that a ()b (y) € X'Y’ for every (x,y) € X xY. In other words,
{a(x)b(y) | (x,y) € X xY} C X'Y’". Therefore, Proposition 35| (a) (applied to P,
{a(z)b(y) | (z,y) € X x Y} and X'Y" instead of M, S and Q) yields that

{a(@)b(y) | (z,y) € X xYV}) € XV

Since ({a ()b (y) | (z,y) € X xY}) ={(a(x)b(y) | (v,y) € X xY), we have thus
proven (a (z)b(y) | (z,y) € X xY) C X'Y".
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Combined with X'Y" C (a(x)b(y) | (z,y) € X xY), this yields that XY’ =
(a(x)b(y) | (z,y) € X xY). Since X' =(a(z) | e X)andY' =(b(y) | y€Y),
this rewrites as follows:

(a(x) | 2eX)-(by) | yeY)=(a(x)b(y) | (z,y) € X xY).

Thus, Lemma {40| (a) is proven.
(b) Define amap d: X xY — P by

(d(z,y) =a(x)b(y) for all (z,y) € X xY).
Now, Lemma [40] (a) yields
(a(x) | 2eX)-(by) | yeY)= <a($)b(y) | (z,y) € X x Y>
=d(z,y)
=(d(z,y) | (x,y) €e X xXY) =(d(zx) | z € X xY)

(here, we renamed the index (z,y) as z). Also, (c(z) | z€ Z) = (c(y) | y€ 2Z)
(here, we renamed the index z as y). But Lemma [40| (a) (applied to X x Y, Z, d and
¢ instead of X, Y, a and b) yields

(d(z) [ e X xY)-(c(y) | yeZ)={d(x)-c(y) | (z,y) e (X xY)xZ).
Thus,
fa(z) | € X)-(b(y) | yeY)-(c(z) | z€2)

. 7

'

=(d(z) | zeXxY) =(c(y) | ye2)
=(d(@) [ xe XxY)-{c(y) | ye2Z)={d(x)-c(y) | (z,9) e (X xY)x2)
=(d(t)-c(z) | (t,2) e (X xXY)x Z)
(here, we renamed the index (z,y) as (t,z2))
=(d(z,y)-c(2) | ((z,9),2) € (X xXY) x Z)
(here, we renamed the index (¢,2) as ((z,y),2))

= <d(x,y) c(2) | (z,y,2) € X XY x Z>
——r
=a(z)b(y)
(here, we substituted the triple (z,y,z) for the pair ((z,v),z))
=(a(@)b(y)c(z) | (z,y,2) € X XY X Z).
This proves Lemma {40| (b). O

The following lemma will help us in making use of Proposition |38}

Lemma 41. Let k£ be a commutative ring. Let V' be a k-module. Let n € N. Let
ie{l,2,...,n—1}.
Then,

— yet-1) . (Qa (V) - yem=1-1)

where 7; denotes the transposition (i,i+1) € S,. Here, we consider V®" as a
k-submodule of ®V.
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Proof of Lemma[{dl Define a map a : V=t — V&G~ by
(a (U1, V2, .., U_1) =V QU Q-+ - v for every (vq,vg,...,v;-1) € Vi_l) )
Define a map b: V2 — V®2 by
(b (Vi Vig1) = U @ Vig1 + Vg1 @ ; for every (v;,viy1) € V2) .
Define a map ¢ : V77170 — VO0r-1=0) 1y
(c (Vit2, Vin3y oy Up) = Uing @ Vi3 @ -+ @ vy, for every (viio,vitg,...,v,) € V"’I’i) )

Since V&1 V82 and Ver-1-9) are k-submodules of ®V, we can consider all three
maps a, b and ¢ as maps to the set V.
It is now easy to see that every (vy,vq,...,v,) € V™ satisfies

'U1®'U2®' . '®Un+vn(l)®v’ri(2)®' . '®U7—i(n) =a (Ul, Vo, ... ,Uifl)'b (/Ui, Ui+1)'c (UZ'+2, Vit3,- .- ,Un) ,

where the multiplication on the right hand side is the multiplication in the tensor
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algebra @V . E Thus,
(V1 @V @+ @ Uy + Vpy(1) @ Upy(2) @+ R Upy(my | (V1,09,...,0,) € V™)

= (a (v1,v2,...,0;i_1) - b (Vi,vi11) - € (Vigo, Vizzy -, ) | (v1,09,...,0,) € V™)
= (a(vy,v9,...,0;1) - b(Vi,vi41) - € (Vita, Vizsy .-, Up)
| ((v1,v2, ..., vi1), (U, Vig1) s (Vig2, Vigs, ..., ) € VT x V2 x V”717i>
( here, we substituted the triple ((vy,va,...,vi-1), (Vi, Vit1) , (Viz2, Vieg, -+, Un)) )
for the n-tuple (vq,vg,...,v,)
= <a ()b (y)c(2) | (z,y,2) e VTt xVEx V"_l_i> (34)

(here, we renamed ((v1,vg,...,0;_1), (Vi Vit1) , (Viz2, Vits, .., 0p)) as (x,y,2)).

10 Proof. Let (vq,va,...,v,) € V™. Then, recalling Convention we have
VOV Qu,= V1 QU ® - ®Vi—1)® (V; ®Vit1) ® (Vit2 R Vi43Q -+ @ Uy)

=a(v1,v2,...,0i—1) =c(Vit2,Vi435.--,Un)
=a(v1,v2,...,0i-1) ® (V; @ Viy1) ® ¢ (Vit2,Vit3s .-, Un)- (33)
On the other hand, every j € {1,2,...,i — 1} satisfies 7; (j) = j (since 7; is the transposition
(i,4+ 1)) and thus v, ;) = v;. In other words, we have the equalities v, (1) = v1, vy, (2) = v2, ..
Ur,(i—1) = vi—1. Taking the tensor product of these equalities yields

el

Vr(1) @ Vry2) ® - @ Vry(j—1) = V1 QU2 @ -+ - @ j—1 = a (v1,Va,...,Vi—1).

Every j € {i +2,i+ 3,...,n} satisfies 7; (j) = j (since 7; is the transposition (i,7 + 1)) and thus
V7, (j) = vj. In other words, we have the equalities v, (;y2) = Viy2, Vr,(i43) = Vit3, -« - Ury(n) = Un-
Taking the tensor product of these equalities yields

Vry(i42) @ Vry(i43) @ " @ Vry(n) = Vig2 @ Vg3 @ -+ @ Up = € (Vig2,Vig3,...,Vn) .

Since 7; is the transposition (4,7 + 1), we have 7; (i) =i+ 1 and 7 (i + 1) = 9. These equalities
yield vy, ;) = vi41 and vy, (;41) = v;, respectively.
Now,

Uri(1) @ Ury(2) © -+ @ Ury(n)

= (Ury(1) ® Vry2) ® - O Vry(1-1)) @ | Vri(5) @ Vry(i41) | @ (Vri(i42) ® Vry(i43) ® -+ @ Vr,(n))

=a(v1,v2,...,0i—1) =Vi41 =v; =c(Vi42,0i43,-..,Un)
=a(v1,v2,...,0i-1) ® (Vi1 @ V;) ® ¢ (Viy2,Vit3, -, Un) -
Adding this to (33)), we get
V1 QU2 Q- QUp + Ury(1) @ Vry2) @+ @ VUry(n)

=a(v1,v2,...,0i—1) ® (V; ® Vi+1) ® ¢ (Vit2, Vit ---,Un)
+a(v1,v2, .., 0i-1) ® (Vig1 @ V;) @ € (Vig2,Vitsy .-, Vn)
=a(v1,vV2,...,0i-1) ® (V; ®Vit1 + Vit1 @ ;) ®C (Vig2,Vits, .-, Un)
=b(v;,vit1)
=a(v1,v9,...,0i-1) @b (V;,Vixr1) ® ¢ (Vit2,Vitgs-.-,Un) -

On the other hand, (applied to a (v1,v2,...,v;-1), b(vi,viy1), ¢ — 1 and 2 instead of a, b, n
and m) yields

a(vl,v% e ,’Uifl) . b(vi,le) =aqa (Ul,’UQ, e ,Uifl) ® b(’l)i,’l)i+1) .

Also, (applied to a (v1,va, ..., v;—1) b (v, vi11), € (Vita, Vits,---,0n), i+ 1 and n—1—1 instead
of a, b, n and m) yields

a (017027 cee 7U¢71) 'b(viaviJrl) 'C(Ui+2,vz’+3, .- ~,Un)

= (a(vi,v2,...,vi—1) - b (v, viy1)) ®C (Vig2,Vit3, ..., Vp)

=a(v1,02,.,0i—1)®b(vs,vi11)
=a(v1,v2,...,0i—1) @b (Vi, Vix1) ® ¢ (Vit2, Vitsy---,Up)
=1 ®v2®--~®vn+vfg9) Q@ Vry(2) @« @ Vry(n)s
qed.



But Lemma40] (b) (applied to X = Vi1 Y = V2 Z = V" 1=l and P = ®V) yields

(a() | eV -(bly) | yeV?-(c(z) | zeV")
={(a(x)b(y)c(2) | (z,y,2) e VT x V2 x V" I7H).

Compared to , this yields

<U1®U2®"'®Un+vn(l)®v7'()®"'®Uﬂ() ’ (U17U27-'-7Un)evn>
=(a(z) | ze V") -(bly) | yeV?) - (c(z) | z€ V). (35)

But

< (2) | weV™ 1>_< U1,U2,~~-7Ui—1>, | (U17U27...,Ui1)€vi1>

=01 QU2® - ®V;—1

(here, we renamed x as (v, vg,...,0;_1))

= <Ul Rua®- - ®@vim1 | (v1,v2,...,v1) € Vi_1> = el

(since the k-module V®(~1) is generated by its pure tensors, i. e., by tensors of the
form vy ® v, ®@ -+ @ v;_y with (vy,ve,...,v;_1) € V7). Also,

-

=V +2QV; 43R QUn

< (2) | ze V"™ 1- z>_< U1,+27/Uz+3,...,’l}n)l | (Ui+27vi+3"”7vn>evn—l—i>

(here, we renamed z as (V;y2, Vit3, ..., Up))

= <Ui+2 RVits ® - @Uy | (Vigo,Vigs, ..., Un) € Vn717i> =yt

(since the k-module V®("~1=9) is generated by its pure tensors, i. e., by tensors of the

form ;10 @ Vi3 @+ @ vy, With (viyo, Viys,...,v,) € V179 Also,
<b(y) | y€ V2> - < b(vi,vip1) | (Vi vig1) € V2> (here, we renamed y as (vi, vit1))
—_——
=0; QU +1+Vi4+1®v;

= <Ui ® Vig1 +Vip1 ®v; | (3, Vi41) € V2>
= <U1®1}2+U2®U1 ’ (Ul,UQ) S V2>
(here, we renamed (v;,v;11) as (vy,vs))

=Q2 (V) (by Corollary [39)) .
Thus, becomes

<U1 ® Vg ® e ® U, —+ Uﬁ'(l) ® UT,'(Q) ® e ® Uﬂ'(n) ’ (U17U2’ e ,Un) € VTL>
:\<a (x) | € Vi_1>/-\<b(y) | y e V2>J-\<c(z) | z € V”_l_i>l

:Vg?i—l) :Q‘;(V) :V®?7j—1—i)
— V®(z’—1) . (Q2 (V)) . V®(n—1—z’),
so that Lemma, [41] is proven. O

This lemma yields:
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Corollary 42. Let k£ be a commutative ring. Let V be a k-module. Let n € N.
Then,

n—1
Q. (V) = Z yeE-1) (Q2 (V) - @ (n—1-i)
i=1
(this is an equality between k-submodules of ®V', where @,, (V') becomes such a k-

submodule by means of the inclusion @,, (V) C V®* C ®V). Here, the multiplication
on the right hand side is multiplication inside the k-algebra @V.

Proof of Corollary[{2 For every i € {1,2,...,i— 1}, let 7, denote the transposition
(¢,4+ 1) € S,. Then, by Proposition 38 we have

—_

n—

Qn (V) = <U1 RV Q-+ Rv, + UTi(l) X UTi(Q) R ® UTZ‘(TL) | (Uh Vo, ... ,Un> € Vn>
=1 :V®(i*1>-(Q2(V))-V®?&*1*i> (by Lemma [£1))
n—1
— V®(i71) . (QQ (V)) X V®(n717i).
=1
Thus, Corollary [42]is proven. O

We now claim that:

Theorem 43. Let k be a commutative ring. Let V' be a k-module. We know that

Qn (V) is a k-submodule of V& for every n € N. Thus, @ @, (V) is a k-submodule
neN

of @ V®" = ®V. This k-submodule satisfies

neN

Pa.(v)=(@V)- (@ (V) - (@V).

neN
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Proof of Theorem[45. Working inside @V, we have

n—1
B.(v)=> > Ve (Qy(v)) - Ve (by Corollary

neN neN i=1
=2 Z VI (Qa(V))- e
~——
neN :V®(n—1—i—1):V®(n—(i+2))
- > =X

1€N; 1€EN;
n—2>1 n>i+2

— Z Z V®z ) V® —(i4+2))

neN eN;
n2i+2

N——

=> X

€N neN;
n>i+2
(here, we substituted i for ¢ — 1 in the second sum)

— Z Z VE L (Qy (V) - VEr—(+2) — Z VE L (Q, Z 1 8(n—(i+2)

i€N neN; ieN neN;
n>i+2 n2i+2

=) VE(Qy (V)Y V

ieN jeN
(here, we substituted j for n — (i + 2) in the second sum)

= (Z v@) (Q2(V)) - (Z V®j)

ieN jeN
=@V (by (26)) =aV (by @7)
= (@V)- (@2 (V) - (V).
This proves Theorem O

Now we can finally define the pseudoexterior algebra:

Definition 44. Let k be a commutative ring. Let V' be a k-module.
By Theorem [43] the two k-submodules @ @, (V) and (®V) - (Q2(V)) - (®V) of

neN
®V are identic (where @ @, (V') becomes a k-submodule of @V in the same way
neN
as explained in Theorem [43]). We denote these two identic k-submodules by @ (V).

In other words, we define @ (V') by

=P Q. (V)= (V) (Q (V) - (&V).

neN

Since Q (V) = (®V) - (Q2 (V) - (®V), it is clear that Q (V) is a two-sided ideal of
the k-algebra @V.
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Now we define a k-module Exter V' as the direct sum @ Exter" V. Then,
neN

ExterV = P ExterV, = P (v Q. (V) = <@ v®"> / (@ Qn (V))

neN =y ®n /Q,, (V) neN neN neN

N

-~

oV —Q)

=(@V) Q).

This is a canonical isomorphism, so we will use it to identify ExterV with
(®V),/Q (V). Since Q (V) is a two-sided ideal of the k-algebra ®V, the quo-
tient k-module (®V') /Q (V) canonically becomes a k-algebra. Since ExterV =
(®@V) ,/Q (V), this means that Exter V' becomes a k-algebra. We refer to this k-
algebra as the pseudoexterior algebra of the k-module V.

We denote by extery the canonical projection @V — (®V) /Q (V) = Exter V.
Clearly, this map extery is a surjective k-algebra homomorphism. Besides, due
to @V = @ Ve and Q(V) = @ @, (V), it is clear that the canonical projec-

neN neN
tion @V — (®V) /Q (V) is the direct sum of the canonical projections V" —

venr /Q, (V) over all n € N. Since the canonical projection @V — (®V) /Q (V) is
the map extery, whereas the canonical projection V" — V& /Q, (V) is the map
extery,, this rewrites as follows: The map extery is the direct sum of the maps
extery,, over all n € N.

We now prove a first, almost trivial result about the @ (V'):

Lemma 45. Let k£ be a commutative ring. Let V and W be two k-modules. Let
f:V = W be a k-module homomorphism.

(a) Then, the k-algebra homomorphism ®f : @V — QW satisfies (®f) (Q (V)) C
Q (W). Also, for every n € N, the k-module homomorphism f®" : V& — JWen
satisfies f®" (Q, (V)) C Q, (W).

