Ideals of QSym, shuffle-compatibility and exterior peaks Darij Grinberg (UMN) 28 February 2018 University of Washington ``` slides: http: //www.cip.ifi.lmu.de/~grinberg/algebra/seattle18.pdf paper: http: //www.cip.ifi.lmu.de/~grinberg/algebra/gzshuf2.pdf project: https://github.com/darijgr/gzshuf ``` # Section 1 # **Shuffle-compatibility** #### Reference: • Ira M. Gessel, Yan Zhuang, *Shuffle-compatible permutation statistics*, arXiv:1706.00750. This project spins off from a paper by Ira Gessel and Yan Zhuang (arXiv:1706.00750), which Yan presented here last week. We prove a conjecture (shuffle-compatibility of Epk) and study a stronger version of shuffle-compatibility. - This project spins off from a paper by Ira Gessel and Yan Zhuang (arXiv:1706.00750), which Yan presented here last week. - We prove a conjecture (shuffle-compatibility of Epk) and study a stronger version of shuffle-compatibility. - Let $\mathbb{N} = \{0, 1, 2, \ldots\}.$ - For $n \in \mathbb{N}$, an *n-permutation* means a tuple of *n* distinct positive integers. - Example: (3,1,7) is a 3-permutation, but (2,1,2) is not. - This project spins off from a paper by Ira Gessel and Yan Zhuang (arXiv:1706.00750), which Yan presented here last week. - We prove a conjecture (shuffle-compatibility of Epk) and study a stronger version of shuffle-compatibility. - Let $\mathbb{N} = \{0, 1, 2, \ldots\}.$ - For $n \in \mathbb{N}$, an *n-permutation* means a tuple of *n* distinct positive integers. - Example: (3,1,7) is a 3-permutation, but (2,1,2) is not. - A *permutation* means an *n*-permutation for some *n*. - This project spins off from a paper by Ira Gessel and Yan Zhuang (arXiv:1706.00750), which Yan presented here last week. - We prove a conjecture (shuffle-compatibility of Epk) and study a stronger version of shuffle-compatibility. - Let $\mathbb{N} = \{0, 1, 2, \ldots\}.$ - For $n \in \mathbb{N}$, an *n-permutation* means a tuple of *n* distinct positive integers. - Example: (3,1,7) is a 3-permutation, but (2,1,2) is not. - A *permutation* means an *n*-permutation for some *n*. If π is an *n*-permutation, then $|\pi| := n$. This project spins off from a paper by Ira Gessel and Yan Zhuang (arXiv:1706.00750), which Yan presented here last week. We prove a conjecture (shuffle-compatibility of Epk) and study a stronger version of shuffle-compatibility. - Let $\mathbb{N} = \{0, 1, 2, \ldots\}.$ - For $n \in \mathbb{N}$, an *n-permutation* means a tuple of *n* distinct positive integers. Example: (3,1,7) is a 3-permutation, but (2,1,2) is not. • A permutation means an n-permutation for some n. If π is an n-permutation, then $|\pi| := n$. We say that π is nonempty if n > 0. This project spins off from a paper by Ira Gessel and Yan Zhuang (arXiv:1706.00750), which Yan presented here last week. We prove a conjecture (shuffle-compatibility of Epk) and study a stronger version of shuffle-compatibility. - Let $\mathbb{N} = \{0, 1, 2, \ldots\}.$ - For $n \in \mathbb{N}$, an *n-permutation* means a tuple of *n* distinct positive integers. Example: (3,1,7) is a 3-permutation, but (2,1,2) is not. - A permutation means an n-permutation for some n. If π is an n-permutation, then $|\pi| := n$. We say that π is nonempty if n > 0. - If π is an n-permutation and $i \in \{1, 2, ..., n\}$, then π_i denotes the i-th entry of π . - Two *n*-permutations α and β (with the same *n*) are order-equivalent if all $i, j \in \{1, 2, ..., n\}$ satisfy $(\alpha_i < \alpha_j) \iff (\beta_i < \beta_j)$. - Order-equivalence is an equivalence relation on permutations. Its equivalence classes are called order-equivalence classes. - Two *n*-permutations α and β (with the same *n*) are order-equivalent if all $i, j \in \{1, 2, ..., n\}$ satisfy $(\alpha_i < \alpha_j) \iff (\beta_i < \beta_j)$. - Order-equivalence is an equivalence relation on permutations. Its equivalence classes are called order-equivalence classes. - A permutation statistic (henceforth just statistic) is a map st from the set of all permutations (to anywhere) that is constant on each order-equivalence class. Intuition: A statistic computes some "fingerprint" of a permutation that only depends on the relative order of its letters. - Two *n*-permutations α and β (with the same *n*) are order-equivalent if all $i, j \in \{1, 2, ..., n\}$ satisfy $(\alpha_i < \alpha_j) \iff (\beta_i < \beta_j)$. - Order-equivalence is an equivalence relation on permutations. Its equivalence classes are called order-equivalence classes. - A *permutation statistic* (henceforth just *statistic*) is a map st from the set of all permutations (to anywhere) that is constant on each order-equivalence class. **Intuition:** A statistic computes some "fingerprint" of a permutation that only depends on the relative order of its letters. **Note:** A statistic need not be integer-valued! It can be set-valued, or list-valued for example. - If π is an n-permutation, then a *descent* of π means an $i \in \{1, 2, ..., n-1\}$ such that $\pi_i > \pi_{i+1}$. - The *descent set* Des π of a permutation π is the set of all descents of π . Thus, Des is a statistic. **Example:** Des $(3, 1, 5, 2, 4) = \{1, 3\}.$ - If π is an n-permutation, then a descent of π means an $i \in \{1, 2, \dots, n-1\}$ such that $\pi_i > \pi_{i+1}$. - The *descent set* Des π of a permutation π is the set of all descents of π . Thus, Des is a statistic. **Example:** Des $(3, 1, 5, 2, 4) = \{1, 3\}.$ • The descent number $\operatorname{des} \pi$ of a permutation π is the number of all descents of π : that is, $\operatorname{des} \pi = |\operatorname{Des} \pi|$. Thus, des is a statistic. **Example:** des(3,1,5,2,4) = 2. - If π is an n-permutation, then a descent of π means an $i \in \{1, 2, \dots, n-1\}$ such that $\pi_i > \pi_{i+1}$. - The *descent set* Des π of a permutation π is the set of all descents of π . Thus, Des is a statistic. **Example:** Des $(3, 1, 5, 2, 4) = \{1, 3\}.$ • The descent number des π of a permutation π is the number of all descents of π : that is, des $\pi = |\text{Des }\pi|$. Thus, des is a statistic. **Example:** des(3,1,5,2,4) = 2. • The *major index* maj π of a permutation π is the **sum** of all descents of π . Thus, maj is a statistic. **Example:** maj (3, 1, 5, 2, 4) = 4. - If π is an n-permutation, then a descent of π means an $i \in \{1, 2, \dots, n-1\}$ such that $\pi_i > \pi_{i+1}$. - The *descent set* Des π of a permutation π is the set of all descents of π . Thus, Des is a statistic. **Example:** Des $(3, 1, 5, 2, 4) = \{1, 3\}.$ • The descent number des π of a permutation π is the number of all descents of π : that is, des $\pi = |\text{Des }\pi|$. Thus, des is a statistic. **Example:** des(3,1,5,2,4) = 2. • The *major index* maj π of a permutation π is the **sum** of all descents of π . Thus, maj is a statistic. **Example:** maj (3, 1, 5, 2, 4) = 4. • The *Coxeter length* inv (i.e., *number of inversions*) and the *set of inversions* are statistics, too. # Examples of permutation statistics, 2: peaks - If π is an n-permutation, then a peak of π means an $i \in \{2,3,\ldots,n-1\}$ such that $\pi_{i-1} < \pi_i > \pi_{i+1}$. (Thus, peaks can only exist if $n \geq 3$. The name refers to the plot of π , where peaks are local maxima.) - The *peak set* $Pk \pi$ of a permutation π is the set of all peaks of π . Thus, Pk is a statistic. ## **Examples:** - $Pk(3,1,5,2,4) = \{3\}.$ - $Pk(1,3,2,5,4,6) = \{2,4\}.$ - $Pk(3,2) = \{\}.$ # Examples of permutation statistics, 2: peaks - If π is an n-permutation, then a peak of π means an $i \in \{2,3,\ldots,n-1\}$ such that $\pi_{i-1} < \pi_i > \pi_{i+1}$. (Thus, peaks can only exist if $n \geq 3$. The name refers to the plot of π , where peaks are local maxima.) - The *peak set* $Pk \pi$ of a permutation π is the set of all peaks of π . Thus, Pk is a statistic. #### **Examples:** - $Pk(3,1,5,2,4) = \{3\}.$ - $Pk(1,3,2,5,4,6) = \{2,4\}.$ - $Pk(3,2) = \{\}.$ - The *peak number* $\operatorname{pk} \pi$ of a permutation π is the number of all peaks of π : that is, $\operatorname{pk} \pi = |\operatorname{Pk} \pi|$. Thus, pk is a statistic. **Example:** pk(3, 1, 5, 2, 4) = 1. # **Examples of permutation statistics, 3: left peaks** - If π is an n-permutation, then a *left peak* of π means an $i \in \{1, 2, \ldots, n-1\}$ such that $\pi_{i-1} < \pi_i > \pi_{i+1}$, where we set $\pi_0 = 0$. - (Thus, left peaks are the same as peaks, except that 1 counts as a left peak if $\pi_1 > \pi_2$.) - The *left peak set* Lpk π of a permutation π is the set of all left peaks of π . Thus, Lpk is a statistic. #### **Examples:** - Lpk $(3, 1, 5, 2, 4) = \{1, 3\}.