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• page 2: You speak of the “usual dot product”, but there is no “usual dot
product” on a general finite-dimensional K-vector space. If you want to
work in this generality, you should use the dual space. (Or else just identify
V with Kn for this definition, or require the choice of a nondegenerate
symmetric bilinear form V × V → K which is to serve as a dot product. I
personally find it easier to invoke the dual space, because as soon as one
introduces additional structures like a basis or a bilinear form, it starts
clouding further definitions. Besides, you use linear forms in the next
paragraph, even though in the next paragraph you actually use a basis!)

Similarly, in the next paragraph, “x = (x1, . . . , xn)” assumes an isomor-
phism V → Kn to be given. And after that, the notion of “normals” as-
sumes a dot product.

• pages 2-3: You write: “Let Y be a complementary space in Kn to the sub-
space X spanned by the normals to hyperplanes in A. Define

W = {v ∈ V : v · y = 0 ∀y ∈ Y} .

If char (K) = 0 then we can simply take W = X.”

I understand what you mean here, but it is not correctly explained. First,
even if char (K) = 0, then we cannot take W = X unless Y is the orthogonal
complement to X (instead of just a random complementary space in Kn to
the subspace X); I think you should say “we can simply take Y = X⊥ and
W = X” instead of “we can simply take W = X” because otherwise your
wording suggests that Y can be taken arbitrary here. Second, char (K) =
0 does not guarantee that the orthogonal complement to X is indeed a
complementary subspace to X (for example, the orthogonal complement to
the subspace 〈(1, i)〉 of C2 is not a complementary subspace to 〈(1, i)〉, even
though char C = 0). So to make sure that we can actually take W = X, we
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need to require that K is a formally real field (which is a stronger assertion
than char (K) = 0).

Once again, the whole situation simplifies if you use the dual space. Now,
the “normals to hyperplanes in A” become the “linear forms defining the
hyperplanes in A”, and they form a subspace X̃ of the dual space V∗. The
orthogonal space of this X̃ (= the joint kernel of the linear forms defining
the hyperplanes in A) is a subspace of V; we call it Ỹ. Then, the images of
the hyperplanes in A under the projection map V → V/Ỹ are hyperplanes
in V/Ỹ (this is easy to prove1 – a lot easier than checking your equality
(1)). The arrangement they form in V/Ỹ is isomorphic to your AW , but
defined canonically (thus eliminating the necessity of checking that your
AW is independent on the choice of W up to isomorphism).

• page 3: When you write “H′ ∈ AW if and only if H′ ⊕W⊥ ∈ A”, it would
be good to point out that H′ is supposed to be a subspace of W. I would
also replace the ⊕ sign by a + sign, since ⊕ has not been defined for affine
subspaces (and its standard meaning that involves the intersection being 0
is not correct for affine subspaces).

• page 3: You write: “in characteristic p this type of reasoning fails”. Yes,
but not only in characteristic p. Also for K = C, as I explained above.

• page 3: You write: “then R ∈ R (A) if and only if R ∩W ∈ R (AW)”. This
makes little sense (R cannot be any subset of Rn, but what should it be?).
I assume you mean that the map

R (A)→ R (AW) ,
R 7→ R ∩W

is well-defined and bijective, with inverse

R (AW)→ R (A) ,

R 7→ R + W⊥.

• page 4: Trivial nitpick: In the definition of “general position”, the H1, . . . , Hp
should be assumed distinct in the formulas.

• page 4, second line of Example 1.2: “L line” should be “line L”.

• page 4, second line of Example 1.2: “AK” should be “Ak”.

1All that needs to be checked is that every hyperplane H ∈ A satisfies Ỹ ⊆ H′, where H′ is the
translate of H that passes through the origin. The proof is easy: From H⊥ ⊆ X̃, we obtain

X̃⊥ ⊆
(

H⊥
)⊥

= H, thus Y = X̃⊥ ⊆ H. Here, the ⊥ sign is defined with reference to the
canonical pairing V∗ ×V → K, not to any non-canonical bilinear form on V.
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• page 8: You define saturated chains, but you do not define maximal chains.
The fact that you use the word “maximal” in the next sentence (“if every
maximal chain of P has length n”) creates the incorrect impression that
“maximal” is a synonym for “saturated”.

