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Abstract. Fix a commutative ring k, an element β ∈ k and a posi-
tive integer n. Let X be the polynomial ring over k in the n (n− 1) /2
indeterminates xi,j for all 1 ≤ i < j ≤ n. Consider the ideal Jβ of X
generated by all polynomials of the form xi,jxj,k − xi,k

(
xi,j + xj,k + β

)
for 1 ≤ i < j < k ≤ n. The quotient algebra X/Jβ (at least for a
certain universal choice of k and β) has been introduced by Karola
Mészáros in [Meszar09] as a commutative analogue of Anatol Kir-
illov’s quasi-classical Yang-Baxter algebra. A natural question is to
find a combinatorial basis of this quotient algebra. One can define
the pathless monomials, i.e., the monomials in X that have no divisors
of the form xi,jxj,k with 1 ≤ i < j < k ≤ n. The residue classes of
these pathless monomials indeed span the k-module X/Jβ; however,
they turn out (in general) to be k-linearly dependent. More combi-
natorially: Reducing a given monomial in X modulo the ideal Jβ

by applying replacements of the form xi,jxj,k 7→ xi,k
(
xi,j + xj,k + β

)
always eventually leads to a k-linear combination of pathless mono-
mials, but the result may depend on the choices made in the process.

More recently, the study of Grothendieck polynomials has led Laura
Escobar and Karola Mészáros [EscMes15, §5] to defining a k-algebra
homomorphism D from X into the polynomial ring k [t1, t2, . . . , tn−1]
that sends each xi,j to ti. For a certain class of monomials m (those
corresponding to “noncrossing trees”), they have shown that what-
ever result one gets by reducing m modulo Jβ, the image of this
result under D is independent on the choices made in the reduction
process. Mészáros has conjectured that this property holds not only
for this class of monomials, but for any polynomial p ∈ X . We prove
this result, in the following slightly stronger form: If p ∈ X , and
if q ∈ X is a k-linear combination of pathless monomials satisfying
p ≡ q modJβ, then D (q) does not depend on q (as long as β and p
are fixed).
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We also find an actual basis of the k-module X/Jβ, using what
we call forkless monomials. We furthermore formulate a conjectural
generalization.
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Introduction

The main result of this paper is probably best illustrated by an example:

Example 0.1. Let us play a solitaire game. Fix a positive integer n and a
number β ∈ Q, and let X be the ring Q

[
xi,j | 1 ≤ i < j ≤ n

]
of polynomials

with rational coefficients in the n (n− 1) /2 indeterminates xi,j with 1 ≤ i <
j ≤ n. (For example, if n = 4, then X = Q [x1,2, x1,3, x1,4, x2,3, x2,4, x3,4].)

Start with any polynomial p ∈ X . The allowed move is the following: Pick a
monomial m that appears (with nonzero coefficient) in p and that is divisible
by xi,jxj,k for some 1 ≤ i < j < k ≤ n. For example, x1,2x1,3x2,4 is such a
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monomial (if it appears in p and if n ≥ 4), because it is divisible by xi,jxj,k
for (i, j, k) = (1, 2, 4). Choose one triple (i, j, k) with 1 ≤ i < j < k ≤ n and
xi,jxj,k | m (sometimes, there are several choices). Now, replace this monomial

m by
xi,k
(
xi,j + xj,k + β

)
xi,jxj,k

m in p.

Thus, each move modifies the polynomial, replacing a monomial by a sum
of three monomials (or two, if β = 0). The game ends when no more moves
are possible (i.e., no monomial m appearing in your polynomial is divisible by
xi,jxj,k for any 1 ≤ i < j < k ≤ n).

It is easy to see that this game (a thinly veiled reduction procedure modulo
an ideal of X ) always ends after finitely many moves. Here is one instance of
this game being played, for n = 4 and β = 1 and starting with the polynomial
p = x1,2x2,3x3,4:

x1,2x2,3x3,4

7→ x1,3 (x1,2 + x2,3 + 1) x3,4

(here, we chose m = x1,2x2,3x3,4 and (i, j, k) = (1, 2, 3))
= x1,2x1,3x3,4 + x1,3x2,3x3,4 + x1,3x3,4

7→ x1,2x1,4 (x1,3 + x3,4 + 1) + x1,3x2,3x3,4 + x1,3x3,4

(here, we chose m = x1,2x1,3x3,4 and (i, j, k) = (1, 3, 4))
= x1,2x1,3x1,4 + x1,2x1,4x3,4 + x1,2x1,4 + x1,3x2,3x3,4 + x1,3x3,4

7→ x1,2x1,3x1,4 + x1,2x1,4x3,4 + x1,2x1,4 + x1,3x2,4 (x2,3 + x3,4 + 1) + x1,3x3,4

(here, we chose m = x1,3x2,3x3,4 and (i, j, k) = (2, 3, 4))
= x1,2x1,3x1,4 + x1,2x1,4x3,4 + x1,2x1,4 + x1,3x2,3x2,4 + x1,3x2,4x3,4 + x1,3x2,4

+ x1,3x3,4

7→ x1,2x1,3x1,4 + x1,2x1,4x3,4 + x1,2x1,4 + x1,3x2,3x2,4 + x1,3x2,4x3,4 + x1,3x2,4

+ x1,4 (x1,3 + x3,4 + 1)
(here, we chose m = x1,3x3,4 and (i, j, k) = (1, 3, 4))

= x1,2x1,3x1,4 + x1,2x1,4x3,4 + x1,2x1,4 + x1,3x2,3x2,4 + x1,3x2,4x3,4

+ x1,3x2,4 + x1,3x1,4 + x1,4x3,4 + x1,4

7→ x1,2x1,3x1,4 + x1,2x1,4x3,4 + x1,2x1,4 + x1,3x2,3x2,4 + x2,4x1,4 (x1,3 + x3,4 + 1)
+ x1,3x2,4 + x1,3x1,4 + x1,4x3,4 + x1,4

(here, we chose m = x1,3x2,4x3,4 and (i, j, k) = (1, 3, 4))
= x1,2x1,3x1,4 + x1,2x1,4x3,4 + x1,2x1,4 + x1,3x2,3x2,4 + x1,3x1,4x2,4

+ x1,4x2,4x3,4 + x1,4x2,4 + x1,3x2,4 + x1,3x1,4 + x1,4x3,4 + x1,4. (1)

The game ends at this polynomial, since there are no more moves to be done.
A standard question about games like this is: Is the state obtained at the

end of the game (i.e., in our case, the polynomial after the game has ended)
independent of the choices made during the game? In our case, the answer is
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“no” (in general, for n ≥ 4). Indeed, the reader can easily verify that the above
game could have led to a different result if we had made different choices.

However, something else turns out to be independent of the choices.
Namely, let us transform the polynomial at the end of the game further by
applying the substitution xi,j 7→ ti (where t1, t2, . . . , tn−1 are new indetermi-
nates). For example, doing this to the polynomial (1) results in

t1t1t1 + t1t1t3 + t1t1 + t1t2t2 + t1t1t2 + t1t2t3 + t1t2 + t1t2 + t1t1 + t1t3 + t1

= t1

(
2t1 + 2t2 + t3 + t2

1 + t2
2 + t1t2 + t1t3 + t2t3 + 1

)
.

According to a conjecture of Mészáros, the result of this substitution is indeed
independent of the choices made during the game (as long as p is fixed).

Why would one play a game like this? The interest in the reduction rule

m 7→
xi,k
(
xi,j + xj,k + β

)
xi,jxj,k

m originates in Karola Mészáros’s study [Meszar09] of

the abelianization of Anatol Kirillov’s quasi-classical Yang-Baxter algebra (see,
e.g., [Kirill16] for a recent survey of the latter and its many variants). To define
this abelianization1, we let β be an indeterminate (unlike in Example 0.1, where
it was an element of Q). Furthermore, fix a positive integer n. The abelianization
of the (n-th) quasi-classical Yang-Baxter algebra is the commutative Q [β]-algebra
S (An) with

generators xi,j for all 1 ≤ i < j ≤ n and

relations xi,jxj,k = xi,k
(
xi,j + xj,k + β

)
for all 1 ≤ i < j < k ≤ n.

A natural question is to find an explicit basis of S (An) (as a Q-vector space,
or, if possible, as a Q [β]-module). One might try constructing such a basis us-
ing a reduction algorithm (or “straightening law”) that takes any element of
S (An) (written as any polynomial in the generators xi,j) and rewrites it in a
“normal form”. The most obvious way one could try to construct such a re-
duction algorithm is by repeatedly rewriting products of the form xi,jxj,k (with
1 ≤ i < j < k ≤ n) as xi,k

(
xi,j + xj,k + β

)
, until this is no longer possible. This

is precisely the game that we played in Example 0.1 (with the only difference
that β is now an indeterminate, not a number). Unfortunately, the result of the
game turns out to depend on the choices made while playing it; consequently,
the “normal form” it constructs is not literally a normal form, and instead of a
basis of S (An) we only obtain a spanning set.2

1The notations used in this Introduction are meant to be provisional. In the rest of this paper, we
shall work with different notations (and in a more general setting), which will be introduced
in Section 1.

2Surprisingly, a similar reduction algorithm does work for the (non-abelianized) quasi-classical
Yang-Baxter algebra itself. This is one of Mészáros’s results ([Meszar09, Theorem 30]).
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Nevertheless, the result of the game is not meaningless. The idea to substitute
ti for xi,j (in the result, not in the original polynomial!) seems to have appeared
in work of Postnikov, Stanley and Mészáros; some concrete formulas (for spe-
cific values of the initial polynomial and specific values of β) appear in [Stanle15,
Exercise A22]. Recent work on Grothendieck polynomials by Laura Escobar and
Karola Mészáros [EscMes15, §5] has again brought up the notion of substitut-
ing ti for xi,j in the polynomial obtained at the end of the game. This has led
Mészáros to the conjecture that, after this substitution, the resulting polynomial
no longer depends on the choices made during the game. She has proven this
conjecture for a certain class of polynomials (those corresponding to “noncross-
ing trees”).

The main purpose of this paper is to establish Mészáros’s conjecture in the
general case. We shall, in fact, work in somewhat greater generality than all pre-
viously published sources. Instead of requiring β to be either a rational number
(as in Example 0.1) or an indeterminate over Q (as in the definition of S (An)),
we shall let β be any element of the ground ring, which in turn will be an ar-
bitrary commutative ring k. Rather than working in an algebra like S (An), we
shall work in the polynomial ring X = k

[
xi,j | 1 ≤ i < j ≤ n

]
, and study the

ideal Jβ generated by all elements of the form xi,jxj,k − xi,k
(
xi,j + xj,k + β

)
for

1 ≤ i < j < k ≤ n. Instead of focussing on the reduction algorithm, we shall
generally study polynomials in X that are congruent to each other modulo the
ideal Jβ. A monomial in X will be called “pathless” if it is not divisible by any
monomial of the form xi,jxj,k with i < j < k. A polynomial in X will be called
“pathless” if all monomials appearing in it are pathless. Thus, “pathless” poly-
nomials are precisely the polynomials p ∈ X for which the game in Example 0.1
would end immediately if started at p. Our main result (Theorem 1.7) will show
that if p ∈ X is a polynomial, and if q ∈ X is a pathless polynomial congruent
to p modulo Jβ, then the image of q under the substitution xi,j 7→ ti does not
depend on q (but only on β and p). This, in particular, yields Mészáros’s con-
jecture; but it is a stronger result, because it does not require that q is obtained
from p by playing the game from Example 0.1 (all we ask for is that q be pathless
and congruent to p modulo Jβ).

After the proof of Theorem 1.7, we shall also outline an answer (Proposition
3.4) to the (easier) question of finding a basis for the quotient ring X/Jβ. This
basis will be obtained using an explicitly given Gröbner basis of the ideal Jβ.
Finally, we shall state a generalization (Theorem 4.3) of Theorem 1.7 to an ideal
Jβ,α that “deforms” Jβ; a proof of this generalization is left to the next version
of this preprint.

A recent preprint by Mészáros and St. Dizier [MesDiz17] proves a fact [MesDiz17,
Theorem A] which, translated into our language, confirms the conjecture stated
in Example 0.1 at least in the case when the game is started with a monomial p.
This might provide a different route to some of our results. (The arguments in
[MesDiz17] are of combinatorial nature, involving flows on graphs, and so is the
language used in [MesDiz17]; in particular, monomials are encoded by graphs.)
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1. Definitions and results

Let us now start from scratch, and set the stage for the main result.

Definition 1.1. Let N = {0, 1, 2, . . .}.
Let [m] be the set {1, 2, . . . , m} for each m ∈N.
Let k be a commutative ring. (We fix k throughout this paper.)
The word “monomial” shall always mean an element of a free abelian

monoid (written multiplicatively). For example, the monomials in two in-
determinates x and y are the elements of the form xiyj with (i, j) ∈N2. Thus,
monomials do not include coefficients (and are not bound to a specific base
ring).

Definition 1.2. Fix a positive integer n. Let X be the polynomial ring

k
[

xi,j | (i, j) ∈ [n]2 satisfying i < j
]

.

This is a polynomial ring in n (n− 1) /2 indeterminates xi,j over k.
We shall use the notation M for the set of all monomials in these indeter-

minates xi,j. Notice that M is an abelian monoid under multiplication.