(b) Assume that f is surjective. Then, the k-algebra homomorphism ®f : @V —
®@W satisfies (®f) (Q(V)) = Q (W). Also, for every n € N, the k-module homo-
morphism f®" : V& — W gatisfies [ (Qn (V) = Qn (W).

Proof of Lemma[45. (a) Fix some n € N. For every i € {1,2,...,n — 1}, let 7; denote
the transposition (i,7 + 1) € S,,. Then, the definition of @, (V') yields

—

=1

(36)
whereas the definition of @,, (W) yields

n—1

Qu(W)=> (01 @wy @+ @ Wy + Wr,(1) DWr2) @+ @ Wy | (wr,wa, ... ,wy) € W),
i=1

(37)
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Now it is easy to see that every i € {1,2,...,n — 1} satisfies

FE (@@ @y + V(1) @ Ury2) @+ QUnny | (v1,02,...,0,) €V™))

C(w1 @wy @+ @ Wy + Wry(1) @Wr2) @+ @ Wr(my | (W1, w2,...,w,) € W").
(38)
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E Now, yields
fE(Qn (V)

n—1
- f®n Z <Ul ® U2 Q- ® Un + UTi(l) ® UTi(2) K- ® vTi(”) | (v17v27 cee ,Un) € V”>
i=1

n—1
= Zf®" (<U1 RV @ QUp + V1) ®Uny2) @+ DUnyny | (V1,02,...,0,) € Vn>)
i=1 ~~
Q<w1®w2®v--®wn+wn(1)®w7i(2>®~--®w7i(n) | (wl,wg,...,wn)EW"> (by )
(since f®" is linear)
n—1
- Z<w1 R Wy ® -+ @ Wy + Wry(1) @ Wry(2) @+ @ Wryny | (wr,w2,. .. ,wy) € W”>
i=1

1 Proof. Fix some i € {1,2,...,n — 1}. Let S be the set
{v1 RUa® - @ Up + V(1) ®Vry2) @ - V() | (V1,02,...,0,) € V"}.
It is clear that every (v1,va,...,v,) € V" satisfies
FE (01 @02 @ @vn FUr,) ®Ur(2) @ @ ()
=)@ f(v2)®- @ f(vn) + f (vr,1) @ f (Vry2)) @+ ® f (Vry(m)) (by the definition of ")
S {w1®w2®~-~®wn+wﬂ.(1)®wn(2)®---®wﬂ.(n) | (wl,wg,...,wn)EW"}
- <{w1 QW2 Q@+ @ Wy + Wry(1) @ Wry2) @+ & Wry(p) | (w1, wa,...,w,) € Wn}>
:<w1®w2®~~-®wn+wﬂ.(1)®wn(2)®~~®wﬂ.(n) | (w1, wa,...,wy,) € W),

In other words,
{f®" (vl®v2®~~~®vn+vn_(1)®vn(2)®~~®vn(n)) | (vl,vg,...,vn)GV"}
C{w QW @+ @ Wy, + Wry(1) @ Wry(2) @+ @Wry(my | (w1,w2,...,wy) € W),
Since

{f®” (vl ® U @ @ Vp + Vry(1) ® Vry(2) ®-~~®7Jn(n)) | (vi,v2,...,0,) € Vn}

=[O {1 Qv2®@ - Qup +Vr,0) QUry2) @+ @Upy(ny | (v1,02,...,00) €V} | = FE"(9),

=S
this rewrites as
FE(S) (w1 @we @ -+ @ Wy + Wry(1) @ Wry(2) @+ D Wri(ny | (W1, wa,...,wyp) € W),

By Proposition [35| (a) (applied to f®™ (S), W®™" and
(w1 @ We @+ @ Wy, + Wry(1) @ Wry(2) @+ DWry(ny | (Wi,wa,...,w,) € W) instead of S, M
and @), this yields

(£ (9)) C{w1 Quwa @ -+ @ Wy + Wry(1) @ Wry(2) @ -+ @ Wry(ny | (wi,w2,...,w,) € W").

But by Proposition |35 (b) (applied to f©", V&" and W®" instead of f, M and R), we have
fem((8)) = (£ (S)). Thus,

FE((S) = (f"(9)) C{w1 @ w2 ® -+ @ Wy + Wy (1) @Wry(2) @+ @ Wry(ny | (w1, w2,...,w,) € W),
Since
() =({r1 @28+ @y + 05,1y @V 2) @ Uy | (V1,02,...,0n) €V"])
(because S = {v1 @ V2 @+ @ Uy + Uy, (1) @ Uy (2) @+ @ VUpy() | (V1,02,...,0,) EV"})
= (V1 ®V2 @ QU + Vry(1) O Vry2) @+ @ Upy(m) | (V1,02,...,0,) EV™),

this becomes

fFoen (<v1 RUa @ @ VUp +Vry(1) @Ur2) @ @Ury(n) | (V1,02,...,0) € V”>)

C{w1 @ w2 @+ @ Wy + Way (1) @ Wry(2) @ D Wy | (W1,w2,...,w,) € W),
qed. 45



Thus, we have shown that
for every n € N, we have f*"(Q, (V)) C Q, (W). (39)

Now forget that we fixed n. Since the map ®f is the direct sum of the maps f®" :
Ver — W for all n € N, we have (®f) () = f® (x) for every n € N and every x €

V@ Thus, for every n € N, we have (@ f) (Q, (V)) = (®f) (x) | x €@, (V)=

=" (x)
(since z€QR (V)CVEN)

{fo (@) | e @u(V)} =" (Qn(V)).
The definition of Q (W) yields Q (W) = @ @, (W). Since direct sums are sums,

neN
this rewrites as Q (W) = > Q. (W).
neN
Now, Q(V) =P Q. (V)= > Q, (V) (since direct sums are sums) and thus

neN neN

@) (Q(V)) = (®f) (Z Qn <v>> — Y @N(@u(V) S QW)= Q).

neN neN :f®"(Qn(\%§Qn(W) neN
(by (39))

This completes the proof of Lemma 45| (a).
(b) Fix some n € N. For every i € {1,2,...,n — 1}, it is easy to prove (using the
surjectivity of f) that
e (<v1 U @+ @ Up + Vpy(1) @ VUpy2) @ @ Upmy | (V1,02,...,0,) € V”>)
= <w1 Wy - - ®wn+wn(1) ®wﬂ'(2) SRR ®w7'1(n) | (wl,wg,...,wn) S Wn>
(10)

Proof of {40). Fix some i € {1,2,...,n—1}. Then, every (wy,ws,...,w,) € W"
satisfies

W1 QW & -+ & Wy + Wry(1) @ Wry2) @ -+ & Wry(n)
€f®n (<Ul®U2®"'®Un+UTi(1)®UTZ'(2)®"'®U7Z(”) ‘ (U1,U2,...,’Un) Gvn>)

E In other words,

{wl®w2®...®wn+wn(l)®w7_i(2)®..-®w7_i(n) | (w17w2,...7wn)ewn}
gf®n(<v1®v2®"'®vn+vn(l)®vﬂ'(2)®"'®Uﬂ‘(n) | (Ul’UQ""’Un)GVn»’

Applying Proposition [35] (a) to
{wl Qwe & -+ @ Wy + Wry1) & Wry2) @ -+ @ Wry(n) | (wl, Wa, . .. ,wn) € W"}, Wem and

12 Proof. Let (w1, ws,...,w,) € W™ For every i € {1,2,...,n}, there exists some z; € V such
that w; = f(z;) (since f is surjective). Fix such a z; for each ¢ € {1,2,...,n}. Then, w; =
f(z1), wa = f(z2), ..., wy, = f(2,). Taking the tensor product of these equalities, we get

W QW+ Qw, = f(21)Qf(22)®---® f(2,). Also, since w; = f(z;) for each i € {1,2,...,n},
we have w,, (1) = f (zn(l)), Wr,2) = f (Zn(g)), s We ) = f (zn(n)). Taking the tensor product
of these equalities, we get Wr,(1) @ Wry2) @+ @ Wry(n) = f (Zn(l)) ® f (ZTi(Q)) R f (Zn(n))
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(1 ®@va® - @y + V(1) ® Ury2) @+ QUnny | (v1,02,...,0,) € V™)) instead
of S, M and @), we conclude from this that
C fen (<Ul RV @ Q Uy + V1) DUn2) @+ DUnny | (V1,02,...,0,) € V”>) .

Thus,

(w1 @ Wy @ -+ + @ W, + Wry(1) @ Wry2) @ -+ QWrymy | (Wi, w2, ..., wy) € W)
= ({1 Qw2 ® - @ Wy + Wr1) OWry2) @ QWrmy | (W1, w2,...,w,) € W"})
gf®n(<U1®U2®"‘®Un+vn(l)®Uﬂ'(2)®"'®Uﬂ'(n) | (vl,UQ,...,vn)EV”».

Combined with , this yields . Thus, we have proven .

In the proof of Lemma [45| (a), we have used to show that f®"(Q, (V)) C
Qn (W). In the same way, we can use to prove that f®"(Q, (V)) = Q, (W) (in
the situation of Lemma [45( (b)).

So we have shown that
for every n € N, we have f*"(Q, (V)) = Q, (W). (41)
In the proof of Lemma |45 (a), we have used to conclude that (®f) (Q (V)) C

Q (W). In the same way, we can use to conclude that (®f) (Q (V)) = Q (W) (in

the situation of Lemma [45| (b)). This completes the proof of Lemma [45| (b). O
[Remark. The above proof of Lemma [45( uses the definition of @ (V') as €@ @, (V).
neN

We could just as well have proven Lemma [45| using the definition of @ (V') as (®V) -
(@2 (V) - (®V)]

The pseudoexterior algebra is (just as most other constructions we did above) func-
torial in V. This means that:

Now, by the definition of f®", we have

fE (1020 @ 2n+ 2r,1) @ 2r,2) @+ @ 2r,(n))
=f()@f(2)@ @ f(2)+ [ (2n) @ F (2r(2) @+ @ [ (2r.(m))

=W1QW2Q - @Wn =W, (1) OWr, (2) @ ®Wr, ()

=W QW2 @+ @ wy +wn(1) ®wn(2) K- ®wn(n)a
so that

W1 QW2+ QW + Wry(1) @ Wry2) @+ @ Wry(n)

:f®n Z1®22®"'®Zn+zn(1)®Zﬂ'(2)®"'®z‘ri(n)

€{v1@V2® - @Un+vs, (1) OV, (2B ®Vr; () | (v1,02,...,00)EV" }
g<{vl®v2®"'®vn+v7i(l)®U7‘i(2)®"'®v‘ri(n) | (v1,U27~~>Un)€V"}>
=<v1®v2®~~®vn+v.,.i(1)®v7i(2>®~~®v”(n) | (Ul,vg,...,un)ev">

€ f®n (<'U1 RV - QU +U7—i(1) ®U7—i(2) & ®Un(n) | (’Ul,’l}g,. . ;Un) S Vn>) )

qed.
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Definition 46. Let k£ be a commutative ring. Let V' and W be two k-modules. Let
f V. — W be a k-module homomorphism. Then, the k-algebra homomorphism
@f : @V — QW satisfies (@) (Q (V)) € Q (W) (by Lemma[45] (a)), and thus gives
rise to a k-algebra homomorphism (®V) /Q (V) — (W) /Q (W). This latter k-
algebra homomorphism will be denoted by Exter f. Since (®V') /Q (V) = Exter V
and (W) /Q (W) = Exter W, this homomorphism Exter f : (®V), /Q (V) —
(@W) /Q (W) is actually a homomorphism from Exter V' to Exter W.

By the construction of Exter f, the diagram

V—2 oW (42)

exteer JexterW

Exter V ———— Exter W
Exter f

commutes (since extery is the canonical projection @V — Exter V' and since extery,
is the canonical projection @ W — Exter W).

As a consequence of Lemma 45| (b), we have:

Proposition 47. Let k be a commutative ring. Let V and W be two k-modules.
Let f:V — W be a surjective k-module homomorphism. Then:

(a) The k-module homomorphism f®" : V" — W®" is surjective for every n € N.
(b) The k-algebra homomorphism ® f : @V — QW is surjective.

(c) The k-algebra homomorphism Exter f : Exter V' — Exter W is surjective.

Proof of Proposition[{7 (a) Let n € N. Lemma (applied to f; = f) yields that the

map f® f®---® [ is surjective. Since fen = J®f® - ® [, this ylelds that the
n times n times

map f®" is surjective. This proves Proposition 47 (a).

(b) We defined the map ®f as the direct sum of the maps f®" for all n € N. Since
the maps f®" are surjective (by Proposition 47| (a)), this yields that the map ®f is
surjective (since the direct sum of surjective maps is always surjective). This proves
Proposition 47 (b).

(c) Since the diagram (42]) commutes, we have extery o (®f) = (Exter f) o extery.
Now, the map exteryy is surjective (since it is the canonical projection ® W — Exter W),
and the map ®f is surjective (by Proposition {47 (b)). Hence, the map extery o (®f)
is surjective (since the composition of surjective maps is always surjective). Since
extery o (®f) = (Exter f) o extery, this yields that the map (Exter f) o extery is sur-
jective. Hence, the map Exter f is surjective (because if o and f are two maps such
that the composition « o 3 is surjective, then a must itself be surjective). This proves

Proposition [47] (c). O

0.13. The kernel of Exter f

We will now formulate a result about the kernel of Exter f for a k-module map f
(similar to Theorem [32 but with a twist):
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Theorem 48. Let k be a commutative ring. Let V and V' be two k-modules, and
let f:V — V'’ be a surjective k-module homomorphism. Then, the kernel of the
map Exter f : Exter V' — Exter V' is

Ker (Exter f) = (Exter V) - extery (Ker f) - (Exter V') = (Exter V) - extery (Ker f)
= extery (Ker f) - (Exter V).

Here, Ker f is considered a k-submodule of ®V by means of the inclusion Ker f C
V=V®CgV.

Note that the Ker (Exter V) = (Exter V') - extery (Ker f) - (Exter V') part of this
theorem will be a rather quick application of Proposition to the results of Theo-
rem |32| and Proposition (c). It is slightly less clear how to show the (Exter V) -
extery (Ker f)- (Exter V') = (Exter V) -extery (Ker f) = extery (Ker f)- (Exter V') part.
We will do this using the following lemma:

Lemma 49. Let k£ be a commutative ring. Let V be a k-module. Let A be a k-
algebra, and let 7 : @V — A be a surjective k-algebra homomorphism. Let M be a
k-submodule of A such that M -7 (V) C M. Then, M is a right ideal of A.

Proof of Lemma[{9. We claim that for every n € N, we have
M-7 (V®") C M. (43)

Proof of . We are going to prove by induction over n:
Induction base: For n =0, we have

M-7r< en ):M- m(k-1) =M k- 7 (1) =M-k-1=M
~— —— ~—~—
=V®0=f=k-1 =k-m(1) =1 (since 7 is a
(since = is k-linear) k-algebra homomorphism)

(since M is a k-module). Thus, is true for n = 0. This completes the induction
base.

Induction step: Let m € N. Assume that holds for n = m. We now must prove
that holds for n =m + 1.