• page 8: You write: “If x < y in a graded poset P then we write rk (x, y) =
rk (y) − rk (x)”. It would be better to replace “x < y” by “x ≤ y” here,
since you later use the notation in this mildly greater generality.

• page 10: You never seem to explicitly say that Theorem 1.1 is the “Möbius
inversion formula”. When that name appears in the proof of Theorem 1.1,
the reader has to guess.

• page 12, Exercise (7): The word “face” has not been defined.

• page 14, Lemma 2.2: Do you really want the word “real” here? I haven’t
read the proof in much detail, but I don’t see how you are using this con-
dition (actually, you even use the letter K for the ground field in the proof).

• page 16, Theorem 2.3: I find it interesting to observe that this theorem
holds whenever L is a finite join-semilattice, not necessarily a lattice. (Of
course, the same proof applies, although the algebras now become nonuni-
tal algebras.) In this generality, L as a semigroup needs not have a neutral
element, but the algebra A (L) has a unity nevertheless (because A′ (L) has
a unity, namely ∑

x∈L
σ′x).

• page 24: In the last paragraph of this page, replace “by first choosing the

size i = ]κ ([n]) of its image in
(

q
i

)
ways” by “by first choosing the size

i = ]κ ([n]) of its image, then choosing its image κ ([n]) itself in
(

q
i

)
ways”.

• page 28: In the “Note”, I think “linear extension of o” should be “linear
extension of o”. (At least I usually have seen the notion of a “linear ex-
tension” defined for posets, sometimes for preorders, but not for acyclic
orientations themselves.)

• page 32: “diagam”→ “diagram”.

• page 33: After “M is isomorphic to the set of nonzero vectors in the vec-
tor space F3

2”, add “(with independence defined as linear independence)”.
(This is to say, not affine independence.)

• page 35, proof of Proposition 3.6: Replace “B = B′” by “B = B′” (notice
the ′ being under the overline).
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• page 35, proof of Proposition 3.6: You show that X = X′ if and only if
B = B′. But in order to check that L (M) ∼= L (A) as lattices, it is also
important to prove that X ⊆ X′ if and only if B ⊇ B′. (Not difficult but
worth making explicit.)

• page 36, Definition 3.9: In the first sentence of this definition, replace “A
finite lattice” by “A finite graded lattice”. Similarly, in the last sentence,
replace “a finite lattice” by “a finite graded lattice”.

• page 36, proof of Theorem 3.8: In the first displayed equation of the proof,
replace “rk (∨I)” by “rk (

∨
I)”.

• page 36, proof of Theorem 3.8: You write: “Since L is atomic, there exists
y ∈ S such that y 6≤ ∨ T”. (Here I have applied the correction that already
appears in your errata.) In my opinion, the existence of such a y is not
a consequence of L being atomic. Instead, it is the consequence of the
argument that if no such y existed, then every z ∈ S would satisfy z ≤ ∨ T,
and thus we would have

∨
S ≤ ∨ T <

∨
T′ ≤ ∨ S (since T′ ⊆ S), which is

absurd.

• page 36, proof of Theorem 3.8: You claim that “L ∼= L (M)”. I think this
claim is roughly the difficulty of your [2+] exercises (certainly harder than
the “[why?]” in the same paragraph) and should get at least a hint to its
proof.