Definition 1.3. A monomial m ∈ M is said to be pathless if there exists no
triple (i, j, k) ∈ [n]3 satisfying i < j < k and xi,jxj,k | m (as monomials).

A polynomial p ∈ X is said to be pathless if it is a k-linear combination of
pathless monomials.

Definition 1.4. Let β ∈ k. Let Jβ be the ideal of X generated by all elements
of the form xi,jxj,k − xi,k

(
xi,j + xj,k + β

)
for (i, j, k) ∈ [n]3 satisfying i < j < k.

The following fact is easy to check:

Proposition 1.5. Let β ∈ k and p ∈ X . Then, there exists a pathless polyno-
mial q ∈ X such that p ≡ q modJβ.

In general, this q is not unique.3

3For instance, if k = Z, β = 1 and n = 4, then

q1 = x1,2x1,3x1,4 + x1,2x1,4 + x1,2x1,4x3,4 + x1,3x1,4 + x1,3x1,4x2,4 + x1,3x2,3x2,4

+ x1,3x2,4 + x1,4 + x1,4x2,4 + x1,4x2,4x3,4 + x1,4x3,4

6
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We shall roughly outline a proof of Proposition 1.5 now; a more detailed
writeup of this proof can be found in Section 2.13 below.

Proof of Proposition 1.5 (sketched). The weight of a monomial ∏
(i,j)∈[n]2;

i<j

x
ai,j
i,j ∈M shall

mean the nonnegative integer ∑
(i,j)∈[n]2;

i<j

ai,j (n− j + i). If we have a monomial

m ∈ M that is not pathless, then we can find a triple (i, j, k) ∈ [n]3 satis-
fying i < j < k and xi,jxj,k | m; then, we can replace m by a polynomial

m̃ = m ·
xi,k
(
xi,j + xj,k + β

)
xi,jxj,k

, which is congruent to m modulo Jβ but has the

property that all monomials appearing in it have a smaller weight than m. This
gives rise to a recursive algorithm for reducing a polynomial modulo the ideal
Jβ. The procedure will necessarily terminate (although its result might depend
on the order of operation); the polynomial resulting at its end will be path-
less.

The ideal Jβ is relevant to the so-called subdivision algebra of root polytopes
(denoted by S (β) in [EscMes15, §5] and S (An) in [Meszar09, §1]). Namely,
this latter algebra is defined as the quotient X/Jβ for a certain choice of k and
β (namely, for the choice where k is a univariate polynomial ring over Q, and
β is the indeterminate in k). This algebra was first introduced by Mészáros in
[Meszar09] as the abelianization of Anatol Kirillov’s quasi-classical Yang-Baxter
algebra.

In [EscMes15, §5 and §7], Escobar and Mészáros (motivated by computations
of Grothendieck polynomials) consider the result of substituting ti for each vari-
able xi,j in a polynomial f ∈ X . In our language, this leads to the following
definition:

Definition 1.6. Let T ′ be the polynomial ring k [t1, t2, . . . , tn−1]. We define a
k-algebra homomorphism D : X → T ′ by

D
(
xi,j
)
= ti for every (i, j) ∈ [n]2 satisfying i < j.

The goal of this paper is to prove the following fact, which was conjectured by
Karola Mészáros in a 2015 talk at MIT:

and

q2 = x1,2x1,3x1,4 + x1,2x1,4 + x1,2x1,4x3,4 + x1,3x1,4 + x1,3x1,4x2,3

+ x1,4 + x1,4x2,3 + x1,4x2,3x2,4 + x1,4x2,4 + x1,4x2,4x3,4 + x1,4x3,4

are two pathless polynomials q ∈ X satisfying x1,2x2,3x3,4 ≡ q modJβ, but they are not
identical.

7
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Theorem 1.7. Let β ∈ k and p ∈ X . Consider any pathless polynomial q ∈ X
such that p ≡ q modJβ. Then, D (q) does not depend on the choice of q (but
merely on the choice of β and p).

It is not generally true that D (q) = D (p); thus, Theorem 1.7 does not follow
from a simple “invariant”.

2. The proof

2.1. Preliminaries

The proof of Theorem 1.7 will occupy most of this paper. It proceeds in several
steps. First, we shall define three k-algebras Q′, Q and T and three k-linear
maps A, B and C (with A and C being k-algebra homomorphisms) forming a
diagram

X A // Q′ B // Q C // T .

We shall eventually show that:

• (Proposition 2.5 below) the homomorphism A annihilates the ideal J1, but

• (Corollary 2.19 below) each pathless polynomial q satisfies D (q) = (C ◦ B ◦ A) (q)
(the equation makes sense since T ′ ⊆ T ).

These two facts will allow us to prove Theorem 1.7 in the case when β = 1
(this is Lemma 2.21 below). From this case, we shall then escalate to a somewhat
more general case: Namely, we shall prove Theorem 1.7 in the case when β is
regular4 (Proposition 2.24). This latter case already covers the situation studied
in [EscMes15, §5] (indeed, β is a polynomial indeterminate over k = Q in this
case). Finally, using this case as a stepping stone, we shall obtain a proof of
Theorem 1.7 in full generality.

Let us define the notion of a regular element of a commutative ring:

Definition 2.1. Let k be a commutative ring. Let a ∈ k. The element a of k is
said to be regular if and only if every x ∈ k satisfying ax = 0 satisfies x = 0.

2.2. The algebra Q′ of “zero-sum” power series

Definition 2.2. (a) Set Q′ = k [[r1, r2, . . . , rn−1]]. (This is the ring of power
series in the n− 1 indeterminates r1, r2, . . . , rn−1 over k.)

The k-algebra Q′ has a topology: the product topology, defined by regard-
ing it as a direct product of many copies of k (thus regarding each power series

4See Definition 2.1 for the meaning of “regular”.
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as the family of its coefficients). (Each copy of k corresponds to a monomial.)
Thus, Q′ becomes a topological k-algebra. Every ring of power series in this
note will be endowed with a topology in this very way.

(b) For each i ∈ [n], we define a monomial qi in the indeterminates
r1, r2, . . . , rn−1 by qi = riri+1 · · · rn−1. (In particular, qn = 1.)

Each of the elements q1, q2, . . . , qn of Q′ is regular (since it is a monomial),
and they satisfy qn | qn−1 | · · · | q1. Hence, it makes sense to speak of quotients
such as qi/qj for 1 ≤ i ≤ j ≤ n. Explicitly, qi/qj = riri+1 · · · rj−1 whenever
1 ≤ i ≤ j ≤ n.

It is easy to see that

qa1
1 qa2

2 · · · q
an
n = ra1

1 ra1+a2
2 ra1+a2+a3

3 · · · ra1+a2+···+an−1
n−1 (2)

for all (a1, a2, . . . , an) ∈ Zn. Also,

rb1
1 rb2

2 · · · r
bn−1
n−1 = qb1

1 qb2−b1
2 qb3−b2

3 · · · qbn−1−bn−2
n−1 q−bn−1

n (3)

for all (b1, b2, . . . , bn−1) ∈ Zn−1.

Definition 2.3. Let Z denote the set of all n-tuples (a1, a2, . . . , an) ∈ Zn satis-
fying a1 + a2 + · · ·+ an = 0 and a1 + a2 + · · ·+ ai ≥ 0 for all i ∈ {1, 2, . . . , n}.

The topological k-moduleQ′ has a topological basis5 (qa1
1 qa2

2 · · · q
an
n
)
(a1,a2,...,an)∈Z.

Indeed, this is just a reindexing of the standard topological basis(
rb1

1 rb2
2 · · · r

bn−1
n−1

)
(b1,b2,...,bn−1)∈Nn−1

via the bijection

Z→Nn−1,
(a1, a2, . . . , an) 7→ (a1, a1 + a2, a1 + a2 + a3, . . . , a1 + a2 + · · ·+ an−1)

(because of the equality (2)).

5The notion of a “topological basis” that we are using here has nothing to do with the concept
of a basis of a topology (also known as “base”). Instead, it is merely an analogue of the
concept of a basis of a k-module. It is defined as follows:

A topological basis of a topological k-module M means a family (ms)s∈S ∈ MS with the
following two properties:

• For each family (λs)s∈S ∈ kS, the sum ∑
s∈S

λsms converges with respect to the topol-

ogy onM. (Such a sum is called an infinite k-linear combination of the family (ms)s∈S.)

• Each element ofM can be uniquely represented in the form ∑
s∈S

λsms for some family

(λs)s∈S ∈ kS.

For example,
(

rb1
1 rb2

2 · · · r
bn−1
n−1

)
(b1,b2,...,bn−1)∈Nn−1

is a topological basis of the topological k-

module Q′, because each power series can be uniquely represented as an infinite k-linear
combination of all the monomials.

9
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2.3. The algebra homomorphism A : X → Q′

Definition 2.4. Define a k-algebra homomorphism A : X → Q′ by

A
(
xi,j
)
=

qi/qj

1− qi/qj
= ∑

k>0

(
qi/qj

)k for all (i, j) ∈ [n]2 satisfying i < j.

Notice that this is well-defined, since qi/qj = riri+1 · · · rj−1 ∈ Q′ is homoge-
neous of positive degree and thus can be substituted into a power series.

Proposition 2.5. We have A (J1) = 0.

Proof of Proposition 2.5. The ideal J1 of X is generated by all elements of the form
xi,jxj,k− xi,k

(
xi,j + xj,k + 1

)
for (i, j, k) ∈ [n]3 satisfying i < j < k. Thus, it suffices

to show that A
(
xi,jxj,k − xi,k

(
xi,j + xj,k + 1

))
= 0 for all triples (i, j, k) ∈ [n]3

satisfying i < j < k. So let us fix such a triple.
Set y = qi/qj and z = qj/qk. Both y and z are homogeneous of positive degree,

and thus we can freely divide by power series such as 1− y and 1− z.

The definition of A yields A
(
xi,j
)
=

qi/qj

1− qi/qj
=

y
1− y

(since qi/qj = y).

Similarly, A
(
xj,k
)
=

z
1− z

.

The definition of A yields A (xi,k) =
qi/qk

1− qi/qk
=

yz
1− yz

(since qi/qk =(
qi/qj

)︸ ︷︷ ︸
=y

(
qj/qk

)︸ ︷︷ ︸
=z

= yz).

But A is a k-algebra homomorphism. Thus,

A
(
xi,jxj,k − xi,k

(
xi,j + xj,k + 1

))

= A
(
xi,j
)︸ ︷︷ ︸

=
y

1− y

A
(
xj,k
)︸ ︷︷ ︸

=
z

1− z

− A (xi,k)︸ ︷︷ ︸
=

yz
1− yz

A
(
xi,j
)︸ ︷︷ ︸

=
y

1− y

+ A
(
xj,k
)︸ ︷︷ ︸

=
z

1− z

+1


=

y
1− y

z
1− z

− yz
1− yz

(
y

1− y
+

z
1− z

+ 1
)

= 0,

qed.

2.4. The algebra Q of power series

10
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Definition 2.6. Let Q be the k-algebra k [[q1, q2, . . . , qn−1]]. This is the ring of
formal power series in the n− 1 indeterminates q1, q2, . . . , qn−1 over k. These
indeterminates have nothing to do with the monomials qi from Definition 2.2
(a) (but of course the same names have been chosen for similarity).

The topology on Q shall be the usual one (i.e., the one defined similarly to
the one on Q′).

2.5. The continuous k-linear map B : Q′ → Q
Before we define our next map, let us show three simple lemmas:

Lemma 2.7. Let (a1, a2, . . . , an) ∈ Zn be such that a1 + a2 + · · ·+ an = 0. Let
N = ∑

i∈[n]
max {ai, 0}. Then, (a1, a2, . . . , an) ∈ {−N,−N + 1, . . . , N}n.

Proof of Lemma 2.7. We have

0 = a1 + a2 + · · ·+ an = ∑
i∈[n]

ai = ∑
i∈[n];
ai≥0

ai + ∑
i∈[n];
ai<0

ai

(since each i ∈ [n] satisfies either ai ≥ 0 or ai < 0, but not both). Solving this
equation for ∑

i∈[n];
ai≥0

ai, we obtain

∑
i∈[n];
ai≥0

ai = − ∑
i∈[n];
ai<0

ai = ∑
i∈[n];
ai<0

(−ai)︸ ︷︷ ︸
=|ai|

(since ai<0)

= ∑
i∈[n];
ai<0

|ai| .

But

N = ∑
i∈[n]

max {ai, 0} = ∑
i∈[n];
ai≥0

max {ai, 0}︸ ︷︷ ︸
=ai

(since ai≥0)

+ ∑
i∈[n];
ai<0

max {ai, 0}︸ ︷︷ ︸
=0

(since ai<0)

(since each i ∈ [n] satisfies either ai ≥ 0 or ai < 0, but not both)

= ∑
i∈[n];
ai≥0

ai + ∑
i∈[n];
ai<0

0

︸ ︷︷ ︸
=0

= ∑
i∈[n];
ai≥0

ai = ∑
i∈[n];
ai<0

|ai| .

Now, we claim that ∣∣aj
∣∣ ≤ N for each j ∈ [n] . (4)

[Proof of (4): Fix j ∈ [n]. We want to prove (4). We are in one of the following
two cases:

Case 1: We have aj ≥ 0.