Since (43)) holds for n = m, we have M -7 (V™) C M. Since V®m+l) = y.yem (13|

we have

7T (V®(m+1)) =7 (V- -V¥) =7 (V) (VE™) (since 7 is a k-algebra homomorphism) ,

13 Proof. Every v € V and w € V®™ satisfy v-w = v @w (by , applied ton =1, a =v and b = w).
In other words, every (v,w) € V' x V&™ satisfies v - w = v ® w. Thus,

V~V®m:<v-w \ (U,w)EVXV®m>=<v®w | (v,w) €V x VO™,
~—

=vQw

Compared with V) = V@ Ve = (v @w | (v,w) € V x V&™) (since a tensor product is
generated by its pure tensors), this yields VE(m+h =V . y®m ged.
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so that

M- (VDY = M ox (V) (VI™) C M -7 (VO™) C M.
cM

In other words, holds for n = m + 1. This completes the induction step.
Thus, the induction proof of is complete.
Now that is proven, we notice that

QV = @ Ven = Z yen (since direct sums are sums) ,

neN neN

so that

T(®V)=m (Z V®"> = Z’/T (ver) (since 7 is linear) .

neN neN

Since 7 (®V) = A (because 7 is surjective), this becomes A = > 7 (V™). Thus,
neN

M-A=M-> a(V")=> M-x(V¥")C>Y MCM
neN nENM_/ neN
CM (by (@3))

(since M is a k-module). In other words, M is a right ideal of A. This proves Lemma
49 U

Corollary 50. Let k be a commutative ring. Let V' be a k-module, and let W be
a k-submodule of V. Then,

(Exter V') -extery (W) - (Exter V) = (Exter V') -extery (W) = extery (W) - (Exter V).

Here, W is considered a k-submodule of ®V by means of the inclusion W C V =
Vel C eV,

Proof of Corollary[50 (i) We have V-W +Q (V) =W -V +Qs (V) (as k-submodules
of ®V).
Proof. Let (v,w) € V- x W be arbitrary. Then,

U w + w-v
S~~~ S~~~
—vQuW =wQv
(by (27), applied to (by (27), applied to
a=v, b=w, n=1, m=1) a=w, b=v, n=1, m=1)

=vuw+w®ve {v@u+tvr®u | (v,0) € V?}
g<{’l}1®1}2+?}2®’01 ‘ (’Ul,U2>€V2}>: V1 Q Vg + V9 @ U1 | (1}1,1}2>€V2>:Q2(V)

(by Corollary [39), so that

vw € Qy (V) Q2 (V)-W-V =Qy (V)+W-V (since W -V is a k-module) .

—w - v =
v v
ew 2%

Since this holds for all (v,w) € V' x W, we thus have

{v-w | (vyw)eVxWCQ(V)+W-V.
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Applying Proposition (35 (a) to @V, {v-w | (v,w) eV x W} and Q2 (V)+ W -V
instead of M, S and (), we see that this yields
{v-w | (v,w) eV XW}H CQy(V)+W - V.

Since
{v-w | (yw)eVxW}hH =@w - w | (vyw)eVxW)=V.-W,
this rewrites as V- W C Q3 (V) + W - V. Thus,
VoW Qu(V) C(Q(V)+ W V)4 Qu(V) =W Vb Qu(V)+Qu(V)

CQx(V)
(since Q2(V) is a k-module)

CW-V+Q(V).
Combining this with the fact that W -V +Qy (V) C V- W + Qo (V) (which can be
proven completely analogously), we obtain that V- W + Qs (V) = W -V + Qo (V).
This proves (i).
(ii) We have extery (V) - extery (W) = extery (W) - extery (V') (as k-submodules of
Exter V).
Proof. Since extery is a k-algebra homomorphism, we have

extery (V- W + Q2 (V)) = extery (V) - extery (W) + extery (Q2 (V).

But since extery (Q2(V)) = 0 (because extery is the canonical projection @V —

(®V) /Q (V), and thus @ (V) = Kerextery, so that Q2 (V) C @ @, (V) =Q (V) =
neN
Ker extery ), this rewrites as

extery (V- W + Q2 (V)) = extery (V) - extery (W) + 0 = extery (V) - extery (W).
Similarly,
extery (W -V + Qs (V)) = extery (W) - extery (V).

Now,

extery (V) - extery (W) = extery (V- W 4+ Qo (V) = extery (W -V + Q2 (V))
(since V.-W+Qy (V) =W -V 4+ Q2 (V) by (i)
= extery (W) - extery (V),

and thus (ii) is proven.
(iii) We have (Exter V) - extery (W) = (Exter V) - extery (W) - (Exter V).
Proof. We have

(Exter V')-extery (W) - extery (V) = (Exter V) - extery (V) - extery (W) C (Exter V')-extery (W).
:exterv(l;)texterV(W) QE;trer 1%

By Lemma {49| (applied to A = Exter V, m = extery and M = (Exter V) - extery (W)),
this yields that (ExterV) - extery (W) is a right ideal of Exter V. In other words,
(Exter V') - extery (W) = (Exter V) - extery (W) - (Exter V). This proves (iii).

(iv) We have extery (W) - (Exter V') = (Exter V') - extery (W) - (Exter V).

Proof. The proof of (iv) is analogous to the proof of (iii) (but this time we need an
analogue of Lemma {49 for left instead of right ideals).

(v) Corollary |50| clearly follows by combining (iii) and (iv). The proof of Corollary
is thus complete. O
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Proof of Theorem[{8. Applying the commutative diagram to W = V', we obtain
the commutative diagram

oV —2 Lev . (44)

extery l lexterv/

Exter V —— Exter V'’
Exter f

But it is easy to see that
Kerextery: C (®f) (Ker extery)

E and that the map extery is surjective (since extery is the canonical projection @V —
Exter V). Hence, we can apply Proposition |15 to the commutative diagram , and
conclude that Ker (Exter f) = extery (Ker (®f)). Since Ker (®f) = (®V) - (Ker f) -
(®V) by Theorem [32], this becomes

Ker (Exter f) = extery ((®V) - (Ker f) - (®V)) = extery (®V) - extery (Ker f) - extery (V)
(since extery is a k-algebra homomorphism) .

Since extery (®V) = Exter V' (because extery is surjective), this becomes
Ker (Exter f) = (Exter V) - extery (Ker f) - (Exter V).
Combined with the equality
(Exter V')-extery (Ker f)-(Exter V) = (Exter V)-extery (Ker f) = extery (Ker f)-(Exter V)
(which follows from Corollary , applied to W = Ker f), this yields

Ker (Exter f) = (Exter V) - extery (Ker f) - (Exter V') = (Exter V) - extery (Ker f)
= extery (Ker f) - (Exter V).

This proves Theorem O

Here is a way to rewrite Theorem [48}

Corollary 51. Let k be a commutative ring. Let V' be a k-module. Let W be a
k-submodule of V', and let f: V — V /W be the canonical projection.
(a) Then, the kernel of the map Exter f : Exter V. — Exter (V /W) is

Ker (Exter f) = (Exter V) - extery (W) - (Exter V') = (Exter V') - extery (W)
= extery (W) - (Exter V).

4 Proof. Since extery is the canonical projection ®V — (®V),/Q(V), we have Kerextery =
Q (V). Similarly, Kerextery, = @ (V’). But Lemma [45| (b) (applied to W = V') yields that
(@) (Q(V)) =Q (V). Thus,

Kerexteryy =Q (V') = (@f) | Q(V) = (®f) (Ker extery),

=Ker extery

qed.
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Here, W is considered a k-submodule of ®V by means of the inclusion W C V =
Vel C V.
(b) We have

(Exter V') / ((Exter V) - extery (W)) = Exter (V /W) as k-modules.

Proof of Corollary[51] Since f is the canonical projection V- — V /W it is clear that
f is surjective and that Ker f = W. Now, we can apply Theorem 48 to V' =V /W
and conclude that

Ker (Exter f) = (Exter V) - extery (Ker f) - (Exter V') = (Exter V) - extery (Ker f)
= extery (Ker f) - (Exter V).

Since Ker f = W, this simplifies to

Ker (Exter f) = (Exter V) - extery (W) - (Exter V') = (Exter V') - extery (W)
= extery (W) - (Exter V).

This proves Corollary [51] (a).

Since the map f : V — V /W is surjective, the map Exter f : Exter V' — Exter (V /W)
is also surjective (by Proposition (c), applied to V /W instead of W), and thus
we have (Exter f) (ExterV) = Exter (V,/W). But by the isomorphism theorem,
(Exter f) (Exter V') = (Exter V') / Ker (Exter f) as k-modules. Thus,

Exter (V /W) = (Exter f) (Exter V') = (Exter V') / Ker (Exter f)
—_———
=(Exter V)-extery (W)
= (Exter V') / ((Exter V) - extery (W)) as k-modules.

This proves Corollary 51| (b). O

0.14. The symmetric algebra

In the previous two subsections (Subsections and [0.13), we have studied the pseu-
doexterior algebra Exter V' of a k-module V. Many properties of the pseudoexterior
algebra Exter V' are shared by its more well-known analogue - the symmetric algebra
Sym V. Pretty much all of our above-proven properties of Exter V have analogues for
Sym V. We are now going to formulate these analogues, without proving them (be-
cause their proofs are completely analogous to the proofs of the properties of Exter V
that we did above). First, before we define the symmetric algebra Sym V', let us define
the symmetric powers Sym" V:

Definition 52. Let k be a commutative ring. Let V' be a k-module. Let n € N.
Let K, (V) be the k-submodule

(V@U@ Uy — Vo) ®Up(2) @+ B Us(y | ((U1,02,...,0,),0) €V X S,)

of the k-module V®" (where we are using Convention , and are denoting the n-th
symmetric group by S,).
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The factor k-module V®" /K, (V) is called the n-th symmetric power of the k-
module V' and will be denoted by Sym"V. We denote by symy, the canonical
projection V& — V& /K, (V) = Sym" V. Clearly, this map symy,, is a surjective
k-module homomorphism.

We should understand these notions K, (V), Sym" V' and symy,, as analogues of
the notions @, (V), Exter" V' and extery,, from Definition , respectively. Here is an
analogue of Proposition [38}

Proposition 53. Let k£ be a commutative ring. Let V be a k-module. Let n € N.
Then,

[y

n—

E,(V)=) (n1®u® @y — (1) @ Ury(2) @+ @ Urgmy | (01,02,...,0,) €V,
1

i

where 7; denotes the transposition (i,i 4 1) € S,,.

Proof of Proposition[53. The proof of this Proposition [53] is completely analogous to
the proof of Proposition (up to some replacing of + signs by — signs and some
removal of powers of —1) and can be found in §5.1 of the long (detailed) version of
[3]. O

Here is the analogue of Corollary [39}

Corollary 54. Let k be a commutative ring. Let V' be a k-module. Then,

Ky (V) = <Ul Ruy —va @1 | (v,v2) € V2>.

Proof of Corollary[54 Again, the proof of Corollary [54]is completely analogous to the
proof of Corollary [39 ]

Next, the analogue of Lemma [41}

Lemma 55. Let k£ be a commutative ring. Let V' be a k-module. Let n € N. Let
ie{l,2,...,n—1}.
Then,

<v1 QU2 @ Q@ Uy — VUry(1) @ VUry2) @ -+ @ Ury(n) | (v1,v2,...,0,) € V”>
— V®(i—1) . (K2 (V)) X ‘/Q@(’rz—l—i)7

where 7; denotes the transposition (i,i+ 1) € S,. Here, we consider V®" as a
k-submodule of ®V'.

Proof of Lemma[55. The proof of Lemma 55 is completely analogous to the proof of
Lemma 41l O

Next, the analogue of Corollary [42}
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Corollary 56. Let k£ be a commutative ring. Let V' be a k-module. Let n € N.
Then,

n—1
K, (V) _ Z V®(i71) . (K2 (V)) . V®(n7171;)
=1

(this is an equality between k-submodules of ®V', where K, (V') becomes such a k-
submodule by means of the inclusion K,, (V) C V®" C ®V). Here, the multiplication
on the right hand side is multiplication inside the k-algebra @V.

Proof of Corollary[56. The proof of Corollary [56]is completely analogous to the proof
of Corollary O

Now the analogue of Theorem [43}

Theorem 57. Let k be a commutative ring. Let V' be a k-module. We know that
K, (V) is a k-submodule of V®" for every n € N. Thus, @ K, (V) is a k-submodule

neN
of @ V& = @V. This k-submodule satisfies

neN

DK, (V) = (@V)- (K (V) - (&V).

neN

Proof of Theorem[57. The proof of Theorem [57] is completely analogous to the proof
of Theorem [43] O

Now we can finally define the symmetric algebra, similarly to Definition [44}

Definition 58. Let k be a commutative ring. Let V' be a k-module.
By Theorem [57] the two k-submodules @@ K, (V) and (®V) - (K3 (V)) - (®V) of

neN
®V are identic (where @ K, (V') becomes a k-submodule of ®V in the same way
neN

as explained in Theorem [57). We denote these two identic k-submodules by K (V).
In other words, we define K (V') by

KE(V)=@K,(V)=(aV)- (K2 (V))-(&V).

neN

Since K (V) = (®&V) - (K3 (V)) - (®V), it is clear that K (V') is a two-sided ideal of
the k-algebra ®@V.
Now we define a k-module Sym V' as the direct sum @ Sym” V. Then,

neN
SmV = sym'v = V" /K, (V)) = (@ v®”> / (@ K, (V))
neN —ven /K, (V) neN N nGNV N neN g y
=RV =K(V)

=(@V) /K (V).
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This is a canonical isomorphism, so we will use it to identify SymV with
(®V) /K (V). Since K (V) is a two-sided ideal of the k-algebra ®V, the quo-
tient k-module (®V') /K (V) canonically becomes a k-algebra. Since SymV =
(®V) /K (V), this means that SymV becomes a k-algebra. We refer to this k-
algebra as the symmetric algebra of the k-module V.

We denote by sym,, the canonical projection @V — (®V) /K (V) = SymV.
Clearly, this map sym, is a surjective k-algebra homomorphism. Besides, due
to @V = @ Ve and K (V) = @ K, (V), it is clear that the canonical projec-

neN neN
tion @V — (®V) /K (V) is the direct sum of the canonical projections V" —

ver /K, (V) over all n € N. Since the canonical projection V' — (®V) /K (V)
is the map sym,,, whereas the canonical projection V®" — V®" /K, (V) is the map
symy,,,, this rewrites as follows: The map sym,, is the direct sum of the maps sym,, ,
over all n € N.

When vy, vs, ..., v, are some elements of V', one often abbreviates the element
symy (11 @ e ® -+ - ® vy,) of SymV by vjvg---v,. (We will not use this abbrevia-
tion in this following.)

We should think of the notions K (V'), Sym V' and sym,, as analogues of the notions
Q (V), Exter V and extery from Definition , respectively. The next result provides
an analogue of Lemma [45}

Lemma 59. Let k£ be a commutative ring. Let V and W be two k-modules. Let
f:V — W be a k-module homomorphism.

(a) Then, the k-algebra homomorphism ®@f : @V — QW satisfies (®f) (K (V)) C
K (W). Also, for every n € N, the k-module homomorphism f®" : V& — WWen
satisfies f®" (K, (V)) C K, (W).

(b) Assume that f is surjective. Then, the k-algebra homomorphism ®f : @V —
®@W satisfies (®f) (K (V)) = K (W). Also, for every n € N, the k-module homo-
morphism f®": V& — W gatisfies f" (K, (V)) = K,, (W).

The following definition mirrors Definition 46}

Definition 60. Let £ be a commutative ring. Let V' and W be two k-modules. Let
f V. — W be a k-module homomorphism. Then, the k-algebra homomorphism
@f : @V — QW satisfies (®f) (K (V)) C K (W) (by Lemma[59 (a)), and thus gives
rise to a k-algebra homomorphism (®V) /K (V) — (W) /K (W). This latter k-
algebra homomorphism will be denoted by Sym f. Since (®V) /K (V) = SymV
and (@W) /K (W) = SymW, this homomorphism Sym f : (®V) /K (V) —
(@W) /K (W) is actually a homomorphism from Sym V' to Sym W.

By the construction of Sym f, the diagram

oV —2 oW (45)

symvl lsymw

Sym V m Sym W

commutes (since symy, is the canonical projection ®V — Sym V' and since symy, is
the canonical projection W — Sym W).
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Needless to say, the notion Sym f introduced in this definition is an analogue of the
notion Exter f introduced in Definition
Here is the analogue of Proposition [A7}

Proposition 61. Let £ be a commutative ring. Let V' and W be two k-modules.
Let f:V — W be a surjective k-module homomorphism. Then:

(a) The k-module homomorphism f®" : V" — W®" is surjective for every n € N.
(b) The k-algebra homomorphism ® f : @V — QW is surjective.