Proof sketch. The idea is to show that the maps

Φ : L→ L (M) ,
x 7→ {a ∈ A | a ≤ x}

and

Ψ : L (M)→ L, (1)

F 7→
∨

F

are well-defined, mutually inverse and lattice homomorphisms. The well-
definedness of Ψ is obvious. The well-definedness of Φ uses the neat but
not completely trivial observation that every B ⊆ A satisfies

rk B = rk
(∨

B
)

(2)

(where the first rk means rank in the matroid M, while the second rk
means rank in the lattice L). The proof of Ψ ◦ Φ = id uses the fact that
every x ∈ L satisfies x =

∨
(Φ (x)), which has a neat indirect proof (the

lattice L is atomic, so x is the join
∨

C of some subset C of A, and clearly
this C satisfies C ⊆ Φ (x), so that x =

∨
C︸︷︷︸

⊆Φ(x)

≤ ∨
(Φ (x)), but on the
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other hand
∨
(Φ (x)) ≤ x for obvious reasons, and thus x =

∨
(Φ (x)) =

Ψ (Φ (x)) = (Ψ ◦Φ) (x)). The proof of Φ ◦ Ψ = id proceeds by observing
that if a ∈ A and F ∈ L (M) satisfy a ≤ ∨

F, then
∨
(F ∪ {a}) =

∨
F, and

thus (2) yields rk (F ∪ {a}) = rk

∨ (F ∪ {a})︸ ︷︷ ︸
=
∨

F

 = rk (
∨

F) = rk F (by (2)

again), which shows that a ∈ F (since F is a flat). So the maps Φ and Ψ are
mutually inverse. In order to prove that they are lattice homomorphisms,
I proceed as follows: The maps Ψ and Φ are poset homomorphisms and
form a monotone Galois connection between the posets L (M) and L; thus,
Ψ preserves joins and Φ preserves meets. Since Ψ and Φ are mutually
inverse, this yields that both of these maps preserve both joins and meets,
and we are done. This would be more noticeably painful to show without
knowing the Galois-connection trick.

Am I missing something obvious?

• page 36, proof of Theorem 3.8: The assumption that M is simple (in the
proof of (2) =⇒ (1)) seems like overkill to me. It can be lifted easily (you
just have to replace “every flat is the join of its elements” by “every flat F
satisfies F =

∨
x∈F {x}”), whereas justifying this assumption requires the

use of the L (M) ∼= L
(

M̂
)

statement on page 34, which does not look easy
to prove at all.

• page 37: In the paragraph directly after the proof of Theorem 3.8, replace
“the intersection lattice LA” by “the intersection lattice L (A)”.

• page 37: I am surprised that you don’t prove Theorem 3.9 here. In my
opinion, the proof is very short (possibly even shorter than justifying why
it really is dual to [31, Cor. 3.9.3] – there is an asymmetry in the definition
of the Möbius function which “favors” the lower end of the interval2), and
fits perfectly with what you did in §2:

Proof of Theorem 3.9. We have a 6= 0̂ and thus a > 0̂. In the Möbius al-
gebra A (L) (defined in §2), we have σ0̂ = ∑

y≥0̂︸︷︷︸
= ∑

y∈L

µ
(

0̂, y
)

︸ ︷︷ ︸
=µ(y)

y = ∑
y∈L

µ (y) y =

2The formula (2) says µ (x, y) = − ∑
x≤z<y

µ (x, z), rather than µ (x, y) = − ∑
x<z≤y

µ (z, y). Maybe it

is worth explaining that the latter equality also holds (because µ = ζ−1 is a two-sided inverse)
and therefore the Möbius function is invariant under “turning the poset upside down”.

(While at that, it’s also worth pointing out that µ (x, y) depends only on the poset [x, y],
not on the whole poset P. You use this a lot, but you leave it tacit, defining µ as a function
on the whole Int P instead.)
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∑
x∈L

µ (x) x and thus

∑
x∈L

µ (x) x ∨ a︸ ︷︷ ︸
=xa

= ∑
x∈L

µ (x) xa =

(
∑
x∈L

µ (x) x

)
︸ ︷︷ ︸

=σ0̂

a︸︷︷︸
= ∑

y≥a
σy

(by (9))

= σ0̂

(
∑
y≥a

σy

)

= ∑
y≥a

σ0̂σy︸︷︷︸
=δ0̂,yσ0̂

(by the second sentence
of Theorem 2.3)

= ∑
y≥a

δ0̂,y︸︷︷︸
=0

(since y≥a>0̂
and thus y 6=0̂)

σ0̂ = 0.