$ - Lpk $(1,3,2,5,4,6) = \{2,4\}.$ - Lpk $(3,2) = \{1\}.$ - The *left peak number* $\operatorname{lpk} \pi$ of a permutation π is the number of all left peaks of π : that is, $\operatorname{lpk} \pi = |\operatorname{Lpk} \pi|$. Thus, lpk is a statistic. **Example:** lpk(3, 1, 5, 2, 4) = 2. # **Examples of permutation statistics, 4: right peaks** • If π is an n-permutation, then a *right peak* of π means an $i \in \{2, 3, \ldots, n\}$ such that $\pi_{i-1} < \pi_i > \pi_{i+1}$, where we set $\pi_{n+1} = 0$. (Thus, right peaks are the same as peaks, except that n counts as a right peak if $\pi_{n-1} < \pi_n$.) • The *right peak set* $\operatorname{\mathsf{Rpk}} \pi$ of a permutation π is the set of all right peaks of π . Thus, Rpk is a statistic. #### **Examples:** - $Rpk(3,1,5,2,4) = \{3,5\}.$ - $Rpk(1,3,2,5,4,6) = \{2,4,6\}.$ - $Rpk(3,2) = \{\}.$ - The right peak number $\operatorname{rpk} \pi$ of a permutation π is the number of all right peaks of π : that is, $\operatorname{rpk} \pi =
\operatorname{Rpk} \pi|$. Thus, rpk is a statistic. **Example:** rpk(3, 1, 5, 2, 4) = 2. # **Examples of permutation statistics, 5: exterior peaks** • If π is an n-permutation, then an exterior peak of π means an $i \in \{1, 2, \ldots, n\}$ such that $\pi_{i-1} < \pi_i > \pi_{i+1}$, where we set $\pi_0 = 0$ and $\pi_{n+1} = 0$. (Thus, exterior peaks are the same as peaks, except that 1 counts if $\pi_1 > \pi_2$, and n counts if $\pi_{n-1} < \pi_n$.) • The exterior peak set $\operatorname{Epk} \pi$ of a permutation π is the set of all exterior peaks of π . Thus, Epk is a statistic. #### **Examples:** - Epk $(3, 1, 5, 2, 4) = \{1, 3, 5\}.$ - Epk $(1,3,2,5,4,6) = \{2,4,6\}$. - Epk $(3, 2) = \{1\}.$ - Thus, Epk $\pi = \operatorname{Lpk} \pi \cup \operatorname{Rpk} \pi$ if $n \geq 2$. - The exterior peak number epk π of a permutation π is the number of all exterior peaks of π : that is, epk $\pi = |\text{Epk }\pi|$. Thus, epk is a statistic. **Example:** epk(3, 1, 5, 2, 4) = 3. # **Shuffles of permutations** - Let π and σ be two permutations. - We say that π and σ are *disjoint* if they have no letter in common. ## **Shuffles of permutations** - Let π and σ be two permutations. - We say that π and σ are *disjoint* if they have no letter in common. - Assume that π and σ are disjoint. Set $m=|\pi|$ and $n=|\sigma|$. An (m+n)-permutation τ is called a *shuffle* of π and σ if both π and σ appear as subsequences of τ . (And thus, no other letters can appear in τ .) - We let $S(\pi, \sigma)$ be the set of all shuffles of π and σ . - Example: $$S((4,1),(2,5)) = \{(4,1,2,5),(4,2,1,5),(4,2,5,1), (2,4,1,5),(2,4,5,1),(2,5,4,1)\}.$$ ## **Shuffles of permutations** - Let π and σ be two permutations. - We say that π and σ are *disjoint* if they have no letter in common. - Assume that π and σ are disjoint. Set $m=|\pi|$ and $n=|\sigma|$. An (m+n)-permutation τ is called a *shuffle* of π and σ if both π and σ appear as subsequences of τ . (And thus, no other letters can appear in τ .) - We let $S(\pi, \sigma)$ be the set of all shuffles of π and σ . - Example: $$S((4,1),(2,5)) = \{(4,1,2,5),(4,2,1,5),(4,2,5,1),(2,4,1,5),(2,4,5,1),(2,5,4,1)\}.$$ • Observe that π and σ have $\binom{m+n}{m}$ shuffles, in bijection with m-element subsets of $\{1, 2, \ldots, m+n\}$. # Shuffle-compatible statistics: definition • A statistic st is said to be *shuffle-compatible* if for any two disjoint permutations π and σ , the multiset $$\{\operatorname{st}\tau\mid \tau\in\mathcal{S}\left(\pi,\sigma\right)\}_{\mathsf{multiset}}$$ depends only on st π , st σ , $|\pi|$ and $|\sigma|$. # Shuffle-compatible statistics: definition • A statistic st is said to be *shuffle-compatible* if for any two disjoint permutations π and σ , the multiset $$\{\operatorname{st}\tau\mid \tau\in\mathcal{S}\left(\pi,\sigma\right)\}_{\mathsf{multiset}}$$ depends only on st π , st σ , $|\pi|$ and $|\sigma|$. • In other words, st is shuffle-compatible if and only the distribution of st on the set $S(\pi,\sigma)$ stays unchaged if π and σ are replaced by two other disjoint permutations of the same size and same st-values. # Shuffle-compatible statistics: definition • A statistic st is said to be *shuffle-compatible* if for any two disjoint permutations π and σ , the multiset $$\{\operatorname{st}\tau\mid \tau\in\mathcal{S}\left(\pi,\sigma\right)\}_{\mathsf{multiset}}$$ depends only on st π , st σ , $|\pi|$ and $|\sigma|$. • In other words, st is shuffle-compatible if and only the distribution of st on the set $S(\pi, \sigma)$ stays unchaged if π and σ are replaced by two other disjoint permutations of the same size and same st-values. In particular, it has to stay unchanged if π and σ are replaced by two permutations order-equivalent to them: e.g., st must have the same distribution on the three sets $$S((4,1),(2,5)), S((2,1),(3,5)), S((9,8),(2,3)).$$ Gessel and Zhuang, in arXiv:1706.00750, prove that various important statistics are shuffle-compatible (but some are not). - Gessel and Zhuang, in arXiv:1706.00750, prove that various important statistics are shuffle-compatible (but some are not). - Statistics they show to be shuffle-compatible: Des, des, maj, Pk, Lpk, Rpk, lpk, rpk, epk, and various others. - Gessel and Zhuang, in arXiv:1706.00750, prove that various important statistics are shuffle-compatible (but some are not). - Statistics they show to be **shuffle-compatible**: Des, des, maj, Pk, Lpk, Rpk, lpk, rpk, epk, and various others. - Statistics that are **not shuffle-compatible**: inv, des + maj, maj₂ (sending π to the sum of the squares of its descents), (Pk, des) (sending π to (Pk π , des π)), and others. - Gessel and Zhuang, in arXiv:1706.00750, prove that various important statistics are shuffle-compatible (but some are not). - Statistics they show to be shuffle-compatible: Des, des, maj, Pk, Lpk, Rpk, lpk, rpk, epk, and various others. - Statistics that are **not shuffle-compatible**: inv, des + maj, maj₂ (sending π to the sum of the squares of its descents), (Pk, des) (sending π to (Pk π , des π)), and others. - Their proofs use a mixture of enumerative combinatorics (including some known formulas of MacMahon, Stanley, ...), quasisymmetric functions, Hopf algebra theory, P-partitions (and variants by Stembridge and Petersen), Eulerian polynomials (based on earlier work by Zhuang, and even earlier work by Foata and Strehl). - Gessel and Zhuang, in arXiv:1706.00750, prove that various important statistics are shuffle-compatible (but some are not). - Statistics they show to be shuffle-compatible: Des, des, maj, Pk, Lpk, Rpk, lpk, rpk, epk, and various others. - Statistics that are **not shuffle-compatible**: inv, des + maj, maj₂ (sending π to the sum of the squares of its descents), (Pk, des) (sending π to (Pk π , des π)), and others. - Their proofs use a mixture of enumerative combinatorics (including some known formulas of MacMahon, Stanley, ...), quasisymmetric functions, Hopf algebra theory, P-partitions (and variants by Stembridge and Petersen), Eulerian polynomials (based on earlier work by Zhuang, and even earlier work by Foata and Strehl). - The shuffle-compatibility of Epk is left unproven in Gessel/Zhuang. Proving this is our first goal. - We further begin the study of a finer version of shuffle-compatibility: "left- and right-shuffle-compatibility". - ullet Given two disjoint nonempty permutations π and σ , - a *left shuffle* of π and σ is a shuffle of π and σ that starts with a letter of π ; - a right shuffle of π and σ is a shuffle of π and σ that starts with a letter of σ . - We let $S_{\prec}(\pi, \sigma)$ be the set of all left shuffles of π and σ . We let $S_{\succ}(\pi, \sigma)$ be the set of all right shuffles of π and σ . - We further begin the study of a finer version of shuffle-compatibility: "left- and right-shuffle-compatibility". - ullet Given two disjoint nonempty permutations π and σ , - a *left shuffle* of π and σ is a shuffle of π and σ that starts with a letter of π ; - a *right shuffle* of π and σ is a shuffle of π and σ that starts with a letter of σ . - We let $S_{\prec}(\pi, \sigma)$ be the set of all left shuffles of π and σ . We let $S_{\succ}(\pi, \sigma)$ be the set of all right shuffles of π and σ . - A statistic st is said to be *left-shuffle-compatible* if for any two disjoint nonempty permutations π and σ such that the first entry of π is greater than the first entry of σ , the multiset $$\{\operatorname{st} \tau \mid \tau \in S_{\prec}(\pi, \sigma)\}_{\mathsf{multiset}}$$ depends only on st π , st σ , $|\pi|$ and $|\sigma|$. - We further begin the study of a finer version of shuffle-compatibility: "left- and right-shuffle-compatibility". - ullet Given two disjoint nonempty permutations π and σ , - a *left shuffle* of π and σ is a shuffle of π and σ that starts with a letter of π ; - a *right shuffle* of π and σ is a shuffle of π and σ that starts with a letter of σ . - We let $S_{\prec}(\pi, \sigma)$ be the set of all left shuffles of π and σ . We let $S_{\succ}(\pi, \sigma)$ be the set of all right shuffles of π and σ . - A statistic st is said to be *right-shuffle-compatible* if for any two disjoint nonempty permutations π and σ such that the first entry of π is greater than the first entry of σ , the multiset $$\{\operatorname{st}\tau\mid\tau\in\mathcal{S}_{\succ}(\pi,\sigma)\}_{\mathrm{multiset}}$$ depends only on st π , st σ , $|\pi|$ and $|\sigma|$. - We further begin the study of a finer version of shuffle-compatibility: "left- and right-shuffle-compatibility". - ullet Given two disjoint nonempty permutations π and σ , - a *left shuffle* of π and σ is a shuffle of π and σ that starts with a letter of π ; - a right shuffle of π and σ is a shuffle of π and σ that starts with a letter of σ . - We let $S_{\prec}(\pi, \sigma)$ be the set of all left shuffles of π and σ . We let $S_{\succ}(\pi, \sigma)$ be the set of all right shuffles of π and σ . - A statistic st is said to be *right-shuffle-compatible* if for any two disjoint nonempty permutations π and σ such that the first entry of π is greater than the first entry of σ , the multiset $$\{\operatorname{st} \tau \mid \tau \in
\mathcal{S}_{\succ}(\pi, \sigma)\}_{\text{multiset}}$$ - depends only on st π , st σ , $|\pi|$ and $|\sigma|$. - We'll show that Des, des, Lpk and Epk are left- and right-shuffle-compatible. # Section 2 # The algebraic approach: QSym and kernels #### Reference: - Ira M. Gessel, Yan Zhuang, *Shuffle-compatible permutation statistics*, arXiv:1706.00750. - Darij Grinberg, Victor Reiner, Hopf Algebras in Combinatorics, arXiv:1409.8356, and various other texts on combinatorial Hopf algebras. #### **Descent statistics** - Gessel and Zhuang prove most of their shuffle-compatibilities algebraically. Their methods involve combinatorial Hopf algebras (QSym and NSym). - These methods work for descent statistics only. What is a descent statistic? #### **Descent statistics** - Gessel and Zhuang prove most of their shuffle-compatibilities algebraically. Their methods involve combinatorial Hopf algebras (QSym and NSym). - These methods work for descent statistics only. What is a descent statistic? - A descent statistic is a statistic st such that st π depends only on $|\pi|$ and $\mathrm{Des}\,\pi$ (in other words: if π and σ are two n-permutations with $\mathrm{Des}\,\pi=\mathrm{Des}\,\sigma$, then st $\pi=\mathrm{st}\,\sigma$). Intuition: A descent statistic is a statistic which "factors through Des in each size". • A composition is a finite list of positive integers. A composition of $n \in \mathbb{N}$ is a composition whose entries sum to n. - A composition is a finite list of positive integers. A composition of $n \in \mathbb{N}$ is a composition whose entries sum to n. - For example, (1,3,2) is a composition of 6. - A composition is a finite list of positive integers. A composition of n ∈ N is a composition whose entries sum to n. - For example, (1,3,2) is a composition of 6. - Let $n \in \mathbb{N}$, and let $[n-1] = \{1, 2, \dots, n-1\}$. Then, there are mutually inverse bijections Des : {compositions of $$n$$ } \rightarrow {subsets of $[n-1]$ }, $$(i_1,i_2,\ldots,i_k) \mapsto \{i_1+i_2+\cdots+i_j \mid 1 \leq j \leq k-1\}$$ and Comp : {subsets of $$[n-1]$$ } \rightarrow {compositions of n }, $\{s_1 < s_2 < \dots < s_k\} \mapsto (s_1 - s_0, s_2 - s_1, \dots, s_{k+1} - s_k)$ (using the notations $s_0 = 0$ and $s_{k+1} = n$). - A composition is a finite list of positive integers. A composition of n ∈ N is a composition whose entries sum to n. - For example, (1,3,2) is a composition of 6. - Let n∈ N, and let [n-1] = {1,2,...,n-1}. Then, there are mutually inverse bijections Des and Comp between {subsets of [n-1]} and {compositions of n}. If π is an n-permutation, then Comp (Des π) is called the descent composition of π, and is written Comp π. - A composition is a finite list of positive integers. A composition of n ∈ N is a composition whose entries sum to n. - For example, (1,3,2) is a composition of 6. - Let n∈ N, and let [n-1] = {1,2,...,n-1}. Then, there are mutually inverse bijections Des and Comp between {subsets of [n-1]} and {compositions of n}. If π is an n-permutation, then Comp (Des π) is called the descent composition of π, and is written Comp π. - Thus, a descent statistic is a statistic st that factors through Comp (that is, st π depends only on Comp π). - A composition is a finite list of positive integers. A composition of n ∈ N is a composition whose entries sum to n. - For example, (1,3,2) is a composition of 6. - Let n∈ N, and let [n-1] = {1,2,...,n-1}. Then, there are mutually inverse bijections Des and Comp between {subsets of [n-1]} and {compositions of n}. If π is an n-permutation, then Comp (Des π) is called the descent composition of π, and is written Comp π. - Thus, a descent statistic is a statistic st that factors through Comp (that is, st π depends only on Comp π). - If st is a descent statistic, then we use the notation st α (where α is a composition) for st π , where π is any permutation with Comp $\pi = \alpha$. - A composition is a finite list of positive integers. A composition of n ∈ N is a composition whose entries sum to n. - For example, (1,3,2) is a composition of 6. - Let n∈ N, and let [n-1] = {1,2,...,n-1}. Then, there are mutually inverse bijections Des and Comp between {subsets of [n-1]} and {compositions of n}. If π is an n-permutation, then Comp (Des π) is called the descent composition of π, and is written Comp π. - If st is a descent statistic, then we use the notation st α (where α is a composition) for st π , where π is any permutation with Comp $\pi = \alpha$. - Warning: Des $$((1,5,2)$$ the composition) = $\{1,6\}$; Des $((1,5,2)$ the permutation) = $\{2\}$. Same for other statistics! Context must disambiguate. Almost all of our statistics so far are descent statistics. Examples: - Almost all of our statistics so far are descent statistics. Examples: - Des, des and maj are descent statistics. - Almost all of our statistics so far are descent statistics. Examples: - Des, des and maj are descent statistics. - ullet Pk is a descent statistic: If π is an *n*-permutation, then $$\mathsf{Pk}\,\pi = (\mathsf{Des}\,\pi) \setminus ((\mathsf{Des}\,\pi \cup \{0\}) + 1)\,,$$ where for any set K of integers and any integer a we set $K + a = \{k + a \mid k \in K\}$. Similarly, Lpk, Rpk and Epk are descent statistics. - Almost all of our statistics so far are descent statistics. Examples: - Des, des and maj are descent statistics. - ullet Pk is a descent statistic: If π is an *n*-permutation, then $$\mathsf{Pk}\,\pi = (\mathsf{Des}\,\pi) \setminus ((\mathsf{Des}\,\pi \cup \{0\}) + 1)\,,$$ where for any set K of integers and any integer a we set $K + a = \{k + a \mid k \in K\}$. - Similarly, Lpk, Rpk and Epk are descent statistics. - inv is not a descent statistic: The permutations (2,1,3) and (3,1,2) have the same descents, but different numbers of inversions. - Almost all of our statistics so far are descent statistics. Examples: - Des, des and maj are descent statistics. - ullet Pk is a descent statistic: If π is an *n*-permutation, then $$\mathsf{Pk}\,\pi = (\mathsf{Des}\,\pi) \setminus ((\mathsf{Des}\,\pi \cup \{0\}) + 1)\,,$$ where for any set K of integers and any integer a we set $K + a = \{k + a \mid k \in K\}$. - Similarly, Lpk, Rpk and Epk are descent statistics. - inv is not a descent statistic: The permutations (2,1,3) and (3,1,2) have the same descents, but different numbers of inversions. - Question (Gessel & Zhuang). Is every shuffle-compatible statistic a descent statistic? - Let's now talk about power series, which are crucial to the algebraic approach to shuffle-compatibility. - Consider the ring $\mathbb{Q}[[x_1, x_2, x_3, \ldots]]$ of formal power series in countably many indeterminates. - Let's now talk about power series, which are crucial to the algebraic approach to shuffle-compatibility. - Consider the ring $\mathbb{Q}[[x_1, x_2, x_3, \ldots]]$ of formal power series in countably many indeterminates. - A formal power series f is said to be *bounded-degree* if the monomials it contains are bounded (from above) in degree. - Let's now talk about power series, which are crucial to the algebraic approach to shuffle-compatibility. - Consider the ring $\mathbb{Q}[[x_1, x_2, x_3, \ldots]]$ of formal power series in countably many indeterminates. - A formal power series f is said to be bounded-degree if the monomials it contains are bounded (from above) in degree. - A formal power series f is said to be *symmetric* if it is invariant under permutations of the indeterminates. Equivalently, if its coefficients in front of $x_{i_1}^{a_1}x_{i_2}^{a_2}\cdots x_{i_k}^{a_k}$ and $x_{j_1}^{a_1}x_{j_2}^{a_2}\cdots x_{j_k}^{a_k}$ are equal whenever i_1,i_2,\ldots,i_k are distinct and j_1,j_2,\ldots,j_k are distinct. - For example: - $1 + x_1 + x_2^3$ is bounded-degree but not symmetric. - $(1 + x_1)(1 + x_2)(1 + x_3) \cdots$ is symmetric but not bounded-degree. - Let's now talk about power series, which are crucial to the algebraic approach to shuffle-compatibility. - Consider the ring $\mathbb{Q}[[x_1, x_2, x_3, \ldots]]$ of formal power series in countably many indeterminates. - A formal power series f is said to be bounded-degree if the monomials it contains are bounded (from above) in degree. - A formal power series f is said to be *symmetric* if it is invariant under permutations of the indeterminates. Equivalently, if its coefficients in front of $x_{i_1}^{a_1}x_{i_2}^{a_2}\cdots x_{i_k}^{a_k}$ and $x_{j_1}^{a_1}x_{j_2}^{a_2}\cdots x_{j_k}^{a_k}$ are equal whenever i_1,i_2,\ldots,i_k are distinct and j_1,j_2,\ldots,j_k are distinct. - The symmetric bounded-degree power series form a subring Λ of $\mathbb{Q}[[x_1, x_2, x_3, \ldots]]$, called the *ring of symmetric functions* over \mathbb{Q} . This talk is not about it. - We shall now define the quasisymmetric functions a bigger algebra than Λ, but still with many of its nice properties. - A formal power series f (still in $\mathbb{Q}[[x_1, x_2, x_3, \ldots]]$) is said to be *quasisymmetric* if its coefficients in front of $x_{i_1}^{a_1} x_{i_2}^{a_2} \cdots x_{i_k}^{a_k}$ and $x_{j_1}^{a_1} x_{j_2}^{a_2} \cdots x_{j_k}^{a_k}$ are equal whenever $i_1 < i_2 < \cdots < i_k$ and $j_1 < j_2 < \cdots < j_k$. - For example: - Every symmetric power series is quasisymmetric. - $\sum_{i < j} x_i^2 x_j = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_3 + x_1^2 x_4 + \cdots$ is quasisymmetric, but not symmetric. - We shall now define the quasisymmetric functions a bigger algebra than Λ , but still with many of its nice properties. - A formal power series f (still in $\mathbb{Q}[[x_1, x_2, x_3, \ldots]]$) is said to be *quasisymmetric* if its coefficients in front of $x_{i_1}^{a_1} x_{i_2}^{a_2} \cdots x_{i_k}^{a_k}$ and $x_{j_1}^{a_1} x_{j_2}^{a_2} \cdots x_{j_k}^{a_k}$ are equal whenever $i_1 < i_2 < \cdots < i_k$ and $j_1 < j_2 < \cdots < j_k$. - For example: - Every symmetric power series
is quasisymmetric. - $\sum_{i < j} x_i^2 x_j = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_3 + x_1^2 x_4 + \cdots$ is quasisymmetric, but not symmetric. - Let QSym be the set of all quasisymmetric bounded-degree power series in $\mathbb{Q}[[x_1, x_2, x_3, \ldots]]$. This is a \mathbb{Q} -subalgebra, called the *ring of quasisymmetric functions* over \mathbb{Q} . (Gessel, 1980s.) - We shall now define the quasisymmetric functions a bigger algebra than Λ, but still with many of its nice properties. - A formal power series f (still in $\mathbb{Q}[[x_1, x_2, x_3, \ldots]]$) is said to be *quasisymmetric* if its coefficients in front of $x_{i_1}^{a_1}x_{i_2}^{a_2}\cdots x_{i_k}^{a_k}$ and $x_{j_1}^{a_1}x_{j_2}^{a_2}\cdots x_{j_k}^{a_k}$ are equal whenever $i_1 < i_2 < \cdots < i_k$ and $j_1 < j_2 < \cdots < j_k$. - For example: - Every symmetric power series is quasisymmetric. - $\sum_{i < j} x_i^2 x_j = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_3 + x_1^2 x_4 + \cdots$ is quasisymmetric, but not symmetric. - Let QSym be the set of all quasisymmetric bounded-degree power series in $\mathbb{Q}[[x_1, x_2, x_3, \ldots]]$. This is a \mathbb{Q} -subalgebra, called the *ring of quasisymmetric functions* over \mathbb{Q} . (Gessel, 1980s.) - We have $\Lambda \subseteq \mathsf{QSym} \subseteq \mathbb{Q}[[x_1, x_2, x_3, \ldots]].$ - We shall now define the quasisymmetric functions a bigger algebra than Λ , but still with many of its nice properties. - A formal power series f (still in $\mathbb{Q}[[x_1, x_2, x_3, \ldots]]$) is said to be *quasisymmetric* if its coefficients in front of $x_{i_1}^{a_1} x_{i_2}^{a_2} \cdots x_{i_k}^{a_k}$ and $x_{j_1}^{a_1} x_{j_2}^{a_2} \cdots x_{j_k}^{a_k}$ are equal whenever $i_1 < i_2 < \cdots < i_k$ and $j_1 < j_2 < \cdots < j_k$. - For example: - Every symmetric power series is quasisymmetric. - $\sum_{i < j} x_i^2 x_j = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_3 + x_1^2 x_4 + \cdots$ is quasisymmetric, but not symmetric. - Let QSym be the set of all quasisymmetric bounded-degree power series in $\mathbb{Q}[[x_1, x_2, x_3, \ldots]]$. This is a \mathbb{Q} -subalgebra, called the *ring of quasisymmetric functions* over \mathbb{Q} . (Gessel, 1980s.) - The Q-vector space QSym has several combinatorial bases. We will use two of them: the monomial basis and the fundamental basis. # Quasisymmetric functions, part 2: the monomial basis • For every composition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_k)$, define $$M_{\alpha} = \sum_{i_1 < i_2 < \dots < i_k} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_k}^{\alpha_k}$$ = sum of all monomials whose nonzero exponents are $\alpha_1, \alpha_2, \dots, \alpha_k$ in **this** order. This is a homogeneous power series of degree $|\alpha|$ (the *size* of α , defined by $|\alpha| := \alpha_1 + \alpha_2 + \cdots + \alpha_k$). - Examples: - $M_{()} = 1$. - $M_{(1,1)} = \sum_{i < j} x_i x_j = x_1 x_2 + x_1 x_3 + x_2 x_3 + x_1 x_4 + x_2 x_4 + \cdots$ - $M_{(2,1)} = \sum_{i < i} x_i^2 x_j = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_3 + \cdots$ - $M_{(3)} = \sum_{i} x_i^3 = x_1^3 + x_2^3 + x_3^3 + \cdots$ # Quasisymmetric functions, part 2: the monomial basis • For every composition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_k)$, define $$M_{\alpha} = \sum_{i_1 < i_2 < \dots < i_k} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_k}^{\alpha_k}$$ = sum of all monomials whose nonzero exponents are $\alpha_1, \alpha_2, \dots, \alpha_k$ in **this** order. This is a homogeneous power series of degree $|\alpha|$ (the *size* of α , defined by $|\alpha| := \alpha_1 + \alpha_2 + \cdots + \alpha_k$). • The family $(M_{\alpha})_{\alpha \text{ is a composition}}$ is a basis of the \mathbb{Q} -vector space QSym, called the *monomial basis* (or *M*-basis). # Quasisymmetric functions, part 3: the fundamental basis • For every composition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_k)$, define $$\begin{split} F_{\alpha} &= \sum_{\substack{i_1 \leq i_2 \leq \cdots \leq i_n; \\ i_j < i_{j+1} \text{ for all } j \in \mathsf{Des} \, \alpha}} \mathsf{x}_{i_1} \mathsf{x}_{i_2} \cdots \mathsf{x}_{i_n} \\ &= \sum_{\substack{\beta \text{ is a composition of } n; \\ \mathsf{Des} \, \beta \supseteq \mathsf{Des} \, \alpha}} \mathsf{M}_{\beta}, \qquad \text{where } \mathsf{n} = |\alpha| \, . \end{split}$$ This is a homogeneous power series of degree $|\alpha|$ again. - Examples: - $F_{()} = 1$. - $F_{(1,1)}^{(1)} = \sum_{i < i} x_i x_j = x_1 x_2 + x_1 x_3 + x_2 x_3 + x_1 x_4 + x_2 x_4 + \cdots$ - $F_{(2,1)} = \sum_{i \le j < k} x_i x_j x_k$. $F_{(3)} = \sum_{i \le j \le k} x_i x_j x_k$. # Quasisymmetric functions, part 3: the fundamental basis • For every composition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_k)$, define $$\begin{split} F_{\alpha} &= \sum_{\substack{i_1 \leq i_2 \leq \cdots \leq i_n; \\ i_j < i_{j+1} \text{ for all } j \in \mathsf{Des} \, \alpha}} x_{i_1} x_{i_2} \cdots x_{i_n} \\ &= \sum_{\substack{\beta \text{ is a composition of } n; \\ \mathsf{Des} \, \beta \supseteq \mathsf{Des} \, \alpha}} M_{\beta}, \qquad \text{where } n = |\alpha| \, . \end{split}$$ This is a homogeneous power series of degree $|\alpha|$ again. • The family $(F_{\alpha})_{\alpha \text{ is a composition}}$ is a basis of the \mathbb{Q} -vector space QSym, called the *fundamental basis* (or *F*-basis). Sometimes, F_{α} is also denoted L_{α} . What connects QSym with shuffles of permutations is the following fact: **Theorem.