(c) The k-algebra homomorphism Sym f : Sym V' — Sym W is surjective.

Proof of Proposition[61]. The proof of this Proposition [61] is completely analogous to
the proof of Proposition 47| (and parts (a) and (b) are even the same). O

So much for analogues of the results of Subsection [0.12 Now let us formulate the
analogues of the results of Subsection [0.13] First, the analogue of Theorem |8}

Theorem 62. Let k£ be a commutative ring. Let V and V' be two k-modules, and
let f:V — V'’ be a surjective k-module homomorphism. Then, the kernel of the
map Sym f : SymV — Sym V' is

Ker (Sym f) = (Sym V) - sym,, (Ker f) - (Sym V) = (Sym V) - sym,, (Ker f)
= symy, (Ker f) - (Sym V).

Here, Ker f is considered a k-submodule of ®V by means of the inclusion Ker f C
V=Ve CV.

Proof of Theorem[63. The proof of this Theorem [62]is completely analogous to that of
Theorem 48] O

The analogue of Corollary [50| comes next:

Corollary 63. Let k£ be a commutative ring. Let V be a k-module, and let W be
a k-submodule of V. Then,

(Sym V) - symy, (W) - (Sym V) = (Sym V) - symy, (W) = symy, (W) - (Sym V) .

Here, W is considered a k-submodule of ®V by means of the inclusion W C V =
Vel C eV,

Proof of Corollary[63 Expectedly, the proof of Corollary [63]is analogous to the proof
of Corollary O

Finally, the analogue of Corollary [51}

Corollary 64. Let k be a commutative ring. Let V' be a k-module. Let W be a
k-submodule of V', and let f : V — V /W be the canonical projection.
(a) Then, the kernel of the map Sym f : SymV — Sym (V /W) is

Ker (Sym f) = (Sym V))-symy, (W)-(Sym V) = (Sym V)-symy, (W) = symy (W)-(Sym V).
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Here, W is considered a k-submodule of ®V by means of the inclusion W C V =
Vel C V.
(b) We have

(SymV) / ((Sym V) - symy, (W)) = Sym (V /W) as k-modules.

Proof of Corollary[64 The proof of Corollary [64] is analogous to the proof of Corollary
b1l ]

0.15. The exterior algebra

Now we are going to study the exterior algebra AV of a k-module V. This algebra is
rather similar, but not completely analogous to Exter V' and Sym V. We are going to
again formulate properties similar to corresponding properties of Exter V' and Sym V/;
but this time, some of these properties will require different proofs, so we will not
always be able to skip their proofs by referring to analogy. Still some of the proofs will
be very similar to the corresponding proofs for Exter V' we gave in Subsections [0.12
and (some others will be not). First, before we define the exterior algebra AV, let
us define the exterior powers A"V:

Definition 65. Let k be a commutative ring. Let V' be a k-module. Let n € N.
Let R,, (V') be the k-submodule

<U1®U2®"'®Un | ((U17U27"'7vn>7(i7j))evnx{1727"'7”}2; Z%Ju Ui:Uj>

of the k-module V®" (where we are using Convention [34)).

The factor k-module V¥ /R, (V) is called the n-th exterior power of the k-module
V' and will be denoted by A"V. We denote by wedgey,, the canonical projection
ver - ver /R, (V) = A"V. Clearly, this map wedgey,,, is a surjective k-module
homomorphism.

We should understand these notions R, (V), A"V and wedgey,,, as analogues of the
notions @, (V'), Exter" V and extery,, from Deﬁnition respectively. First something
very basic - an analogue of Corollary [39

Corollary 66. Let k£ be a commutative ring. Let V' be a k-module. Then,

Ry(V)=(v®@v | veV).

Proof of Corollary[66, We have the inclusions

{vi@va| (v1,02),(4,4) € VEx {1,2}*; i #j; vi=v;} C{o®v | veEV}
[ and

fvev | veViC{u®uv| (v,v),(0,5) € V2 x {1,2}%; i # j; v, = v;}

15 Proof. Let p € {vl @vy | ((v1,02), (i, 5) € VEx {1,2}%; i # j; v; = vj}. Then, there exists some
((v1,v2),(i,§)) € V2 x {1,2}* such that i # j and v; = v; and p = v; @ va. Consider this
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H- Combining these two inclusions, we get
{vi@vy | ((vi,09),(5,7) €VEx {1,2}; i#j; vi=v} ={v®v | veEV}.
But by the definition of Ry (V'), we have
Ry (V) = (v1@uy | ((v1,09),(i,7) € V2 x {1,2}"; i # j; v = ;)

- <{ © | ((v1.12).(0,0)) € V2 x (LY i £ v }>

={v®v‘,\v€V}
={veuv | veVh=@wRv | veV).

This proves Corollary [66] O

Here is an analogue of Proposition

Proposition 67. Let £ be a commutative ring. Let V' be a k-module. Let n € N.
Then,

—_

R, (V)= (VU R+ Ry | (v,v2,...,0,) €V v; =v;11) .

=1

While the proof of this proposition is not too much harder than that of Proposition
it is better understood when split into lemmas. Here is the first one:

Lemma 68. Let k be a commutative ring. Let V' be a k-module. Let n € N. Let
R,, (V) denote the k-submodule

—_

e
(@U@ - @uy | (v1,02,...,0,) € V") v; = Vi41)

i=1

of V& Then, Q, (V) C R, (V).

((v1,v2),(i,5)). Then, (i,7) € {1,2}*. Since i # j, this yields that either (i =1 and j = 2) or
(j =1 and 7 = 2). In each of these two cases, we have v; = vs (in fact, in the case (i = 1 and j = 2),
the equation v; = v; rewrites as vy = vo; and in the other case (j =1 and i = 2), the equation
v; = v; rewrites as vy = vq, so that v; = vy). Hence, we have v; = vy. Thus, p = &@vg =

=vs

v e{v®u | veV}.

We  have  thus  shown  that p € {vev | veV} for  every

D € {Ul ®va | ((v1,v2),(5,4)) € V2 x {1,2}%; i # j; v; = Uj}- Hence,
v @vs | ((vr,02),(6,) € VEx {1,275 i £ js vi= v} C{v@w | ve V), qed

% proof. Let p € {v®wv | veV}. Then, there exists v € V such that p = v ®

v. Consider this v. Then, there exists some ((v1,v2),(i,5)) € V2 x {1,2}* with i #

j and v; = w; such that p = wv; ® va (namely, ((v1,v2),(:,7)) = ((v,v),(1,2))).

Hence, p € {vl ®wva | ((v1,v2),(1,5)) € V2 x {1,2}2; 1% J; vy = vj}. Since we have proven
this for every p € {v®wv | veV}, we have thus shown that {v®@v | veV} C
{vl Qv | ((v1,0), (0, §)) € V2 x {1,2)2; i # j; vi :vj}.
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Proof of Lemma[68 (i) Every i € {1,2,...,n — 1} satisfies

</U1®/U2®.”®,U’n+v7'i(l)®/UTZ‘(2)®”'®,UT'L(”) | (U17U27...,Un) S Vn>
g<?)1®’l]2®"'®'l}n | <U17U27-"7vn)€vn; Ui:UiJrl)a (46)

where 7; denotes the transposition (7,7 4+ 1) € S,,.
Proof. Fix some i € {1,2,...,n —1}. Now let 20 be the set

{w QW @+ @w, | (wi,ws,...,w,) € V" w; = w1} .
Then,
W1 QWX - -Qw, € AW for every (wy,ws,...,w,) € V" satisfying w; = w;41. (47)

Fix some arbitrary (vi,vs,...,v,) € V" Define a tensor A € V&1 by A =
V1 QUy® -+ ®v;_1. Define a tensor C' € VE—1-0 by C' = 0,40 Q0130 - - @v,. Then,
recalling Convention [12] we have

VIRV Qup= (V1 QU ® - @ V1) ® (U ®Viy1) ® (Viga ®Vip3 ®@ -+ @ )

—A —C

On the other hand, every j € {1,2,...,i — 1} satisfies 7; (j) = j (since 7; is the
transposition (4,74 1)) and thus v,,;) = v;. In other words, we have the equalities
Ur,(1) = U1, Ury(2) = V2, - - ., Ur(i—1) = Vi—1. Laking the tensor product of these equalities
yields

V(1) @ Upy2) @+ QUpy(i—1) = V1 QU @ -+ ;1 = A.

Every j € {i+2,i+3,...,n} satisfies 7;(j) = j (since 7; is the transposition
(¢, + 1)) and thus v, ;) = v;. In other words, we have the equalities vy, (i12) = Vita,
Ur,(i43) = Vi43s - - -, V() = Up. Taking the tensor product of these equalities yields

Vr(i42) @ Vry(i43) @+ @ Vry(n) = Vig2 QUip3 @ -+ @ v, = C.

Since 7; is the transposition (7,7 + 1), we have 7; (i) =7+ 1 and 7; (i + 1) = i. These
equalities yield v, ;) = vip1 and vy, (i41) = v;, Tespectively.
Now,

Ur,(1) ® Ur;(2) K& Uri(n)

= (Ur1) ® Ury2) ® -+ B Uryi-1)) © | Vri) @ Vit | @ (Vri(ira) ® Vriigs) @ -+ @ Uﬂ-(n))J

[ S/

Vv vV
=A =Vi+1 =v; =C

=A ® (UZ'+]_ ® Ui) & C.
Adding this to (48)), we get

V1 QU ® - ®Un+vn-(1) ®U7'i(2) &K ®Un(n)
:A®(Ui®'l}i+1)®C+A®(U¢+1®’U¢)®C
= A ® (Ui ® Ui+1 + Ui+1 ® ?)Z') ® O (49)
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But it is easy to see that
ARppeC e for every p € V. (50)
7] Since 20 C (20), this yields
ARppe C e (2) for every p € V. (52)
Now,

Vi @ Vig1 + Vip1 ® U = (V; @ U; + U; @ Vg1 + Vip1 @ U + Vi1 ® Vi1) —0; @ U — Vig1 @ Vigq

. /
-~

=(vi+vit1)Q(vi+vig1)

= (U5 + Vig1) ® (Vi + Vig1) — Vi DV — Vig1 @ Vigr.

7 Proof of (@ Let p € V. Define an n-tuple (wy,ws,...,w,) € V" by

v, if £ < 1;
wy = p,z?fllfi;—&zjl; for every £ € {1,2,...,n} | . (51)
ve, if £ >7+1
v, if £ < 1;
Then, every ¢ € {1,2,...,i— 1} satisfies w, = p, if £ - 5 = vy (since £ < 4). In other
’ T p,ifb=1i+1;
ve, if 0 >1+1
words, we have the equalities w; = vy, wy = vs, ..., wj—1 = v;—1. Taking the tensor product of
these equalities, we get w1 QW @ -  Qw;_1 =11 QU ® - Qu;_1 = A.
ve, if £ < 4
Also, every £ € {i +2,i+3,...,n} satisfies w; = p,ifﬁ:.i; = vy (since £ >i+1). In
’ ’ L p,if =141,
ve, if >0+ 1
other words, we have the equalities w;12 = v;42, Wiy3 = Vit3, ..., Wy, = v,. Taking the tensor
product of these equalities, we get w10 @ W13 R -+ Q Wy = Vito QU3 ® -+ @ v, = C.
v, if 1 < 4
Applying (51) to £ = i, we get w; = p; I.fZ = b = p (since i = ¢). Applying (51) to
’ p,ifi =1+ 1;
vi, ifi>i+1
Vit1, 1fl+ 1< i;
{=1+1, we get w; = pifi+1 =i =p (sincei+1=1i+1).

p,ifi+1=14+1;
1}1‘+1,if’i+1>i+1
Now,

WIRQWIR: -y, = (W1 QW2 ® -+ QWi—1) @ W; DWit1 @ (Wit2 Q@ Witz @ -+ @ wy,) = ARpRPRC.
—~ ——

=A =P =p =C

Since wy; Q Wy ® -+ - @ w, € W (by )7 we thus have A ® p ® p® C € 9J. This proves .
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Thus, becomes

(% X V2 - & Un, + vTi(l) ® UTi(Q) SO vTi(n)
=A® Svi R Vig1 + Vi1 & Uiz ®C

-~

=(vi+vi11)Q(V;+Vi41) =V QU —Vi 4 1@Vi 1

=A® ((vi +vi41) ® (Vi + Vig1) — V5 @V — Vig1 @ Vi) @ C

=A® (v +vi41) ® (Ui+vi+1)®q_ AQv®v;®C — 14®UH1®U7;+1®C'
€() (vy (2, applied to p=vi+vi41) €(W) (by (52), applied to p=vi) (W) (by ), applied to p=v;11)
€ (W) — (W) — (W) C (W) (since (20) is a k-module).
We now forget that we fixed (vq,vs,...,v,). What we have proven is that every
(v1,v9,...,v,) € V" satisfies

VU X Q Uy + Urya) ®Ury2) @+ @ Ury(n) € (W) .
In other words,
{0 @V ® - @y +Ur1) ®Ur2) @+ ®VUprmy | (v1,02,...,0,) €V} C(W

Hence, Proposition [35| (a) (applied to V&,
{Ul®v2®"'®vn+vn(l)®Uﬂ'(2) ®®UT1(TL) | <U17U27"'7U’n) S VTL} and <m]> in-
stead of M, S and Q) yields

{1 ®@v2® -+ @ vy +050) QUry2) @+ @ Uy | (v1,02,...,0,) € V"'}) C (W
Thus,

<U1®U2®"'®Un—|—vn(1)®U7i(2)®"‘®vfi(n) | (v1,v9,...,0,) € Vn>
= <{U1 RV ® - @ vy, +U7’i(1) ®U7'i(2) R ®U7i(n) | (U17U2a c. ,Un) S Vn}>
CEW) ={wi Qw2 @ - @wy, | (wi,ws,...,wy) € V" wy =wipr})

(since W ={w Quy ® - Qw, | (wy,ws,...,w,) € V" w; =wi1})
= (W QW ® - Quw, | (wi,w,...,w,) € V™ w; =wiyq)
=1 QU - Qu, | (vi,vg,...,0,) €EV"; v; = v41)

(here, we renamed (wy,wa, ..., wy,) as (vy,va,...,U,)).

This proves (i).
(ii) For every i € {1,2,...,n — 1}, let 7; denote the transposition (i,i + 1) € S,,. By
Proposition [38] we have

n—1
Qn (V) - Z<U1 ®U2 ® ct ®UTL+UTi(1) ®,U7'i(2) ® st ®U7'i(n) | <U17U27--~7Un> S Vn>
i=1
n—1
CS 1 ®u® ®u, | (01,02,...,0,) € V"5 v = i) (by (E6))
i=1
=R, (V).
This proves Lemma [68] O

Our next step is the following lemma:
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| Lemma 69. In the situation of Lemma |68 we have R, (V) C R, (V).

Proof of Lemma[69 First fix some I € {1,2,...,n — 1}. Fix some (w1, ws, ..., w,) €
V" satisfying wy = wryq. Then, the pair ((wy, wo, ..., wy,), (LI4+1)) € V*x{1,2,...,n}?
satisfies I £ I + 1 and vy = vry;. Therefore,
w1 ®wy - Qwy,
€ {U1®U2®"'®Un | ((v1, 02,05 00), (2,7)) €V X {172,---771}2; LF 5 Ui :'Uj}
C{n@n® ®u | (0n,0m-00), (1) € VI X {1,205 i £ G v =0;})
= <U1®U2®"'®Un | ((U17U27'”7vn)7(i7j)) e V" x {1727”‘7”}2; 17&]7 Vg :Uj>
=R, (V).

Now forget that we fixed some (wy, ws, ..., w,) € V" satisfying wy = wry1. We have

thus proven that every (wi,ws,...,w,) € V" satisfying wy = wyy; satisfies w; ® wy ®
- ®@w, € R, (V). In other words, we have proven that

{w @we @ -+~ @w, | (wy,ws,...,w,) € V" wr=wr1} € R, (V).