Comparing coefficients before 1̂ in this equality yields ∑
x∈L;

x∨a=1̂

µ (x) = 0.

Theorem 3.9 is proven.

• page 38, proof of Theorem 3.10: It took me a while to understand why
“The sum on the right is nonempty”. The simplest proof of this that I
can find is the following: Let A be the set of all atoms of M. The map
Ψ defined by (1) is injective (since we have found an inverse to it). Thus,∨

A 6= ∨
(A \ {a}). Hence,

∨
(A \ {a}) <

∨
A. Semimodularity of L eas-

ily shows that
∨
(A \ {a}) l

∨
A. But

∨
A = 1̂ (which is easy to prove

using atomicity of L: the element 1̂ must be a join of some set of atoms,
and thus also of the set A of all atoms), so this becomes

∨
(A \ {a})l 1.

But a 6≤ ∨
(A \ {a}) (since otherwise, we would have

∨
(A \ {a}) =

∨
A,

contradicting
∨

A 6= ∨
(A \ {a})). Thus, there exists an x ∈ L satisfying

a 6≤ x l 1 (namely, x =
∨
(A \ {a})).

• page 38, (26): Replace “M” by “MA”.

• page 41, §4.1: Throughout this section, whenever you work with BC (M),
you need to require M to have no loops. Otherwise, BC (M) is the empty
set (since the empty set is a broken circuit), and thus not a simplicial com-
plex.

• page 42, Lemma 4.4: Replace “−c1 + c2 − c3 + · · · ” by “c0 − c1 + c2 − c3 +
· · · ”, in order for the lemma to still be valid when P is the one-element
poset.

• page 42, Note after Lemma 4.4: The equality “µ
(

0̂, 1̂
)
= χ̃ (∆ (P′))” re-

quires that P contain more than one element.

• page 43: This is absolutely not an erratum, and not even a suggestion, but I
just felt like sharing another proof of Theorem 4.11 (though the probability
that it is not new to you is high).
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Proof sketch for Theorem 4.11. Let K = Q. For every i ∈ P, define a function
ζi : Int P→ K by

ζi [x, y] = [x l y and λ (x, y) = i] .

Here, we are using the Iverson bracket notation (that is, [A] =
{

1, if A is true;
0, if A is false

for any logical statement A).

Recall that the functions Int P → K form a K-algebra I (P) (defined in
§1.3, and called the incidence algebra of P). So all of the ζi are ele-
ments of this K-algebra I (P). These elements ζi are locally nilpotent
(since they send one-element intervals [x, x] to 0), and the infinite prod-
ucts · · · (1− ζ3) (1− ζ2) (1− ζ1) and (1− ζ1)

−1 (1− ζ2)
−1 (1− ζ3)

−1 · · · is
well-defined. Here, 1 stands for the unity of the K-algebra I (P); this is its
element δ.

We have

(1− ζ1)
−1︸ ︷︷ ︸

= ∑
m∈N

ζm
1

(1− ζ2)
−1︸ ︷︷ ︸

= ∑
m∈N

ζm
2

(1− ζ3)
−1︸ ︷︷ ︸

= ∑
m∈N

ζm
3

· · ·

=

(
∑

m∈N

ζm
1

)(
∑

m∈N

ζm
2

)(
∑

m∈N

ζm
3

)
· · ·

= ∑
(m1,m2,m3,...) is a
weak composition

ζm1
1 ζm2

2 ζm3
3 · · · = ∑

1≤a1≤a2≤···≤ak

ζa1ζa2 · · · ζak .
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Hence, every x ≤ y in P satisfy(
(1− ζ1)

