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The purpose of this note is to generalize the determinant formula conjectured by
Amdeberhan in [Amdebe17] and outline how it can be proven.

(Unfortunately, neither the generalization nor its proof are aesthetically reward-
ing; major parts of the proof are computations and case distinctions, and some of
them have been relegated to the SageMath computer algebra system, although in
theory they could have been done by hand. I hope that at least the method is of
some interest.)

0.0.1. Acknowledgments

The first part of the below proof of Theorem 1.7 (essentially, the construction of the
matrix P) has been anticipated in the comment of “user44191” on the MathOver-
flow question [Amdebe17]. SageMath [sage] was used to perform the necessary
computations.

1. The determinant

We set N = {0, 1, 2, . . .}. For any n ∈N, we let [n] denote the set {1, 2, . . . , n}.
We fix a commutative ring K.
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Definition 1.1. Let n ∈N and m ∈N. Let A ∈ Kn×m be a matrix.
(a) For any i ∈ [n] and j ∈ [m], we let Ai,j denote the (i, j)-th entry of A. Thus,

A =
(

Ai,j
)

1≤i≤n, 1≤j≤m.
(b) If I ⊆ [n] and J ⊆ [m] are two sets, then AI,J denotes the subma-

trix of A formed by removing all rows whose indexes are not in I and re-
moving all rows whose indexes are not in J. (Formally speaking: AI,J =(

Aix,jy

)
1≤x≤p, 1≤y≤q

, where the two sets I and J have been written in the forms

I =
{

i1 < i2 < · · · < ip
}

and J =
{

j1 < j2 < · · · < jq
}

.)
(c) We let rev A denote the n×m-matrix

(
An+1−i,m+1−j

)
1≤i≤n, 1≤j≤m. (This is

the matrix obtained by reflecting A both vertically and horizontally, or equiva-
lently by rotating it 180◦ around its center.)

Definition 1.2. Let a = (a0, a1, a2, . . .) ∈ K∞ be a sequence of elements of K. For
any n ∈N, we define a matrix Mn (a) ∈ Kn×n recursively (over n), as follows:

• The 0× 0-matrix M0 (a) is defined to be the zero matrix 0 ∈ K0×0.

• Assume that Mn−1 (a) ∈ K(n−1)×(n−1) is already defined for some positive
integer n. Then, we define the n× n-matrix Mn (a) ∈ Kn×n as follows:

– We have (Mn (a))1,j = aj−1 for each j ∈ [n].

– We have (Mn (a))i,n = an+i−2 for each i ∈ [n]. (Thus, (Mn (a))1,n is
defined twice, but the two definitions agree.)

– We have rev
(
(Mn (a)){2,3,...,n},[n−1]

)
= Mn−1 (a2n−1, a2n, a2n+1, . . .).

In visual terms, this definition translates as follows: To construct Mn (a), start
with an unfilled n× n-matrix, and then traverse all cells of the matrix (starting
with the cell (1, 1)) along a clockwise spiral (first traversing the 1-st row until cell
(1, n), then traversing the n-th column down until cell (n, n), then the n-th row
to the left until cell (1, n), then the 1-st column up until cell (2, 1), then the 2-nd
row until cell (2, n− 1), then the (n− 1)-th column until cell (n− 1, n− 1), and
so on), filling the cells with the elements a0, a1, a2, . . . in the order in which they
are encountered.

Example 1.3. If a = (a0, a1, a2, . . .), then

M5 (a) =


a0 a1 a2 a3 a4
a15 a16 a17 a18 a5
a14 a23 a24 a19 a6
a13 a22 a21 a20 a7
a12 a11 a10 a9 a8

 .
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Definition 1.4. Let a, b, c, d be four elements of K. Then,
−−−−→
a, b, c, d shall denote

the infinite sequence (a, b, c, d, a, b, c, d, a, . . .) which consists of a, b, c, d endlessly
repeated in this order.

Example 1.5. We have

M5

(−−−−→
a, b, c, d

)
=


a b c d a
d a b c b
c d a d c
b c b a d
a d c b a


and

M6

(−−−−→
a, b, c, d

)
=


a b c d a b
d a b c d c
c d a b a d
b c d c b a
a b a d c b
d c b a d c

 .

Remark 1.6. Here is some SageMath code to generate the matrix Mn

(−−−−→
a, b, c, d

)
.

We are assuming that a, b, c, d are four elements a,b,c,d of a commutative ring
K:

def L(n, i, j):
m = (j - i + 1 + 2 * min([n - i - j + 1, 0])) % 4
return d if m == 0 else (a if m == 1 else (b if m == 2 else c))

def M(n):
# This is the matrix M_n(a, b, c, d, a, b, c, d, a, ...).
return Matrix(K, [[L(n, i, j) for j in range(1, n+1)]

for i in range(1, n+1)])

This code works because of Lemma 2.1 below.

We can now state the main theorem:

Theorem 1.7. Assume that 2 is invertible in K. Let a, b, c, d be four elements of
K. Let a be the infinite sequence

−−−−→
a, b, c, d.

Define four further elements u, v, U, V of K by

u = d− b, v = a− c, U = d + b and V = a + c.

(a) If n = 4k for some positive integer k, then

det (Mn (a)) =
1
4

vn−4
(

v4 − u2v2 +
(

U2 −V2
) (

(2k− 1)2 v2 − (2k)2 u2
))

.
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(b) If n = 4k + 2 for some positive integer k, then

det (Mn (a)) = −
1
4

vn−4
(

v4 − u2v2 +
(

U2 −V2
) (

(2k + 1)2 v2 − (2k)2 u2
))

.

(c) If n = 4k + 1 for some positive integer k, then

det (Mn (a)) =
1
2

un−3
(

u2 (v + V)− (2k)2 v
(

U2 −V2
))

.

(d) If n = 4k + 3 for some positive integer k, then

det (Mn (a)) =
1
2

vun−3
(

u2 + vV − (2k + 1)2
(

U2 −V2
))

.

A particular case of this theorem (for K = Q, a = 1, b = 2, c = 3 and d = 0) is
Amdeberhan’s conjecture [Amdebe17]:

Corollary 1.8. Assume that K = Q. Let p be a positive integer. Then,

det
(

M2p

(−−−−→
1, 2, 3, 0

))
= 3 (2p− 1) 4p−1

and
det

(
M2p+1

(−−−−→
1, 2, 3, 0

))
= −

(
3p2 − 1

)
4p.

2. The proof

Corollary 1.8 follows from Theorem 1.7 by straightforward computations (and case
distinctions). It thus remains to prove Theorem 1.7.