Hence, Proposition [35( (a) (applied to V&,
{w @we @ -+~ @w,, | (w1, wa,...,w,) € V™ wy =wr1} and R, (V) instead of M,
S and @) yields

{ur @w, ®@---@w, | (wi,ws,...,w,) € V" wr =wry1}) € R, (V).
So we have

(VU Qu, | (vi,vg,...,0,) €EV"; v = vpy1)
= (W QW ® - Quwy, | (Wi, ws,...,w,) € V"™ wy = wryq)
(here, we renamed (vy,vq,...,0,) as (wy,wy, ..., wy,))
={w Q@uws ® - @w, | (w,wa,...,w,) €V™ wy=wr1}) CR, (V). (53)

Now forget that we fixed some I € {1,2,...,n — 1}. We have now proven that every
I€{1,2,...,n— 1} satisfies (53). Now,

R, (V)= (V1 RV R+~ Ruy, | (v1,V2,...,0,) €V v; = vi41)

(VI @V R ®vy | (v1,v2,...,v,) €V UI:UI+1>/

CRA(V) (by ()
(here, we renamed the summation index ¢ as I)

n—1
C Z R,(V)CR, (V) (since R, (V) is a k-module).
=1

This proves Lemma [69] O

Our final lemma is:
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| Lemma 70. In the situation of Lemma |68, we have R, (V) C R, (V).
Proof of Lemma[70. (i) It is clear that every I € {1,2,...,n — 1} satisfies

{vi@v®---®@v, | (v1,09,...,0,) € V" vy = v }
CH{n @@ - ®u, | (v1,ve,...,v,) € V" vr = vr41})

=@V - ®v, | (v,v2,...,0,) €V"; v = vp1)
n—1 _
§Z<U1®U2®"'®Un | (v1,v2,...,0,) €V vy =vi4q) = R, (V).
i=1

In other words, for every I € {1,2,...,n — 1},

every (v1,vg,...,v,) € V" such that vy = vry; satisfies v QU ® -+ - Q@ v, € En (V).
(54)

(ii) Every ((wy,wo, ..., wy),(I,d)) € V" x {1,2,...,n}” satisfying I # J and wy =
wy must satisfy w; @ W, ® - -+ @ w,, € R, (V).

Proof. Fix some ((wy,wy, ..., wy,),(I,J)) € V" x {1,2,...,n}* satisfying T # J and
wy = wy.

Then, (wy,ws, ..., wy,) € V* and (I J) € {1,2,...,n}>

We can WLOG assume that I < J (since otherwise, we could just transpose I with
J, and nothing would change (because each of the conditions I # J and wy = wy is
clearly symmetric with respect to I and J)). So let us assume this. Then, I < J (since
I<JandI#J). Thus, I <J <mn,sothat I <n—1 (since I and n are integers), and
thus I + 1 < n. This allows us to speak of the vector wyy;.

Now, there clearly exists a permutation 7 € S, such that 7 (I) =Tand 7 (I+ 1) = J.
m Consider such a 7. From 7 (I) = I, we obtain w,;q) = wr = wy = w-41) (since
J=71+1)).

Now, since (wq,ws, ..., w,) € V" and 7 € S,, we have ((wy,ws,...,w,),7) € V" X
Sy, so that

W @wy ® -+ @ Wy — (—1) Wr(1) @ Wr(2) @ -+ @ Wr(n)

E{v1 @ ® - QU — (—1)7 Up(1) ® Vo(2) @+ @ Vo(y | ((v1,02,...,0,),0) EV" xS, }
g<{U1®U2®"'®Un—(—1)01)0(1)®UU(2)®"'®UU(n) | ((vl,vg,...,vn),a)GV”xSn}>
:<01®U2®"'®Un—(—1)01)0(1)®UU(2)®"'®UU(H) | ((vl,vg,...,vn),a)GV”xSn>
=Q,(V)CR, (V) (by Lemma [68)) .

18 Proof. We distinguish between two cases:

Case 1: We have J =1+ 1.

Case 2: We have J # 1+ 1.

First consider Case 1. In this case, the permutation id € S,, satisfies id (I) =T and id(I+1) =
I+1=J. Hence, in Case 1, there exists a permutation 7 € S, such that 7 (I) =T and 7 (I+1) =J
(namely, 7 = id).

Now let us consider Case 2. In this case, J # I + 1. Hence, the transposition (J,I+1) € S, is
well-defined, and it satisfies (J,I+ 1) (I) =1 (sinceJ ZTland I+1#1I)and (J, I+ 1)(I+1) =J.
Hence, in Case 2, there exists a permutation 7 € S,, such that 7 (I) =T and 7 (I+ 1) = J (namely,
T=(J,I+1)).

We have thus proven in each of the two possible cases that there exists a permutation 7 € S,
such that 7(I) =T and 7 (I4+ 1) = J.

This completes the proof that there always exists a permutation 7 € S,, such that 7 (I) =TI and
T(I+1)=J.
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On the other hand, the n-tuple (wT(l),wT(g), o ,wT(n)) € V" satisfies w1 = wras1)-
Hence, |D (applied to (vy,va, ..., v,) = (wT(l), Wr(2), - - ,wT(n))) yields w-(1) ® wr(2) ®
C @ Wy € Ry (V).

Now,

W QWy K-+ Wy
- (wl R Wy K+ QwWy — (_1)T wT(l) ® wT(Z) KR wr(n)) + (_1)7—31)7(1) ® wT(Q) ORI wT(n)

J/

eéj(V) eéj(v)
€ R, (V) + (-1 R, (V) C R, (V) <since R, (V) is a k—module) .

This proves (ii).
(iii) According to (ii), every ((wy, ws, ..., wy,), (I, J)) € V"x{1,2,...,n}* satisfying

I # J and wy = wy must satisfy w; @ wy ® - -- @ w, € R, (V).
In other words,
{w1®w2®---®wn | (w1, we, ... ,w,), (I,J)) EV”x{l,Q,...,n}Q; I+#J; wIZwJ}
C R, (V).
Thus, Proposition 35| (a) (applied to V",
{w1®w2®®wn ’ ((w17w27"-7wn)7(17‘])) evnx{1727”'7n}2; I#Ju wI:wJ}
and R, (V) instead of M, S and Q) yields
i @us @ @w, | (wi,wa,...,w,),(1J)) eVrx{1,2,....n}*; I£3J; wy =wy})
C R, (V).
Now,
R, (V)
= (@@ - ®v, | (vi,v9,...,0.),(5,5) € V' x {1,2,....n}*; i # j; vi =v;)
:<{wl®w2®®wn | ((w17w2>'--7wn)7(17'])) e V" x {1727"'7”}2; I#Ja wI:wJ}>
C R, (V).
This proves Lemma [70] O
-

Proof of Proposition [67 Lemmayields R, (V) C gn (V). Lemmayields R, (V)
R,, (V). Combining these two inclusions, we obtain R,, (V) = R, (V). Thus,

n—1
R, (V)=R, (V) :Z<U1®U2®"‘®Un | (v1,02, ..., 0,) € V™ vy = vi41) .
i=1
This proves Proposition |67 O

The analogue of Lemma [41|looks as follows:
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Lemma 71. Let k£ be a commutative ring. Let V' be a k-module. Let n € N. Let
ie{l,2,...,n—1}.
Then,

(VM RVe® -+ @y, | (v1,v2,...,0,) €V v; = vi41)
— V®(i71) . (R2 (V)) . V®(n717i).

Here, we consider V®" as a k-submodule of @V .

Proof of Lemma[71. Let V2 be the k-submodule {(v,v) | v € V} of V2 Then, V2 =

{(v,w) € V? | v=w}. Hence, for every (v;,v;11) € V?, we have
(v5,vi41) € VA if and only if v; = v,4;. (55)
Define a map a : Vi1 — V@01 by
(a (V1,V9, .. V1) =V QU R -+ @ V;_q for every (vy,va,...,v,_1) € Vi_l) )
Define a map b: V& — V2 by
(b (v5, Vig1) = U; @ Vg1 for every (v;,viy1) € VA) )

(Of course, every (v;,v;41) € V2 in fact satisfies v; = v;,; by the definition of V2; but
we still use different letters for v; and v;;1 here to make this notation match another
one.) Define a map c¢: V" 17¢ — Y@m-1-0) hy

(C (Vig2, Vig3, -, Un) = Viga @ Vipg @ -+~ @ Uy for every (vit2,vits,...,vp) € Vn*lfi) .

Since V&= V®2 and Vem=1-9) are k-submodules of ®V, we can consider all three
maps a, b and ¢ as maps to the set @V

It is now easy to see that every (vy,vs,...,v,) € V" such that v; = v;,1 satisfies
(vi, vi41) € VA and

V1 QU ® - @Up = a(V1,V2,...,0i-1) b (Vi Vig1) - €(Viga, Vig3, - -, Vn)

where the multiplication on the right hand side is the multiplication in the tensor
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algebra @V . H Thus,

(MU - Qu, | (vi,v2,...,0,) €V"; v; = Vi41)
= (a (v1,v2, ..., 0i-1) b (Vi Viy1) - € (Vig2, Vigas -, 0n) | (V1,02,...,00) € VT 0 = vig1)

= <a’ (Ulu V2, . .. 7'Ui,1) : b(vi7 Ui+1) : C<Ui+27vi+37 s 71)71)

| (01,02, ..o, 0im1) 5 (U3, Vi), (Viso, Vigs, ., 0n)) € VI X VEX VAT 4 =044 >
—_———
by , this is
equivalent to
(vi,v¢+1)€VA
here, we substituted the triple ((vi,va,...,vi—1), (Ui, Vix1), (Vit2, Vits, -« -, Un))
for the n-tuple (vq,vg,...,v,)
= (a(v1,v2,...,0i-1) - b(Vi, Vix1) - € (Vigo, Vigg, ..., Vp)

| ((v1,v2, ., vi21), (U5, Vig1) , (Viga, Vigss - -, Un)) € VT x V2 x Vn_l_i; (vi, Vig1) € VA>

VvV
this is equivalent to (z,y,2)€EVi-1xVAxyn—1-i

= <a ()b(y)c(z) | (z,y,2) € Vit x V2 x vyt gy e VA>
(here, we renamed ((vy,ve,...,vi—1), (Vi, Vix1) s (Viz2, Vizs, ..., Up)) as (z,y,2))
=(a(@)b(y)c(z) | (x,y,2) VT xVEx V), (56)

But Lemma (b) (applied to X = V&L Y = VA Z = V71~ and P = @V)
yields
{a(z) | 2e VY- (b(y) | yeVA) {c(z) | 2V i)
={(a(x)b(y)c(z) | (z,y,2) € VT x VA x V177,

19 Proof. Let (vi,vs,...,v,) € V™ be such that v; = v;1;. Then, Vi Vi1 | = (Vig1,0i41) €

=Vi+1

{(v,v) | v€V}=VA. Recalling Convention [12| we have

VOO QU= QV2® - ®Vi—1)® (V; ®Vit1) ® (Vit2 ®Vi43 Q- @ Up)

:a(vl 7U21~-77ji—1) :b(vi7vi+1) :C(’Ui+2,’0i+3,...,’un)

=a(v1,v2,...,0i-1) @b (vi, Vit1) ® € (Vig2, Vita, .-+ Vn) .

On the other hand, (applied to a (v1,ve,...,v;—1), b(v;,viy1), i — 1 and 2 instead of a, b, n
and m) yields

a(vl,v% e ,’Uifl) . b(vi,le) =aqa (017’02, e ,Uifl) ® b(’l)i,’l]i+1) .

Also, (applied to a (v1,va, ..., v;—1) b (v, vi11), € (Vit2, Vits, .-, Un), i+ 1 and n—1—1 instead
of a, b, n and m) yields

a(vi,v2,...,0i—1) - b (Vi Vig1) - € (Vig2, Vig3, .., Vp)

= (a (Ula V2, ... )’Uifl) . b ('Ui, U’i+l>) ®C (vi+23Ui+37 cee )U’I’L)

=a(v1,v2,...,0i—1)®b(vi,vi4+1)

=a(v1,v2,...,0i-1) @b (Vi Vig1) ® € (Vig2,Vig3,.--,Vn) = V1 D V2@ -+ @ Uy,

qed.
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Compared to , this yields

(MU ® - Quy | (V1,02,...,0,) € V"5 v; = vi41)
={(a@) | 2V (bly) | yeV?) -{c(z) | ze V"), (57)
But

(a(z) | zeVh) = <a(v1,v2,...,vi_1) | (v1,v9,...,01) € V¢—1>

=01 QV2® QU1

(here, we renamed z as (vq,vg,...,0;_1))

= (1@ Qv | (V,vs,...,01) €V = yei-l

(since the k-module V®(~1) is generated by its pure tensors, i. e., by tensors of the
form v; ® v ®@ -+ @ v;_; with (vy,v,...,v;_1) € V7). Also,

<C (Z) | z € Vn_l_i> = <C(Ui+27vi+37 B 7vnl | (Ui+277}i+3, . ,?}n) € Vn_l_i>

~
=0;+2QV;4+3Q - QUn

(here, we renamed z as (V;y2, Vit3, ..., 0p))
= <Ui+2 ®Vip3 @ @Un | (Vig2, Vig3, ., Vn) € Vnilii> =y

(since the k-module V®(~1=9 ig generated by its pure tensors, i. e., by tensors of the
form v; 0 @ Vi3 @+ @ v, With (Viyo, Viys,...,v,) € VP17, Also, the map

V= VA, v = (v,v) (58)

is a bijection (this follows easily by the definition of V2), and thus we have

(b(y) | erA>:< b(v,v) | UEV>

=v®v
(by the definition of b)

here, we substituted (v,v) for y, because
the map is a bijection

=(v®v | veV)=Ry(V) (by Corollary [660)) .
Thus, becomes

(V1 RU®--Qu, | (v,v2,...,0,) €V v; =v;11)
:\<a(x) | :EEVi*1>-<b(y) | yEVA>/‘\<c(z) | ZEV"*I*%

J/

=y ®(i—1) =Ra(V) — VY ®(n—1—1)

— V®(1lfl) . (R2 (V)) . V®(n717i)’
so that Lemma [71] is proven. O
Next, the analogue of Corollary [42}
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Corollary 72. Let k£ be a commutative ring. Let V' be a k-module. Let n € N.
Then,

n—1
R, (V)= Ve (Ry(V)) - VEr-1)
=1

(this is an equality between k-submodules of @V, where R, (V') becomes such a k-
submodule by means of the inclusion R,, (V) C V®" C ®V). Here, the multiplication
on the right hand side is multiplication inside the k-algebra @V.

Proof of Corollary[74 By Proposition [67], we have

n—1

R”(V):ZSW@)U?@'”@% | (v1,02,...,0,) €V vy = vig1)

=1

=V&(i=1).(Ry(V))-VEM=1=9) (by Lemmal[7I)

n—1
— Z V®(i71) . <R2 (V)) . V®(n717i)‘
i=1

Thus, Corollary [72] is proven. ]

Now the analogue of Theorem [43}

Theorem 73. Let k be a commutative ring. Let V' be a k-module. We know that

R, (V) is a k-submodule of V®" for every n € N. Thus, @ R, (V) is a k-submodule
neN

of @ V®" = ®V. This k-submodule satisfies

neN

BR.(V)=(@V)- (R (V) - (®V).

neN

Proof of Theorem[75. The proof of Theorem [73] using Corollary [72]is completely anal-
ogous to the proof of Theorem (43| using Corollary [42] O

Now we can finally define the exterior algebra, similarly to Definition 44}

Definition 74. Let k be a commutative ring. Let V' be a k-module.
By Theorem |73| the two k-submodules @ R, (V) and (®V) - (Ry (V) (®V) of @V

neN
are identic (where @ R, (V') becomes a k-submodule of ®V in the same way as
neN

explained in Theorem [73)). We denote these two identic k-submodules by R (V). In
other words, we define R (V') by

RV)=EDR. (V)= (&V)- (R (V)) - (®V).