−1 (1− ζ2)
−1 (1− ζ3)

−1 · · ·
)
[x, y]

=

(
∑

1≤a1≤a2≤···≤ak

ζa1ζa2 · · · ζak

)
[x, y] (3)

= ∑
1≤a1≤a2≤···≤ak

(ζa1ζa2 · · · ζak) [x, y]︸ ︷︷ ︸
= ∑

x=x0≤x1≤x2≤···≤xk≤y

k
∏
i=1

ζai [xi−1,xi]

= ∑
1≤a1≤a2≤···≤ak

∑
x=x0≤x1≤x2≤···≤xk≤y

k

∏
i=1

ζai [xi−1, xi]︸ ︷︷ ︸
=[xi−1lxi and λ(xi−1,xi)=ai]

(by the definition of ζai )

= ∑
1≤a1≤a2≤···≤ak

∑
x=x0≤x1≤x2≤···≤xk≤y

k

∏
i=1

[xi−1 l xi and λ (xi−1, xi) = ai]︸ ︷︷ ︸
=[x0lx1l···lxk and each i satisfies λ(xi−1,xi)=i]

= ∑
1≤a1≤a2≤···≤ak

∑
x=x0≤x1≤x2≤···≤xk≤y

[x0 l x1 l · · ·l xk and each i satisfies λ (xi−1, xi) = i]︸ ︷︷ ︸
=]{x=x0lx1l···lxk=y : each i satisfies λ(xi−1,xi)=i}

= ∑
1≤a1≤a2≤···≤ak

] {x = x0 l x1 l · · ·l xk = y : each i satisfies λ (xi−1, xi) = i}

= ] {x = x0 l x1 l · · ·l xk = y : λ (x0, x1) ≤ λ (x1, x2) ≤ · · · ≤ λ (xk−1, xk)}
(4)

= 1 (by Definition 4.11)
= ζ [x, y] .

Hence, (1− ζ1)
−1 (1− ζ2)

−1 (1− ζ3)
−1 · · · = ζ. Inverting both sides of this

equality, we obtain · · · (1− ζ3) (1− ζ2) (1− ζ1) = ζ−1 = µ. Thus,

µ = · · · (1− ζ3) (1− ζ2) (1− ζ1) = ∑
a1>a2>···>ak≥1

(−1)k ζa1ζa2 · · · ζak ,

Hence, every x ≤ y satisfy

µ [x, y]

=

(
∑

a1>a2>···>ak≥1
(−1)k ζa1ζa2 · · · ζak

)
[x, y]

= ∑
k∈N

(−1)k ] {x = x0 l x1 l · · ·l xk = y : λ (x0, x1) > λ (x1, x2) > · · · > λ (xk−1, xk)}

(similarly to how we got from (3) to (4)) .
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The sum on the right hand side has only one (or, rather, at most one)
nonzero term, namely the one for k = rk (x, y) (since P is graded). Hence,
this equality rewrites as

µ [x, y]

= (−1)rk(x,y) ] {x = x0 l x1 l · · ·l xk = y : λ (x0, x1) > λ (x1, x2) > · · · > λ (xk−1, xk)} ,

and we are done.

Now that I have written up this proof, I guess I understand why you didn’t
want to do it...

• page 44, proof of Theorem 4.11: In (27), replace “n” by “n− 1”.

• page 44, proof of Theorem 4.11: Replace “λ (xi) > λ (xi+1)” by “λ (xi−1, xi) >
λ (xi, xi+1)”.

• page 44, proof of Theorem 4.11: The case of n = 0 should be ruled out
somewhere near the beginning of the proof, as there are arguments that
tacitly use n > 0 throughout the proof. (Compare what I wrote about
Lemma 4.4.)

• page 45, proof of Theorem 4.12: Again, I think that assuming that M
is simple is not worth the hassle. We already have the hypothesis that
M has no loops (else, BC (M) is not a simplicial complex). Without the
assumption that M be simple, we can no longer identify the atoms of L (M)
with the points of M. But we still have a surjective map

M→ {atoms of L (M)} ,

xi 7→ {xi},

and your proof goes through if some of the xi’s appearing in it are replaced
by the corresponding {xi}’s.