11
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Case 2: We have aj < 0.
Let us consider Case 1 first. In this case, we have aj ≥ 0. Thus, aj is an addend

in the sum ∑
i∈[n];
ai≥0

ai. Since this sum consists purely of nonnegative integers6, we

therefore conclude that aj is at most as large as this sum. In other words, aj ≤
∑

i∈[n];
ai≥0

ai. In light of N = ∑
i∈[n];
ai≥0

ai, this rewrites as aj ≤ N. But aj ≥ 0 and thus

∣∣aj
∣∣ = aj ≤ N. Hence, (4) is proven in Case 1.
Let us now consider Case 2. In this case, we have aj < 0. Hence,

∣∣aj
∣∣ is

an addend in the sum ∑
i∈[n];
ai<0

|ai|. Since this sum consists purely of nonnegative

integers7, we therefore conclude that its addend
∣∣aj
∣∣ is at most as large as the

whole sum. In other words,
∣∣aj
∣∣ ≤ ∑

i∈[n];
ai<0

|ai|. In light of N = ∑
i∈[n];
ai<0

|ai|, this rewrites

as
∣∣aj
∣∣ ≤ N. Hence, (4) is proven in Case 2.

We have thus proven (4) in both Cases 1 and 2. Hence, (4) is proven.]
From (4), we conclude that aj ∈ {−N,−N + 1, . . . , N} for each j ∈ [n] (since

aj ∈ Z). Hence, (a1, a2, . . . , an) ∈ {−N,−N + 1, . . . , N}n. This proves Lemma
2.7.

Lemma 2.8. Let b1, b2, . . . , bn−1 be n− 1 nonnegative integers. Let N = b1 +
b2 + · · ·+ bn−1. Let (a1, a2, . . . , an) ∈ Z be such that each i ∈ [n− 1] satisfies
bi = max {ai, 0}. Then, (a1, a2, . . . , an) belongs to {−N,−N + 1, . . . , N}n.

Proof of Lemma 2.8. From (a1, a2, . . . , an) ∈ Z, we obtain a1 + a2 + · · · + an = 0
and a1 + a2 + · · ·+ ai ≥ 0 for all i ∈ {1, 2, . . . , n}. From a1 + a2 + · · ·+ ai ≥ 0 for
all i ∈ {1, 2, . . . , n}, we obtain a1 + a2 + · · ·+ an−1 ≥ 0. 8

Now,

0 = a1 + a2 + · · ·+ an = (a1 + a2 + · · ·+ an−1)︸ ︷︷ ︸
≥0

+an ≥ 0 + an = an,

so that an ≤ 0 and therefore max {an, 0} = 0.
We know that each i ∈ [n− 1] satisfies bi = max {ai, 0}. Hence, ∑

i∈[n−1]
bi =

∑
i∈[n−1]

max {ai, 0}. Thus,

∑
i∈[n−1]

max {ai, 0} = ∑
i∈[n−1]

bi = b1 + b2 + · · ·+ bn−1 = N.

6because ai is a nonnegative integer for each i ∈ [n] satisfying ai ≥ 0
7because |ai| is a nonnegative integer for each i ∈ [n] satisfying ai < 0
8To be fully precise: The inequality a1 + a2 + · · ·+ an−1 ≥ 0 follows from a1 + a2 + · · ·+ ai ≥ 0

(applied to i = n− 1) when n ≥ 2. But when n < 2, it follows from a1 + a2 + · · ·+ an−1 =
(empty sum) = 0.

12
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Now,

∑
i∈[n]

max {ai, 0} = ∑
i∈[n−1]

max {ai, 0}︸ ︷︷ ︸
=N

+max {an, 0}︸ ︷︷ ︸
=0

= N + 0 = N.

In other words, N = ∑
i∈[n]

max {ai, 0}. Hence, Lemma 2.7 shows that (a1, a2, . . . , an) ∈

{−N,−N + 1, . . . , N}n. This proves Lemma 2.8.

Lemma 2.9. Let m be a monomial in the indeterminates q1, q2, . . . , qn−1 (with
nonnegative exponents). Then, there exist only finitely many (a1, a2, . . . , an) ∈
Z satisfying ∏

i∈[n−1];
ai>0

qai
i = m. (Here, again, q1, q2, . . . , qn−1 are the indetermi-

nates of Q, not the monomials qi from Definition 2.2 (b).)

Proof of Lemma 2.9. Write m in the form m = ∏
i∈[n−1]

qbi
i . Let N = b1 + b2 + · · ·+

bn−1. We want to prove that there exist only finitely many (a1, a2, . . . , an) ∈ Z
satisfying ∏

i∈[n−1];
ai>0

qai
i = m. We shall show that each such (a1, a2, . . . , an) must

belong to the set {−N,−N + 1, . . . , N}n.
Indeed, let (a1, a2, . . . , an) ∈ Z be such that ∏

i∈[n−1];
ai>0

qai
i = m. We must show that

(a1, a2, . . . , an) belongs to {−N,−N + 1, . . . , N}n.
We have

∏
i∈[n−1]

qmax{ai,0}
i =


∏

i∈[n−1];
ai>0

qmax{ai,0}
i︸ ︷︷ ︸
=q

ai
i

(since max{ai,0}=ai
(since ai>0))




∏

i∈[n−1];
ai≤0

qmax{ai,0}
i︸ ︷︷ ︸

=q0
i

(since max{ai,0}=0
(since ai≤0))



=

 ∏
i∈[n−1];

ai>0

qai
i


 ∏

i∈[n−1];
ai≤0

q0
i︸︷︷︸

=1

 = ∏
i∈[n−1];

ai>0

qai
i = m = ∏

i∈[n−1]
qbi

i .

Thus, ∏
i∈[n−1]

qbi
i = ∏

i∈[n−1]
qmax{ai,0}

i . In other words, each i ∈ [n− 1] satisfies

bi = max {ai, 0}. Hence, (a1, a2, . . . , an) belongs to {−N,−N + 1, . . . , N}n (by
Lemma 2.8).

Now, forget that we fixed (a1, a2, . . . , an). We thus have shown that each
(a1, a2, . . . , an) ∈ Z satisfying ∏

i∈[n−1];
ai>0

qai
i = m must belong to the set {−N,−N + 1, . . . , N}n.

13
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Therefore, there exist only finitely many such (a1, a2, . . . , an) (because the set
{−N,−N + 1, . . . , N}n is finite). This proves Lemma 2.9.

Definition 2.10. We define a continuous k-linear map B : Q′ → Q by setting

B
(
qa1

1 qa2
2 · · · q

an
n
)
= ∏

i∈[n−1];
ai>0

qai
i for each (a1, a2, . . . , an) ∈ Z.

This is well-defined, since
(
qa1

1 qa2
2 · · · q

an
n
)
(a1,a2,...,an)∈Z is a topological basis of

Q′, and because of Lemma 2.9 (which guarantees convergence when the map
B is applied to an infinite k-linear combination of monomials).

Of course, B is (in general) not a k-algebra homomorphism.

2.6. The algebra T of power series

Definition 2.11. We define a topological k-algebra T by T =
k [[t1, t2, . . . , tn−1]] (with the usual topology). Again, this is simply a ring of
formal power series over k.

We shall regard T ′ as a k-subalgebra of T (in the obvious way). Thus,
D : X → T ′ becomes a k-algebra homomorphism X → T .

2.7. The continuous k-algebra homomorphism C : Q → T

Definition 2.12. We define a continuous k-algebra homomorphism C : Q →
T by

C (qi) =
ti

1 + ti
for each i ∈ [n− 1] .

This is well-defined, because for each i ∈ [n− 1], the power series
ti

1 + ti
has

constant term 0 and thus can be substituted into power series.

Thus, we have defined the following spaces and maps between them:

X A // Q′ B // Q C // T .

It is worth reminding ourselves that A and C are k-algebra homomorphisms,
but B (in general) is not.

2.8. Pathless monomials and subsets S of [n− 1]

Next, we want to study the action of the composition C ◦ B ◦ A on pathless
monomials. We first introduce some more notations:

14
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Definition 2.13. Let S be a subset of [n− 1].
(a) Let PS be the set of all pairs (i, j) ∈ S× ([n] \ S) satisfying i < j.
(b) A monomial m ∈ M is said to be S-friendly if it is a product of some of

the indeterminates xi,j with (i, j) ∈ PS. In other words, a monomial m ∈ M
is S-friendly if and only if every indeterminate xi,j that appears in m satisfies
i ∈ S and j /∈ S.

We let MS denote the set of all S-friendly monomials.
(c) We let XS denote the polynomial ring k

[
xi,j | (i, j) ∈ PS

]
. This is clearly

a subring of X . The k-module XS has a basis consisting of all S-friendly
monomials m ∈M.

(d) An n-tuple (a1, a2, . . . , an) ∈ Z is said to be S-adequate if and only if
it satisfies (ai ≥ 0 for all i ∈ S) and (ai ≤ 0 for all i ∈ [n] \ S). Let ZS denote
the set of all S-adequate n-tuples (a1, a2, . . . , an) ∈ Z. We let Q′S denote the
subset of Q′ consisting of all infinite k-linear combinations of the monomials
qa1

1 qa2
2 · · · q

an
n for S-adequate n-tuples (a1, a2, . . . , an) ∈ Z. It is easy to see that

Q′S is a topological k-subalgebra of Q′ (since the entrywise sum of two S-
adequate n-tuples is S-adequate again).

(At this point, it is helpful to recall once again that the q1, q2, . . . , qn are not
indeterminates here, but rather monomials defined by qi = riri+1 · · · rn−1.
But their products qa1

1 qa2
2 · · · q

an
n are monomials. Explicitly, they can be

rewritten as products of the r1, r2, . . . , rn−1 using (2). Thus, it is easy
to see that the elements of Q′S are the infinite k-linear combinations of
the monomials rb1

1 rb2
2 · · · r

bn−1
n−1 for all (b1, b2, . . . , bn−1) ∈ Nn−1 satisfying

(bi ≥ bi−1 for all i ∈ S) and (bi ≤ bi−1 for all i ∈ [n] \ S), where we set b0 = 0
and bn = 0. But we won’t need this characterization.)

(e) We let QS denote the topological k-algebra k [[qi | i ∈ S]]. This is a
topological subalgebra of Q.

(f) We let TS denote the topological k-algebra k [[ti | i ∈ S]]. This is a topo-
logical subalgebra of T .

(g) We define a k-algebra homomorphism AS : XS → Q′S by

AS
(
xi,j
)
=

qi/qj

1− qi/qj
= ∑

k>0

(
qi/qj

)k for all (i, j) ∈ PS.

This is easily seen to be well-defined (because for each (i, j) ∈ PS and k > 0,
the n-tuple (0, 0, . . . , 0, k, 0, 0, . . . , 0,−k, 0, 0, . . . , 0) (where the k stands in the i-
th position, and the −k stands in the j-th position) is S-adequate and belongs
to Z, and therefore the monomial

(
qi/qj

)k is in Q′S).
(h) We define a continuous k-linear map BS : Q′S → QS by setting

BS
(
qa1

1 qa2
2 · · · q

an
n
)
= ∏

i∈S
qai

i for each S-adequate (a1, a2, . . . , an) ∈ Z.

This is well-defined, as we will see below (in Proposition 2.14 (b)).
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(i) We define a continuous k-algebra homomorphism CS : QS → TS by

CS (qi) =
ti

1 + ti
for each i ∈ S.

This is well-defined, because for each i ∈ S, the power series
ti

1 + ti
has con-

stant term 0 and thus can be substituted into power series.

Proposition 2.14. Let S be a subset of [n− 1].
(a) We have B

(
qa1

1 qa2
2 · · · q

an
n
)

= ∏
i∈S

qai
i for each S-adequate n-tuple

(a1, a2, . . . , an) ∈ Z.
(b) The map BS (defined in Definition 2.13 (h)) is well-defined.

Proof of Proposition 2.14. (a) Let (a1, a2, . . . , an) ∈ Z be an S-adequate n-tuple. We
must show that B

(
qa1

1 qa2
2 · · · q

an
n
)
= ∏

i∈S
qai

i .

The n-tuple (a1, a2, . . . , an) is S-adequate. Thus, (ai ≥ 0 for all i ∈ S) and
(ai ≤ 0 for all i ∈ [n] \ S). In particular, (ai ≤ 0 for all i ∈ [n] \ S). Hence, each
i ∈ [n] satisfying ai > 0 must belong to S (because otherwise, i would belong
to [n] \ S, and therefore would have to satisfy ai ≤ 0, which would contradict
ai > 0). In particular, each i ∈ [n− 1] satisfying ai > 0 must belong to S.

Now, the definition of the map B yields

B
(
qa1

1 qa2
2 · · · q

an
n
)
= ∏

i∈[n−1];
ai>0

qai
i = ∏

i∈S;
ai>0

qai
i

(since each i ∈ [n− 1] satisfying ai > 0 must belong to S). Comparing this with

∏
i∈S

qai
i = ∏

i∈S;
ai≥0

qai
i (since ai ≥ 0 for all i ∈ S)

=

∏
i∈S;
ai=0

qai
i︸︷︷︸

=1
(since ai=0)


∏

i∈S;
ai>0

qai
i

 = ∏
i∈S;
ai>0

qai
i ,

we obtain B
(
qa1

1 qa2
2 · · · q

an
n
)
= ∏

i∈S
qai

i . This proves Proposition 2.14 (a).