Since R (V) = (®V) - (Re (V) - (®V), it is clear that R (V) is a two-sided ideal of
the k-algebra ®@V.
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Now we define a k-module AV as the direct sum € A"V. Then,
neN

V=@ v =PV R(V)= (@ v®”> / (@ R, (V))

neN =y ®n /R, (V) neN neN neN

N

=(@V)/R((V).

This is a canonical isomorphism, so we will use it to identify AV with (2V') /R (V).
Since R (V) is a two-sided ideal of the k-algebra ®V, the quotient k-module
(®V) /R (V) canonically becomes a k-algebra. Since AV = (®V) /R (V), this
means that AV becomes a k-algebra. We refer to this k-algebra as the exterior al-
gebra of the k-module V.

We denote by wedge,, the canonical projection @V — (®V), /R(V) = AV.
Clearly, this map wedge, is a surjective k-algebra homomorphism. Besides, due
to @V = @ V® and R(V) = @ R, (V), it is clear that the canonical projec-

neN neN
tion @V — (®V) /R (V) is the direct sum of the canonical projections V" —

ver /R, (V) over all n € N. Since the canonical projection @V — (®V) /R (V) is
the map wedge,,, whereas the canonical projection V" — V& /R (V) is the map
wedgey, ,, this rewrites as follows: The map wedgey, is the direct sum of the maps
wedgey,,, over all n € N.

When vy, vy, ..., v, are some elements of V', one often abbreviates the element
wedgey (11 @ Uy ® -+ - @ v,) of AV by v1 Avg A+ Av,. (We will not use this abbre-
viation in this following.)

We should think of the notions R (V'), AV and wedge,, as analogues of the notions
Q (V), Exter V and extery from Definition , respectively. The next result provides
an analogue of Lemma [45}

Lemma 75. Let k& be a commutative ring. Let V and W be two k-modules. Let
f:V — W be a k-module homomorphism.

(a) Then, the k-algebra homomorphism ®f : @V — QW satisfies (®f) (R (V)) C
R(W). Also, for every n € N, the k-module homomorphism f®" : V& — "
satisfies f®" (R, (V)) C R, (W).

(b) Assume that f is surjective. Then, the k-algebra homomorphism ®f : @V —
QW satisfies (®f) (R(V)) = R(W). Also, for every n € N, the k-module homo-
morphism f®": V& — W gatisfies f®" (R, (V)) = R, (W).

We can prove Lemma by imitating the proof of Lemma with some minor
changes, but let us instead give a different proof for a change:

Proof of Lemma[79. First, let us prepare.
Corollary [66] yields Ry (V) = (v®@wv | v € V). Corollary [66] (applied to W instead
of V) yields Re(W) = (v®@v | veW)=(wew | weW).
Now, every v € V satisfies
(@f)(vev)=f(v)® f(v) (by the definition of ® f)
c{wew | we W},
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In other words,
{(@fHilvev) | veViC{wew | weW}. (59)
Thus,
(@fi{vev | veV}h) ={(@f)(vev) | veV}C{ww | we W}.

But Proposition 35| (b) (applied to @V, {fv®@v | ve V}, @W and ®@f instead of M,
S, R and f) yields (®f) ({ve@v | veV})) =(®@f) {vev | veV})). Now,

R(V)=(w®v | veVy=({v®v | veV}),

so that

J

(@f) (B2 (V) = (@f) ({vewv [ veV])) = <(®f) {v@wv | ve V})>

Hwew | weW}

CHHweow | weWh =(wew | we W)= Ry (W). (60)
By Corollary [72], we have

n—1
Ry (V)= VD (Ry (V) - Vot (61)
i=1
for every n € N. Corollary [72| (applied to W instead of V') yields
n—1
R, (W)= W (Ry (W) - w17 (62)
i=1

for every n € N.

The map ®f is the direct sum of the maps f®" : V" — W®" for n € N. Hence, for
every n € N, the restriction (®f) |yen of the map ®f to V™ is the map f©" (at least
if we ignore the technicality that the targets of the maps ®f and f®™ are different).

It is also clear that

(®f) (V&) c w® for every j € N (63)

(since ®@f is the direct sum of the maps f®" : V" — W for n € N).
(a) For every n € N, we have

(@f) (Bn (V) = (@F) (Z VY (Ry (V) - V‘X’("‘l‘“) (by (61))

gW®<i—?>r(by @) QRz(W)v(by () gw®<n—1:> (by (63))
(since ® f is a k-algebra homomorphism)

=2 @H (VEY) - @) (V) (@f) (VoY)

C W®(i*1) . (R2 (W)) . W@(nflfi) _ Rn (W) )
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Since (®f) (R, (V) = ((&f) |ven) (Ry (V) = f&" (R, (V)), this rewrites as f¢" (R, (V)) C

:f®n
R, (W).
We have R(V) = @ R, (V) = > R, (V) (because direct sums are sums) and
neN neN
R(W) = > R, (W) (similarly). Since R (V) = >_ R, (V), we have
neN neN

(@f) (R(V)) = (&f) (Z R, (V)) = (®f) (R (V) (since @ f is k-linear)

neN neN

CRa (W)

C Y R, (W)=R(W).

neN

This completes the proof of Lemma [75] (a).

(b) Assume that the map f is surjective.

Every w € W satisfies w @ w € {(@f)(v®@v) | veV}. [P In other words,
fweow | weW}C{(®f)(v@v) | veV}. Combined with (59)), this yields

{(@fHHlvev) | veVi={wow | weW}. (64)

Now, in the same way as we used to prove (|60]), we can use to prove that

(@f) (Rn (V) = R (W) (65)

For every n € N, we have (®f) (V®") = ((&f) |ven) (VE") = fO(VE) = W
——

—fon
(since f®™ is surjective by Proposition [47| (a)). Renaming n as j in this statement, we
see that

(®f) (V&) c W™ for every j € N. (66)

Now, for every n € N, we have

(@) (Bn (V) = (2) (Z VED - (Ry (V) - V®<"‘H‘>> (by (1)

3
—

=) (@) (VEED) (@F) (Ry (V) - (o) (VEr—1-0)

S 7\ /
1

:W®(i—f>,(by (©8)) =R2(W)v(by ) :W®(n—1:ri) (by ([68))
(since ® f is a k-algebra homomorphism)

()

[y

n—

= WD (Ry(W)) - WEI) = R (W).

=1

Since (@) (B (V) = (&f) [ven) (Bn (V) = [ (R (V)), this rewrites as f<" (R, (V) =

—fon

R, (W).

20 Proof. Let w € W be arbitrary. Then, there exists some z € V such that w = f (z) (since f is
surjective). Consider this z. Then, w@w = f (2)® f (2) = (®f) (2 ® 2) (by the definition of ®f),
so that w@w € {(®f) (v@v) | ve V}, qged.
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We have R(V) = @ R, (V) = > R, (V) (because direct sums are sums) and

neN neN

R(W)= > R, (W) (similarly). Since R (V) = >_ R, (V), we have

neN neN

(@f)(R(V)) = (&f) (Z R, (V)) = Z (®f) (Rn (V)) (since ® f is k-linear)

neN neN

=Rn(W)
=Y R, (W)=R(W).
neN
This completes the proof of Lemma [75] (b). O

The following definition mirrors Definition 46}

Definition 76. Let k£ be a commutative ring. Let V' and W be two k-modules. Let
f V. — W be a k-module homomorphism. Then, the k-algebra homomorphism
@f : @V — QW satisfies (®f) (R (V)) € R(W) (by Lemma[75] (a)), and thus gives
rise to a k-algebra homomorphism (®V) /R (V) — (®W) /R (W). This latter
k-algebra homomorphism will be denoted by Af. Since (®V) /R(V) = AV and
(@W) /R (W) = AW, this homomorphism Af : (®V) /R (V) = (W) /R(W) is
actually a homomorphism from AV to AW.

By the construction of Af, the diagram

oV 2L oW (67)

wedgey, J/ lwedgew

AV —— AW
Nf

commutes (since wedge,, is the canonical projection ®V — AV and since wedgey,
is the canonical projection @W — AW).

Needless to say, the notion Af introduced in this definition is an analogue of the
notion Exter f introduced in Definition
Here is the analogue of Proposition [A7}

Proposition 77. Let k£ be a commutative ring. Let V' and W be two k-modules.
Let f:V — W be a surjective k-module homomorphism. Then:

(a) The k-module homomorphism f®": V" — W®" is surjective for every n € N.
(b) The k-algebra homomorphism ® f : @V — ®@W is surjective.

(c) The k-algebra homomorphism Af : AV — AW is surjective.

Proof of Proposition[77. The proof of this Proposition [77] is completely analogous to
the proof of Proposition 47| (and parts (a) and (b) are even the same). O

So much for analogues of the results of Subsection [0.12 Now let us formulate the
analogues of the results of Subsection [0.13] First, the analogue of Theorem 48}

73



Theorem 78. Let k be a commutative ring. Let V and V' be two k-modules, and
let f:V — V'’ be a surjective k-module homomorphism. Then, the kernel of the
map Af : AV — AV’ is

Ker (Af) = (AV)-wedge,, (Ker f)-(AV) = (AV)-wedge,, (Ker f) = wedge,, (Ker f)-(AV).

Here, Ker f is considered a k-submodule of ®V by means of the inclusion Ker f C
V=VelCaV.

Proof of Theorem[78. The proof of this Theorem [7§]is completely analogous to that of
Theorem O

The analogue of Corollary [50| comes next:

Corollary 79. Let k be a commutative ring. Let V' be a k-module, and let W be
a k-submodule of V. Then,

(AV) - wedge,, (W) - (AV) = (AV) - wedge,, (W) = wedge,, (W) - (AV).

Here, W is considered a k-submodule of ®V by means of the inclusion W C V =
Vel C V.

Proof of Corollary[79. Expectedly, the proof of Corollary [79]is analogous to the proof
of Corollary O

Finally, the analogue of Corollary [51}

Corollary 80. Let k be a commutative ring. Let V' be a k-module. Let W be a
k-submodule of V', and let f: V — V /W be the canonical projection.
(a) Then, the kernel of the map Af : AV — A (V /W) is

Ker (Af) = (AV) - wedgey, (W) - (AV) = (AV) - wedge,, (W) = wedge,, (W) - (AV).
Here, W is considered a k-submodule of ®V by means of the inclusion W C V =
Vel c eV,

(b) We have

(AV) / ((AV) - wedge, (W) Z A (VW) as k-modules.

Proof of Corollary[80 The proof of Corollary [80]is analogous to the proof of Corollary
LIl O

0.16. The relation between the exterior and pseudoexterior
algebras

The name “pseudoexterior” for the algebra Exter V' introduced in Definition [44] already
suggests a close relation to the exterior algebra AV. Indeed such a relation is given by
the following two theorems:
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Theorem 81. Let k be a commutative ring. Let V' be a k-module.

(a) We have @, (V) C R, (V) for all n € N.

(b) We have Q (V) C R(V).

(c) For every n € N, the projection wedgey,, : V" — A"V factors through the
projection extery,, : V" — Exter" V.

(d) The projection wedge,, : @V — AV factors through the projection extery :
®V — Exter V.

Theorem 82. Let k be a commutative ring in which 2 is invertible. Let V be a
k-module.

(a) We have @, (V) = R, (V) for all n € N.

(b) We have Q (V) = R(V).

(c) For every n € N, we have A"V = Exter" V' and wedgey,,, = extery,,.

(d) We have AV = Exter V and wedge,, = extery .

Proof of Theorem[81 (a) Let us use the notations of Lemma[68 For every n € N, we
have

R, (V) (by Lemma
R, (V) (by Lemma [69)) .

This proves Theorem 81| (a).
(b) We have

——

neN CRu(V neN
(by Theorem [81] (a))

This proves Theorem 81| (b).

(c) Let n € N. The canonical projection V& — V" /R, (V) factors through
the canonical projection V" — V@ /Q, (V) (because @, (V) C R, (V) by Theorem
(a)). Since the canonical projection V& — V& /R, (V) is the map wedgey,, :
Ve — A"V and since the canonical projection V& — V& /Q, (V) is the map
extery,, : V¥" — Exter" V, this rewrites as follows: The map wedgey,,, : V" — A"V
factors through the map extery,, : V" — Exter" V. This proves Theorem |81 (c).

(d) The canonical projection ®V — (®V) /R (V) factors through the canonical
projection @V — (®V) /Q (V) (because Q (V) C R (V) by Theorem [81] (b)). Since
the canonical projection ®V — (®&V) /R (V) is the map wedge, : @V — AV, and
since the canonical projection @V — (®V') /Q (V) is the map extery : @V — Exter V,
this rewrites as follows: The map wedge,, : @V — AV factors through the map
extery : @V — Exter V. This proves Theorem 81| (d). O

Proof of Theorem [83. The main step is to prove that Q2 (V) = Ry (V). Let us do this
now:

Corollary [39 yields

Q:(V)=(vi®@v+v0uv | (v,v)€V?).
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Every v € V satisfies

1
VRV = §(v®v+v®v) (since 2 is invertible in k)
1 1
:§v®v+v®§ve {vl®02~|—vz®vl | ('U]_,UQ)GVQ}

1 1 1
(since the tensor 51} QUFUVR 51} has the form v; ® vy + v @ vq for (v, ve) = (511, v) ).

In other words,
{foev | veVIC{n®@ut+vr®uv | (v,w1) e V?}.
Now, Corollary [66] yields

Ra(V)=(@w®uv | veV) :< {fvov [ veV} > C{n@u+veu | (v,v)ecV?})
g{v1®v2+v2®z | (vi,v2)€V2}

:<U1®U2+02®U1 | (Ul,UQ) €V2>:Q2(V)

Combined with Q2 (V) € Ry (V) (which follows from Theorem (a), applied to
n = 2), this yields Q2 (V) = Ry (V).

(a) Let n € N. Both @, (V) and R, (V) are k-submodules of V®" and thus k-
submodules of @V (since V" C ®V). Using the multiplication on the k-algebra @V,
we have

n—1
Qn (V) =D VD (Qy (V) V&1 (by Corollary
i—1 H,—/
=Ry(V)
n—1
= VEED L (Ry (V) - VECTI = R (V) (by Corollary [72) .
=1
This proves Theorem 82| (a).
(b) We have
QW)= () =@PR.(V)=R(V).
N——
neN =R (V neN

(by Theorem [32] (a))

This proves Theorem |82 (b).

(c) Let n € N. Then, V®" /R, (V) = V®" /Q, (V) (because R, (V) = Q, (V) by
Theorem |82 (a)). Thus, A"V =V®" /R, (V) =V®" /Q, (V) = Exten" V.

Since the canonical projection V&" — V& /R, (V) is the map wedgey,, : V" —
A"V, and since the canonical projection V" — V& /Q, (V) is the map extery,, :
VeEr — Exter" V, we have wedgey, = extery, (because R, (V) = @, (V)). This
proves Theorem [82f (c).

(d) We have (®V) /R(V) = (®V) /Q (V) (because R (V) = Q (V) by Theorem 82|
(b)). Since the canonical projection @V — (®V') /R (V) is the map wedge,, : @V —
AV, and since the canonical projection @V — (®V') /Q (V') is the map extery : @V —
Exter V', we have wedge,, = extery (because R (V) = @Q (V')). This proves Theorem

O]

(d).
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0.17. The symmetric algebra is commutative

In this section we are going to continue the study of the symmetric algebra that we
started in Section [0.14] and prove some results which don’t have direct analogues for
Exter V and AV (although some analogues for AV can be found with a little more
effort, which we are not going to make).

The main result of this section will be:

Theorem 83. Let k£ be a commutative ring. Let V be a k-module. Then, the
k-algebra Sym V' is commutative.

The standard proof of this theorem proceeds by double induction over the degrees
of the tensors that must be shown to commute. We are going to show a slightly slicker
version of this proof here, which replaces the double induction by a double application
of Lemma 49| (which, in its proof, hides an induction). The intermediate step between
these two applications will be the following lemma:

Lemma 84. Let k be a commutative ring. Let V' be a k-module. Every v € V' and
every p € Sym V satisfy symy, (v) - p = p - symy, (v).