• page 45, proof of Theorem 4.12: In “Figure 3 shows the lattice of flats of
the matroid M of Figure 1 with the edge labeling (30)”, add “the ordering
O and” after the “with”.

• page 45, proof of Theorem 4.12: In “Moreover, there is a unique y1 sat-
isfying x = x0 l y1 ≤ y and λ̃ (x0, y1) = j, viz., y1 = x0 ∨ xj. (Note that
y1 m x0 by semimodularity.)”, replace every of the four occurrences of “x0”
by “x”. Then, define y0 (not x0) to mean x (this notation is used in the next
sentence).

• page 46, proof of Theorem 4.12: In “λ̃ (y0, y1) = j > λ̃ (y1, y2)”, replace
the “>” sign by a “≥” sign.
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• page 46, proof of Theorem 4.12: In Claim 2, replace both appearances of
“λ (C)” by “λ̃ (C)”.

Also, it would be good to define what λ̃ (C) means, and explain the abuse
of notation. As far as I understand, you define λ̃ (C) as follows: If C is
a chain 0 = y0 l y1 l · · · l yk, then you define λ̃ (C) to be the sequence(

λ̃ (y0, y1) , λ̃ (y1, y2) , . . . , λ̃ (yk−1, yk)
)

. Sometimes you denote the set of

the entries of this sequence (rather than this sequence itself) as λ̃ (C). More-
over, you identify this set with the set

{
x

λ̃(y0,y1)
, x

λ̃(y1,y2)
, . . . , x

λ̃(yk−1,yk)

}
⊆

S.

• page 46, proof of Theorem 4.12: In Claim 2, replace “increasing chain” by
“strictly increasing chain”.

• page 46, proof of Theorem 4.12: In the proof of Claim 2, replace “λ (C)”
by “λ̃ (C)” (in “To prove the distinctness of the labels λ (C)”).

• page 46, proof of Theorem 4.12: In the proof of Claim 2, replace “0̂ :=
y0 l y1 l · · ·l yk” by “0̂ = y0 l y1 l · · ·l yk” (no colon, since you are not
defining anything).

• page 46, proof of Theorem 4.12: In the proof of Claim 2, you write: “Note
that C is saturated by semimodularity”. This is only half of the story,
because it has to be checked that no yi equals yi−1. This latter statement
follows from

rk (yi) = rk
(
{xa1} ∨ {xa2} ∨ · · · ∨ {xai}

)
= rk {xa1 , xa2 , . . . , xai}

= rk {xa1 , xa2 , . . . , xai} = i(
since {xa1 , xa2 , . . . , xai} is a subset of the independent set T,

and thus itself independent

)
,

where we are tacitly using that the lattice L (M) is graded by the rank of
flats in the matroid M.

• page 46, proof of Theorem 4.12: In the proof of Claim 2, you write: “Thus

rk (T) = rk
(
T ∪

{
xj
})

= i.

Since T is independent, T ∪
{

xj
}

contains a circuit Q satisfying xj ∈ Q, so
T contains a broken circuit.” This is wrong in two places: first, rk (T) is
not i, and second, xj might not be larger than max T. Let me suggest the
following corrected argument:

“Let Ti be the subset {xa1 , . . . , xai} of T; then, Ti is independent (since T is
independent). Moreover, yi =

∨
t∈Ti
{t} = Ti. Hence, from yi−1 ∨

{
xj
}
=
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yi, we obtain
{

xj
}
≤ yi, so

{
xj
}
⊆ yi = Ti. Thus, the set Ti ∪

{
xj
}

is
dependent, and thus contains a circuit Q satisfying xj ∈ Q (since Ti is
independent). Therefore, Ti contains a broken circuit (namely, Q \

{
xj
}

,
since j > ai > ai−1 > · · · > a1). Thus, T contains a broken circuit (since
Ti ⊆ T), which is absurd.”