(b) We must show that there exists a unique continuous k-linear map BS :
Q′S → QS satisfying(

BS
(
qa1

1 qa2
2 · · · q

an
n
)
= ∏

i∈S
qai

i

for each S-adequate (a1, a2, . . . , an) ∈ Z

)
. (5)
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The uniqueness of such a map is clear (because the elements of Q′S are infinite
k-linear combinations of the monomials qa1

1 qa2
2 · · · q

an
n for S-adequate n-tuples

(a1, a2, . . . , an) ∈ Z; but the formula (5) uniquely determines the value of BS on
such a k-linear combination). Thus, it remains to prove its existence.

For each f ∈ Q′S, we have B ( f ) ∈ QS
9. Hence, we can define a map

B̃S : Q′S → QS by

B̃S ( f ) = B ( f ) for each f ∈ Q′S.

This map B̃S is a restriction of the map B; hence, it is a continuous k-linear map
(since B is a continuous k-linear map). Furthermore, it satisfies

B̃S
(
qa1

1 qa2
2 · · · q

an
n
)
= B

(
qa1

1 qa2
2 · · · q

an
n
) (

by the definition of B̃S

)
= ∏

i∈S
qai

i (by Proposition 2.14 (a))

for each S-adequate (a1, a2, . . . , an) ∈ Z. Hence, B̃S is a continuous k-linear map
BS : Q′S → QS satisfying (5). Thus, the existence of such a map BS is proven. As
we have explained, this completes the proof of Proposition 2.14 (b).

Proposition 2.15. Let S be a subset of [n− 1]. Then, the diagram

XS_�

��

AS // Q′S_�

��

BS // QS_�

��

CS // TS_�

��

X
A
// Q′

B
// Q

C
// T

is commutative.

Proof of Proposition 2.15. The commutativity of the left square is obvious10. So is

9Proof. Let f ∈ Q′S. We must show that B ( f ) ∈ QS. Since the map B is k-linear and continuous,
we can WLOG assume that f is a monomial of the form qa1

1 qa2
2 · · · q

an
n for some S-adequate

n-tuple (a1, a2, . . . , an) ∈ Z (because f is always an infinite k-linear combination of such
monomials). Assume this. Consider this (a1, a2, . . . , an) ∈ Z.

Thus, f = qa1
1 qa2

2 · · · q
an
n . Applying the map B to both sides of this equality, we obtain

B ( f ) = B
(
qa1

1 qa2
2 · · · q

an
n
)
= ∏

i∈S
qai

i (by Proposition 2.14 (a))

∈ QS.

This is precisely what we wanted to show.
10“Obvious” in the following sense: You want to prove that a diagram of the form

A1
f1
//

f2
��

A2

f3
��

A3 f4

// A4
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the commutativity of the right square11. It thus remains to prove the commuta-
tivity of the middle square. In other words, we must show that BS (p) = B (p)
for each p ∈ Q′S.

So fix p ∈ Q′S. Since both maps BS and B are continuous and k-linear, we can
WLOG assume that p is a monomial of the form qa1

1 qa2
2 · · · q

an
n for an S-adequate

n-tuple (a1, a2, . . . , an) ∈ Z (since the elements of Q′S are infinite k-linear combi-
nations of monomials of this form). Assume this, and fix this (a1, a2, . . . , an).

From p = qa1
1 qa2

2 · · · q
an
n , we obtain

B (p) = B
(
qa1

1 qa2
2 · · · q

an
n
)
= ∏

i∈S
qai

i (by Proposition 2.14 (a)) .

Comparing this with

BS (p) = BS
(
qa1

1 qa2
2 · · · q

an
n
) (

since p = qa1
1 qa2

2 · · · q
an
n
)

= ∏
i∈S

qai
i (by the definition of BS) ,

we obtain BS (p) = B (p). This proves the commutativity of the middle square.
The proof of Proposition 2.15 is thus complete.

Proposition 2.16. Let S be a subset of [n− 1]. Then, BS : Q′S → QS is a
continuous k-algebra homomorphism.

is commutative, where A1,A2,A3,A4 are four k-algebras and f1, f2, f3, f4 are four k-algebra
homomorphisms. (In our concrete case, A1 = XS, A2 = Q′S, A3 = X , A4 = Q′, f1 = AS and
f4 = A, whereas f2 and f3 are the inclusion maps XS → X and Q′S → Q′.) In order to prove
this commutativity, it suffices to show that it holds on a generating set of the k-algebra A1.
In other words, it suffices to pick some generating set G of the k-algebra A1 and show that
all g ∈ G satisfy ( f3 ◦ f1) (g) = ( f4 ◦ f2) (g). (In our concrete case, it is most reasonable to
pick G =

{
xi,j | (i, j) ∈ PS

}
. The proof then becomes completely clear.)

11“Obvious” in the following sense: You want to prove that a diagram of the form

A1
f1
//

f2
��

A2

f3
��

A3 f4

// A4

is commutative, where A1,A2,A3,A4 are four Hausdorff topological k-algebras and
f1, f2, f3, f4 are four continuous k-algebra homomorphisms. (In our concrete case, A1 = QS,
A2 = TS, A3 = Q, A4 = T , f1 = CS and f4 = C, whereas f2 and f3 are the inclusion maps
QS → Q and TS → T .) In order to prove this commutativity, it suffices to show that it
holds on a topological generating set of the k-algebra A1. (A topological generating set of a
topological k-algebra A means a subset G of A such that the k-subalgebra of A generated
by G is dense in A.) In other words, it suffices to pick some topological generating set G of
the k-algebra A1 and show that all g ∈ G satisfy ( f3 ◦ f1) (g) = ( f4 ◦ f2) (g). (In our concrete
case, it is most reasonable to pick G = {qi | i ∈ S}. The proof then becomes completely
clear.)
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Proof of Proposition 2.16. We merely need to show that BS is a k-algebra homo-
morphism. To this purpose, by linearity, we only need to prove that BS (1) =
1 and BS (mn) = BS (m) BS (n) for any two monomials m and n of the form
qa1

1 qa2
2 · · · q

an
n for S-adequate n-tuples (a1, a2, . . . , an) ∈ Z (since the elements of

Q′S are infinite k-linear combinations of monomials of this form). This is easy
and left to the reader.

Proposition 2.17. Let S be a subset of [n− 1]. Let (i, j) ∈ PS. Then,

(BS ◦ AS)
(
xi,j
)
=

qi

1− qi
.

Proof of Proposition 2.17. From (i, j) ∈ PS, we obtain i ∈ S and j ∈ [n] \ S, so that
j /∈ S. From this, it becomes clear that BS

(
qi/qj

)
= qi (by the definition of BS).

Proposition 2.16 shows that BS : Q′S → QS is a continuous k-algebra homo-
morphism. Now,

(BS ◦ AS)
(
xi,j
)
= BS


AS
(
xi,j
)︸ ︷︷ ︸

=
qi/qj

1− qi/qj


= BS

(
qi/qj

1− qi/qj

)
=

BS
(
qi/qj

)
1− BS

(
qi/qj

)
(

since BS is a continuous k-algebra homomorphism,
and thus commutes with any power series

)
=

qi

1− qi

(
since BS

(
qi/qj

)
= qi

)
.

This proves Proposition 2.17.

Proposition 2.18. Let m ∈M be a pathless monomial.
(a) There exists a subset S of [n− 1] such that m is S-friendly.
(b) Let S be such a subset. Then, m ∈ XS and D (m) = (CS ◦ BS ◦ AS) (m).

Proof of Proposition 2.18. (a) Write m in the form m = ∏
(i,j)∈[n]2;

i<j

x
ai,j
i,j . For each i ∈

[n− 1], define a bi ∈ N by bi =
n
∑

j=i+1
ai,j. Define a subset S of [n− 1] by S =

{i ∈ [n− 1] | bi > 0}. Then m is S-friendly12. This proves Proposition 2.18 (a).

12Proof. We need to show that every indeterminate xi,j that appears in m satisfies i ∈ S and j /∈ S.
Indeed, assume the contrary. Thus, some indeterminate xi,j that appears in m does not

satisfy i ∈ S and j /∈ S. Fix such an indeterminate xi,j, and denote it by xu,v. Thus, xu,v is an
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(b) We know that m ∈ XS (since m is S-friendly). Now, we shall show that
D |XS= CS ◦ BS ◦ AS (if we regard CS ◦ BS ◦ AS as a map to T ).

The map D |XS is a k-algebra homomorphism (since D is a k-algebra homo-
morphism), and the map CS ◦ BS ◦ AS is a k-algebra homomorphism (since all of
CS, BS and AS are k-algebra homomorphisms13). Hence, we are trying to prove
that two k-algebra homomorphisms are equal (namely, the homomorphisms
D |XS and CS ◦ BS ◦ AS). It is clearly enough to prove this on the generating
family

(
xi,j
)
(i,j)∈PS

of the k-algebra XS. In other words, it is enough to prove

that
(

D |XS

) (
xi,j
)
= (CS ◦ BS ◦ AS)

(
xi,j
)

for each (i, j) ∈ PS.
So let us fix some (i, j) ∈ PS. Then,

(
D |XS

) (
xi,j
)
= D

(
xi,j
)
= ti (by the

indeterminate that appears in m but does not satisfy u ∈ S and v /∈ S. Therefore, we have
either u /∈ S or v ∈ S (or both).

We have 1 ≤ u < v ≤ n (since the indeterminate xu,v exists) and thus u ∈ [n− 1]. The

definition of bu yields bu =
n
∑

j=u+1
au,j. But v ≥ u + 1 (since u < v). Hence, au,v is an addend

of the sum
n
∑

j=u+1
au,j. Hence,

n
∑

j=u+1
au,j ≥ au,v. But au,v > 0 (since the indeterminate xu,v

appears in m). Hence, bu =
n
∑

j=u+1
au,j ≥ au,v > 0. Therefore, u ∈ S (by the definition of S).

Hence, u /∈ S cannot hold. Therefore, v ∈ S (since we know that we have either u /∈ S or
v ∈ S). In other words, v ∈ [n− 1] and bv > 0 (by the definition of S). But the definition of

bv yields bv =
n
∑

j=v+1
av,j =

n
∑

w=v+1
av,w. Hence,

n
∑

w=v+1
av,w = bv > 0. Hence, there exists some

w ∈ {v + 1, v + 2, . . . , n} such that av,w > 0. Fix such a w.
We have v < w (since w ∈ {v + 1, v + 2, . . . , n}), hence u < v < w. Thus, (u, v) 6= (v, w).

Moreover, the indeterminate xv,w appears in m (since av,w > 0). Thus, both indeterminates
xu,v and xv,w appear in m. Hence, xu,vxv,w | m (since (u, v) 6= (v, w)).

But the monomial m is pathless. In other words, there exists no triple (i, j, k) ∈ [n]3 satis-
fying i < j < k and xi,jxj,k | m. This contradicts the fact that (u, v, w) is such a triple (since
u < v < w and xu,vxv,w | m). This contradiction completes our proof.

13Here we are using Proposition 2.16.
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definition of D). Comparing this with

(CS ◦ BS ◦ AS)
(
xi,j
)
= CS


(BS ◦ AS)

(
xi,j
)︸ ︷︷ ︸

=
qi

1− qi
(by Proposition 2.17)


= CS

(
qi

1− qi

)
=

CS (qi)

1− CS (qi)

 because the map CS is a continuous k-algebra
homomorphism, and thus

commutes with any power series



=

(
ti

1 + ti

)
1− ti

1 + ti

(
since CS (qi) =

ti

1 + ti

)

= ti,

we obtain
(

D |XS

) (
xi,j
)
= (CS ◦ BS ◦ AS)

(
xi,j
)
.

This completes our proof of D |XS= CS ◦ BS ◦ AS. Now, from m ∈ XS, we
obtain D (m) =

(
D |XS

)︸ ︷︷ ︸
=CS◦BS◦AS

(m) = (CS ◦ BS ◦ AS) (m). This completes the proof of

Proposition 2.18 (b).

2.9. D (q) = (C ◦ B ◦ A) (q) for pathless q

Corollary 2.19. Let q ∈ X be pathless. Then, D (q) = (C ◦ B ◦ A) (q).

Proof of Corollary 2.19. The polynomial q is pathless, i.e., is a k-linear combina-
tion of pathless monomials. Hence, we WLOG assume that q is a pathless mono-
mial m (since both maps D and C ◦ B ◦ A are k-linear). Consider this m.

Proposition 2.18 (a) shows that there exists a subset S of [n− 1] such that m is
S-friendly. Consider this S.

Proposition 2.18 (b) yields m ∈ XS and D (m) = (CS ◦ BS ◦ AS) (m). But the
commutativity of the diagram in Proposition 2.15 shows that CS ◦ BS ◦ AS =
(C ◦ B ◦ A) |XS (provided that we regard CS ◦ BS ◦ AS as a map to T ). Hence,

(CS ◦ BS ◦ AS)︸ ︷︷ ︸
=(C◦B◦A)|XS

(m) =
(
(C ◦ B ◦ A) |XS

)
(m) = (C ◦ B ◦ A) (m) .