(Of course, the notations we are using here and everywhere throughout this section
are the notations of Section [0.14})

Proof of Lemma[84 Let v € V. Let M be the subset

{geSymV | symy (v)-q=q-symy (v)}

of Sym V. We are going to prove that M is the whole Sym V.

First of all, we have 0 € M E[ Furthermore, every o € k, p € k, p € M and
r € M satisfy ap + pr € M. E In other words, M is a k-submodule of Sym V.

Second, 1 € M (with 1 denoting the unity of the k-algebra SymV) [

On the other hand, every (p, s) € M xsym,, (V) satisfy p-s € M ﬁ In other words,
{p-s | (p,s) € M xsymy (V)} € M. By Proposition (a) (applied to SymV,
{p-s | (p,s) € M xsymy (V)} and M instead of M, S and @), this yields

({p-s | (p,s) € M xsymy (V)}) € M.

21 Proof. Clearly, symy(v) - 0 = 0 = 0 - symy(v), so that 0 €
{g € SymV | symy (v)-q=gq-symy (v)} =M.
22Proof. Let « €k, B €k, pe M and r € M.
Since p € M = {q € SymV | symy (v)-q=q-symy (v)}, we have symy, (v) - p = p-symy, (v).
Similarly, symy, (v) - r = r - symy, (v). Now,

symy, (v) - (ap + fr) = asymy (v) - p+Fsymy, (v) -7 = ap - symy, (v) + Sr - symy, (v)

=psymy(v)  =rsymy(v)
= (ap+ fr) -symy (v).

In other words, ap + fr € {g € SymV | symy (v)-q=¢q-symy (v)} = M, qed.
23 Proof. Clearly, symy (v) - 1 = symy (v = 1 . symy (v), so that 1 €
{g € SymV | symy (v)-q=gq-symy (v)} =M.
24 Proof. Let (p,s) € M x symy, (V). Then, p € M and s € symy, (V). Since s € symy, (V), there
exists some w € V such that s = symy, (w). Consider this w.
Since p € M = {q € SymV | symy (v)-q=q-symy (v)}, we have symy, (v) - p = p-symy, (v).
We have v € V = V®! and w € V = V@, Hence, v-w =v®w (by (), applied to v, w, 1 and
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Now,
M-symy (V) =(p-s | (p,s) € M xsymy (V)) =({p-s | (p,s) € M xsymy (V)}) € M.

By Lemma (applied to A = SymV and m = sym, ), this yields that M is a
right ideal of SymV. Thus, M - SymV C M. But since 1 € M, we have 1 -
SymV C M -SymV C M, so that SymV = 1.-SymV C M. Combined with
M C SymV, this yields M = Sym V. Hence, every p € SymV satisfies p € M =
{g€SymV | symy (v)-qg=gq-symy (v)}, so that sym (v) -p = p-symy (v). This
proves Lemma [84] O

Using Lemma [84] we will now prove Theorem [83}

Proof of Theorem [83. a) Let t € Sym V. We are going to prove that tp = pt for every
p €SymV.
Proof. Let M be the subset

{geSymV | tq=qt}

of Sym V. We are going to prove that M is the whole Sym V.

First of all, we have 0 € M E Also, every a € k, f € k, p € M and r € M satisfy
ap+ pr e M. @ In other words, M is a k-submodule of Sym V.

Second, 1 € M (with 1 denoting the unity of the k-algebra Sym V') E

1 instead of a, b, n and m) and similarly w - v = w ® v. Thus,

Vw—wW-U =W —wWRV

E{Ul®’l}2—vg®1}1 ‘ (’Ul,Ug)EVQ}
C{vn®@v—v2®@v; | (v1,02) € V?})

= <v1 ®Quvy —va®uy | (v1,v2) € V2> =Ky (V) (by Corollary [54)
CPE.(V)=K(V).
neN

In other words, v-w = w - vmod K (V). Since sym,, is the projection @V — (V) K (V),
this rewrites as symy, (v-w) = symy, (w - v). Since symy, is a k-algebra homomorphism, we have
symy (v-w) = symy (v) - symy () and symy, (w - v) = symy (w) - symy (v).

Now,
symy, (v) - p- S =p - symy (v) - symy (w) = p-symy (w) -symy (v)
—_——— ~~ ——
=p-symy (v) “SYMv (w) =sym,y, (v-w)=symy, (w-v) =s

=symy (w)-symy (v)
=p-s-symy (v).
In other words, p-s € {g € SymV | symy (v)-q=q-symy (v)} = M, qed.
25 Proof. Clearly, t0 = 0 = 0t, so that 0 € {g € SymV | tq=qt} = M.
26 Proof. Let « €k, B €k, pe M and r € M.
Since p € M = {q € SymV | tq = qt}, we have tp = pt. Similarly, tr = rt. Now,
t(ap+pBr)=a tp +8_tr = apt+ frt = (ap+ Br)t.
NG
=pt =rt

In other words, ap + fr € {¢ € SymV | tq=qt} = M, qed.
27 Proof. Clearly, t-1=1t=1t,so that 1 € {g € SymV | tq = qt} = M.
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On the other hand, every (p, s) € M xsym,, (V) satisfy p-s € M @ In other words,
{p-s | (p,s) € M xsymy (V)} € M. By Proposition |35 (a) (applied to SymV,
{p-s | (p,s) € M xsymy (V)} and M instead of M, S and @), this yields

({p-s | (p.s) € M xsymy (V)}) C M.
Now,
M-ssymy, (V)={(p-s | (p,s) € M xsymy (V))={{p-s | (p,s) € M xsymy (V)}) C M.

By Lemma {49 (applied to A = SymV and 7 = symy,), this yields that M is a right
ideal of SymV. Thus, M - SymV C M. But since 1 € M, we have 1 - SymV C
M -SymV C M, so that SymV =1-SymV C M. Combined with M C Sym V', this
yields M = Sym V. Hence, every p € Sym V satisfiesp € M = {qg € SymV | tq = qt},
so that tp = pt. This proves a).

b) Forget that we fixed t. We have proven that every t € Sym V' and every p € Sym V/
satisfy tp = pt (by part a)). In other words, the k-algebra SymV is commutative.
Theorem [83]is proven. O

Theorem [83] is a result on the nature of the factor algebra SymV = (®V) /K (V),
so unsurprisingly it gives us an insight about the ideal K (V') itself - namely, a new
characterization of this ideal:

Corollary 85. Let k be a commutative ring. Let V' be a k-module. Then,

K(WV)=(®V) (pg—qp | (p.q) € (®@V)*)-(1V).

This Corollary is usually formulated as follows: The ideal K (V') is the commutator
ideal of the k-algebra ®@V. This is actually often used as an alternative definition of
K (V).

Proof of Corollary (83 a) Let us first show that K (V) C (®V)-(pg —qp | (p,q) € (®V)2>-
(®V).
Proof. Every (vi,ve) € V? satisfies v1 @ vg — v3 ® 11 = 109 — Va0y. @ Hence,

{vi®@va—ve @ | (v1,02) € V?}
= {vivg —vvr | (v1,09) €V ={pg—qp | (p,q) €V?}
(here, we renamed (v1,v2) as (p,q))

C{pa—ap | (p,q) € (®V)*} (since V* C (&V)?%).

28 Proof. Let (p,s) € M x symy, (V). Then, p € M and s € symy, (V). Since s € sym,, (V), there
exists some v € V such that s = symy, (v). Consider this v. Lemma [84] (applied to ¢ instead of p)
yields symy, (v) - t =t - symy, (v). Since symy, (v) = s, this becomes s -t =1 - s.

Sincepe M ={q € SymV | tq=qt}, we have tp = pt. Now, tp s=p t-s = pst. In other
~— ~

=pt =s-t=st
words, ps € {g € SymV | tq=qt} = M, so that p-s=ps € M, qed.
29 Proof. Let (v1,v2) € V2. Then, vy € V = V@ and vy € V = V®L. Hence, v1 - v3 = v @ vy (by ,

applied to vy, v, 1 and 1 instead of a, b, n and m) and similarly vy - v1 = v2 ® v1. Hence,

U1 QU — V2@V = VU2 — VU1,
—— N——
=V1-V2=V1V2 =V2-V1=V2V1

qed.
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Thus,

<{Ul Ruy —va®@uv1 | (vg,v2) € V2}> - <{pq— ap | (p,q) € (®V)2}>-

But by Corollary we have

Ky (V)=(vi@ua—v2®@v1 | (v1,02) €V?)={v1@ua—v2®@v; | (vi,02) € V?})
C{pa—ap | (p.g) € @V)’})={pg—ap | (p.q) € (®V)?).

Hence,

(@V) - (K2 (V) - (@V) C(@V)-(pg—ap | (p,q) € (2V)) - (aV).
Since (QV) - (K3 (V) - (®V) = (V),this rewrites as

KWV)C(@V)-{pg—aqp | (p,q) € (&V)*)-(®V).

This proves part a).
b) Now we will prove that (®V) - (pg—qp | (p,q) € (®V)2> (®V) C K (V).
Proof. Every (p,q) € (®V)? satisfy pq — qp € K (V) 30l In other words,
{pg—ap | (p,q) € (®V)*} C K (V). Hence, Proposition {35 (a) (applied to @V,
{pa—ap | (n.q) € (®V)2} and K (V) instead of M, S and Q) yields

({pa—ap | (p,q) € (®V)’}) C K (V).
Thus,
(pg—ap | (p,9) € (@V)*)={pa—aqp | (p.q) € (®V)*}) C K (V).
Hence,
(@V)-{pg—ap | (p,q) € (@V)*)-(@V) C (®V)- (K (V))-(®V) C K (V)

(since K (V) is a two-sided ideal of ®V'). This proves part b).

c¢) Combining K (V) € (®@V) - {pg—ap | (p.q) € (®V)?) - (®V) (which we know
from part a)) with (®V)-(pg —qp | (p,q) € (®V)*)-(®V) € K (V) (which we know
from part b)), we obtain K (V) = (®V) - (pg—qp | (p,q) € (®V)2> - (®V). This
proves Corollary [85] O

0.18. Some universal properties

We shall next discuss some universal properties for the pseudoexterior powers Exter” V,
the symmetric powers Sym™ V' and the exterior powers A"V
Let us first recall the definition of a multilinear map:

30 Proof. Let (p,q) € (®V)2. Then,

symy, (pq) = symy, (p) - symy (q) (since symy, is a k-algebra homomorphism)
= symy, (q) - symy, (p) (since Sym V is commutative by Theorem
= symy (gp) (since symy, is a k-algebra homomorphism) .

In other words, pg = gpmod K (V') (since symy, is the projection @V — (®V) /K (V)). In other
words, pqg — gp € K (V), qged.
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Definition 86. Let k£ be a commutative ring. Let n € N. Let Vi, V5,...,V, be
k-modules.
Let W be any k-module, and let f: V) x Vo x -+ x V,, = W be a map. We say
that the map f is multilinear if and only if for each i € {1,2,...,n} and each
(V1,V2, -+« Vim1, Vig1, Vig2,y -5 V) € Vi X Vo X oo X Viig X Vi X Vigg X oo XV,

the map

Vi W,

Ui f (U17U27 e Vi1, U5 U1, Uig 2, - - - 7Un)
is k-linear.

Now, we can state the classical universal property of a tensor product:

Proposition 87. Let k be a commutative ring. Let n € N. Let Vi, V5,...,V, be
k-modules.

Let W be any k-module, and let f : V) x Vo x -+ xV,, = W be a multilinear map.
Then, there exists a unique k-linear map fg : V1@ Vo®---®@V,, = W such that every
(v1,v9, ..., v,) € Vi xVax.--xV, satisfies fg (v QU ®@ - @ vy,) = f (v1,09,...,05).

Proposition [87]is the classical result that allows one to construct maps from a tensor
product comfortably.

The particular case of Proposition [87| when all of Vi, V5, ..., V, are identical will be
the most useful to us:

Corollary 88. Let k£ be a commutative ring. Let n € N. Let V' be a k-module.

Let W be any k-module, and let f : V™ — W be a multilinear map. Then, there
exists a unique k-linear map fg : V®" — W such that every (vi,vq,...,0,) € V"
satisfies fg (11 @ U ® -+ - @ v,) = f (v1,v2,...,0,).

Proof of Corollary[88 The map f is a multilinear map V"™ — W. In other words, the
map f is a multilinear map V' x V x--- xV — W (since V" = V xV x--- x V).

n times n times

Thus, Proposition (applied to V; = V') shows that there exists a unique k-linear
map feo : V@V®---®@V — W such that every (vi,vs,...,v,) € V XV x---xV

n times n times

satisfies fg (V1 QU2 ® - ®@vy) = f(v1,02,...,0,). Since V@V ®--- @V =V and

n times
VXV x...xV = V" this rewrites as follows: There exists a unique k-linear map

n times
fo : V" — W such that every (vq,vs,...,v,) € V" satisfies fg (1 @y ® -+ ®v,) =
f(v1,va,...,v,). This proves Corollary [8§| O

We shall now use Corollary 88| to derive a universal property for the pseudoexterior
powers Exter" V. We first state an almost obvious fact:
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Lemma 89. Let k£ be a commutative ring. Let n € N. Let V' be a k-module. Let W
be any k-module, and let f : V™ — W be any map. Then, there exists at most one
k-linear map fryer : Exter" V. — W such that every (vy,vq,...,v,) € V" satisfies
Jexter (extery, (11 @ Vs ® -+ - @ vy,)) = f (v1,v2, ..., 0p).

Proof of Lemma[89 Let o and (3 be two k-linear maps frxier : Exter” V' — W such that

every (v, vg, ..., v,) € V" satisfies fuxier (extery, (v @ va @ -+~ ®@v,,)) = f (v1,v2, ..., 0,).
We shall show that a = .

We know that «vis a k-linear map frxier : Exter” V' — W such that every (vy,vq, ..., v,) €
V™ satisfies frxter (€xtery, (v @ va ® -+ @ vy,)) = f (v1,va,...,0,). In other words, «

is a k-linear map Exter™ V' — W and has the property that every (vi,vs,...,v,) € V"
satisfies
a(extery, (11 @Ua ® -+~ @ uy)) = f(v1,v2,...,0,) . (68)

The same argument (applied to § instead of «) shows that [ is a k-linear map
Exter" V' — W and has the property that every (v, ve,...,v,) € V" satisfies

B (extery, (v @V @ -+ @vy,)) = f (v1,v2,...,0,). (69)

Now, the map a — ( is k-linear (since the mps « and [ are k-linear). Hence,
Ker (o — f3) is a k-submodule of Exter™ V.
Define a subset S of Exter" V' by

S = {extery, (11 @ua® - ®uy,) | (v1,09,...,0,) € V"}. (70)

Then, S C Ker (o — )  PU Hence, Proposition 35 (a) (applied to M = Exter" V and
Q) = Ker (v — 3)) shows that (S) C Ker (o — ).
On the other hand, define a subset S’ of V®" by

S={v@uv®- - Quv, | (vi,v9,...,0,) €V"}. (71)
Then,

extery, (S') = extery, {11 QU2 ® -+~ @ v, | (v1,02,...,0,) € V"})

(by (71))

= {extery, (11 @V ®@ -+~ @vy,) | (vi,v2,...,v,) € V"}
5 (v @) 72)

31Proof. Let s € S. Thus, s € S = {extery, (V1 ®Va®---®v,) | (vi,v2,...,v,) € V*}. In
other words, s = extery, (v Q2 ®---®v,) for some (vi,vs,...,v,) € V™. Consider this
(’Ul,vg, ce ,’Un).
Applying the map « to the equality s = extery,, (v1 ® v2 ® - - - ® vy,), we obtain

a(s) = a(extery, (11 QU2 ® - ®vy)) = f (v1,v2,...,0p)

(by (68)). The same argument (applied to 3 instead of ) shows that 3 (s)
Thus, a(s) = f(vi,v2,...,v,) = B(s). Now, (a—p)(s) = &@—B (s) =

=B(s)

= f(’l)l,’l)g,. B ,vn)'
B(s) = p(s) = 0, s0
that s € Ker (a — ).
Now, let us forget that we fixed s. We thus have shown that s € Ker (o — ) for each s € S. In
other words, S C Ker (a — f3).
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However, the tensor product V®" is generated (as a k-module) by its pure tensors.
In other words,

VO = (1, @1 ® - @y | (v1,02,...,0,) €V™)

= <ivl®02®"'®vn ‘ (vlav%"'avn)Gvn}>:<s/>‘

=

Applying the map extery,, to both sides of this equality, we obtain

extery,, (V") = extery,, ((S')) = <exterv7n (S’)>
—_——

by ()
by Proposition (35 (b) (applied to
ven S’ Exter"V and extery,, instead of M, S, R and f)

= (S).