** If π and σ are two disjoint permutations, then $$F_{\mathsf{Comp}\,\pi} \cdot F_{\mathsf{Comp}\,\sigma} = \sum_{\tau \in S(\pi,\sigma)} F_{\mathsf{Comp}\,\tau}.$$ What connects QSym with shuffles of permutations is the following fact: **Theorem.** If π and σ are two disjoint permutations, then $$F_{\mathsf{Comp}\,\pi} \cdot F_{\mathsf{Comp}\,\sigma} = \sum_{\tau \in S(\pi,\sigma)} F_{\mathsf{Comp}\,\tau}.$$ • This theorem yields that Des is shuffle-compatible. Why? What connects QSym with shuffles of permutations is the following fact: **Theorem.** If π and σ are two disjoint permutations, then $$F_{\mathsf{Comp}\,\pi} \cdot F_{\mathsf{Comp}\,\sigma} = \sum_{\tau \in S(\pi,\sigma)} F_{\mathsf{Comp}\,\tau}.$$ - This theorem yields that Des is shuffle-compatible. Why? - Let $\pi, \pi', \sigma, \sigma'$ be permutations with $|\pi| = |\pi'|$ and $|\sigma| = |\sigma'|$ and $\mathrm{Des}\, \pi = \mathrm{Des}\, \pi'$ and $\mathrm{Des}\, \sigma = \mathrm{Des}\, \sigma'$. We must prove that $$\begin{aligned} & \left\{\mathsf{Des}\,\tau \mid \tau \in \mathcal{S}\left(\pi,\sigma\right)\right\}_{\mathsf{multiset}} \\ &= & \left\{\mathsf{Des}\,\tau \mid \tau \in \mathcal{S}\left(\pi',\sigma'\right)\right\}_{\mathsf{multiset}}. \end{aligned}$$ What connects QSym with shuffles of permutations is the following fact: **Theorem.** If π and σ are two disjoint permutations, then $$F_{\mathsf{Comp}\,\pi} \cdot F_{\mathsf{Comp}\,\sigma} = \sum_{\tau \in S(\pi,\sigma)} F_{\mathsf{Comp}\,\tau}.$$ - This theorem yields that Des is shuffle-compatible. Why? - Let $\pi, \pi', \sigma, \sigma'$ be permutations with $\mathsf{Comp}\,\pi = \mathsf{Comp}\,\pi'$ and $\mathsf{Comp}\,\sigma = \mathsf{Comp}\,\sigma'$. We must prove that $$\begin{aligned} &\left\{\mathsf{Comp}\,\tau\mid\tau\in\mathcal{S}\left(\pi,\sigma\right)\right\}_{\mathsf{multiset}} \\ &= &\left\{\mathsf{Comp}\,\tau\mid\tau\in\mathcal{S}\left(\pi',\sigma'\right)\right\}_{\mathsf{multiset}} \end{aligned}$$ (this is equivalent to what we just said, since Comp π encodes the same data as Des π and $|\pi|$ together). What connects QSym with shuffles of permutations is the following fact: **Theorem.** If π and σ are two disjoint permutations, then $$F_{\mathsf{Comp}\,\pi} \cdot F_{\mathsf{Comp}\,\sigma} = \sum_{\tau \in S(\pi,\sigma)} F_{\mathsf{Comp}\,\tau}.$$ - This theorem yields that Des is shuffle-compatible. Why? - Let $\pi, \pi', \sigma, \sigma'$ be permutations with $\operatorname{Comp} \pi = \operatorname{Comp} \pi'$ and $\operatorname{Comp} \sigma = \operatorname{Comp} \sigma'$. We must prove that $$\sum_{\tau \in S(\pi,\sigma)} F_{\mathsf{Comp}\,\tau} = \sum_{\tau \in S(\pi',\sigma')} F_{\mathsf{Comp}\,\tau}$$ (this is equivalent to what we just said, since the F_{α} for α ranging over all compositions are linearly independent). What connects QSym with shuffles of permutations is the following fact: **Theorem.** If π and σ are two disjoint permutations, then $$F_{\mathsf{Comp}\,\pi} \cdot F_{\mathsf{Comp}\,\sigma} = \sum_{\tau \in S(\pi,\sigma)} F_{\mathsf{Comp}\,\tau}.$$ - This theorem yields that Des is shuffle-compatible. Why? - Let $\pi, \pi', \sigma, \sigma'$ be permutations with $\mathsf{Comp}\,\pi = \mathsf{Comp}\,\pi'$ and $\mathsf{Comp}\,\sigma = \mathsf{Comp}\,\sigma'$. $$F_{\mathsf{Comp}\,\pi}\cdot F_{\mathsf{Comp}\,\sigma} = F_{\mathsf{Comp}\,\pi'}\cdot F_{\mathsf{Comp}\,\sigma'}$$ (this is equivalent to what we just said, by the Theorem above). What connects QSym with shuffles of permutations is the following fact: **Theorem.** If π and σ are two disjoint permutations, then $$F_{\mathsf{Comp}\,\pi} \cdot F_{\mathsf{Comp}\,\sigma} = \sum_{\tau \in S(\pi,\sigma)} F_{\mathsf{Comp}\,\tau}.$$ - This theorem yields that Des is shuffle-compatible. Why? - Let $\pi, \pi', \sigma, \sigma'$ be permutations with $\mathsf{Comp}\,\pi = \mathsf{Comp}\,\pi'$ and $\mathsf{Comp}\,\sigma = \mathsf{Comp}\,\sigma'$. We must prove that $$F_{\mathsf{Comp}\,\pi} \cdot F_{\mathsf{Comp}\,\sigma} = F_{\mathsf{Comp}\,\pi'} \cdot F_{\mathsf{Comp}\,\sigma'}$$ (this is equivalent to what we just said, by the Theorem above). But this follows from assumptions. # **Shuffle-compatibility of** des The same technique works for some other statistics. For example, we can show that des is shuffle-compatible. ### Shuffle-compatibility of des • For any $n \in \mathbb{N}$ and $k \in \mathbb{N}$, define the polynomial $$f_{n,k} =
x^n \binom{p-k+n}{n} \in \mathbb{Q}[p,x].$$ ### Shuffle-compatibility of des • For any $n \in \mathbb{N}$ and $k \in \mathbb{N}$, define the polynomial $$f_{n,k} = x^n \binom{p-k+n}{n} \in \mathbb{Q}[p,x].$$ • Corollary (of preceding Theorem). If π and σ are two disjoint permutations, with $n = |\pi|$ and $m = |\sigma|$, then $$f_{n,\deg \pi} \cdot f_{m,\deg \sigma} = \sum_{\tau \in S(\pi,\sigma)} f_{n+m,\deg \tau}.$$ • For any $n \in \mathbb{N}$ and $k \in \mathbb{N}$, define the polynomial $$f_{n,k} = x^n \binom{p-k+n}{n} \in \mathbb{Q}[p,x].$$ • Corollary (of preceding Theorem). If π and σ are two disjoint permutations, with $n=|\pi|$ and $m=|\sigma|$, then $$f_{n,\deg \pi}\cdot f_{m,\deg \sigma} = \sum_{ au \in S(\pi,\sigma)} f_{n+m,\deg au}.$$ • Proof idea (from Gessel/Zhuang). There is a \mathbb{Q} -algebra homomorphism QSym $\to \mathbb{Q}[p,x]$ sending each $g \in \mathsf{QSym}$ to $$g\left(\underbrace{x,x,\ldots,x}_{p \text{ times}},0,0,0,\ldots\right)$$ (yes, this can be made sense of). This is a variant of the (generic) principal specialization. • For any $n \in \mathbb{N}$ and $k \in \mathbb{N}$, define the polynomial $$f_{n,k} = x^n \binom{p-k+n}{n} \in \mathbb{Q}[p,x].$$ • Corollary (of preceding Theorem). If π and σ are two disjoint permutations, with $n=|\pi|$ and $m=|\sigma|$, then $$f_{n,\deg \pi}\cdot f_{m,\deg \sigma} = \sum_{ au \in S(\pi,\sigma)} f_{n+m,\deg au}.$$ - This corollary yields that des is shuffle-compatible. Why? - Let $\pi, \pi', \sigma, \sigma'$ be permutations with $|\pi| = |\pi'|$ and $|\sigma| = |\sigma'|$ and des $\pi = \operatorname{des} \pi'$ and des $\sigma = \operatorname{des} \sigma'$. We must prove that $$\begin{aligned} & \left\{ \mathsf{des}\,\tau \mid \tau \in \mathcal{S}\left(\pi,\sigma\right) \right\}_{\mathsf{multiset}} \\ &= & \left\{ \mathsf{des}\,\tau \mid \tau \in \mathcal{S}\left(\pi',\sigma'\right) \right\}_{\mathsf{multiset}}. \end{aligned}$$ • For any $n \in \mathbb{N}$ and $k \in \mathbb{N}$, define the polynomial $$f_{n,k} = x^n \binom{p-k+n}{n} \in \mathbb{Q}[p,x].$$ • Corollary (of preceding Theorem). If π and σ are two disjoint permutations, with $n=|\pi|$ and $m=|\sigma|$, then $$f_{n,\deg \pi}\cdot f_{m,\deg \sigma} = \sum_{ au \in S(\pi,\sigma)} f_{n+m,\deg au}.$$ - This corollary yields that des is shuffle-compatible. Why? - Let $\pi, \pi', \sigma, \sigma'$ be permutations with $|\pi| = |\pi'|$ and $|\sigma| = |\sigma'|$ and $\operatorname{des} \pi = \operatorname{des} \pi'$ and $\operatorname{des} \sigma = \operatorname{des} \sigma'$. We must prove that $$\sum_{\tau \in S(\pi,\sigma)} f_{n+m,\operatorname{des}\tau} = \sum_{\tau \in S(\pi',\sigma')} f_{n+m,\operatorname{des}\tau},$$ where $n=|\pi|=|\pi'|$ and $m=|\sigma|=|\sigma'|$ (this is equivalent to what we just said, since the $f_{n,k}$ for $n,k\in\mathbb{N}$ are linearly independent). • For any $n \in \mathbb{N}$ and $k \in \mathbb{N}$, define the polynomial $$f_{n,k} = x^n \binom{p-k+n}{n} \in \mathbb{Q}[p,x].$$ • Corollary (of preceding Theorem). If π and σ are two disjoint permutations, with $n=|\pi|$ and $m=|\sigma|$, then $$f_{n,\text{des }\pi}\cdot f_{m,\text{des }\sigma} = \sum_{ au\in S(\pi,\sigma)} f_{n+m,\text{des } au}.