The proof will be laborious, but nothing less should have been expected from the
form of Theorem 1.7. We begin with notations.

Throughout this section, we let K, a, b, c, d, u, v, U, V, a be as in Theorem 1.7. For
each i ∈ Z, set

ai =


a, if i ≡ 0 mod 4;
b, if i ≡ 1 mod 4;
c, if i ≡ 2 mod 4;
d, if i ≡ 3 mod 4.

(1)

Then, (a0, a1, a2, . . .) =
−−−−→
a, b, c, d = a is a periodic sequence with period 4. More pre-

cisely, the two-sided infinite sequence (. . . , a−2, a−1, a0, a1, a2, . . .) is periodic with
period 4.
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We let n ≥ 4 be an integer. We shall use the Iverson bracket notation (i.e., we let
[A] denote the truth value of any statement A). Define a function q : Z→ Z by

q (m) = min {m, 0} = [m < 0]m for each m ∈ Z.

Thus, every m ≤ 0 satisfies q (m) = m, and every m ≥ 0 satisfies q (m) = 0. It is
easy to see that each integer m satisfies

q (m) + q (−m) = − |m| ≡ m mod 2 (2)

and thus
2 (q (m) + q (−m)) ≡ 2m mod 4, (3)

so that
2q (−m) ≡ 2m− 2q (m)mod 4. (4)

We can now state a more-or-less explicit formula for each entry of the matrix
Mn (a):

Lemma 2.1. For every i ∈ [n] and j ∈ [n], we have

(Mn (a))i,j = aj−i+2q(n−i−j+1). (5)

Proof of Lemma 2.1. Induction over n. The induction base is obvious. For the induc-
tion step, we fix a positive integer n, and we fix i ∈ [n] and j ∈ [n]. We are in one
of three cases:

• Case 1: We have i = 1. Thus, (Mn (a))i,j = (Mn (a))1,j = aj−1 (by the definition
of Mn (a)). But

j− i︸︷︷︸
=1

+2q

n− i︸︷︷︸
=1

−j + 1

 = j− 1 + 2 q (n− j)︸ ︷︷ ︸
=0

(since n−j≥0)

= j− 1,

so that aj−i+2q(n−i−j+1) = aj−1. Hence, (Mn (a))i,j = aj−1 = aj−i+2q(n−i−j+1).
This proves (5) in Case 1.

• Case 2: We have j = n. Thus, (Mn (a))i,j = (Mn (a))i,n = an+i−2 (by the
definition of Mn (a)). But

j︸︷︷︸
=n

−i + 2q

n− i− j︸︷︷︸
=n

+1

 = n− i + 2 q (1− i)︸ ︷︷ ︸
=1−i

(since 1−i≤0)

= n− i + 2 (1− i)

= n− 3i + 2 ≡ n + i− 2 mod 4,

so that aj−i+2q(n−i−j+1) = an+i−2 (since the two-sided infinite sequence
(. . . , a−2, a−1, a0, a1, a2, . . .) is periodic with period 4). Hence, (Mn (a))i,j =

an+i−2 = aj−i+2q(n−i−j+1). This proves (5) in Case 2.
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• Case 3: We have neither i = 1 nor j = n. Thus, i ∈ {2, 3, . . . , n} and j ∈ [n− 1].
Now, recall that rev

(
(Mn (a)){2,3,...,n},[n−1]

)
= Mn−1 (a2n−1, a2n, a2n+1, . . .).

Hence,(
(Mn (a)){2,3,...,n},[n−1]

)
i−1,j

= (Mn−1 (a2n−1, a2n, a2n+1, . . .))n−(i−1),n−j .

But (a2n−1, a2n, a2n+1, . . .) = −−−−−−−−−−−−−−→a2n−1, a2n, a2n+1, a2n+2 (since the sequence (a0, a1, a2, . . .)
is periodic with period 4). Hence, the induction hypothesis (applied to n− 1,
a2n−1, a2n, a2n+1, a2n+2 and (a2n−1, a2n, a2n+1, . . .) instead of n, a, b, c, d and a)
shows that

(Mn−1 (a2n−1, a2n, a2n+1, . . .))i,j = a2n−1+(j−i+2q((n−1)−i−j+1))

for all i ∈ [n− 1] and j ∈ [n− 1] (where, for this sentence only, we let i and j
denote arbitrary elements of [n− 1] rather than the two i and j we have fixed
before). Applying this to n− (i− 1) and n− j instead of i and j, we conclude
that

(Mn−1 (a2n−1, a2n, a2n+1, . . .))n−(i−1),n−j

= a2n−1+((n−j)−(n−(i−1))+2q((n−1)−(n−(i−1))−(n−j)+1)).

Altogether,

(Mn (a))i,j =
(
(Mn (a)){2,3,...,n},[n−1]

)
i−1,j

= (Mn−1 (a2n−1, a2n, a2n+1, . . .))n−(i−1),n−j

= a2n−1+((n−j)−(n−(i−1))+2q((n−1)−(n−(i−1))−(n−j)+1)).

But since

2n− 1 + ((n− j)− (n− (i− 1)) + 2q ((n− 1)− (n− (i− 1))− (n− j) + 1))

= 2n− 1 + (n− j)− (n− (i− 1))︸ ︷︷ ︸
=2n−j−2+i

+2q

(n− 1)− (n− (i− 1))− (n− j) + 1︸ ︷︷ ︸
=−(n−i−j+1)


= 2n− j− 2 + i + 2q (− (n− i− j + 1))︸ ︷︷ ︸

≡2(n−i−j+1)−2q(n−i−j+1)mod 4
(by (4), applied to m=n−i−j+1)

≡ 2n− j− 2 + i + 2 (n− i− j + 1)− 2q (n− i− j + 1)
= 4n− 3j− i− 2q (n− i− j + 1)
≡ j− i + 2q (n− i− j + 1)mod 4,

we have

a2n−1+((n−j)−(n−(i−1))+2q((n−1)−(n−(i−1))−(n−j)+1)) = aj−i+2q(n−i−j+1),
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and thus

(Mn (a))i,j = a2n−1+((n−j)−(n−(i−1))+2q((n−1)−(n−(i−1))−(n−j)+1)) = aj−i+2q(n−i−j+1).

This proves (5) in Case 3.

Hence, the proof of (5) is complete.

We denote the n× n-matrix Mn (a) by L. Thus, (5) rewrites as follows:

Li,j = aj−i+2q(n−i−j+1) (6)

for all i ∈ [n] and j ∈ [n].
Next, we define an n× n-matrix P as follows:

• Start with the n× n-matrix L.