Thus, D (m) = (CS ◦ BS ◦ AS) (m) = (C ◦ B ◦ A) (m). Since q = m, this rewrites
as D (q) = (C ◦ B ◦ A) (q). This proves Corollary 2.19.
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2.10. Proof of Theorem 1.7 for β = 1

Lemma 2.20. Let p ∈ X be a pathless polynomial such that p ∈ J1. Then,
D (p) = 0.

Proof of Lemma 2.20. We have A

 p︸︷︷︸
∈J1

 ∈ A (J1) = 0 (by Proposition 2.5); thus,

A (p) = 0. But Corollary 2.19 (applied to q = p) yields

D (p) = (C ◦ B ◦ A) (p) = (C ◦ B)

A (p)︸ ︷︷ ︸
=0

 = (C ◦ B) (0) = 0

(since the map C ◦ B is k-linear). This proves Lemma 2.20.

We are now ready to prove Theorem 1.7 in the case β = 1:

Lemma 2.21. Let p ∈ X . Consider any pathless polynomial q ∈ X such that
p ≡ q modJ1. Then, D (q) does not depend on the choice of q (but merely on
the choice of p).

Proof of Lemma 2.21. We need to prove that D (q) does not depend on the choice
of q. In other words, we need to prove that if f and g are two pathless polyno-
mials q ∈ X such that p ≡ q modJ1, then D ( f ) = D (g).

So let f and g be two pathless polynomials q ∈ X such that p ≡ q modJ1.
Thus, p ≡ f modJ1 and p ≡ g modJ1. Hence, f ≡ p ≡ g modJ1, so that
f − g ∈ J1. Also, the polynomial f − g ∈ X is pathless (since it is the difference
of the two pathless polynomials f and g). Thus, Lemma 2.20 (applied to f − g
instead of p) shows that D ( f − g) = 0. Thus, 0 = D ( f − g) = D ( f ) − D (g)
(since D is a k-algebra homomorphism). In other words, D ( f ) = D (g). This
proves Lemma 2.21.

2.11. Proof of Theorem 1.7 for β regular

Let us now state a simple lemma:

Lemma 2.22. Let β be a regular element of k. Define a k-algebra homomor-
phism G : T ′ → T ′ by

G (ti) = βti for all i ∈ [n− 1] .

This map G is injective.
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Proof of Lemma 2.22. Let T denote the set of all monomials in the indeterminates
t1, t2, . . . , tn−1. It is easy to see that

G (t) = βdeg tt for each monomial t ∈ T. (6)

Now, let f ∈ Ker G. Then, f ∈ T ′. Hence, we can write f in the form
f = ∑

t∈T
λtt for some family (λt)t∈T ∈ kT (since every polynomial in T ′ is a

k-linear combination of the monomials t ∈ T). Consider this family (λt)t∈T.
From f ∈ Ker G, we obtain G ( f ) = 0. Thus,

0 = G ( f ) = G

(
∑
t∈T

λtt

) (
since f = ∑

t∈T
λtt

)
= ∑

t∈T
λt G (t)︸ ︷︷ ︸

=βdeg tt
(by (6))

(since the map G is k-linear)

= ∑
t∈T

λtβ
deg tt = ∑

t∈T
βdeg tλtt.

In other words, ∑
t∈T

βdeg tλtt = 0. Since the monomials t ∈ T in T ′ are k-linearly

independent, we thus obtain

βdeg tλt = 0 for each t ∈ T. (7)

Thus, we can easily obtain λt = 0 for each t ∈ T 14. Hence, ∑
t∈T

λt︸︷︷︸
=0

t =

∑
t∈T

0t = 0, so that f = ∑
t∈T

λtt = 0.

Now, forget that we fixed f . We thus have shown that f = 0 for each f ∈
Ker G. In other words, Ker G = 0. Hence, the map G is injective (since G is
k-linear). This proves Lemma 2.22.

The following lemma generalizes Lemma 2.20:

Lemma 2.23. Let β be a regular element of k. Let p ∈ X be a pathless poly-
nomial such that p ∈ Jβ. Then, D (p) = 0.

Proof of Lemma 2.23. Define a k-algebra homomorphism F : X → X by

F
(
xi,j
)
= βxi,j for all (i, j) ∈ [n]2 satisfying i < j.

Define a k-algebra homomorphism G : T ′ → T ′ by

G (ti) = βti for all i ∈ [n− 1] .

14Proof. Let t ∈ T. From (7), we obtain βdeg tλt = 0.
Recall that the element β of k is regular. Hence, its power βdeg t is regular as well. Thus,

from βdeg tλt = 0, we obtain λt = 0. Qed.
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Lemma 2.22 shows that this map G is injective. Hence, Ker G = 0.
A trivial computation shows that the diagram

X D //

F
��

T ′

G
��

X
D
// T ′

is commutative. In other words, D ◦ F = G ◦ D.
It is easy to check that F

(
Jβ

)
⊆ J1. (Indeed, the k-algebra homomorphism F

sends each generator xi,jxj,k − xi,k
(
xi,j + xj,k + β

)
of Jβ to(

βxi,j
) (

βxj,k
)
− (βxi,k)

(
βxi,j + βxj,k + β

)
= β2 (xi,jxj,k − xi,k

(
xi,j + xj,k + 1

))︸ ︷︷ ︸
∈J1

(since the ideal J1 is generated
by polynomials like this)

∈ J1.

)
It is easy to see (using the definition of F) that F (m) = βdegmm for each

monomial m ∈ M. Hence, the map F sends each pathless monomial m ∈ M to
a scalar multiple of a pathless monomial (namely, to βdegmm). Thus, the map
F sends pathless polynomials to pathless polynomials. Therefore, F (p) ∈ X

is pathless (since p ∈ X is pathless). Also, F

 p︸︷︷︸
∈Jβ

 ∈ F
(
Jβ

)
⊆ J1. Thus,

Lemma 2.20 (applied to F (p) instead of p) shows that D (F (p)) = 0. Since

D (F (p)) = (D ◦ F)︸ ︷︷ ︸
=G◦D

(p) = (G ◦ D) (p) = G (D (p)) ,

this rewrites as G (D (p)) = 0. Hence, D (p) ∈ Ker G = 0, so that D (p) = 0.
This proves Lemma 2.23.

As a consequence, we obtain a further particular case of Theorem 1.7:

Proposition 2.24. Let β be a regular element of k. Let p ∈ X . Consider any
pathless polynomial q ∈ X such that p ≡ q modJβ. Then, D (q) does not
depend on the choice of q (but merely on the choice of β and p).

Proof of Proposition 2.24. Proposition 2.24 follows from Lemma 2.23 in the same
way as we derived Lemma 2.21 from Lemma 2.20 (with the only difference that
J1 is replaced by Jβ throughout the proof).

2.12. Proof of Theorem 1.7 for all β

Let us now prepare for the final steps of our way to Theorem 1.7.
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Definition 2.25. Fix any element β ∈ k.
(a) Let m be the polynomial ring k [b] in one indeterminate b over k.
(b) Let π : m → k be the unique k-algebra homomorphism from k [b] to

k that sends b to β. (This is well-defined by the universal property of the
polynomial ring k [b] = m.) In other words, π is the evaluation map that
sends each polynomial f ∈ k [b] to its evaluation f (β) at β. It is easy to see
that Ker π = (b− β)m.

(c) Let X [m] be the polynomial ring m
[

xi,j | (i, j) ∈ [n]2 satisfying i < j
]
.

In other words, X [m] is the m-algebra that is defined in the same way as X
but using the base ring m instead of k.

(d) Let T ′[m] be the polynomial ring m [t1, t2, . . . , tn−1]. In other words, T ′[m]

is the m-algebra that is defined in the same way as T ′ but using the base ring
m instead of k.

(e) Let D[m] : X [m] → T ′[m] be the m-algebra homomorphism defined in the
same way as the k-algebra homomorphism D : X → T ′ but using the base
ring m instead of k.

(f) The k-algebra homomorphism π : m → k induces a k-algebra homo-
morphism

m
[

xi,j | (i, j) ∈ [n]2 satisfying i < j
]
→ k

[
xi,j | (i, j) ∈ [n]2 satisfying i < j

]
which sends each f ∈ m to π ( f ) while sending each indeterminate
xi,j to the corresponding indeterminate xi,j. This latter homomorphism
will be denoted by πX . Notice that πX is a k-algebra homomorphism
from X [m] to X (since m

[
xi,j | (i, j) ∈ [n]2 satisfying i < j

]
= X [m] and

k
[

xi,j | (i, j) ∈ [n]2 satisfying i < j
]
= X ).

Explicitly speaking, the homomorphism πX acts on a polynomial f ∈ X [m]

by applying the map π to each of its coefficients.
(g) The k-algebra homomorphism π : m → k induces a k-algebra homo-

morphism
m [t1, t2, . . . , tn−1]→ k [t1, t2, . . . , tn−1]

which sends each f ∈ m to π ( f ) while sending each indeterminate ti to the
corresponding indeterminate ti. This latter homomorphism will be denoted
by πT

′
. Notice that πT

′
is a k-algebra homomorphism from T ′[m] to T ′ (since

m [t1, t2, . . . , tn−1] = T ′[m] and k [t1, t2, . . . , tn−1] = T ′).
Explicitly speaking, the homomorphism πT

′
acts on a polynomial f ∈ T ′[m]

by applying the map π to each of its coefficients.
(h) Let J [m]

b be the ideal of X [m] defined in the same way as Jβ but using
the base ring m and the element b ∈ m instead of the base ring k and the
element β ∈ k.
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We notice some simple facts:

Lemma 2.26. (a) The element b of m is regular.
(b) We have Jβ = πX

(
J [m]

b

)
.

(c) For every pathless polynomial f ∈ X , there exists a pathless polynomial
g ∈ X [m] satisfying f = πX (g).

(d) We have Ker
(
πX
)
= (b− β)X [m].

(e) We have πT
′ ◦ D[m] = D ◦ πX .

Proof of Lemma 2.26. (a) This is clear, since b is the indeterminate in the polyno-
mial ring k [b].

(b) The k-algebra homomorphism π : m→ k is surjective (since the canonical
inclusion map ι : k → m satisfies π ◦ ι = id). Hence, the k-algebra homomor-
phism
πX : m

[
xi,j | (i, j) ∈ [n]2 satisfying i < j

]
→ k

[
xi,j | (i, j) ∈ [n]2 satisfying i < j

]
induced by π is surjective as well. Since m

[
xi,j | (i, j) ∈ [n]2 satisfying i < j

]
=

X [m] and k
[

xi,j | (i, j) ∈ [n]2 satisfying i < j
]
= X , this rewrites as follows:

The k-algebra homomorphism πX : X [m] → X is surjective15. Hence, πX
(
X [m]

)
=

X .
Let Jβ be the Z-submodule of X spanned by all elements of the form xi,jxj,k −

xi,k
(
xi,j + xj,k + β

)
for (i, j, k) ∈ [n]3 satisfying i < j < k. Then, the ideal Jβ of

X is generated by this Z-submodule Jβ (since Jβ is generated by all elements of
this form). Thus, Jβ = X Jβ (a product of two Z-submodules of X ).

Let Jb be the Z-submodule of X [m] spanned by all elements of the form
xi,jxj,k − xi,k

(
xi,j + xj,k + b

)
for (i, j, k) ∈ [n]3 satisfying i < j < k. Then, the ideal

J [m]
b of X [m] is generated by this Z-submodule Jb (since J [m]

b is generated by all

elements of this form). Thus, J [m]
b = X [m] Jb (a product of two Z-submodules of

X [m]).
For each (i, j, k) ∈ [n]3 satisfying i < j < k, we have

πX
(
xi,jxj,k − xi,k

(
xi,j + xj,k + b

))
= xi,jxj,k − xi,k

xi,j + xj,k + π (b)︸ ︷︷ ︸
=β

 (
by the definition of the map πX

)
= xi,jxj,k − xi,k

(
xi,j + xj,k + β

)
.

15In fact, slightly more holds: Let ι : k → m be the canonical inclusion map.

Let ιX denote the k-algebra homomorphism k
[

xi,j | (i, j) ∈ [n]2 satisfying i < j
]
→

m
[

xi,j | (i, j) ∈ [n]2 satisfying i < j
]

induced by this k-algebra homomorphism ι. Then,

from π ◦ ι = id, we easily obtain πX ◦ ιX = id (by functoriality). Hence, πX is surjective.
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Thus, the map πX sends each of the designated generators of the Z-module Jb to
the corresponding generator of the Z-module Jβ. Therefore, πX (Jb) = Jβ (since
the map πX is Z-linear).

Now,

πX

 J [m]
b︸ ︷︷ ︸

=X [m] Jb

 = πX
(
X [m] Jb

)

= πX
(
X [m]

)
︸ ︷︷ ︸

=X

πX (Jb)︸ ︷︷ ︸
=Jβ

(
since πX is a ring homomorphism

)
= X Jβ = Jβ.