$$ - This corollary yields that des is shuffle-compatible. Why? - Let $\pi, \pi', \sigma, \sigma'$ be permutations with $|\pi| = |\pi'|$ and $|\sigma| = |\sigma'|$ and $\mathrm{des}\, \pi = \mathrm{des}\, \pi'$ and $\mathrm{des}\, \sigma = \mathrm{des}\, \sigma'$. We must prove that $$f_{n,\text{des }\pi} \cdot f_{m,\text{des }\sigma} = f_{n,\text{des }\pi'} \cdot f_{m,\text{des }\sigma'}$$ (this is equivalent to what we just said, by the Corollary above). • For any $n \in \mathbb{N}$ and $k \in \mathbb{N}$, define the polynomial $$f_{n,k} = x^n \binom{p-k+n}{n} \in \mathbb{Q}[p,x].$$ • Corollary (of preceding Theorem). If π and σ are two disjoint permutations, with $n = |\pi|$ and $m = |\sigma|$, then $$f_{n,\deg \pi}\cdot f_{m,\deg \sigma} = \sum_{ au \in S(\pi,\sigma)} f_{n+m,\deg au}.$$ - This corollary yields that des is shuffle-compatible. Why? - Let $\pi, \pi', \sigma, \sigma'$ be permutations with $|\pi| = |\pi'|$ and $|\sigma| = |\sigma'|$ and $\mathrm{des}\, \pi = \mathrm{des}\, \pi'$ and $\mathrm{des}\, \sigma = \mathrm{des}\, \sigma'$. We must prove that $$f_{n,\text{des }\pi} \cdot f_{m,\text{des }\sigma} = f_{n,\text{des }\pi'} \cdot f_{m,\text{des }\sigma'}$$ (this is equivalent to what we just said, by the Corollary above). But this follows from assumptions. - The above arguments can be abstracted into a general criterion for shuffle-compatibility of a descent statistic (Gessel and Zhuang, in arXiv:1706.00750v2, Section 4.1). QSym and $\mathbb{Q}[p,x]$ get replaced by a "shuffle algebra" with an algebra homomorphism from QSym. - We shall give our own variant of the criterion. • If st is a descent statistic, then two compositions α and β are said to be st-equivalent if $|\alpha|=|\beta|$ and st $\alpha=$ st β . (Remember: st α means st π for any permutation π satisfying Comp $\pi=\alpha$.) - If st is a descent statistic, then two compositions α and β are said to be st-equivalent if $|\alpha|=|\beta|$ and st $\alpha=$ st β . (Remember: st α means st π for any permutation π satisfying Comp $\pi=\alpha$.) - The kernel K_{st} of a descent statistic st is the \mathbb{Q} -vector subspace of QSym spanned by all differences of the form $F_{\alpha} F_{\beta}$, with α and β being two st-equivalent compositions: $$\mathcal{K}_{\mathsf{st}} = \langle \mathcal{F}_{\alpha} - \mathcal{F}_{\beta} \mid |\alpha| = |\beta| \text{ and } \mathsf{st} \, \alpha = \mathsf{st} \, \beta \rangle_{\mathbb{O}} \,.$$ - If st is a descent statistic, then two compositions α and β are said to be st-equivalent if $|\alpha|=|\beta|$ and st $\alpha=$ st β . (Remember: st α means st π for any permutation π satisfying Comp $\pi=\alpha$.) - The kernel $\mathcal{K}_{\mathsf{st}}$ of a descent statistic st is the \mathbb{Q} -vector subspace of QSym spanned by all differences of the form $F_{\alpha} F_{\beta}$, with α and β being two st-equivalent compositions: $$\mathcal{K}_{\mathsf{st}} = \left\langle \mathit{F}_{\alpha} - \mathit{F}_{\beta} \; \mid \; |\alpha| = |\beta| \; \mathsf{and} \; \mathsf{st} \, \alpha = \mathsf{st} \, \beta \right\rangle_{\mathbb{Q}}.$$ • Theorem. The descent statistic st is shuffle-compatible if and only if \mathcal{K}_{st} is an ideal of QSym. # Section 3 # The exterior peak set #### References: - Darij Grinberg, Shuffle-compatible permutation statistics II: the exterior peak set, draft. - John R. Stembridge, Enriched P-partitions, Trans. Amer. Math. Soc. 349 (1997), no. 2, pp. 763–788. - T. Kyle Petersen, *Enriched P-partitions and peak algebras*, Adv. in Math. 209 (2007), pp. 561–610. - We will now outline our proof that Epk is shuffle-compatible. - The main idea is to imitate the above proof for Des, but instead of $F_{\mathsf{Comp}\,\pi}$ we'll now have some different power series (not in QSym). - We will now outline our proof that Epk is shuffle-compatible. - The main idea is to imitate the above proof for Des, but instead of $F_{\mathsf{Comp}\,\pi}$ we'll now have some different power series (not in QSym). - The idea is not new. This is how Pk, Lpk and Rpk were proven shuffle-compatible. - We will now outline our proof that Epk is shuffle-compatible. - The main idea is to imitate the above proof for Des, but instead of $F_{\text{Comp }\pi}$ we'll now have some different power series (not in QSym). - The idea is not new. This is how Pk, Lpk and Rpk were proven shuffle-compatible. - The main tool is the concept of Z-enriched P-partitions: a generalization of - P-partitions (Stanley 1972); - enriched P-partitions (Stembridge 1997); - left enriched P-partitions (Petersen 2007), which are used in the proofs for Des, Pk and Lpk, respectively. - We will now outline our proof that Epk is shuffle-compatible. - The main idea is to imitate the above proof for Des, but instead of $F_{\mathsf{Comp}\,\pi}$ we'll now have some different power series (not in QSym). - The idea is not new. This is how Pk, Lpk and Rpk were proven shuffle-compatible. - The main tool is the concept of Z-enriched P-partitions: a generalization of - P-partitions (Stanley 1972); - enriched P-partitions (Stembridge 1997); - left enriched P-partitions (Petersen 2007), which are used in the proofs for Des, Pk and Lpk, respectively. (Yes, the $F_{\text{Comp }\sigma} \cdot F_{\text{Comp }\sigma}$ theorem we used in proving Des follows from the theory of P-partitions.) - We will now outline our proof that Epk is shuffle-compatible. - The main idea is to imitate the above proof for Des, but instead of $F_{\text{Comp }\pi}$ we'll now have some different power series (not in QSym). - The idea is not new. This is how Pk, Lpk and Rpk were proven shuffle-compatible. - The main tool is the concept of Z-enriched P-partitions: a generalization of - P-partitions (Stanley 1972); - enriched P-partitions (Stembridge 1997); - left enriched P-partitions (Petersen 2007), which are used in the proofs for Des, Pk and Lpk, respectively. (Yes, the $F_{\text{Comp }\sigma} \cdot F_{\text{Comp }\sigma}$ theorem we used in proving Des follows from the theory of P-partitions.) The idea is simple, but the proof has technical parts I am not showing. ### **Labeled posets** • A *labeled poset* means a pair (P, γ) consisting of a finite poset $P = (X, \leq)$ and an injective map $\gamma : X \to A$ into some totally ordered set A. The injective map γ is called the *labeling* of the labeled poset (P, γ) . - Fix a totally ordered set N, and denote its strict order relation by ≺. - Let + and be two distinct symbols. Let \mathcal{Z} be a subset of the set $\mathcal{N} \times \{+, -\}$
. - Intuition: \mathcal{N} is a set of letters that will index our indeterminates. - \mathcal{Z} is a set of "signed letters", which are pairs of a letter in \mathcal{N} and a sign in $\{+,-\}$. (Not all such pairs must lie in \mathcal{Z} .) - Fix a totally ordered set N, and denote its strict order relation by ≺. - Let + and be two distinct symbols. Let \mathcal{Z} be a subset of the set $\mathcal{N} \times \{+, -\}$. - Intuition: \mathcal{N} is a set of letters that will index our indeterminates. - $\mathcal Z$ is a set of "signed letters", which are pairs of a letter in $\mathcal N$ and a sign in $\{+,-\}$. (Not all such pairs must lie in $\mathcal Z$.) - If $n \in \mathcal{N}$, then we will denote the two elements (n, +) and (n, -) of $\mathcal{N} \times \{+, -\}$ by +n and -n, respectively. - Fix a totally ordered set N, and denote its strict order relation by ≺. - Let + and be two distinct symbols. Let \mathcal{Z} be a subset of the set $\mathcal{N} \times \{+, -\}$. - Intuition: \mathcal{N} is a set of letters that will index our indeterminates. - \mathcal{Z} is a set of "signed letters", which are pairs of a letter in \mathcal{N} and a sign in $\{+, -\}$. (Not all such pairs must lie in \mathcal{Z} .) - If $n \in \mathcal{N}$, then we will denote the two elements (n, +) and (n, -) of $\mathcal{N} \times \{+, -\}$ by +n and -n, respectively. $$(n,s) \prec (n',s')$$ if and only if either $n \prec n'$ or $(n=n')$ and $s=-$ and $s'=+)$. - Fix a totally ordered set N, and denote its strict order relation by ≺. - Let + and be two distinct symbols. Let \mathcal{Z} be a subset of the set $\mathcal{N} \times \{+, -\}$. - Intuition: \mathcal{N} is a set of letters that will index our indeterminates. - \mathcal{Z} is a set of "signed letters", which are pairs of a letter in \mathcal{N} and a sign in $\{+,-\}$. (Not all such pairs must lie in \mathcal{Z} .) - If $n \in \mathcal{N}$, then we will denote the two elements (n, +) and (n, -) of $\mathcal{N} \times \{+, -\}$ by +n and -n, respectively. $$(n,s) \prec (n',s')$$ if and only if either $n \prec n'$ or $(n=n')$ and $s=-$ and $s'=+)$. • Let Pow $\mathcal N$ be the ring of all power series over $\mathbb Q$ in the indeterminates x_n for $n \in \mathcal N$. # $\mathcal N$ and $\mathcal Z$: example • For an example of the setting just introduced, take $\mathcal{N}=\mathbb{N}$ with \prec being the usual order. Then, $$Z \subseteq \mathbb{N} \times \{+, -\} = \{-0, +0, -1, +1, -2, +2, \ldots\}.