• For each i ∈ {n, n− 1, . . . , 5} (in this order), we subtract the (i− 4)-th row
from the i-th row. (Note that the order in which we perform these operations
is chosen in such a way that the row being subtracted has not been modified
prior to being subtracted.)

• For each j ∈ {n, n− 1, . . . , 5} (in this order), we subtract the (j− 4)-th column
from the j-th column.

• The resulting matrix we call P.

Thus, the entries of P are explicitly given as follows:

Pi,j = Li,j − [i > 4] Li−4,j − [j > 4] Li,j−4 + [i > 4] [j > 4] Li−4,j−4. (7)

Here, we are using the convention that if A is a false statement, then [A] x is
understood to be 0 for any expression x, even if x is undefined. (Thus, [i > 4] Li−4,j
is 0 when i ≤ 4.)

The matrix P was obtained from L by row transformations and column transfor-
mations, all of which preserve the determinant. Hence,

det P = det L. (8)

But the matrix P has a lot more zeroes than L, as the following examples demon-
strate:

Example 2.2. Here is the matrix P for n = 9:

P =



a b c d 0 0 0 0 0
d a b c 0 0 0 0 −u
c d a b 0 0 0 u 0
b c d a 0 0 −u 0 u
0 0 0 0 0 u 0 −u 0
0 0 0 0 −u 0 u 0 u
0 0 0 u 0 −u 0 −u 0
0 0 −u 0 u 0 u 0 −u
0 u 0 −u 0 −u 0 u 0


.
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Here is the matrix P for n = 10:

P =



a b c d 0 0 0 0 0 0
d a b c 0 0 0 0 0 −v
c d a b 0 0 0 0 v 0
b c d a 0 0 0 −v 0 v
0 0 0 0 0 0 v 0 −v 0
0 0 0 0 0 −v 0 v 0 v
0 0 0 0 v 0 −v 0 −v 0
0 0 0 −v 0 v 0 v 0 −v
0 0 v 0 −v 0 −v 0 v 0
0 −v 0 v 0 v 0 −v 0 0


.

Here is the matrix P for n = 11:

P =



a b c d 0 0 0 0 0 0 0
d a b c 0 0 0 0 0 0 u
c d a b 0 0 0 0 0 −u 0
b c d a 0 0 0 0 u 0 −u
0 0 0 0 0 0 0 −u 0 u 0
0 0 0 0 0 0 u 0 −u 0 −u
0 0 0 0 0 −u 0 u 0 u 0
0 0 0 0 u 0 −u 0 −u 0 u
0 0 0 −u 0 u 0 u 0 −u 0
0 0 u 0 −u 0 −u 0 u 0 0
0 −u 0 u 0 u 0 −u 0 0 0


.

Here is the matrix P for n = 12:

P =



a b c d 0 0 0 0 0 0 0 0
d a b c 0 0 0 0 0 0 0 v
c d a b 0 0 0 0 0 0 −v 0
b c d a 0 0 0 0 0 v 0 −v
0 0 0 0 0 0 0 0 −v 0 v 0
0 0 0 0 0 0 0 v 0 −v 0 −v
0 0 0 0 0 0 −v 0 v 0 v 0
0 0 0 0 0 v 0 −v 0 −v 0 v
0 0 0 0 −v 0 v 0 v 0 −v 0
0 0 0 v 0 −v 0 −v 0 v 0 0
0 0 −v 0 v 0 v 0 −v 0 0 0
0 v 0 −v 0 −v 0 v 0 0 0 0



.

These examples may suggest a pattern (for n ≥ 7):
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• The submatrix P[4],[4] of P is


a b c d
d a b c
c d a b
b c d a

.

• The rest of the “northwestern triangle” of P is filled with zeroes.

• If n is even, then the “southeastern triangle” beneath the anti-diagonal is filled
with entries 0, v,−v in a predictable way. If n is odd, then the “southeastern
triangle” is filled with entries 0, u,−u in a predictable way.

We shall formalize this in a concrete formula in a few moments (Lemma 2.3).
First, let us make one more definition: We set

w =

{
v, if n is even;
u, if n is odd.

.

Lemma 2.3. Let n ≥ 7.

(a) The submatrix P[4],[4] of P is


a b c d
d a b c
c d a b
b c d a

.

(b) Let i ∈ [n] and j ∈ [n] be such that (i, j) /∈ [4]2. Then,

Pi,j = (−1)b(i−j)/2c+1 w


1, if i + j ∈ {n + 2, n + 4} ;
−1, if i + j ∈ {n + 6, n + 8} ;
0, otherwise.

.

Proof of Lemma 2.3. (a) From (7), we obtain P[4],[4] = L[4],[4], and this can be com-
puted via (6). The condition n ≥ 7 ensures that q (n− i− j + 1) = 0 whenever
i ∈ [4] and j ∈ [4]. This proves Lemma 2.3 (a).

(b) We are in one of the following three cases:
Case 1: We have i ∈ [4].
Case 2: We have j ∈ [4].
Case 3: We have neither i ∈ [4] nor j ∈ [4].
We shall only consider Case 3; the other two cases are left to the reader. Thus,
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we have neither i ∈ [4] nor j ∈ [4]. Hence, i > 4 and j > 4. Thus, (7) simplifies to

Pi,j = Li,j − Li−4,j − Li,j−4 + Li−4,j−4

= aj−i+2q(n−i−j+1) − aj−(i−4)+2q(n−(i−4)−j+1)

− a(j−4)−i+2q(n−i−(j−4)+1) + a(j−4)−(i−4)+2q(n−(i−4)−(j−4)+1)

(by (6))
= aj−i+2q(n−i−j+1) − aj−i+4+2q(n−i−j+5) − aj−4−i+2q(n−i−j+5) + aj−i+2q(n−i−j+9)

= aj−i+2q(n−i−j+1) − aj−i+2q(n−i−j+5) − aj−i+2q(n−i−j+5) + aj−i+2q(n−i−j+9) here, we have gotten rid of some 4’s in the subscripts
(since the two-sided infinite sequence (. . . , a−2, a−1, a0, a1, a2, . . .)

is periodic with period 4)


= aj−i+2q(n−i−j+1) − 2aj−i+2q(n−i−j+5) + aj−i+2q(n−i−j+9). (9)

If the integer n− i− j+ 1 is even, then the integers q (n− i− j + 1), q (n− i− j + 5)
and q (n− i− j + 9) are even (because q (m) is even for each even integer m),
whence the integers 2q (n− i− j + 1), 2q (n− i− j + 5) and 2q (n− i− j + 9) are
divisible by 4, and therefore the three entries aj−i+2q(n−i−j+1), aj−i+2q(n−i−j+5) and
aj−i+2q(n−i−j+9) are equal (since the two-sided infinite sequence (. . . , a−2, a−1, a0, a1, a2, . . .)
is periodic with period 4). Hence, if the integer n− i − j + 1 is even, then (9) be-
comes

Pi,j = aj−i+2q(n−i−j+1) − 2aj−i+2q(n−i−j+1) + aj−i+2q(n−i−j+1) = 0

= (−1)b(i−j)/2c+1 w


1, if i + j ∈ {n + 2, n + 4} ;
−1, if i + j ∈ {n + 6, n + 8} ;
0, otherwise.(

since we have neither i + j ∈ {n + 2, n + 4}
nor i + j ∈ {n + 6, n + 8} (because n− i− j + 1 is even)

)
.