• page 47, Example 4.9 (c): Replace “and rk (y) = 2” by “with rk (y) = 2”.

• page 47, Example 4.9 (e): Replace “Fn (q)” by “Fn
q ”.

• page 48, Example 4.9 (e): Replace “L is a modular geometric lattice” by
“Bn (q) is a modular geometric lattice”.

• page 48, Example 4.9 (e): Replace “every x ∈ L is modular” by “every
x ∈ Bn (q) is modular”.

• page 48, Example 4.9 (e), Note: Replace “every two points” by “every two
distinct points”. Similarly, replace “every two lines” by “every two distinct
lines”.

• page 49, Example 4.9 (f): In “{a, b, B1 − a, B2 − b, . . . , B3, . . . , Bk}”, remove
the first “. . .”.

• page 49, Theorem 4.13: The “of rank n” is slightly ambiguous: does it
refer to the lattice or to z ? (It is meant to refer to L, of course, rather
unsurprisingly, but I’d still split such a sentence into two if I were to write
it.)

• page 49, Theorem 4.13: If I am not mistaken, χL and χ[0̂,z] have never been
defined: You defined χM for matroids, but not χL for lattices. I guess it
wouldn’t be wrong to address this on a more general level and define χP
for every finite graded poset P which has a 0̂ and a 1̂, by setting

χP (t) = ∑
x∈P

µ
(

0̂, x
)

trk 1̂−rk x.

• page 50: In the first paragraph of this page, “begins xn − axn−1 + · · · ”
should be “begins tn − atn−1 + · · · ”.

• page 52, proof of Theorem 4.13: It took me a while to understand what
you mean by “the product will be preserved”. Your argument, set up more
algebraically, seems to be this: We define a K-module homomorphism α :
K
[
0̂, z
]
→ K [t] by α (v) = trk z−rk v for every v ∈

[
0̂, z
]
. We define a K-

module homomorphism β : K
{

w ∈ L | w ∧ z = 0̂
}
→ K [t] by β (y) =

tn−rk y−rk z for every y ∈ L satisfying y ∧ z = 0̂. We define a K-module

11
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homomorphism γ : KL → K [t] by γ (x) = tn−rk x for every x ∈ L. Then,
you show (using Claim 2) the equality

α (v) β (y) = γ (v ∨ y) (5)

for every v ∈ L and y ∈ L satisfying v ≤ z and y ∧ z = 0̂. By linearity, the
same equality thus holds for every v ∈ K

[
0̂, z
]

and y ∈ K
{

y ∈ L | y ∧ z = 0̂
}

.
Now, you apply the map γ to both sides of (33), and simplify the right hand
side using (5).

• page 53, Definition 4.13: Replace “LA” by “L (A)”.

• page 54, Example 4.11 (c): In “B1 ⊂ B2 · · · ⊂ Bn−1”, you forgot a “⊂” sign.

• page 54, Example 4.11 (c): “The atoms covered by πi” should be “The
atoms ≤ πi”.

• page 54, Example 4.11 (c): On the last line of the page, replace “Bn (t)” by
“Bn”.

• page 55: Again, “LA” should be “L (A)” (two lines above Theorem 4.14).

• page 61, proof of Proposition 5.13: On line 2 of the proof, replace “vi, ai ∈
Zn” by “vi ∈ Zn and ai ∈ Z”.

• page 62, proof of Proposition 5.13: On the second line of the page, you
write “if and only if at least one”. I understand the “only if”. The “if”
might be true, but is probably not easy to prove (the point is to rule out
accidental isomorphisms L (A) ∼= L

(
Ap
)

that could happen if hyperplanes
becoming parallel “undo” the damage done by hyperplanes becoming con-
current); either way it is a distraction from the proof.

• page 62, proof of Theorem 5.15: Replace “Fq” by “Fq”.
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