$$ Note: $-0 \neq +0$, since these are shorthands for pairs, not numbers. # $\mathcal N$ and $\mathcal Z$: example • For an example of the setting just introduced, take $\mathcal{N}=\mathbb{N}$ with \prec being the usual order. Then, $$\mathcal{Z} \subseteq \mathbb{N} \times \{+, -\} = \{-0, +0, -1, +1, -2, +2, \ldots\}.$$ Note: $-0 \neq +0$, since these are shorthands for pairs, not numbers. ullet The total order \prec on $\mathcal Z$ is the restriction of $$-0 \prec +0 \prec -1 \prec +1 \prec -2 \prec +2 \prec \cdots$$ • For an example of the setting just introduced, take $\mathcal{N}=\mathbb{N}$ with \prec being the usual order. Then, $$\mathcal{Z} \subseteq \mathbb{N} \times \{+, -\} = \{-0, +0, -1, +1, -2, +2, \ldots\}.$$ Note: $-0 \neq +0$, since these are shorthands for pairs, not numbers. ullet The total order \prec on $\mathcal Z$ is the restriction of $$-0 \prec +0 \prec -1 \prec +1 \prec -2 \prec +2 \prec \cdots$$ • Pow $\mathcal{N} = \mathbb{Q}[[x_0, x_1, x_2, \ldots]].$ # **Z**-enriched (P, γ) -partitions: definition - Now, let (P, γ) be a labeled poset. A \mathcal{Z} -enriched (P, γ) -partition means a map $f: P \to \mathcal{Z}$ such that for all x < y in P, the following conditions hold: - (i) We have $f(x) \leq f(y)$. - (ii) If f(x) = f(y) = +n for some $n \in \mathcal{N}$, then $\gamma(x) < \gamma(y)$. - (iii) If f(x) = f(y) = -n for some $n \in \mathcal{N}$, then $\gamma(x) > \gamma(y)$. (Keep in mind: $\mathcal N$ and $\mathcal Z$ are fixed.) # **Z**-enriched (P, γ) -partitions: definition - Now, let (P, γ) be a labeled poset. A \mathbb{Z} -enriched (P, γ) -partition means a map $f: P \to \mathbb{Z}$ such that for all x < y in P, the following conditions hold: - (i) We have $f(x) \leq f(y)$. - (ii) If f(x) = f(y) = +n for some $n \in \mathcal{N}$, then $\gamma(x) < \gamma(y)$. - (iii) If f(x) = f(y) = -n for some $n \in \mathcal{N}$, then $\gamma(x) > \gamma(y)$. (Keep in mind: \mathcal{N} and \mathcal{Z} are fixed.) - (Attempt at) intuition: A \mathcal{Z} -enriched (P,γ) -partition is a map $f:P\to\mathcal{Z}$ (that is, assigning a signed letter to each poset element) which - (i) is weakly increasing on P; - (ii) + (iii) is occasionally strictly increasing, when γ and the sign of the f-value "are out of alignment". ## **Z**-enriched (P, γ) -partitions: example • Let *P* be the poset with the following Hasse diagram: and let $\gamma:P\to\mathbb{Z}$ be a labeling that satisfies $\gamma(a)<\gamma(b)<\gamma(c)<\gamma(d)$ (for example, γ could be the map that sends a,b,c,d to 2,3,5,7, respectively). Then, a \mathbb{Z} -enriched (P,γ) -partition is a map $f:P\to\mathbb{Z}$ satisfying the following conditions: - (i) We have $f(a) \leq f(c) \leq f(b)$ and $f(a) \leq f(d) \leq f(b)$. - (ii) We cannot have f(c) = f(b) = +n with $n \in \mathcal{N}$. Also, we cannot have f(d) = f(b) = +n with $n \in \mathcal{N}$. - (iii) We cannot have f(a) = f(c) = -n with $n \in \mathcal{N}$. Also, we cannot have f(a) = f(d) = -n with $n \in \mathcal{N}$. • Consider again the case when $\mathcal{N}=\mathbb{N}$ with \prec being the usual order. Let us see what \mathcal{Z} -enriched (P,γ) -partitions are, depending on \mathcal{Z} . - Consider again the case when $\mathcal{N}=\mathbb{N}$ with \prec being the usual order. Let us see what \mathcal{Z} -enriched (P,γ) -partitions are, depending on \mathcal{Z} . - If $\mathcal{Z} = \mathbb{N} \times \{+\} = \{+0 \prec +1 \prec +2 \prec \cdots\}$, then the \mathcal{Z} -enriched (P, γ) -partitions are just the (usual) (P, γ) -partitions into \mathbb{N} (up to renaming n as +n). - Consider again the case when $\mathcal{N}=\mathbb{N}$ with \prec being the usual order. Let us see what \mathcal{Z} -enriched (P,γ) -partitions are, depending on \mathcal{Z} . - If $\mathcal{Z} = \mathbb{N} \times \{+\} = \{+0 \prec +1 \prec +2 \prec \cdots\}$, then the \mathcal{Z} -enriched (P, γ) -partitions are just the (usual) (P, γ) -partitions into \mathbb{N} (up to renaming n as +n). - If $\mathcal{Z} = \mathbb{N} \times \{+, -\} = \{-0 \prec +0 \prec -1 \prec +1 \prec -2 \prec +2 \prec \cdots\}$, then the \mathcal{Z} -enriched (P, γ) -partitions are Stembridge's enriched (P, γ) -partitions (up to renaming n as n-1). - Consider again the case when $\mathcal{N}=\mathbb{N}$ with \prec being the usual order. Let us see what \mathcal{Z} -enriched (P,γ) -partitions are, depending on \mathcal{Z} . - If $\mathcal{Z} = \mathbb{N} \times \{+\} = \{+0 \prec +1 \prec +2 \prec \cdots\}$, then the \mathcal{Z} -enriched (P, γ) -partitions are just the (usual) (P, γ) -partitions into \mathbb{N} (up to renaming n as +n). - If $\mathcal{Z} = \mathbb{N} \times \{+, -\} = \{-0 \prec +0 \prec -1 \prec +1 \prec -2 \prec +2 \prec \cdots\}$, then the \mathcal{Z} -enriched (P, γ) -partitions are Stembridge's enriched (P, γ) -partitions (up to renaming n as n-1). - If $\mathcal{Z} = (\mathbb{N} \times \{+, -\}) \setminus \{-0\} = \{+0 \prec -1 \prec +1 \prec -2 \prec +2 \prec \cdots\}$, then the \mathcal{Z} -enriched (P, γ) -partitions are Petersen's left enriched (P, γ) -partitions. - Consider again the case when $\mathcal{N}=\mathbb{N}$ with \prec being the usual order. Let us see what \mathcal{Z} -enriched (P,γ) -partitions are, depending on \mathcal{Z} . - If $\mathcal{Z} = \mathbb{N} \times \{+\} = \{+0 \prec +1 \prec +2 \prec \cdots\}$, then the \mathcal{Z} -enriched (P, γ) -partitions are just the (usual) (P, γ) -partitions into \mathbb{N} (up to renaming n as +n). - If $\mathcal{Z} = \mathbb{N} \times \{+, -\} = \{-0 \prec +0 \prec -1 \prec +1 \prec -2 \prec +2 \prec \cdots\}$, then the \mathcal{Z} -enriched (P, γ) -partitions are Stembridge's enriched (P, γ) -partitions (up to renaming n as n-1). - If $\mathcal{Z} = (\mathbb{N} \times \{+, -\}) \setminus \{-0\} = \{+0 \prec -1 \prec +1 \prec -2 \prec +2 \prec \cdots\}$, then the \mathcal{Z} -enriched (P, γ) -partitions are Petersen's left enriched (P, γ) -partitions. - We shall later focus on the case when $\mathcal{N} = \mathbb{N} \cup \{\infty\}$ and $\mathcal{Z} = (\mathcal{N} \times \{+, -\}) \setminus \{-0, +\infty\}.$ $\overline{\mathcal{E}(P,\gamma)}$ and $\mathcal{L}(P)$ - A few more notations are needed. - If (P, γ) is a labeled poset, then $\mathcal{E}(P, \gamma)$ shall denote the set of all \mathcal{Z} -enriched (P, γ) -partitions. # $\mathcal{E}(P,\gamma)$ and $\mathcal{L}(P)$ - A few more notations are needed. - If (P, γ) is a labeled poset, then $\mathcal{E}(P, \gamma)$ shall denote the set of all \mathcal{Z} -enriched (P, γ) -partitions. - If P is any poset, then $\mathcal{L}(P)$ shall denote the set of all linear extensions of P. A linear extension of P shall be understood simultaneously as a totally ordered set extending P and as a list (w_1, w_2, \ldots, w_n) of all elements of P such that no two integers i < j satisfy $w_i \ge w_j$ in P. # Any $\mathcal{E}(P, \gamma)$ -partition has its favorite linear extension • **Proposition.** For any labeled poset (P, γ) , we have $$\mathcal{E}(P,\gamma) = \bigsqcup_{w \in \mathcal{L}(P)} \mathcal{E}(w,\gamma).$$ This is a generalization of a