Thus, if the integer n− i− j + 1 is even, then Lemma 2.3 (b) holds. Hence, for the
rest of this proof, we WLOG assume that the integer n− i − j + 1 is odd. Hence,
i + j = n + k for some even k ∈ Z. We are therefore in one of the following six
subcases:

Subcase 3.1: We have i + j < n + 1.
Subcase 3.2: We have i + j = n + 2.
Subcase 3.3: We have i + j = n + 4.
Subcase 3.4: We have i + j = n + 6.
Subcase 3.5: We have i + j = n + 8.
Subcase 3.6: We have i + j > n + 9.
Let us first consider Subcase 3.1. In this case, we have i + j < n + 1. Hence, the

integers n − i − j + 1, n − i − j + 5 and n − i − j + 9 are positive. Therefore, the
numbers q (n− i− j + 1), q (n− i− j + 5), q (n− i− j + 9) all equal 0. Thus, (9)
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simplifies to

Pi,j = aj−i+2·0 − 2aj−i+2q·0 + aj−i+2q·0 = 0

= (−1)b(i−j)/2c+1 w


1, if i + j ∈ {n + 2, n + 4} ;
−1, if i + j ∈ {n + 6, n + 8} ;
0, otherwise.

(since we have neither i + j ∈ {n + 2, n + 4} nor i + j ∈ {n + 6, n + 8} (because
i + j < n + 1)). Hence, Lemma 2.3 (b) is proven in Subcase 3.1.

Let us now consider Subcase 3.2. In this case, we have i + j = n + 2. Hence,
n− i− j = −2, and thus q (n− i− j + 1) = q (−1) = −1, q (n− i− j + 5) = q (3) =
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0, q (n− i− j + 9) = q (8) = 0. Thus, (9) simplifies to

Pi,j = aj−i+2·(−1) − 2aj−i+2q·0 + aj−i+2q·0 = aj−i−2 − aj−i

=


a, if j− i− 2 ≡ 0 mod 4;
b, if j− i− 2 ≡ 1 mod 4;
c, if j− i− 2 ≡ 2 mod 4;
d, if j− i− 2 ≡ 3 mod 4

−


a, if j− i ≡ 0 mod 4;
b, if j− i ≡ 1 mod 4;
c, if j− i ≡ 2 mod 4;
d, if j− i ≡ 3 mod 4

(by (1))

=


c, if j− i ≡ 0 mod 4;
d, if j− i ≡ 1 mod 4;
a, if j− i ≡ 2 mod 4;
b, if j− i ≡ 3 mod 4

−


a, if j− i ≡ 0 mod 4;
b, if j− i ≡ 1 mod 4;
c, if j− i ≡ 2 mod 4;
d, if j− i ≡ 3 mod 4

=


c− a, if j− i ≡ 0 mod 4;
d− b, if j− i ≡ 1 mod 4;
a− c, if j− i ≡ 2 mod 4;
b− d, if j− i ≡ 3 mod 4

=


−v, if j− i ≡ 0 mod 4;
u, if j− i ≡ 1 mod 4;
v, if j− i ≡ 2 mod 4;
−u, if j− i ≡ 3 mod 4

=


−v, if i− j ≡ 0 mod 4;
u, if i− j ≡ 3 mod 4;
v, if i− j ≡ 2 mod 4;
−u, if i− j ≡ 1 mod 4

= (−1)b(i−j)/2c+1

{
u, if i− j ≡ 1 mod 2;
v, if i− j ≡ 0 mod 2

= (−1)b(i−j)/2c+1

{
u, if n ≡ 1 mod 2;
v, if n ≡ 0 mod 2︸ ︷︷ ︸

=

v, if n is even;
u, if n is odd.

=w

(since i− j ≡ i + j = n + 2 ≡ n mod 2)

= (−1)b(i−j)/2c+1 w

= (−1)b(i−j)/2c+1 w


1, if i + j ∈ {n + 2, n + 4} ;
−1, if i + j ∈ {n + 6, n + 8} ;
0, otherwise

(since i + j = n + 2 ∈ {n + 2, n + 4}). Hence, Lemma 2.3 (b) is proven in Subcase
3.2.

Subcases 3.3, 3.4 and 3.5 are analogous.
Let us finally consider Subcase 3.6. In this case, we have i + j > n + 9. Hence, the

integers n− i− j+ 1, n− i− j+ 5 and n− i− j+ 9 are negative. Therefore, the num-
bers q (n− i− j + 1), q (n− i− j + 5), q (n− i− j + 9) equal n − i − j + 1, n − i −
j+ 5, n− i− j+ 9, respectively. In particular, these numbers are therefore congruent
modulo 4; therefore, the three elements aj−i+2q(n−i−j+1), aj−i+2q(n−i−j+5), aj−i+2q(n−i−j+9)
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are equal (since the two-sided infinite sequence (. . . , a−2, a−1, a0, a1, a2, . . .) is peri-
odic with period 4). Hence, (9) simplifies to

Pi,j = aj−i+2q(n−i−j+1) − 2aj−i+2q(n−i−j+1) + aj−i+2q(n−i−j+1) = 0

= (−1)b(i−j)/2c+1 w


1, if i + j ∈ {n + 2, n + 4} ;
−1, if i + j ∈ {n + 6, n + 8} ;
0, otherwise.

(since we have neither i + j ∈ {n + 2, n + 4} nor i + j ∈ {n + 6, n + 8} (because
i + j > n + 9)). Hence, Lemma 2.3 (b) is proven in Subcase 3.6.

Hence, Lemma 2.3 (b) is proven in the whole Case 3.
As we said, the Cases 1 and 2 are analogous, with the caveat that i and j cannot

both belong to [4] (since (i, j) /∈ [4]2) and that i + j cannot belong to {n + 6, n + 8}
(since i + j ≤ n + 4). Thus, the proof of Lemma 2.3 is complete.

