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The following exercise is inspired by Gabriel Dospinescu’s [AndDos, Exercise
12.9]:

Exercise 1. Let N = {0, 1, 2, . . .}. Let n ∈ N and r ∈ N with r > 0. The sum
of a matrix shall mean the sum of its entries. If A is any matrix and i and j are
two positive integers, then the (i, j)-th entry of A will be denoted by Ai,j. Let
Sn denote the set of all permutations of {1, 2, . . . , n}. If σ ∈ Sn is a permutation,
then (−1)σ shall denote the sign of σ.

Let m be the minimum sum of an r × n-matrix M ∈ Nr×n that has no two
equal columns. (Explicitly, m can be computed as follows: Let s be the smallest

nonnegative integer satisfying
s−1
∑

t=0

(
r + t− 1

t

)
≤ n, and write n in the form n =

s−1
∑

t=0

(
r + t− 1

t

)
+ w. Then, m =

s−1
∑

t=0
t
(

r + t− 1
t

)
+ sw.)

(a) Let A ∈ Kn×n be an n× n-matrix of rank ≤ r over a field K. Prove that

∑
σ∈Sn

(−1)σ

(
n

∑
i=1

Ai,σ(i)

)k

= 0

for each k ∈ {0, 1, . . . , m− 1}.
(b) Let K be a field of characteristic 0. Prove that m is the smallest k ∈N such

that there exists an n× n-matrix A ∈ Kn×n of rank ≤ r satisfying

∑
σ∈Sn

(−1)σ

(
n

∑
i=1

Ai,σ(i)

)k

6= 0.

1
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Remark 0.1. The “characteristic 0” condition in Exercise 1 (b) is important; if K

has positive characteristic, then the smallest k can be larger than m.

Remark 0.2. Exercise 1 can be significantly shortened if we restrict ourselves to
the case of fields of characteristic 0. In fact, in this case, part (a) can be removed,
as its claim is contained in part (b). We can shorten the exercise further if we let
the reader figure out the value of m, i.e., if we pose it as follows:

“Let n and r be integers with n ≥ 0 and r > 0. Let K be a field of characteristic
0. Let Sn denote the set of all permutations of {1, 2, . . . , n}. If σ ∈ Sn is a
permutation, then (−1)σ shall denote the sign of σ. Find the smallest integer
k ≥ 0 such that there exists an n × n-matrix

(
Ai,j
)

1≤i≤n, 1≤j≤n ∈ Kn×n of rank
≤ r satisfying

∑
σ∈Sn

(−1)σ

(
n

∑
i=1

Ai,σ(i)

)k

6= 0.

”

Remark 0.3. The case r = n of Exercise 1 is contained in [Grinbe15, Exercise
6.54], whereas the case r = 1 of Exercise 1 is contained in [Grinbe15, Exercise
6.55] (since an n × m-matrix of rank ≤ 1 can always be written in the form(

aibj
)

1≤i≤n, 1≤j≤m for some a1, a2, . . . , an ∈ K and b1, b2, . . . , bm ∈ K). Both of

these cases allow for explicit formulas for ∑
σ∈Sn

(−1)σ
(

n
∑

i=1
Ai,σ(i)

)k
when k = m;

it is unclear whether such formulas exist for other values of r.

Solution sketch to Exercise 1. If M ∈ Nr×n is any matrix, then ΣM shall denote the

sum of M; in other words, ΣM =
n
∑

i=1

r
∑

h=1
Mh,i = M1,1 + M1,2 + · · ·+ Mr,n.

Furthermore, if M ∈ Nr×n is any matrix, then m (M) shall denote the multino-
mial coefficient

(
M1,1 + M1,2 + · · ·+ Mr,n

M1,1, M1,2, . . . , Mr,n

)
=

(
n
∑

i=1

r
∑

h=1
Mh,i

)
!

n
∏
i=1

r
∏

h=1
Mh,i!

∈N.

The multinomial formula shows that any r× n-matrix D ∈ Kr×n satisfies(
n

∑
i=1

r

∑
h=1

Dh,i

)k

= ∑
M∈Nr×n;

ΣM=k

m (M)
n

∏
i=1

r

∏
h=1

DMh,i
h,i . (1)

(a) Let k ∈N be arbitrary.
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The matrix A has rank ≤ r. Hence, it can be written in the form A = BC for
some n× r-matrix B ∈ Kn×r and some r × n-matrix C ∈ Kr×n 1. The equality
A = BC leads to

Ai,j =
r

∑
h=1

Bi,hCh,j (2)

for each (i, j) ∈ {1, 2, . . . , n}2. Hence,

∑
σ∈Sn

(−1)σ


n

∑
i=1

Ai,σ(i)︸ ︷︷ ︸
=

r
∑

h=1
Bi,hCh,σ(i)