But the map extery,, is surjective. Hence, Exter"V = extery, (V®") = (S) C
Ker (a — ). In other words, & — 8 = 0. Hence, o = p.

Now, forget that we fixed o and 5. We thus have shown that if o and § are
two k-linear maps fgyer : Exter” V. — W such that every (vy,vo,...,v,) € V™ sat-
isfies frxter (€xtery, (1 ® V2 ® --- @ vy,)) = f(v1,v2,...,v,), then @ = . In other
words, there exists at most one k-linear map fgyer : Exter” V' — W such that every
(v1,V2,...,0,) € V™ satisfies frxter (xtery, (11 @ V2 ®@ -+ @ vy,)) = f(v1,v2,...,0,).
This proves Lemma [39] O

We shall furthermore need a definition:

Definition 90. Let n € N. Let V be a set.
Let W be a Z-module. Let f : V" — W be a map. We say that the map f is
antisymmetric if and only if each (vq,vs,...,v,) € V™ and v € S, satisfy

f (Uv(l),vv(g), . 7U7(n)) = (=1 f (v,v9,...,0,) .

Now, we can state a universal property for the pseudoexterior powers Exter™ V:

Corollary 91. Let k£ be a commutative ring. Let n € N. Let V' be a k-module.

Let W be any k-module, and let f : V™ — W be an antisymmetric multilinear
map. (The notion of “antisymmetric” makes sense here because the k-module W is
clearly a Z-module.) Then, there exists a unique k-linear map fggier : Exter V- — W
such that every (vq,vs,...,v,) € V" satisfies fxier (extery, (v @ V2 @ --- ®@v,)) =
f (1,09, .. 0,).

Before we prove this, let us recall a classical fact from abstract algebra — viz. the
universal property of quotient modules (also known as the homomorphism theorem for
k-modules):
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Proposition 92. Let k£ be a commutative ring. Let V' be a k-module. Let I be a
k-submodule of V. Let m; be the canonical projection V- — V /1.

Let W be any k-module, and let f : V' — W be a k-linear map satisfying f (I) = 0.
Then, there exists a unique k-linear map f': V /I — W satisfying f = f' o 7.

Proof of Corollary[91] Corollary [88 shows that there exists a unique k-linear map f :
Ve — W such that every (vq,vs,...,v,) € V" satisfies fo (01 @ ® - Quv,) =
f (v1,ve,...,v,). Consider this fg. The map fg is k-linear; thus, Ker(fg) is a k-
submodule of V&,

We know that every (vy,vq,...,v,) € V™ satisfies

fo(1 @ua® - ®@uy,) = f(v1,v2,...,0,). (73)

The map f is antisymmetric. In other words, each (vy,vq,...,v,) € V* and vy € S,
satisfy

F (o) @)+ 0ym) = (=1)7 f (01,09, 0) (74)

(by the definition of “antisymmetric”).
Define a subset T of V®" by

T = {U1®’U2®"'®Un— (—1>0U0(1)®U0(2)®“'®U0(n) | ((Ul,UQ,...,'Un),O-) e V" x Sn}
Thus,

(T)

= <{U1 QLUK v, — (_1)0 Vo (1) & Vs (2) K- ® Vs (n) | ((U17U2) s 7Un) 70> e V" x Sn}>
:<U1®U2®"'®Un_(_1>JUU(1)®UJ(2)®"'®UJ(n) | ((Ulav27"'7vn)70>eanSn>
(since @, (V) is defined to be

<vl QU@+ Uy — (—1)7 Vp(1) ® Vo(2) @ - @ Up() | ((U1,02,...,0,),0) € V™ X Sn>)
Recall that extery,, is the canonical projection V& — V& /Q, (V).

Now, T'C Ker (fg) [ Thus, fg I | < (Ker (fg)) =0, so that fg (T) =

CKer(fg)

0. But Proposition (b) (applied to V& T W and fg instead of M, S, R and

32 Proof. Let t € T. Then,
teT={v1@v2® vy — (—1) V(1) ®VUp(2) @ @ Vo) | ((v1,02,...,0),0) EV* xS, }.

In other words, ¢ has the form t = v; @ V2 ® -+ - @ v, — (—1)° Vg(1) ® Vg(2) @+ @ Vg (y) for some
((v1,v2,...,0,),0) € V™ x S,,. Consider this ((v1,va,...,v,),0).

It is known that (—1)7 € {1,—1}. But each g € {1,—1} satisfies g*> = 1. Applying this to
g = (=1)7, we obtain ((—1)7)* = 1.

From ((v1,v2,...,v0,),0) € V* X S, we obtain (v, va,...,v,) € V" and 0 € S,,. From , we
obtain fg (v ® V2 @ ---®@wy,) = f (v1,va,...,v,). From (applied t0 (Vy(1), Vo(2)s - - -+ Vor(n))
instead of (v1,va,...,v,)), we obtain

fo (Vo) ® Vo(2) @+ @ Vo(n)) = f (Vo(1), Vo(2)s - -+ Vo(m))
=(=1)7 f(v1,v2,...,0p) (by (applied to v = 0)).
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f) yields fo ((T)) = <f® (T)> = (0) = 0. Since (T) = Q, (V), this rewrites as

=0
fo (Qu (V) = 0.

Hence, Proposition [92] (applied to V&, Q,, (V), extery,,, W and fg instead of V, I,
77, Woand f) yields that there exists a unique k-linear map f’ : V®" /Q, (V) - W
satisfying fg = f’ o extery,,. Consider this f’.

The map f’ is a k-linear map V®" /Q,, (V) — W. In other words, the map f’ is a
k-linear map Exter” V' — W (since V" /Q,, (V) = Exter" V). Every (vq,vs,...,0,) €
V™ satisfies

I (extery,, (v ®Va @ -+ @ vy,))
= (floextery,) (@U@ - Qu,) = fo (V1 @V Q- @ vy,)
S
=fe

= f(v1,v2,...,0) (by )

Thus, f’is a k-linear map Exter"” V' — W and has the property that every (vy, v, ..., v,) €
V™ satisfies f' (extery, (v @ va @ --- ®@v,,)) = f (v1,v2,...,v,). Hence, there exists at
least one k-linear map fryer @ Exter" V. — W such that every (vq,ve,...,v,) €
V™ satisfies frxter (€Xtery, (v @ Va @ -+ ®@vy,)) = f(v1,v2,...,v,) (namely, fexter =
f'). Since we also know that there exists at most one such map (in fact, this
follows from Lemma , we can therefore conclude that there exists a unique k-
linear map fexer @ Exter" V' — W such that every (vy,vs,...,v,) € V" satisfies
Jexter (extery,, (11 @ Uy ® - ®v,,)) = f (v1,v2,...,v,). This proves Corollary . O

We can similarly deal with symmetric powers. First, we state an analogue to Lemma
39|

Lemma 93. Let k£ be a commutative ring. Let n € N. Let V be a k-module. Let
W be any k-module, and let f: V™ — W be any map. Then, there exists at most
one k-linear map fsym : Sym”™ V' — W such that every (v, ve,...,v,) € V" satisfies
fsym (Symvm (MU ® vn)) = f(v1,v9,...,0,).

Multiplying both sides of this equality by (—1)7, we obtain
(_1)0 f® (Ud(l) ® Vs (2) X vo(n)) = (_1)0 (_1)0 f (/0171]23 v ,Un) = f (Ula V2, ..y U’n) '
—_———
=((-1)7)*=1
Now, applying the map fg to both sides of the equality t = v1 @ V2 ® -+ @ v, — (=1)° Vo (1) @
Vo(2) @+ @ VUg(n), WE find
fo)=fa (L1 ®v2@ - @vp — (—1)7 Vp(1) @ Vp(2) @+ + ® Vg(n))
=fo(1®@u2® - @vp) = (=1)7 fo (Vo(1) @ Vo(2) @+ @ Vo(n))

=f(v1,v2,...,Un) =f(v1,v2,...,Un)

(since the map fg is k-linear)

= f(v1,v2,...,0,) — [ (v1,v2,...,0,) = 0.

In other words, t € Ker (fg).
Now, forget that we fixed t. We thus have proven that t € Ker (fg) for each t € T. In other
words, T' C Ker (fg).
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Proof of Lemma[93. The proof of Lemma [03] is completely analogous to the proof of
Lemma [89] and thus is omitted. O

Next, we state a definition (which is analogous to Definition , but works in a
greater generality, since W no longer needs to be a Z-module):

Definition 94. Let n € N. Let V be a set.
Let W be aset. Let f: V"™ — W be a map. We say that the map f is symmetric
if and only if each (v, vs,...,v,) € V" and 7y € S, satisfy

f (/U'V(l)’UV(Q)’ T ’U’Y(n)) - f(UhUQ? s 7Un) .

Now, we can state a universal property for the symmetric powers Sym" V':

Corollary 95. Let k be a commutative ring. Let n € N. Let V' be a k-module.
Let W be any k-module, and let f : V" — W be a symmetric multilinear map.

Then, there exists a unique k-linear map fsyy, : Sym™V — W such that every

(v1,v2,...,0,) € V" satisfies fsym (syme (MU ® vn)) = f(v1,v9,...,0,).

Proof of Corollary[95 The proof of Corollary [05]is completely analogous to the proof
of Corollary (up to some replacing of + signs by — signs and some removal of powers
of —1), and thus is omitted. O

We shall next derive similar results for exterior powers. First of all, we can again
easily obtain an analogue to Lemma

Lemma 96. Let k£ be a commutative ring. Let n € N. Let V be a k-module. Let
W be any k-module, and let f : V™ — W be any map. Then, there exists at most
one k-linear map fn : A"V — W such that every (vq,vs,...,v,) € V" satisfies

fa (wedgey,, (11 @ua @ -+ @ vy)) = f(v1,02, ..., ).

Proof of Lemma[9¢. The proof of Lemma [96] is completely analogous to the proof of
Lemma [89] and thus is omitted. O

Next, we define a notion of “weakly alternating” which is (in some weak sense)
similar to Definition [90| (but at this point, there is no direct analogy any more):

Definition 97. Let n € N. Let V be a set.

Let W be a Z-module. Let f : V* — W be a map. We say that the map f is
weakly alternating if and only if each ¢ € {1,2,...,n — 1} and (vy,vs,...,v,) € V"
satisfying v; = v;41 satisfy

f(v1,v9,...,0,) =0.

Now, we can state a universal property for the pseudoexterior powers A"V:

Corollary 98. Let k be a commutative ring. Let n € N. Let V' be a k-module.

Let W be any k-module, and let f : V™ — W be a weakly alternating multilinear
map. (The notion of “weakly alternating” makes sense here because the k-module
W is clearly a Z-module.) Then, there exists a unique k-linear map fp : A"V — W
such that every (vq,vs,...,v,) € V™ satisfies fa (Wedgev’n (V1 RV ® - ® ’Un)) =
f (1,09, .. 0,).
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Proof of Corollary[98 Corollary [88 shows that there exists a unique k-linear map f :
Ve — W such that every (vi,va,...,v,) € V" satisfies fg (01 @2 @ - - @ v,) =
f(v1,ve,...,v,). Consider this fg. The map fg is k-linear; thus, Ker(fg) is a k-
submodule of V&,

We know that every (v, ve,...,v,) € V" satisfies

f®(U1®U2®"'®Un>:f<U1,'U2,.--,/Un>- (75)

The map f is weakly alternating. In other words, each ¢ € {1,2,...,n— 1} and
(v1,09,...,0,) € V™ satisfying v; = vy, satisfy

f(v1,09,...,0,) =0. (76)

(by the definition of “weakly alternating”).
Fix i € {1,2,...,n — 1}. Define a subset T of V" by

T={n1®@u® - Qu, | (v1,v2,...,0,) €V"; v; =v11}.

Thus,
(T)
= <{’U1 ®U2® ®Un | (Ul,UQ,...,Un) - Vn, v = Ui+1}>
=V - ®v, | (v1,v2,...,0,) €V" vy = viqq). (77)

Recall that wedgey,, is the canonical projection V" — Ve /R, (V).

Now, T C Ker (fg) [**| Thus, fg \T/ C fg (Ker(fg)) =0, so that fg (T) =

CKer(fg)

0. But Proposition (35| (b) (applied to V" T, W and fg instead of M, S, R and f)

yields fg ((T')) = <f® (T)> = (0) = 0. In view of 1) this rewrites as
=0

fo (1 @v2 @ - @uv, | (v1,09,...,0,) €V 03 = vi41)) = 0. (78)

Now, forget that we fixed i. We thus have proven for each i € {1,2,...,n —1}.
But Proposition [67] yields

n—1

R”(V)ZZ<1’1®UZ®"'®% | (v1,02,0 00, 00) €V 0 = 0i41)

i=1

33 Proof. Let t € T. Then,
teT={1 Q2@ - Qv | (v1,02,...,0,) EV"™; v; =vi41}.

In other words, ¢ has the form ¢t = v; ® v2 ® -+ ® v, for some (vy,va,...,v,) € V" satisfying
v; = v;41. Consider this (v1,va,...,vp).

From (75), we obtain fg (v1 @ va ® -+ @ vy,) = f (v1,02,...,v,) = 0 (by (7E)).

Now, applying the map fg to both sides of the equality t = v1 @ V2 ® - - - ® vy, we find fg (t) =
fo (01 ®va® - ®v,) =0. In other words, ¢t € Ker (fg).

Now, forget that we fixed t. We thus have proven that t € Ker (fg) for each t € T. In other
words, T' C Ker (fg).
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Applying the map fg to both sides of this equality, we obtain

n—1

fe Z<U1®U2®"'®Un | (v1,v9,...,0,) €V Ui:Ui+1>)

=1

i
L

(@U@ @V, | (v1,02,...,0,) €V" vy = vi41))

J

2

=1 :’
(by’)

(since the map fg is k-linear)

Hence, Proposition (92| (applied to V", R, (V), wedgey,, W and fg instead of V,
I, 77, W and f) yields that there exists a unique k-linear map f': V" /R, (V) - W
satisfying fg = f’ o wedgey,,. Consider this f.

The map f’ is a k-linear map V®" /R, (V) — W. In other words, the map [’ is
a k-linear map A"V — W (since V®" /R, (V) = A"V). Every (v1,vq,...,v,) € V"
satisfies

I (wedgevm (1M ®Ua® -+ ® vn))
= (f' owedgey,) (11 @ V2 ® @ vy) = fo (V1 RV B+ D vy)
—fe

= f(v1,v9,...,0,) (by (79))) .

Thus, f’is a k-linear map A"V — W and has the property that every (vy,vs,...,v,) €
V" satisfies f' (wedgey,, (1 @ 2 ® --- ®v,)) = f (v1,02,...,v,). Hence, there exists
at least one k-linear map f, : A"V — W such that every (vq, v, ..., v,) € V" satisfies
fa (Wedgevm (M RV ® - ® vn)) = f(v1,v9,...,v,) (namely, fo = f’). Since we also
know that there exists at most one such map (in fact, this follows from Lemma
96]), we can therefore conclude that there exists a unique k-linear map fr : A"V —
W such that every (v, vs,...,v,) € V" satisfies fx (Wedgeun (V1 RV R+ ® vn)) =
f (v1,v2,...,v,). This proves Corollary [0 O
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