Next, we define an n× n-matrix Q as follows:

• Start with the n× n-matrix P.

• Turn the matrix upside down (i.e., switch its topmost row with its bottommost
row, and so on).

• Multiply the i-th row of the matrix with (−1)bn/2c+i−1 for each i ∈ {1, 2, . . . , n}.

• The resulting matrix we call Q.

Thus, the entries of Q are explicitly given as follows:

Qi,j = (−1)bn/2c+i−1 Pn+1−i,j. (10)

The matrix Q was obtained from P by row transformations, which act on the
determinant in a predictable way:

det Q =

(
n

∏
i=1

(−1)bn/2c+i−1

)
︸ ︷︷ ︸

=(−1)bn/2cn+n(n−1)/2

(−1)n(n−1)/2 det P = (−1)bn/2cn+n(n−1)/2 (−1)n(n−1)/2 det P

= (−1)bn/2cn det P. (11)

But the matrix Q has more meaningful patterns than P, as the following examples
demonstrate:
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Example 2.4. Here is the matrix Q for n = 9:

Q =



0 u 0 −u 0 −u 0 u 0
0 0 u 0 −u 0 −u 0 u
0 0 0 u 0 −u 0 −u 0
0 0 0 0 u 0 −u 0 −u
0 0 0 0 0 u 0 −u 0
−b −c −d −a 0 0 u 0 −u

c d a b 0 0 0 u 0
−d −a −b −c 0 0 0 0 u

a b c d 0 0 0 0 0


.

Here is the matrix Q for n = 10:

Q =



0 v 0 −v 0 −v 0 v 0 0
0 0 v 0 −v 0 −v 0 v 0
0 0 0 v 0 −v 0 −v 0 v
0 0 0 0 v 0 −v 0 −v 0
0 0 0 0 0 v 0 −v 0 −v
0 0 0 0 0 0 v 0 −v 0
−b −c −d −a 0 0 0 v 0 −v

c d a b 0 0 0 0 v 0
−d −a −b −c 0 0 0 0 0 v

a b c d 0 0 0 0 0 0


.

Here is the matrix Q for n = 11:

Q =



0 u 0 −u 0 −u 0 u 0 0 0
0 0 u 0 −u 0 −u 0 u 0 0
0 0 0 u 0 −u 0 −u 0 u 0
0 0 0 0 u 0 −u 0 −u 0 u
0 0 0 0 0 u 0 −u 0 −u 0
0 0 0 0 0 0 u 0 −u 0 −u
0 0 0 0 0 0 0 u 0 −u 0
b c d a 0 0 0 0 u 0 −u
−c −d −a −b 0 0 0 0 0 u 0

d a b c 0 0 0 0 0 0 u
−a −b −c −d 0 0 0 0 0 0 0


.
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Here is the matrix Q for n = 12:

Q =



0 v 0 −v 0 −v 0 v 0 0 0 0
0 0 v 0 −v 0 −v 0 v 0 0 0
0 0 0 v 0 −v 0 −v 0 v 0 0
0 0 0 0 v 0 −v 0 −v 0 v 0
0 0 0 0 0 v 0 −v 0 −v 0 v
0 0 0 0 0 0 v 0 −v 0 −v 0
0 0 0 0 0 0 0 v 0 −v 0 −v
0 0 0 0 0 0 0 0 v 0 −v 0
b c d a 0 0 0 0 0 v 0 −v
−c −d −a −b 0 0 0 0 0 0 v 0

d a b c 0 0 0 0 0 0 0 v
−a −b −c −d 0 0 0 0 0 0 0 0



.

Lemma 2.5. Let n ≥ 7.
(a) The submatrix Q{n−3,n−2,n−1,1},[4] of Q is

(−1)b(n−1)/2c


−b −c −d −a

c d a b
−d −a −b −c

a b c d

.

(b) Let i ∈ [n] and j ∈ [n] be such that (i, j) /∈ {n− 3, n− 2, n− 1, 1} × [4].
Then,

Qi,j = w


1, if j− i ∈ {1, 7} ;
−1, if j− i ∈ {3, 5} ;
0, otherwise.

.

Proof of Lemma 2.5. This follows from Lemma 2.3 by straightforward computation
using (10).

If X is any finite set of integers, then ∑ X shall denote the sum of all elements of
X.

Now, recall the following property of determinants (known as Laplace expansion
in multiple rows):

Proposition 2.6. Let n ∈N. Let A ∈ Kn×n. Let X be a subset of [n]. Then,

det A = ∑
Y⊆[n];
|Y|=|X|

(−1)∑ X+∑ Y det (AX,Y)det
(

A[n]\X,[n]\Y

)
.
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See, e.g., [Grinbe15, Theorem 6.156 (a)] for a proof of Proposition 2.6 (but beware
that the sets denoted by P and Q in [Grinbe15, Theorem 6.156 (a)] correspond to
our sets X and Y).

Applying Proposition 2.6 to A = Q and X = {n− 3, n− 2, n− 1, n}, we conclude
that

det Q = ∑
Y⊆[n];
|Y|=4

(−1)∑{n−3,n−2,n−1,n}+∑ Y︸ ︷︷ ︸
=(−1)∑ Y

(since ∑{n−3,n−2,n−1,n}=4n−6 is even)

det
(

Q{n−3,n−2,n−1,n},Y

)

det

 Q[n]\{n−3,n−2,n−1,n},[n]\Y︸ ︷︷ ︸
=Q[n−4],[n]\Y

(since [n]\{n−3,n−2,n−1,n}=[n−4])


= ∑

Y⊆[n];
|Y|=4

(−1)∑ Y det
(

Q{n−3,n−2,n−1,n},Y

)
det

(
Q[n−4],[n]\Y

)
. (12)

But Lemma 2.5 shows that the 4× n-matrix Q{n−3,n−2,n−1,n},[n] (which is formed by
the bottommost 4 rows of Q) has at most 7 nonzero columns: namely, its columns
1, 2, 3, 4, n− 2, n− 1, n. Therefore, for any subset Y of [n], we have det

(
Q{n−3,n−2,n−1,n},Y

)
=

0 unless Y ⊆ {1, 2, 3, 4, n− 2, n− 1, n}. This allows us to restrict the sum on the
right hand side of (12) to the subsets Y satisfying Y ⊆ {1, 2, 3, 4, n− 2, n− 1, n}.
Thus, (12) becomes

det Q = ∑
Y⊆[n];
|Y|=4;

Y⊆{1,2,3,4,n−2,n−1,n}

(−1)∑ Y det
(

Q{n−3,n−2,n−1,n},Y

)
det

(
Q[n−4],[n]\Y

)

= ∑
Y⊆{1,2,3,4,n−2,n−1,n};

|Y|=4

(−1)∑ Y det
(

Q{n−3,n−2,n−1,n},Y

)
det

(
Q[n−4],[n]\Y

)
.