(by (2))



k

= ∑
σ∈Sn

(−1)σ

(
n

∑
i=1

r

∑
h=1

Bi,hCh,σ(i)

)k

︸ ︷︷ ︸
= ∑

M∈Nr×n;
ΣM=k

m(M)
n
∏
i=1

r
∏

h=1
(Bi,hCh,σ(i))

Mh,i

(by (1), applied to the r×n-matrix D∈Kr×n

defined by Dh,i=Bi,hCh,σ(i))

= ∑
σ∈Sn

(−1)σ ∑
M∈Nr×n;

ΣM=k

m (M)
n

∏
i=1

r

∏
h=1

(
Bi,hCh,σ(i)

)Mh,i

︸ ︷︷ ︸
=

(
n
∏
i=1

r
∏

h=1
B

Mh,i
i,h

)(
n
∏
i=1

r
∏

h=1
C

Mh,i
h,σ(i)

)

= ∑
σ∈Sn

(−1)σ ∑
M∈Nr×n;

ΣM=k

m (M)

(
n

∏
i=1

r

∏
h=1

BMh,i
i,h

)(
n

∏
i=1

r

∏
h=1

CMh,i
h,σ(i)

)

= ∑
M∈Nr×n;

ΣM=k

m (M)

(
n

∏
i=1

r

∏
h=1

BMh,i
i,h

)
∑

σ∈Sn

(−1)σ
n

∏
i=1

r

∏
h=1

CMh,i
h,σ(i). (3)

Now, for each M ∈Nr×n, define an n× n-matrix DM ∈ Kn×n by

(DM)i,j =
r

∏
h=1

CMh,i
h,j .

1This is a well-known fact from linear algebra: see https://en.wikipedia.org/wiki/Rank_
factorization .

https://en.wikipedia.org/wiki/Rank_factorization
https://en.wikipedia.org/wiki/Rank_factorization
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Then, this matrix DM satisfies

det (DM) = ∑
σ∈Sn

(−1)σ
n

∏
i=1

(DM)i,σ(i)︸ ︷︷ ︸
=

r
∏

h=1
C

Mh,i
h,σ(i)

(by the definition of DM)

= ∑
σ∈Sn

(−1)σ
n

∏
i=1

r

∏
h=1

CMh,i
h,σ(i). (4)

If the matrix M ∈ Nr×n has two equal columns (say, the p-th and the q-th column
of M are equal), then the matrix DM has two equal rows (viz., its p-th and its q-th
row are equal) and thus satisfies

det (DM) = 0. (5)

Now, (3) becomes

∑
σ∈Sn

(−1)σ

(
n

∑
i=1

Ai,σ(i)

)k

= ∑
M∈Nr×n;

ΣM=k

m (M)

(
n

∏
i=1

r

∏
h=1

BMh,i
i,h

)
∑

σ∈Sn

(−1)σ
n

∏
i=1

r

∏
h=1

CMh,i
h,σ(i)︸ ︷︷ ︸

=det(DM)
(by (4))

= ∑
M∈Nr×n;

ΣM=k

m (M)

(
n

∏
i=1

r

∏
h=1

BMh,i
i,h

)
det (DM) . (6)

Now, assume that k ∈ {0, 1, . . . , m− 1}. Then, k < m.
But any r× n-matrix M ∈ Nr×n having sum < m must have two equal columns

(by the definition of m). Hence, any r × n-matrix M ∈ Nr×n having sum k must
have two equal columns (since it has sum k < m). Thus, any r× n-matrix M ∈Nr×n

having sum k must satisfy
det (DM) = 0

(by (5)). Now, (6) becomes

∑
σ∈Sn

(−1)σ

(
n

∑
i=1

Ai,σ(i)

)k

= ∑
M∈Nr×n;

ΣM=k

m (M)

(
n

∏
i=1

r

∏
h=1

BMh,i
i,h

)
det (DM)︸ ︷︷ ︸

=0
(by (6))

= 0.

This solves part (a) of the exercise.
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(b) Because of part (a), all we need to do is to show that there exists an n× n-
matrix A ∈ Kn×n of rank ≤ r satisfying

∑
σ∈Sn

(−1)σ

(
n

∑
i=1

Ai,σ(i)

)m

6= 0.