This proves Lemma 2.26 (b).
(c) For the purpose of this proof, we shall regard k as a k-subalgebra of m via

the canonical inclusion k → m (sending each λ ∈ k to the constant polynomial
λ ∈ m). Then, X also becomes a k-subalgebra of X [m]. Moreover, it is fairly
clear that πX ( f ) = f for each f ∈ X (because π (λ) = λ for each λ ∈ k).

Now, let f ∈ X be a pathless polynomial. Then, f , when considered as a
polynomial in X [m], is still a pathless polynomial. Moreover, πX ( f ) = f . Thus,
there exists a pathless polynomial g ∈ X [m] satisfying f = πX (g) (namely,
g = f ). This proves Lemma 2.26 (c).

(d) Let p ∈ Ker
(
πX
)
. Thus, p ∈ X [m]. Write p in the form p = ∑

m∈M
fmm for

some family ( fm)m∈M ∈ mM. (This is possible, since every polynomial in X [m]

is a unique m-linear combination of the monomials m ∈M.) Applying the map
πX to the equality p = ∑

m∈M
fmm, we obtain

πX (p) = πX
(

∑
m∈M

fmm

)
= ∑

m∈M
π ( fm)m (8)

(by the definition of πX ).
Recall that p ∈ Ker

(
πX
)
. Thus, πX (p) = 0. In view of (8), this rewrites as

∑
m∈M

π ( fm)m = 0. Since the monomials m ∈M in X are k-linearly independent,

this shows that π ( fm) = 0 for each m ∈ M. Thus, for each m ∈ M, we have
fm ∈ Ker π = (b− β)m. Hence,

p = ∑
m∈M

fm︸︷︷︸
∈(b−β)m

m ∈ ∑
m∈M

(b− β) mm︸︷︷︸
⊆X [m]

⊆ (b− β)X [m].

Now, forget that we fixed p. We thus have shown that p ∈ (b− β)X [m] for
each p ∈ Ker

(
πX
)
. In other words, Ker

(
πX
)
⊆ (b− β)X [m].
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Observe that b− β ∈ (b− β)m = Ker π, and thus π (b− β) = 0.
On the other hand, let us regard m as a subring of the polynomial ring X [m].

Then, πX ( f ) is well-defined for each f ∈ m (since f ∈ m ⊆ X [m]). Furthermore,
each f ∈ m satisfies πX ( f ) = π ( f ) (by the definition of πX ). Applying this to
f = b− β, we obtain πX (b− β) = π (b− β) = 0.

But πX is a k-algebra homomorphism. Hence,

πX
(
(b− β)X [m]

)
= πX (b− β)︸ ︷︷ ︸

=0

πX
(
X [m]

)
= 0πX

(
X [m]

)
= 0.

Hence, (b− β)X [m] ⊆ Ker
(
πX
)
. Combining this with Ker

(
πX
)
⊆ (b− β)X [m],

we obtain Ker
(
πX
)
= (b− β)X [m]. This proves Lemma 2.26 (d).

(e) The definition of the map D was canonical with respect to the base ring.
Thus, the map D[m] (defined in the same way as D, but using the base ring m
instead of k) and the map D fit into a commutative diagram

X [m]

πX
��

D[m]
// T ′[m]

πT
′

��

X
D

// T ′

.

The commutativity of this diagram shows that πT
′ ◦D[m] = D ◦πX . This proves

Lemma 2.26 (e).

Lemma 2.27. Let β ∈ k be arbitrary. Let p ∈ X be a pathless polynomial such
that p ∈ Jβ. Then, D (p) = 0.

Proof of Lemma 2.27. Lemma 2.26 (c) (applied to f = p) shows that there exists a
pathless polynomial g ∈ X [m] satisfying p = πX (g). Fix such a g, and denote it
by v. Thus, v ∈ X [m] is a pathless polynomial satisfying p = πX (v).

Lemma 2.26 (b) shows that Jβ = πX
(
J [m]

b

)
. Now, p ∈ Jβ = πX

(
J [m]

b

)
.

Hence, there exists some u ∈ J [m]
b such that p = πX (u). Consider this u.

The map πX is a k-algebra homomorphism. Thus, πX (u− v) = πX (u)︸ ︷︷ ︸
=p

−πX (v)︸ ︷︷ ︸
=p

=

p − p = 0. Hence, u − v ∈ Ker
(
πX
)
= (b− β)X [m] (by Lemma 2.26 (d)). In

other words, there exists some w ∈ X [m] such that u− v = (b− β)w. Consider
this w.

From u− v = (b− β)w, we obtain u = v + (b− β)w.
Proposition 1.5 (applied to m, b, X [m], J [m]

b and w instead of k, β, X , Jβ

and p) shows that there exists a pathless polynomial q ∈ X [m] such that w ≡
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q modJ [m]
b . Consider this q. We have

v + (b− β) q︸︷︷︸
≡w modJ [m]

b

≡ v + (b− β)w = u ≡ 0 modJ [m]
b

(since u ∈ J [m]
b ). In other words, v + (b− β) q ∈ J [m]

b .
The element b of m is regular (by Lemma 2.26 (a)). The polynomial v +

(b− β) q ∈ X [m] is pathless (since it is an m-linear combination of the two path-
less polynomials v and q) and satisfies v + (b− β) q ∈ J [m]

b (as we have shown).

Hence, Lemma 2.23 (applied to m, b, X [m], J [m]
b , T ′[m], D[m] and v + (b− β) q

instead of k, β, X , Jβ, T ′, D and p) shows that D[m] (v + (b− β) q) = 0.
But Lemma 2.26 (e) yields πT

′ ◦ D[m] = D ◦ πX . Hence,(
D ◦ πX

)
︸ ︷︷ ︸
=πT ′◦D[m]

(v + (b− β) q) =
(

πT
′ ◦ D[m]

)
(v + (b− β) q)

= πT
′

D[m] (v + (b− β) q)︸ ︷︷ ︸
=0

 = πT
′
(0) = 0.

Thus,

0 =
(

D ◦ πX
)
(v + (b− β) q) = D

 πX (v + (b− β) q)︸ ︷︷ ︸
=πX (v)+πX ((b−β)q)

(since πX is a k-algebra homomorphism)


= D

(
πX (v) + πX ((b− β) q)

)
. (9)

But (b− β) q︸︷︷︸
∈X [m]

∈ (b− β)X [m] = Ker
(
πX
)

and thus πX ((b− β) q) = 0.

Thus, (9) becomes

0 = D

πX (v) + πX ((b− β) q)︸ ︷︷ ︸
=0

 = D

πX (v)︸ ︷︷ ︸
=p

 = D (p) .

This proves Lemma 2.27.

Proof of Theorem 1.7. Theorem 1.7 follows from Lemma 2.27 in the same way as
we derived Lemma 2.21 from Lemma 2.20 (with the only difference that J1 is
replaced by Jβ throughout the proof).

29



Reductions for the subdivision algebra November 1, 2017

2.13. Appendix: Detailed proof of Proposition 1.5

Let us now pay a debt and explain the proof of Proposition 1.5 in full detail.
We begin with a few definitions:

Definition 2.28. Let Xpathless denote the k-submodule of X spanned by all
pathless monomials m ∈ M. Thus, Xpathless is the set of all pathless polyno-
mials f ∈ X .

Definition 2.29. Let m ∈M be a monomial. The weight of m is defined to
be ∑

(i,j)∈[n]2;
i<j

ai,j (n− j + i), where the monomial m has been written in the form

m = ∏
(i,j)∈[n]2;

i<j

x
ai,j
i,j (with ai,j ∈N). This weight is an integer, and will be denoted

by weightm.

Observe the following properties of weights:

Lemma 2.30. (a) For any (i, j) ∈ [n]2 satisfying i < j, we have weight
(
xi,j
)
=

n− j + i.
(b) If p ∈M and q ∈M are two monomials, then weight (pq) = weight p+

weight q.
(c) If m ∈M is a monomial, then weightm ∈N.

Proof of Lemma 2.30. Parts (a) and (b) of Lemma 2.30 are left to the reader.
Let us observe that every (i, j) ∈ [n]2 satisfies

n− j︸︷︷︸
≤n

(since j∈[n])

+ i︸︷︷︸
>0

(since i∈[n])

≥ n− n + 0 = 0. (10)

(c) Let m ∈ M be a monomial. Write the monomial m in the form m =
∏

(i,j)∈[n]2;
i<j

x
ai,j
i,j (with ai,j ∈N). Then, the definition of weightm yields

weightm = ∑
(i,j)∈[n]2;

i<j

ai,j︸︷︷︸
≥0

(n− j + i)︸ ︷︷ ︸
≥0

(by (10))

≥ ∑
(i,j)∈[n]2;

i<j

0 · 0 = 0.

Hence, weightm ∈N. This proves Lemma 2.30 (c).

Lemma 2.31. Let m ∈M be a monomial. Then, m ∈ Xpathless + Jβ.
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Proof of Lemma 2.31. We shall prove Lemma 2.31 by strong induction over weightm.
16 Thus, we fix any N ∈ N, and we assume (as the induction hypothesis) that
Lemma 2.31 holds in the case when weightm < N. We then must show that
Lemma 2.31 holds in the case when weightm = N.

We have assumed that Lemma 2.31 holds in the case when weightm < N. In
other words,(

if m ∈M is a monomial such that weightm < N,
then m ∈ Xpathless + Jβ

)
. (11)

Now, fix a monomial m ∈ M such that weightm = N. We shall show that
m ∈ Xpathless + Jβ.

If m is pathless, then this is obvious17. Hence, for the rest of this proof, we
WLOG assume that m is not pathless. In other words, there exists a triple
(i, j, k) ∈ [n]3 satisfying i < j < k and xi,jxj,k | m (as monomials). Consider
such a triple (i, j, k).

We have xi,jxj,k | m (as monomials). In other words, there exists a monomial
n ∈M such that m = xi,jxj,kn. Consider this n.

We have xi,jxj,k − xi,k
(
xi,j + xj,k + β

)
∈ Jβ (since xi,jxj,k − xi,k

(
xi,j + xj,k + β

)
is

one of the designated generators of the ideal Jβ). Thus,
xi,jxj,k ≡ xi,k

(
xi,j + xj,k + β

)
modJβ. Now,

m = xi,jxj,k︸ ︷︷ ︸
≡xi,k(xi,j+xj,k+β)modJβ

n ≡ xi,k
(
xi,j + xj,k + β

)
n

= xi,kxi,jn+ xi,kxj,kn+ βxi,knmodJβ.

In other words,
m ∈ xi,kxi,jn+ xi,kxj,kn+ βxi,kn+ Jβ. (12)

We shall now analyze the three monomials xi,kxi,jn, xi,kxj,kn and xi,kn on the right
hand side of (12):

• We have weight
(
xi,kxi,jn

)
< N 18. Hence, (11) (applied to xi,kxi,jn instead

16This is legitimate, since Lemma 2.30 (c) shows that weightm ∈ N in the situation of Lemma
2.31.

17Proof. Assume that m is pathless. We must then show that m ∈ Xpathless + Jβ.
But recall that the k-module Xpathless is spanned by the pathless monomials. Thus, m ∈
Xpathless (since m is a pathless monomial). Hence, m ∈ Xpathless ⊆ Xpathless + Jβ, qed.

18Proof. We have m = xi,jxj,kn = xj,kxi,jn and thus

weight m︸︷︷︸
=xj,kxi,jn

= weight
(

xj,kxi,jn
)
= weight

(
xj,k

)
︸ ︷︷ ︸

=n−k+j
(by Lemma 2.30 (a),

applied to j and k instead of i and j)

+weight
(
xi,jn

)

(
by Lemma 2.30 (b), applied to p = xj,k and q = xi,jn

)
= n− k + j + weight

(
xi,jn

)
.
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of m) shows that
xi,kxi,jn ∈ Xpathless + Jβ.

• We have weight
(
xi,kxj,kn

)
< N 19. Hence, (11) (applied to xi,kxj,kn instead

of m) shows that
xi,kxj,kn ∈ Xpathless + Jβ.

But Lemma 2.30 (b) (applied to p = xi,k and q = xi,jn) shows that

weight
(

xi,kxi,jn
)
= weight (xi,k)︸ ︷︷ ︸

=n−k+i
(by Lemma 2.30 (a),

applied to k instead of j)

+weight
(
xi,jn

)
= n− k + i︸︷︷︸

<j

+weight
(
xi,jn

)

< n− k + j + weight
(
xi,jn

)
= weightm = N,

qed.
19Proof. We have

weight m︸︷︷︸
=xi,jxj,kn

= weight
(

xi,jxj,kn
)
= weight

(
xi,j
)︸ ︷︷ ︸

=n−j+i
(by Lemma 2.30 (a))

+weight
(

xj,kn
)

(
by Lemma 2.30 (b), applied to p = xi,j and q = xj,kn

)
= n− j + i + weight

(
xj,kn

)
.

But Lemma 2.30 (b) (applied to p = xi,k and q = xj,kn) shows that

weight
(

xi,kxj,kn
)
= weight (xi,k)︸ ︷︷ ︸

=n−k+i
(by Lemma 2.30 (a),

applied to k instead of j)

+weight
(

xj,kn
)
= n− k︸︷︷︸

>j
(since j<k)

+i + weight
(

xj,kn
)

< n− j + i + weight
(

xj,kn
)
= weightm = N,

qed.
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• We have weight (xi,kn) < N 20. Hence, (11) (applied to xi,kn instead of m)
shows that

xi,kn ∈ Xpathless + Jβ.