(13)

Furthermore, Lemma 2.5 shows that the 1-st column of the (n− 4) × n-matrix
Q[n−4],[n] (which is formed by the first n− 4 rows of Q) is 0. Hence, for any subset

Y of {1, 2, 3, 4, n− 2, n− 1, n}, we have det
(

Q[n−4],[n]\Y

)
= 0 unless 1 /∈ [n] \ Y.

This allows us to restrict the sum on the right hand side of (13) to the subsets Y
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satisfying 1 /∈ [n] \Y. Thus, (13) becomes

det Q = ∑
Y⊆{1,2,3,4,n−2,n−1,n};

|Y|=4;
1/∈[n]\Y

(−1)∑ Y det
(

Q{n−3,n−2,n−1,n},Y

)
det

(
Q[n−4],[n]\Y

)

= ∑
Y⊆{1,2,3,4,n−2,n−1,n};

|Y|=4;
1∈Y

(−1)∑ Y det
(

Q{n−3,n−2,n−1,n},Y

)
det

(
Q[n−4],[n]\Y

)
.

(14)

The right hand side of this equality is now a sum with
(

6
3

)
= 20 addends, corre-

sponding to all the 20 subsets Y of {1, 2, 3, 4, n− 2, n− 1, n} satisfying |Y| = 4 and
1 ∈ Y. Explicitly, these 20 subsets are

{1, 2, 3, 4} , {1, 2, 3, n− 2} , {1, 2, 3, n− 1} , {1, 2, 3, n} ,
{1, 2, 4, n− 2} , {1, 2, 4, n− 1} , {1, 2, 4, n} , {1, 2, n− 2, n− 1} ,
{1, 2, n− 2, n} , {1, 2, n− 1, n} , {1, 3, 4, n− 2} , {1, 3, 4, n− 1} ,
{1, 3, 4, n} , {1, 3, n− 2, n− 1} , {1, 3, n− 2, n} , {1, 3, n− 1, n} ,
{1, 4, n− 2, n− 1} , {1, 4, n− 2, n} , {1, 4, n− 1, n} , {1, n− 2, n− 1, n} .

Computing the terms ∑ Y and det
(

Q{n−3,n−2,n−1,n},Y

)
for each of these subsets Y

is straightforward, thanks to the explicit formula for Qi,j given in Lemma 2.5. But

we also need to compute the (n− 4)× (n− 4)-determinants det
(

Q[n−4],[n]\Y

)
, and

this is not immediately obvious. Here we need one further idea.
Let S be the (n− 1)× (n− 1)-matrix ([j = i + 1])1≤i≤n−1, 1≤j≤n−1 ∈ K(n−1)×(n−1).

This is the (n− 1) × (n− 1)-matrix whose first superdiagonal is filled with 1’s,
whereas its other entries are filled with 0’s.

Example 2.7. If n = 10, then

S =



0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0


.
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Notice that we call this matrix S because it represents the so-called “shift opera-
tor”. It is well-known (and easy to check by induction over k) that

Sk = ([j = i + k])1≤i≤n−1, 1≤j≤n−1 (15)

for each k ∈N.
We define a further (n− 1)× (n− 1)-matrix G by G = In−1− S2− S4 + S6. Then:

Lemma 2.8. Let i, j ∈ [n− 1]. Then,

Gi,j =


1, if j− i ∈ {0, 6} ;
−1, if j− i ∈ {2, 4} ;
0, otherwise.

.

Proof of Lemma 2.8. Follows from the definition of G and from (15).

Example 2.9. If n = 9, then

G =



1 0 −1 0 −1 0 1 0 0
0 1 0 −1 0 −1 0 1 0
0 0 1 0 −1 0 −1 0 1
0 0 0 1 0 −1 0 −1 0
0 0 0 0 1 0 −1 0 −1
0 0 0 0 0 1 0 −1 0
0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


.

Now, assume that n ≥ 7 from now on. (The other cases can be done by hand.)

Lemma 2.10. We have Q[n−4],{2,3,...,n} = wG[n−4],[n−1].

Proof of Lemma 2.10. Compare the entries of Q[n−4],{2,3,...,n} with those of wG[n−4],[n−1].
(The former are given by Lemma 2.5 (b), while the latter are given by Lemma
2.8.)

The usefulness of Lemma 2.10 is in that it helps us compute det
(

Q[n−4],[n]\Y

)
for

subsets Y of {1, 2, 3, 4, n− 2, n− 1, n} satisfying |Y| = 4 and 1 ∈ Y. Indeed, if Y is
such a subset, then Q[n−4],[n]\Y is an (n− 4)× (n− 4)-submatrix of Q[n−4],{2,3,...,n} =

wG[n−4],[n−1] (by Lemma 2.10), and thus det
(

Q[n−4],[n]\Y

)
is an (n− 4)× (n− 4)-

minor of wG[n−4],[n−1], and therefore equals wn−4 times a (n− 4)× (n− 4)-minor
of G[n−4],[n−1]. Our problem thus is reduced to computing (n− 4)× (n− 4)-minors
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of G[n−4],[n−1]. These are, of course, (n− 4)× (n− 4)-minors of G as well. It turns
out that all such minors can be easily computed. To do so, we recall another known
fact about determinants (the Jacobi complementary minor theorem):

Proposition 2.11. Let n ∈N. Let A ∈ Kn×n be an invertible matrix. Let X and Y
be two subsets of [n] satisfying |X| = |Y|. Prove that

det (AX,Y) = (−1)∑ X+∑ Y det A · det
((

A−1
)
[n]\Y,[n]\X

)
.

See, e.g., [Grinbe15, Exercise 6.56] for a proof of Proposition 2.11 (but beware
that the sets denoted by P and Q in [Grinbe15, Exercise 6.56] correspond to our
sets X and Y).

We would like to apply Proposition 2.11 to n− 1 and G instead of n and A. To
do so, it helps to know the determinant det G and the inverse G−1 of G.