In order to show this, let us assume the contrary. Thus,

∑
σ∈Sn

(−1)σ

(
n

∑
i=1

Ai,σ(i)

)m

= 0 (7)

for each n× n-matrix A ∈ Kn×n of rank ≤ r. In particular, (7) holds for each n× n-
matrix A of the form A = BC with B ∈ Kn×r being an n× r-matrix and C ∈ Kr×n

being an r × n-matrix (because any such matrix A has rank ≤ r). In other words,
each n× r-matrix B ∈ Kn×r and each r× n-matrix C ∈ Kr×n satisfy

∑
M∈Nr×n;

ΣM=m

m (M)

(
n

∏
i=1

r

∏
h=1

BMh,i
i,h

)
∑

σ∈Sn

(−1)σ
n

∏
i=1

r

∏
h=1

CMh,i
h,σ(i) = 0 (8)

2. Hence, (8) holds as a polynomial identity in the entries Bi,j of B and the entries
Ci,j of C 3. If we treat the Ci,j as constants (temporarily), then the left hand side
of (8) is a polynomial in the indeterminates Bi,j. By comparing coefficients in (8),
we thus conclude that each M ∈Nr×n satisfying ΣM = m must satisfy

m (M) ∑
σ∈Sn

(−1)σ
n

∏
i=1

r

∏
h=1

CMh,i
h,σ(i) = 0 (9)

(because the monomials
n
∏
i=1

r
∏

h=1
BMh,i

i,h for different M ∈ Nr×n are distinct, and thus

we can compare coefficients in (8)). Since m (M) 6= 0, we can cancel m (M) from
(9) (since K has characteristic 0), and thus obtain

∑
σ∈Sn

(−1)σ
n

∏
i=1

r

∏
h=1

CMh,i
h,σ(i) = 0. (10)

So (10) is a polynomial identity in the indeterminates Ci,j that holds for each M ∈
Nr×n satisfying ΣM = m.

But there exists an r × n-matrix M ∈ Nr×n that has no two equal columns and
satisfies ΣM = m (by the definition of m). Consider this matrix M.

2In fact, applying (3) to k = m, we conclude that the left hand side of (7) equals the left hand side
of (8). Thus, the equality (8) follows from (7).

3This is because the field K is infinite (since it has characteristic 0).
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There exists a (p1, p2, . . . , pr) ∈ Nr such that the integers
r
∑

h=1
phMh,i for i ∈

{1, 2, . . . , n} are distinct4. Pick such a (p1, p2, . . . , pr). For each i ∈ {1, 2, . . . , n},
define a qi ∈ N by qi =

r
∑

h=1
phMh,i. Then, the integers q1, q2, . . . , qn are distinct

(since the integers
r
∑

h=1
phMh,i for i ∈ {1, 2, . . . , n} are distinct).

Introduce n new indeterminates z1, z2, . . . , zn. Substitute zpi
j for each Ci,j in the

identity (10). The result is the polynomial identity

∑
σ∈Sn

(−1)σ
n

∏
i=1

r

∏
h=1

(
zph

σ(i)

)Mh,i
= 0.

Thus,

0 = ∑
σ∈Sn

(−1)σ
n

∏
i=1

r

∏
h=1

(
zph

σ(i)

)Mh,i

︸ ︷︷ ︸
=z

r
∑

h=1
ph Mh,i

σ(i) =z
qi
σ(i)

(since
r
∑

h=1
ph Mh,i=qi)

= ∑
σ∈Sn

(−1)σ
n

∏
i=1

zqi
σ(i). (12)

However, it is well-known that ∑
σ∈Sn

(−1)σ
n
∏
i=1

zqi
σ(i) 6= 0 in Q [z1, z2, . . . , zn] 5.

This contradicts (12). This contradiction completes the proof.
4Proof. Assume the contrary. Thus, for each (p1, p2, . . . , pr) ∈ Nr, there are at least two

equal integers among the integers
r
∑

h=1
ph Mh,i for i ∈ {1, 2, . . . , n}. In other words, for each

(p1, p2, . . . , pr) ∈Nr, we have

∏
1≤i<j≤n

(
r

∑
h=1

ph Mh,i −
r

∑
h=1

ph Mh,j

)
= 0.

Since Nr is Zariski-dense in the Q-vector space Qr, this shows that we have

∏
1≤i<j≤n

(
r

∑
h=1

xh Mh,i −
r

∑
h=1

xh Mh,j

)
= 0

in the polynomial ring Q [x1, x2, . . . , xr]. Since Q [x1, x2, . . . , xr] is an integral domain, we con-
clude that there exists a pair (i, j) of integers satisfying 1 ≤ i < j ≤ n and

r

∑
h=1

xh Mh,i −
r

∑
h=1

xh Mh,j = 0. (11)

Consider this (i, j). From (11), we easily conclude that Mh,i = Mh,j for all h ∈ {1, 2, . . . , r}. In
other words, the i-th column of M equals the j-th column of M. This contradicts the fact that the
matrix M has no two equal columns. This contradiction completes the proof.

5Proof. Recall that the integers q1, q2, . . . , qn are distinct. Thus, there are no cancellations in the
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sum ∑
σ∈Sn

(−1)σ
n
∏
i=1

zqi
σ(i); that is, any two σ ∈ Sn give rise to distinct monomials. Hence, this sum

is 6= 0. Qed.
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