Now, (12) becomes

m ∈ xi,kxi,jn︸ ︷︷ ︸
∈Xpathless+Jβ

+ xi,kxj,kn︸ ︷︷ ︸
∈Xpathless+Jβ

+β xi,kn︸︷︷︸
∈Xpathless+Jβ

+ Jβ︸︷︷︸
⊆Xpathless+Jβ

⊆
(
Xpathless + Jβ

)
+
(
Xpathless + Jβ

)
+ β

(
Xpathless + Jβ

)
+
(
Xpathless + Jβ

)
⊆ Xpathless + Jβ

(since Xpathless + Jβ is a k-module).
Now, let us forget that we fixed m. We thus have shown that if m ∈ M is

a monomial such that weightm = N, then m ∈ Xpathless + Jβ. In other words,
Lemma 2.31 holds in the case when weightm = N. This completes the induction
step. Thus, Lemma 2.31 is proven.

Now, we can prove Proposition 1.5:

Proof of Proposition 1.5. Lemma 2.31 shows that m ∈ Xpathless + Jβ for each m ∈
M. In other words, M ⊆ Xpathless + Jβ (where we consider M as being embed-
ded into the polynomial ring X ).

20Proof. We have

weight m︸︷︷︸
=xi,jxj,kn

= weight
(

xi,jxj,kn
)
= weight

(
xi,j
)︸ ︷︷ ︸

=n−j+i
(by Lemma 2.30 (a))

+ weight
(

xj,kn
)

︸ ︷︷ ︸
=weight(xj,k)+weightn

(by Lemma 2.30 (b), applied to p=xj,k and q=n)(
by Lemma 2.30 (b), applied to p = xi,j and q = xj,kn

)
= n− j + i + weight

(
xj,k

)
︸ ︷︷ ︸

=n−k+j
(by Lemma 2.30 (a),

applied to j and k instead of i and j)

+weight n

= n− j + i + n− k + j︸ ︷︷ ︸
=n+n−k+i

+weight n = n︸︷︷︸
>0

+n− k + i + weight n

> n− k + i + weight n.

But Lemma 2.30 (b) (applied to p = xi,k and q = n) yields

weight (xi,kn) = weight (xi,k)︸ ︷︷ ︸
=n−k+i

(by Lemma 2.30 (a),
applied to k instead of j)

+weight n = n− k + i + weight n

< weightm (since weightm > n− k + i + weight n)
= N,

qed.
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For any subsetW of X , we let spanW denote the k-submodule of X spanned
by W . The set M spans the k-module X (since each polynomial f ∈ X is a
k-linear combination of monomials m ∈ M). In other words, X = spanM. But
from M ⊆ Xpathless +Jβ, we obtain spanM ⊆ span

(
Xpathless + Jβ

)
= Xpathless +

Jβ (since Xpathless +Jβ is a k-submodule of X ). Hence, X = spanM ⊆ Xpathless +
Jβ.

Now, p ∈ X ⊆ Xpathless + Jβ. In other words, there exist u ∈ Xpathless and
v ∈ Jβ such that p = u + v. Consider these u and v.

We have p = u + v︸︷︷︸
∈Jβ

∈ u + Jβ. In other words, p ≡ u modJβ. But Xpathless

is the set of all pathless polynomials in X . Thus, u is a pathless polynomial
(since u ∈ Xpathless). Hence, there exists a pathless polynomial q ∈ X such that
p ≡ q modJβ (namely, q = u). This proves Proposition 1.5.

3. Forkless polynomials and a basis of X/Jβ

3.1. Statements

We have thus answered one of the major questions about the ideal Jβ; but we
have begged perhaps the most obvious one: Can we find a basis of the k-module
X/Jβ? This turns out to be much simpler than the above; the key is to use a
different strategy. Instead of reducing polynomials to pathless polynomials, we
shall reduce them to forkless polynomials, defined as follows:

Definition 3.1. A monomial m ∈M is said to be forkless if there exists no triple
(i, j, k) ∈ [n]3 satisfying i < j < k and xi,jxi,k | m (as monomials).

A polynomial p ∈ X is said to be forkless if it is a k-linear combination of
forkless monomials.

The following characterization of forkless polynomials is rather obvious:

Proposition 3.2. Let m ∈ M. Then, the monomial m is forkless if and only if
there exist a map f : [n− 1]→ [n] and a map g : [n− 1]→N such that

( f (i) > i for each i ∈ [n− 1]) and m = ∏
i∈[n−1]

xg(i)
i, f (i).

Now, we claim the following:

Theorem 3.3. Let β ∈ k and p ∈ X . Then, there exists a unique forkless
polynomial q ∈ X such that p ≡ q modJβ.
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Proposition 3.4. Let β ∈ k. The projections of the forkless monomials m ∈M
onto the quotient ring X/Jβ form a basis of the k-module X/Jβ.

3.2. A reminder on Gröbner bases

Theorem 3.3 and Proposition 3.4 can be proven using the theory of Gröbner
bases. See, e.g., [BecWei98] for an introduction. Let us outline the argument. We
shall use the following concepts:

Definition 3.5. Let Ξ be a set of indeterminates. Let XΞ be the polynomial
ring k [ξ | ξ ∈ Ξ] over k in these indeterminates. Let MΞ be the set of all
monomials in these indeterminates (i.e., the free abelian monoid on the set Ξ).
(For example, if Ξ =

{
xi,j | (i, j) ∈ [n]2 satisfying i < j

}
, then XΞ = X and

MΞ = M.)
(a) A term order on MΞ is a total order on the set MΞ that satisfies the

following conditions:

• Each m ∈MΞ satisfies 1 ≤ m (where 1 is the trivial monomial in MΞ).

• If m, u and v are three elements of MΞ satisfying u ≤ v, then mu ≤ mv.

(b) If we are given a total order on the set Ξ, then we canonically obtain a
term order on MΞ defined as follows: For two monomials m = ∏

ξ∈Ξ
ξmξ and

n = ∏
ξ∈Ξ

ξnξ in MΞ, we set m ≤ n if and only if either m = n or the largest

ξ ∈ Ξ for which mξ and nξ differ satisfies mξ < nξ . This term order is called
the inverse lexicographical order on the set MΞ determined by the given total order
on Ξ.

(c) Two monomials m = ∏
ξ∈Ξ

ξmξ and n = ∏
ξ∈Ξ

ξnξ in MΞ are said to be non-

disjoint if there exists some ξ ∈ Ξ satisfying mξ > 0 and nξ > 0. Otherwise, m
and n are said to be disjoint.

From now on, let us assume that some term order on MΞ has been chosen.
The next definitions will all rely on this term order.

(d) If f ∈ XΞ is a nonzero polynomial, then the head term of f denotes the
largest m ∈MΞ such that the coefficient of m in f is nonzero. This head term
will be denoted by HT ( f ). Furthermore, if f ∈ XΞ is a nonzero polynomial,
then the head coefficient of f is defined to be the coefficient of HT ( f ) in f ; this
coefficient will be denoted by HC ( f ).

(e) A nonzero polynomial f ∈ XΞ is said to be monic if its head coefficient
HC ( f ) is 1.

(f) If m = ∏
ξ∈Ξ

ξmξ and n = ∏
ξ∈Ξ

ξnξ are two monomials in MΞ, then the

lowest common multiple lcm (m, n) of m and n is defined to be the monomial

∏
ξ∈Ξ

ξmax{mξ ,nξ}. (Thus, lcm (m, n) = mn if and only if m and n are disjoint.)
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(g) If g1 and g2 are two monic polynomials in XΞ, then the S-polynomial
of g1 and g2 is defined to be the polynomial s1g1 − s2g2, where s1 and
s2 are the unique two monomials satisfying s1 HT (g1) = s2 HT (g2) =
lcm (HT (g1) , HT (g2)). This S-polynomial is denoted by spol (g1, g2).

From now on, let G be a subset of XΞ that consists of monic polynomials.
(h) We define a binary relation −→

G
on the set XΞ as follows: For two poly-

nomials f and g in XΞ, we set f −→
G

g (and say that f reduces to g modulo G)

if there exists some p ∈ G and some monomials t ∈MΞ and s ∈MΞ with the
following properties:

• The coefficient of t in f is 6= 0.

• We have s ·HT (p) = t.

• If a is the coefficient of t in f , then g = f − a · s · p.

(i) We let ∗−→
G

denote the reflexive-and-transitive closure of the relation −→
G

.

(j) We say that a monomial m ∈ MΞ is G-reduced if it is not divisible by the
head term of any element of G.

(k) Let I be an ideal of XΞ. The set G is said to be a Gröbner basis of the ideal
I if and only if the set G generates I and has the following two equivalent
properties:

• For each p ∈ XΞ, there is a unique G-reduced q ∈ XΞ such that p ∗−→
G

q.

• For each p ∈ I , we have p ∗−→
G

0.

The definition we just gave is modelled after the definitions in [BecWei98,
Chapter 5]; however, there are several minor differences:

• We use the word “monomial” in the same meaning as [BecWei98, Chapter
5] use the word “term” (but not in the same meaning as [BecWei98, Chapter
5] use the word “monomial”).

• We allow k to be a commutative ring, whereas [BecWei98, Chapter 5] re-
quire k to be a field. This leads to some complications in the theory of
Gröbner bases; in particular, not every ideal has a Gröbner basis anymore.
However, everything we are going to use about Gröbner bases in this paper
is still true in our general setting.

• We require the elements of the Gröbner basis G to be monic, whereas
[BecWei98, Chapter 5] merely assume them to be nonzero polynomials.
In this way, we are sacrificing some of the generality of [BecWei98, Chapter
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5] (a sacrifice necessary to ensure that things don’t go wrong when k is not
a field). However, this is not a major loss of generality, since in the situ-
ation of [BecWei98, Chapter 5] the difference between monic polynomials
and arbitrary nonzero polynomials is not particularly large (we can scale
any nonzero polynomial by a constant scalar to obtain a monic polynomial,
and so we can assume the polynomials to be monic in most of the proofs).

The following fact is useful even if almost trivial:

Lemma 3.6. Let Ξ, XΞ and MΞ be as in Definition 3.5. Let G be a subset of XΞ
that consists of monic polynomials. Let S be a finite set. For each s ∈ S, let gs
be an element of G, and let ss ∈MΞ and as ∈ k be arbitrary. Assume that the
monomials ss HT (gs) for all s ∈ S are distinct. Then, ∑

s∈S
asssgs

∗−→
G

0.

Proof of Lemma 3.6 (sketched). We proceed by strong induction on |S|. If |S| = 0,
then Lemma 3.6 is obvious21. Hence, WLOG assume that |S| > 0.

Let t be the element of S with highest st HT (gt). Then, t is the unique element
of S with highest st HT (gt) (since the monomials ss HT (gs) for all s ∈ S are
distinct). By the induction hypothesis, we have ∑

s∈S\{t}
asssgs

∗−→
G

0. If at = 0,

then this immediately rewrites as ∑
s∈S

asssgs
∗−→
G

0, and so we are done. Hence,

WLOG assume that at 6= 0. Hence, the head term of ∑
s∈S

asssgs is st HT (gt), with

coefficient at (since t is the unique element of S with highest st HT (gt)). Thus,
we know that:

• The coefficient of st HT (gt) is 6= 0 (since at 6= 0).

• We have st ·HT (gt) = st HT (gt).

• If a is the coefficient of st HT (gt) in ∑
s∈S

asssgs, then ∑
s∈S\{t}

asssgs = ∑
s∈S

asssgs−

a · st · gt (because this a is at).

Hence, the definition of the relation −→
G

yields ∑
s∈S

asssgs −→
G

∑
s∈S\{t}

asssgs.

Combining this with ∑
s∈S\{t}

asssgs
∗−→
G

0, we obtain ∑
s∈S

asssgs
∗−→
G

0. This com-

pletes the induction step, and thus Lemma 3.6 is proven.

The following criterion for a set to be a Gröbner basis is well-known (it is, in
fact, the main ingredient in the proof of the correctness of Buchberger’s algo-
rithm):

21because in this case, we have ∑
s∈S

wsgs = (empty sum) = 0 ∗−→
G

0
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Proposition 3.7. Let Ξ, XΞ and MΞ be as in Definition 3.5. Let I be an ideal
of XΞ. Let G be a subset of XΞ that consists of monic polynomials. Assume
that the set G generates I . Then, G is a Gröbner basis of I if and only if it has
the following property:

• If g1 and g2 are any two elements of the set G, then spol (g1, g2)
∗−→
G

0.

Proofs of Proposition 3.7 (at least in the case when k is a field) can be found
in [BecWei98, Theorem 5.48, (iii) ⇐⇒ (i)], [EneHer12, Theorem 2.14], [Graaf16,
Theorem 1.1.33], [MalBlo15, V.3 i) ⇐⇒ ii)], [Monass02, Théorème (Buchberger)
(i) ⇐⇒ (ii)], and (in a slight variation) in [CoLiOs15, Chapter 2, §6, Theorem
6]22.