The determinant det G is easy to compute: The matrix G = In−1− S2− S4 + S6 is
upper-unitriangular (since S is strictly upper-triangular), and thus its determinant
det G = 1. Thus, the matrix G is invertible. Hence, Proposition 2.11 (applied to
n− 1 and G instead of n and A) shows that if X and Y are two subsets of [n− 1]
satisfying |X| = |Y|, then

det (GX,Y) = (−1)∑ X+∑ Y det G︸ ︷︷ ︸
=1

·det
((

G−1
)
[n−1]\Y,[n−1]\X

)
= (−1)∑ X+∑ Y det

((
G−1

)
[n−1]\Y,[n−1]\X

)
. (16)

In order to compute the inverse G−1, we first observe that

1
1− x2 − x4 + x6 = ∑

h∈N

bh/2 + 1c x2h

in the ring of power series Z [[x]] (indeed, this can be shown by expanding(
1− x2 − x4 + x6) ∑

h∈N

bh/2 + 1c x2h). Substituting S for x into this equality (which

is allowed since the matrix S is nilpotent), we obtain(
In−1 − S2 − S4 + S6

)−1
= ∑

h∈N

bh/2 + 1c S2h.

Since G = In−1 − S2 − S4 + S6, this rewrites as

G−1 = ∑
h∈N

bh/2 + 1c S2h.

Therefore, (
G−1

)
i,j
=

{
b(j− i) /4 + 1c , if j− i ∈ {0, 2, 4, . . .} ;
0, otherwise

(17)
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for all i, j ∈ [n− 1] (by (15)).

Example 2.12. If n = 9, then

G−1 =



1 0 1 0 2 0 2 0 3
0 1 0 1 0 2 0 2 0
0 0 1 0 1 0 2 0 2
0 0 0 1 0 1 0 2 0
0 0 0 0 1 0 1 0 2
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


.

Now that we have an explicit formula (17) for each entry of G−1, we can compute
any 4× 4-minor of G−1. Using Proposition 2.11, we shall then be able to compute
any (n− 4)× (n− 4)-minor of G.

Let us be specific. For any set Y of integers satisfying 1 ∈ Y, we let Y− be the set
{y− 1 | y ∈ Y; y 6= 1} of integers. Notice that |Y−| = |Y| − 1.

Let Y be a subset of {1, 2, 3, 4, n− 2, n− 1, n} satisfying |Y| = 4 and 1 ∈ Y. Then,
Y− is the 3-element subset {y− 1 | y ∈ Y; y > 1} of {1, 2, 3, n− 3, n− 2, n− 1}.
We have

Q[n−4],[n]\Y =

Q[n−4],{2,3,...,n}︸ ︷︷ ︸
=wG[n−4],[n−1]

(by Lemma 2.10)


[n−4],[n−1]\Y−

=
(

wG[n−4],[n−1]

)
[n−4],[n−1]\Y−

= w
(

G[n−4],[n−1]

)
[n−4],[n−1]\Y−︸ ︷︷ ︸

=G[n−4],[n−1]\Y−

= wG[n−4],[n−1]\Y− .
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Hence,

det
(

Q[n−4],[n]\Y

)
= det

(
wG[n−4],[n−1]\Y−

)
= wn−4 det

(
G[n−4],[n−1]\Y−

)
︸ ︷︷ ︸

=(−1)∑[n−4]+∑([n−1]\Y−) det
(
(G−1)[n−1]\([n−1]\Y−),[n−1]\[n−4]

)
(by (16))

= wn−4 (−1)∑[n−4]+∑([n−1]\Y−)︸ ︷︷ ︸
=(−1)(n−3)+(n−2)+(n−1)−∑ Y−

=(−1)n+∑ Y−

det


(

G−1
)
[n−1]\([n−1]\Y−),[n−1]\[n−4]︸ ︷︷ ︸
=(G−1)Y− ,{n−3,n−2,n−1}


= wn−4 (−1)n+∑ Y− det

((
G−1

)
Y−,{n−3,n−2,n−1}

)
. (18)

Now, let us combine all we have shown. The definition of L yields L = Mn (a).
Hence,

det (Mn (a)) = det L = det P (by (8))

= (−1)bn/2cn det Q (by (11)) . (19)

Hence, in order to compute det (Mn (a)) (and thus prove Theorem 1.7), it suffices
to compute det Q.
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The equality (14) becomes

det Q

= ∑
Y⊆{1,2,3,4,n−2,n−1,n};

|Y|=4;
1∈Y

(−1)∑ Y det
(

Q{n−3,n−2,n−1,n},Y

)
det

(
Q[n−4],[n]\Y

)
︸ ︷︷ ︸

=wn−4(−1)n+∑ Y− det
(
(G−1)Y− ,{n−3,n−2,n−1}

)
(by (18))

= ∑
Y⊆{1,2,3,4,n−2,n−1,n};

|Y|=4;
1∈Y

(−1)∑ Y det
(

Q{n−3,n−2,n−1,n},Y

)

wn−4 (−1)n+∑ Y− det
((

G−1
)

Y−,{n−3,n−2,n−1}

)
= ∑

Y⊆{1,2,3,4,n−2,n−1,n};
|Y|=4;
1∈Y

(−1)∑ Y (−1)n+∑ Y−︸ ︷︷ ︸
=(−1)n

det
(

Q{n−3,n−2,n−1,n},Y

)

wn−4 det
((

G−1
)

Y−,{n−3,n−2,n−1}

)
= (−1)n wn−4 ∑

Y⊆{1,2,3,4,n−2,n−1,n};
|Y|=4;
1∈Y

det
(

Q{n−3,n−2,n−1,n},Y

)
det

((
G−1

)
Y−,{n−3,n−2,n−1}

)
.

(20)

Using Lemma 2.5, it is straightforward to see that

Q{n−3,n−2,n−1},{1,2,3,4,n−2,n−1,n} =


b c d a v 0 −v
−c −d −a −b 0 v 0

d a b c 0 0 v
−a −b −c −d 0 0 0

 (21)

(since w = v (because n = 4k is even)). Using (17), it is straightforward to see that

(
G−1

)
{1,2,3,n−3,n−2,n−1},{n−3,n−2,n−1}

=


k 0 k
0 k 0

k− 1 0 k
1 0 1
0 1 0
0 0 1

 , (22)

Also, recall our above list of all 20 subsets Y of {1, 2, 3, 4, n− 2, n− 1, n} satisfying
|Y| = 4 and 1 ∈ Y. Using this list, the sum on the right hand side of (20) becomes