The following fact (known as “Buchberger’s first criterion”) somewhat simpli-
fies dealing with S-polynomials:

Proposition 3.8. Let Ξ, XΞ and MΞ be as in Definition 3.5. Let G be a subset of
XΞ that consists of monic polynomials. Let g1 and g2 be two elements of the
set G such that the head terms of g1 and g2 are disjoint. Then, spol (g1, g2)

∗−→
G

0.

Proposition 3.8 can be found in [BecWei98, Lemma 5.66], [Graaf16, Lemma
1.1.38], [EneHer12, Proposition 2.15], [MalBlo15, V.6 i)] and [Monass02, Lemme
(in the section “Améliorations de l’algorithme”)]23.

We can combine Proposition 3.7 with Proposition 3.8 to obtain the following
fact:

Proposition 3.9. Let Ξ, XΞ and MΞ be as in Definition 3.5. Let I be an ideal
of XΞ. Let G be a subset of XΞ that consists of monic polynomials. Assume
that the set G generates I . Then, G is a Gröbner basis of I if and only if it has
the following property:

• If g1 and g2 are two elements of the set G such that the head terms of g1

and g2 are non-disjoint, then spol (g1, g2)
∗−→
G

0.

22Different sources state slightly different versions of Proposition 3.7. For example, some texts
require spol (g1, g2)

∗−→
G

0 not for any two elements g1 and g2 of G, but only for any two

distinct elements g1 and g2 of G. However, this makes no difference, because if g1 and g2 are
equal, then spol (g1, g2) = 0 ∗−→

G
0. Similarly, other texts require g1 < g2 (with respect to some

chosen total order on G); this also does not change much, since spol (g1, g2) = − spol (g2, g1).
23That said, the proof of [Monass02, Lemme (in the section “Améliorations de l’algorithme”)] is

incorrect.
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Proposition 3.9 follows trivially from Proposition 3.7 after recalling Proposi-
tion 3.8. Explicitly, Proposition 3.9 appears (at least in the case when k is a
field) in [BecWei98, Theorem 5.68, (iii) ⇐⇒ (i)] and [Graaf16, Conclusion after
the proof of Lemma 1.1.38].

We shall also use the following simple fact:

Proposition 3.10. Let Ξ, XΞ and MΞ be as in Definition 3.5. Let I be an
ideal of XΞ. Let G be a Gröbner basis of I . The projections of the G-reduced
monomials onto the quotient ring XΞ/I form a basis of the k-module XΞ/I .

Proposition 3.10 is easy to prove; it also appears (in the case when k is a field)
in various texts (e.g., [CoLiOs15, Chapter 5, §3, Proposition 1 and Proposition 4],
[Monass02, Théorème in the section “Espaces quotients”] or [Sturmf08, Theorem
1.2.6]).

3.3. The proofs

The main workhorse of the proofs is the following fact:

Proposition 3.11. Let β ∈ k and p ∈ X . Consider the inverse lexicographical
order on the set M of monomials determined by

x1,2 > x1,3 > · · · > x1,n

> x2,3 > x2,4 > · · · > x2,n

> · · ·
> xn−1,n.

Then, the set{
xi,kxi,j − xi,jxj,k + xi,kxj,k + βxi,k | (i, j, k) ∈ [n]3 satisfying i < j < k

}
(13)

is a Gröbner basis of the ideal Jβ of X (with respect to this order).

Proof of Proposition 3.11 (sketched). The elements xi,kxi,j− xi,jxj,k + xi,kxj,k + βxi,k of
the set (13) differ from the designated generators xi,jxj,k − xi,k

(
xi,j + xj,k + β

)
of

the ideal Jβ merely by a factor of −1 (indeed, xi,kxi,j − xi,jxj,k + xi,kxj,k + βxi,k =

(−1)
(
xi,jxj,k − xi,k

(
xi,j + xj,k + β

))
). Thus, they generate the ideal Jβ. Hence, in

order to prove that they form a Gröbner basis of Jβ, we merely need to show
the following claim:

Claim 1: Let g1 and g2 be two elements of the set (13) such that the
head terms of g1 and g2 are non-disjoint. Then, spol (g1, g2)

∗−→
G

0,

where G is the set (13).
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(Indeed, proving Claim 1 is sufficient because of Proposition 3.9.)
In order to prove Claim 1, we fix two elements g1 and g2 of the set (13) such

that the head terms of g1 and g2 are non-disjoint. Thus,

g1 = xi1,k1 xi1,j1 − xi1,j1 xj1,k1 + xi1,k1 xj1,k1 + βxi1,k1

for some (i1, j1, k1) ∈ [n]3 satisfying i1 < j1 < k1, and

g2 = xi2,k2 xi2,j2 − xi2,j2 xj2,k2 + xi2,k2 xj2,k2 + βxi2,k2 .

for some (i2, j2, k2) ∈ [n]3 satisfying i2 < j2 < k2. Since the head terms xi1,k1 xi1,j1
and xi2,k2 xi2,j2 of g1 and g2 are non-disjoint, we must have i1 = i2. Furthermore,
one of j1 and k1 must equal one of j2 and k2 (for the same reason). Thus, there
are at most four distinct integers among i1, i2, j1, j2, k1, k2.

We can now finish off Claim 1 by straightforward computations, after distin-
guishing several cases based upon which of the numbers j1 and k1 equal which
of the numbers j2 and k2. We WLOG assume that (i1, j1, k1) 6= (i2, j2, k2) (since
otherwise, it is clear that spol (g1, g2) = 0 ∗−→

G
0). Thus, there are exactly four

distinct integers among i1, i2, j1, j2, k1, k2 (since i1 = i2, since i1 < j1 < k1 and
i2 < j2 < k2, and since one of j1 and k1 equals one of j2 and k2). Let us denote
these four integers by a, b, c, d in increasing order24 (so that a < b < c < d).
Hence, i1 = a (since i1 < j1 < k1 and i2 < j2 < k2), whereas the two pairs (j1, k1)
and (j2, k2) are two of the three pairs (b, c), (b, d) and (c, d) (for the same reason).
Hence, g1 and g2 are two of the three polynomials

xa,cxa,b − xa,bxb,c + xa,cxb,c + βxa,c,
xa,dxa,b − xa,bxb,d + xa,dxb,d + βxa,d,
xa,dxa,c − xa,cxc,d + xa,dxc,d + βxa,d.

It thus remains to verify that spol (g1, g2)
∗−→
G

0.

Let us do this. Actually, let’s work in a slightly more general setting: Fix
α ∈ k. Let Gα be the set{

xi,kxi,j − xi,jxj,k + xi,kxj,k + βxi,k + α | (i, j, k) ∈ [n]3 satisfying i < j < k
}

.

Set

u1 = xa,cxa,b − xa,bxb,c + xa,cxb,c + βxa,c + α;
u2 = xa,dxa,b − xa,bxb,d + xa,dxb,d + βxa,d + α;
u3 = xa,dxa,c − xa,cxc,d + xa,dxc,d + βxa,d + α;
u4 = xb,cxb,d − xb,cxc,d + xb,dxc,d + βxb,d + α.

24This integer b has nothing to do with the indeterminate b from Definition 2.25.
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We shall prove that spol (g1, g2)
∗−→

Gα

0 whenever g1 and g2 are two of the three

polynomials u1, u2, u3. This shall yield our above claim (that spol (g1, g2)
∗−→
G

0)

by setting α = 0. (The additional generality that the parameter α gives us will
help us prove the more general Proposition 4.4 below.)

So we need to show that spol (u1, u2)
∗−→

Gα

0, spol (u1, u3)
∗−→

Gα

0 and spol (u2, u3)
∗−→

Gα

0.
Start with the neat identity

u1 (xa,d − xb,d)− u2 (xa,c − xb,c)− u3 (xb,c − xb,d) + u4 (xa,c − xa,d) = 0.

Expanding and bringing 6 of the 8 addends on the right hand side, we obtain

xa,du1 − xa,cu2 = −xb,cu2 − xa,cu4 + xb,du1 + xb,cu3 + xa,du4 − xb,du3.

Since the monomials

xb,c HT (u2) , xa,c HT (u4) , xb,d HT (u1) , xb,c HT (u3) , xa,d HT (u4) , xb,d HT (u3)

are distinct, we thus conclude that xa,du1− xa,cu2
∗−→

Gα

0 (by Lemma 3.6). In other

words, spol (u1, u2)
∗−→

Gα

0 (since spol (u1, u2) = xa,du1 − xa,cu2).

Next, observe the identity

xa,du1 − xa,bu3 = βu3 − βu2 − xa,bu4 − xb,cu2 + xb,cu3 + xa,du4 + xc,du1 − xc,du2.

Since the monomials

HT (u3) , HT (u2) , xa,b HT (u4) , xb,c HT (u2) , xb,c HT (u3) ,
xa,d HT (u4) , xc,d HT (u1) , xc,d HT (u2)

are distinct, we can conclude that xa,du1 − xa,bu3
∗−→

Gα

0 (by Lemma 3.6). In other

words, spol (u1, u3)
∗−→

Gα

0.

Finally, the identity we need for spol (u2, u3)
∗−→

Gα

0 is

xa,cu2 − xa,bu3 = βu3 − βu2 − xa,bu4 + xa,cu4 − xb,du1 + xc,du1 + xb,du3 − xc,du2.

The same distinctness argument works here.
We have thus proven Claim 1. Thus, Proposition 3.11 is proven.

Proof of Proposition 3.4 (sketched). Let Gβ be the set (13). Then, Proposition 3.11
shows that Gβ is a Gröbner basis of the ideal Jβ of X (where M is endowed
with the term order defined in Proposition 3.11). Hence, Proposition 3.10 (ap-
plied to Ξ =

{
xi,j | (i, j) ∈ [n]2 satisfying i < j

}
, XΞ = X , MΞ = M, I = Jβ

and G = Gβ) shows that the projections of the Gβ-reduced monomials onto the
quotient ring X/Jβ form a basis of the k-module X/Jβ. Since the Gβ-reduced
monomials are precisely the forkless monomials, this yields Proposition 3.4.

41



Reductions for the subdivision algebra November 1, 2017

Proof of Theorem 3.3 (sketched). Theorem 3.3 is merely a restatement of Proposi-
tion 3.4.

Let us notice that the “existence” part of Theorem 3.3 can also be proven sim-
ilarly to how we proved Proposition 1.5.25 Is there a similarly simple argument
for the “uniqueness” part?

4. A generalization?

The ideals Jβ of the k-algebra X can be “deformed” by introducing a second
parameter α ∈ k, leading to the following definition:

Definition 4.1. Let β ∈ k and α ∈ k. Let Jβ,α be the ideal of X generated
by all elements of the form xi,jxj,k − xi,k

(
xi,j + xj,k + β

)
− α for (i, j, k) ∈ [n]3

satisfying i < j < k.

The idea of this definition again goes back to the work of Anatol Kirillov (see,
e.g., [Kirill16, Definition 5.1 (1)] for a noncommutative variant of the quotient
ring X/Jβ,α, which he calls the “associative quasi-classical Yang–Baxter algebra
of weight (α, β)”). The ideal Jβ is a particular case: Jβ = Jβ,0.

Similarly to Proposition 1.5, we can prove the following:

Proposition 4.2. Let β ∈ k, α ∈ k and p ∈ X . Then, there exists a pathless
polynomial q ∈ X such that p ≡ q modJβ,α.

An analogue to Theorem 1.7 also holds:

Theorem 4.3. Let β ∈ k, α ∈ k and p ∈ X . Consider any pathless polynomial
q ∈ X such that p ≡ q modJβ,α. Then, D (q) does not depend on the choice
of q (but merely on the choice of β, α and p).

We have a proof of Theorem 4.3; this proof will appear in a future version
(arXiv:1704.00839v3) of this preprint. Notice that Theorem 4.3 prompts a
further question: All four enumerative questions posed in [Stanle15, Exercise
A22] can be extended to the “deformed” case (by replacing the “reduction rule”
xijxjk → xik

(
xij + xjk + β

)
by xijxjk → xik

(
xij + xjk + β

)
+ α); the results are de-

formations of Catalan and Narayana numbers. Which deformations?
The ideals Jβ,α also satisfy the following analogues of Proposition 3.11 and

Proposition 3.4:

25This time, we need to define a different notion of “weight”: Instead of defining the weight of
a monomial m = ∏

(i,j)∈[n]2;
i<j

x
ai,j
i,j to be weightm = ∑

(i,j)∈[n]2;
i<j

ai,j (n− j + i), we now must define it

to be weightm = ∑
(i,j)∈[n]2;

i<j

ai,j (j− i).
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Proposition 4.4. Let β ∈ k, α ∈ k and p ∈ X . Consider the inverse lexico-
graphical order on the set M of monomials determined by

x1,2 > x1,3 > · · · > x1,n

> x2,3 > x2,4 > · · · > x2,n

> · · ·
> xn−1,n.

Then, the set{
xi,kxi,j − xi,jxj,k + xi,kxj,k + βxi,k + α | (i, j, k) ∈ [n]3 satisfying i < j < k

}
is a Gröbner basis of the ideal Jβ,α of X (with respect to this order).

Proposition 4.5. Let β ∈ k and α ∈ k. The projections of the forkless mono-
mials m ∈ M onto the quotient ring X/Jβ,α form a basis of the k-module
X/Jβ,α.

These two propositions can be proven similarly to Proposition 3.11 and Propo-
sition 3.4.
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