∑
Y⊆{1,2,3,4,n−2,n−1,n};

|Y|=4;
1∈Y

det
(

Q{n−3,n−2,n−1,n},Y

)
det

((
G−1

)
Y−,{n−3,n−2,n−1}

)
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= det
(

Q{n−3,n−2,n−1,n},{1,2,3,4}

)
det

((
G−1

)
{1,2,3},{n−3,n−2,n−1}

)
+ det

(
Q{n−3,n−2,n−1,n},{1,2,3,n−2}

)
det

((
G−1

)
{1,2,n−3},{n−3,n−2,n−1}

)
+ det

(
Q{n−3,n−2,n−1,n},{1,2,3,n−1}

)
det

((
G−1

)
{1,2,n−2},{n−3,n−2,n−1}

)
+ det

(
Q{n−3,n−2,n−1,n},{1,2,3,n}

)
det

((
G−1

)
{1,2,n−1},{n−3,n−2,n−1}

)
+ det

(
Q{n−3,n−2,n−1,n},{1,2,4,n−2}

)
det

((
G−1

)
{1,3,n−3},{n−3,n−2,n−1}

)
+ det

(
Q{n−3,n−2,n−1,n},{1,2,4,n−1}

)
det

((
G−1

)
{1,3,n−2},{n−3,n−2,n−1}

)
+ det

(
Q{n−3,n−2,n−1,n},{1,2,4,n}

)
det

((
G−1

)
{1,3,n−1},{n−3,n−2,n−1}

)
+ det

(
Q{n−3,n−2,n−1,n},{1,2,n−2,n−1}

)
det

((
G−1

)
{1,n−3,n−2},{n−3,n−2,n−1}

)
+ det

(
Q{n−3,n−2,n−1,n},{1,2,n−2,n}

)
det

((
G−1

)
{1,n−3,n−1},{n−3,n−2,n−1}

)
+ det

(
Q{n−3,n−2,n−1,n},{1,2,n−1,n}

)
det

((
G−1

)
{1,n−2,n−1},{n−3,n−2,n−1}

)
+ det

(
Q{n−3,n−2,n−1,n},{1,3,4,n−2}

)
det

((
G−1

)
{2,3,n−3},{n−3,n−2,n−1}

)
+ det

(
Q{n−3,n−2,n−1,n},{1,3,4,n−1}

)
det

((
G−1

)
{2,3,n−2},{n−3,n−2,n−1}

)
+ det

(
Q{n−3,n−2,n−1,n},{1,3,4,n}

)
det

((
G−1

)
{2,3,n−1},{n−3,n−2,n−1}

)
+ det

(
Q{n−3,n−2,n−1,n},{1,3,n−2,n−1}

)
det

((
G−1

)
{2,n−3,n−2},{n−3,n−2,n−1}

)
+ det

(
Q{n−3,n−2,n−1,n},{1,3,n−2,n}

)
det

((
G−1

)
{2,n−3,n−1},{n−3,n−2,n−1}

)
+ det

(
Q{n−3,n−2,n−1,n},{1,3,n−1,n}

)
det

((
G−1

)
{2,n−2,n−1},{n−3,n−2,n−1}

)
+ det

(
Q{n−3,n−2,n−1,n},{1,4,n−2,n−1}

)
det

((
G−1

)
{3,n−3,n−2},{n−3,n−2,n−1}

)
+ det

(
Q{n−3,n−2,n−1,n},{1,4,n−2,n}

)
det

((
G−1

)
{3,n−3,n−1},{n−3,n−2,n−1}

)
+ det

(
Q{n−3,n−2,n−1,n},{1,4,n−1,n}

)
det

((
G−1

)
{3,n−2,n−1},{n−3,n−2,n−1}

)
+ det

(
Q{n−3,n−2,n−1,n},{1,n−2,n−1,n}

)
det

((
G−1

)
{n−3,n−2,n−1},{n−3,n−2,n−1}

)
.
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All matrices appearing on the right hand side of this equality can be read off from
the equalities (21) and (22); thus, the right hand side can be explicitly computed.
Here is some SageMath code to do so:

from itertools import combinations

Q.<a,b,c,d,k> = PolynomialRing(QQ)
# We treat ‘k‘ as a polynomial indeterminate.

n = 4 * k
u = d - b
v = a - c
U = d + b
V = a + c
w = v # since ‘n = 4k ‘ is even

Q7 = Matrix(Q, [[b, c, d, a, v, 0, -v],
[-c, -d, -a, -b, 0, v, 0],
[d, a, b, c, 0, 0, v],
[-a, -b, -c, -d, 0, 0, 0]])

# This ‘‘Q7‘‘ is the matrix in \eqref{eq.4k-case.Q}.

G6 = Matrix(Q, [[k, 0, k], [0, k, 0], [k-1, 0, k],
[1, 0, 1], [0, 1, 0], [0, 0, 1]])

# This ‘‘G6‘‘ is the matrix in \eqref{eq.4k-case.G-1}.

res = Q.zero()
for yminus in combinations(range(6), 3):

y = [0] + [i+1 for i in yminus]
MinorOfQ7 = Matrix(Q, [[Q7[i][j] for i in range(4)]

for j in y]).det()
MinorOfG6 = Matrix(Q, [[G6[i][j] for i in yminus]

for j in range(3)]).det()
res += MinorOfQ7 * MinorOfG6

print res == (1/4) * (v ** 4 - u ** 2 * v ** 2 + (U ** 2 - V ** 2) *
((2*k - 1) ** 2 * v ** 2 - (2*k) **
2 * u ** 2))

The variable res computed by this code thus equals the sum on the right hand
side of (20). The last line of the code confirms that this sum equals

1
4

(
v4 − u2v2 +

(
U2 −V2

) (
(2k− 1)2 v2 − (2k)2 u2

))
.
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Hence, (20) becomes

det Q

= (−1)n︸ ︷︷ ︸
=1

(since n is even)

wn−4︸ ︷︷ ︸
=vn−4

(since w=v)

∑
Y⊆{1,2,3,4,n−2,n−1,n};

|Y|=4;
1∈Y

det
(

Q{n−3,n−2,n−1,n},Y

)
det

((
G−1

)
Y−,{n−3,n−2,n−1}

)

︸ ︷︷ ︸
=

1
4(

v4−u2v2+(U2−V2)((2k−1)2v2−(2k)2u2))

=
1
4

vn−4
(

v4 − u2v2 +
(

U2 −V2
) (

(2k− 1)2 v2 − (2k)2 u2
))

.

Now, (19) becomes

det (Mn (a)) = (−1)bn/2cn︸ ︷︷ ︸
=1

(since n is even)

det Q

=
1
4

vn−4
(

v4 − u2v2 +
(

U2 −V2
) (

(2k− 1)2 v2 − (2k)2 u2
))

.

This proves Theorem 1.7 (a).
Similar arguments can be used to verify parts (b), (c) and (d) of Theorem 1.7.
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