standard result on P-partitions ("Stanley's main lemma"), and is proven by the same reasoning. # The power series $\Gamma_{\mathcal{Z}}(P, \gamma)$ • Let (P, γ) be a labeled poset. We define a power series $\Gamma_{\mathcal{Z}}(P, \gamma) \in \operatorname{Pow} \mathcal{N}$ by $$\Gamma_{\mathcal{Z}}\left(P,\gamma\right) = \sum_{f \in \mathcal{E}\left(P,\gamma\right)} \prod_{p \in P} x_{|f(p)|}.$$ Here, $|f(p)| \in \mathcal{N}$ is defined to be the first entry of f(p) (recall: f(p) is a pair of an element of \mathcal{N} and a sign in $\{+,-\}$). # The power series $\Gamma_{\mathcal{Z}}(P, \gamma)$ • Let (P, γ) be a labeled poset. We define a power series $\Gamma_{\mathcal{Z}}(P, \gamma) \in \operatorname{Pow} \mathcal{N}$ by $$\Gamma_{\mathcal{Z}}\left(P,\gamma\right) = \sum_{f \in \mathcal{E}\left(P,\gamma\right)} \prod_{p \in P} x_{|f(p)|}.$$ Here, $|f(p)| \in \mathcal{N}$ is defined to be the first entry of f(p) (recall: f(p) is a pair of an element of \mathcal{N} and a sign in $\{+,-\}$). • This generalizes the classical quasisymmetric P-partition enumerators (which give the fundamental basis F_{α} when P is totally ordered). # The power series $\Gamma_{\mathcal{Z}}(P, \gamma)$ • Let (P, γ) be a labeled poset. We define a power series $\Gamma_{\mathcal{Z}}(P, \gamma) \in \operatorname{Pow} \mathcal{N}$ by $$\Gamma_{\mathcal{Z}}\left(P,\gamma\right) = \sum_{f \in \mathcal{E}\left(P,\gamma\right)} \prod_{p \in P} x_{|f(p)|}.$$ Here, $|f(p)| \in \mathcal{N}$ is defined to be the first entry of f(p) (recall: f(p) is a pair of an element of \mathcal{N} and a sign in $\{+,-\}$). - This generalizes the classical quasisymmetric P-partition enumerators (which give the fundamental basis F_{α} when P is totally ordered). - Corollary. For any labeled poset (P, γ) , we have $$\Gamma_{\mathcal{Z}}(P,\gamma) = \sum_{w \in \mathcal{L}(P)} \Gamma_{\mathcal{Z}}(w,\gamma).$$ # The power series $\Gamma_{\mathcal{Z}}(P,\gamma)$ • Let (P, γ) be a labeled poset. We define a power series $\Gamma_{\mathcal{Z}}(P, \gamma) \in \operatorname{Pow} \mathcal{N}$ by $$\Gamma_{\mathcal{Z}}\left(P,\gamma\right) = \sum_{f \in \mathcal{E}\left(P,\gamma\right)} \prod_{p \in P} x_{|f(p)|}.$$ Here, $|f(p)| \in \mathcal{N}$ is defined to be the first entry of f(p) (recall: f(p) is a pair of an element of \mathcal{N} and a sign in $\{+,-\}$). - This generalizes the classical quasisymmetric P-partition enumerators (which give the fundamental basis F_{α} when P is totally ordered). - Question. Where do these $\Gamma_{\mathcal{Z}}(P,\gamma)$ live (other than in Pow \mathcal{N}) ? I don't know a good answer; it should be a generalization of QSym. Jia Huang's work (arXiv:1506.02962v2) looks relevant. # Disjoint unions give product of Γ 's • Let P be any set. Let A be a totally ordered set. Let $\gamma: P \to A$ and $\delta: P \to A$ be two maps. We say that γ and δ are order-equivalent if the following holds: For every pair $(p,q) \in P \times P$, we have $\gamma(p) \leq \gamma(q)$ if and only if $\delta(p) \leq \delta(q)$. ## Disjoint unions give product of Γ 's - Let P be any set. Let A be a totally ordered set. Let $\gamma: P \to A$ and $\delta: P \to A$ be two maps. We say that γ and δ are *order-equivalent* if the following holds: For every pair $(p,q) \in P \times P$, we have $\gamma(p) \leq \gamma(q)$ if and only if $\delta(p) \leq \delta(q)$. - **Proposition.** Let (P, γ) and (Q, δ) be two labeled posets. Let $(P \sqcup Q, \varepsilon)$ be the labeled poset - for which $P \sqcup Q$ is the disjoint union of P and Q, and - whose labeling ε is such that the restriction of ε to P is order-equivalent to γ and such that the restriction of ε to Q is order-equivalent to δ . Then, $$\Gamma_{\mathcal{Z}}(P,\gamma) \cdot \Gamma_{\mathcal{Z}}(Q,\delta) = \Gamma_{\mathcal{Z}}(P \sqcup Q,\varepsilon).$$ • Again, the proof is simple. • Let $n \in \mathbb{N}$. Write [n] for $\{1, 2, \ldots, n\}$. Let π be any n-permutation. Consider π as an injective map $[n] \to \{1, 2, 3, \ldots\}$ (sending i to π_i). Thus, $([n], \pi)$ is a labeled poset. We define $\Gamma_{\mathbb{Z}}(\pi)$ to be the power series $\Gamma_{\mathbb{Z}}([n], \pi)$. - Let $n \in \mathbb{N}$. Write [n] for $\{1, 2, \ldots, n\}$. Let π be any n-permutation. Consider π as an injective map $[n] \to \{1, 2, 3, \ldots\}$ (sending i to π_i). Thus, $([n], \pi)$ is a labeled poset. We define $\Gamma_{\mathcal{Z}}(\pi)$ to be the power series $\Gamma_{\mathcal{Z}}([n], \pi)$. - Explicitly: $$\Gamma_{\mathcal{Z}}(\pi) = \sum x_{|j_1|} x_{|j_2|} \cdots x_{|j_n|},$$ where the sum is over all *n*-tuples $(j_1, j_2, \dots, j_n) \in \mathbb{Z}^n$ having the properties that: - (i) $j_1 \preccurlyeq j_2 \preccurlyeq \cdots \preccurlyeq j_n$; - (ii) if $j_k = j_{k+1} = +s$ for some $s \in \mathcal{N}$, then $\pi_k < \pi_{k+1}$; - (iii) if $j_k = j_{k+1} = -s$ for some $s \in \mathcal{N}$, then $\pi_k > \pi_{k+1}$. - This $\Gamma_{\mathcal{Z}}(\pi)$ will serve as an analogue of $F_{\mathsf{Comp}\,\pi}$. - Let $n \in \mathbb{N}$. Write [n] for $\{1, 2, \ldots, n\}$. Let π be any n-permutation. Consider π as an injective map $[n] \to \{1, 2, 3, \ldots\}$ (sending i to π_i). Thus, $([n], \pi)$ is a labeled poset. We define $\Gamma_{\mathbb{Z}}(\pi)$ to be the power series $\Gamma_{\mathbb{Z}}([n], \pi)$. - **Proposition.** Let w be a finite totally ordered set with ground set W. Let n = |W|. Let \overline{w} be the unique poset isomorphism $w \to [n]$. Let $\gamma : W \to \{1, 2, 3, \ldots\}$ be any injective map. Then, $\Gamma_{\mathcal{Z}}(w, \gamma) = \Gamma_{\mathcal{Z}}(\gamma \circ \overline{w}^{-1})$. - Again, this follows the roadmap of classical P-partition theory. - Let $n \in \mathbb{N}$. Write [n] for $\{1, 2, \ldots, n\}$. Let π be any n-permutation. Consider π as an injective map $[n] \to \{1, 2, 3, \ldots\}$ (sending i to π_i). Thus, $([n], \pi)$ is a labeled poset. We define $\Gamma_{\mathcal{Z}}(\pi)$ to be the power series $\Gamma_{\mathcal{Z}}([n], \pi)$. - **Proposition.** Let w be a finite totally ordered set with ground set W. Let n = |W|. Let \overline{w} be the unique poset isomorphism $w \to [n]$. Let $\gamma : W \to \{1, 2, 3, \ldots\}$ be any injective map. Then, $\Gamma_{\mathcal{Z}}(w, \gamma) = \Gamma_{\mathcal{Z}}(\gamma \circ \overline{w}^{-1})$. - Again, this follows the roadmap of classical P-partition theory. - Corollary. Let (P, γ) be a labeled poset. Let n = |P|. Then, $$\Gamma_{\mathcal{Z}}\left(P,\gamma\right) = \sum_{\substack{x:P \rightarrow [n] \\ \text{bijective poset} \\ \text{homomorphism}}} \Gamma_{\mathcal{Z}}\left(\gamma \circ x^{-1}\right).$$ - Let $n \in \mathbb{N}$. Write [n] for $\{1, 2, \ldots, n\}$. Let π be any n-permutation. Consider π as an injective map $[n] \to \{1, 2, 3, \ldots\}$ (sending i to π_i). Thus, $([n], \pi)$ is a labeled poset. We define $\Gamma_{\mathcal{Z}}(\pi)$ to be the power series $\Gamma_{\mathcal{Z}}([n], \pi)$. - **Proposition.** Let w be a finite totally ordered set with ground set W. Let n = |W|. Let \overline{w} be the unique poset isomorphism $w \to [n]$. Let $\gamma : W \to \{1, 2, 3, \ldots\}$ be any injective map. Then, $\Gamma_{\mathcal{Z}}(w, \gamma) = \Gamma_{\mathcal{Z}}(\gamma \circ \overline{w}^{-1})$. - Again, this follows the roadmap of classical P-partition theory. - Corollary. Let (P, γ) be a labeled poset. Let n = |P|. Then, $$\Gamma_{\mathcal{Z}}\left(P,\gamma\right) = \sum_{\substack{x:P \to [n] \\ \text{bijective poset} \\ \text{homomorphism}}} \Gamma_{\mathcal{Z}}\left(\gamma \circ x^{-1}\right).$$ • Thus, the $\Gamma_{\mathcal{Z}}$ of any labeled poset can be described in terms of the $\Gamma_{\mathcal{Z}}(\pi)$. ### The product formula for the $\Gamma_{\mathcal{Z}}(P,\gamma)$ • Combining the above results, we see: **Theorem.** Let π and σ be two disjoint permutations. Then, $$\Gamma_{\mathcal{Z}}(\pi) \cdot \Gamma_{\mathcal{Z}}(\sigma) = \sum_{\tau \in S(\pi,\sigma)} \Gamma_{\mathcal{Z}}(\tau).$$ ## The product formula for the $\Gamma_{\mathcal{Z}}(P,\gamma)$ • Combining the above results, we see: Theorem. Let π and σ be two disjoint permutations. Then, $$\Gamma_{\mathcal{Z}}(\pi) \cdot \Gamma_{\mathcal{Z}}(\sigma) = \sum_{\tau \in S(\pi,\sigma)} \Gamma_{\mathcal{Z}}(\tau).$$ • This generalizes the $$F_{\mathsf{Comp}\,\pi} \cdot F_{\mathsf{Comp}\,\sigma} = \sum_{\tau \in S(\pi,\sigma)} F_{\mathsf{Comp}\,\tau}$$ formula in QSym (which you can recover by setting $\mathcal{N}=\mathbb{N}$ and $\mathcal{Z}=\mathbb{N}\times\{+\}=\{+0\prec+1\prec+2\prec\cdots\}$). Likewise, you can recover similar results by Stembridge and Petersen from this. #### Customizing the setting for Epk - Remember: we want to show Epk is shuffle-compatible. - Specialize the above setting as follows: - Set $\mathcal{N}=\{0,1,2,\ldots\}\cup\{\infty\}$, with total order given by $0\prec 1\prec 2\prec\cdots\prec\infty$. - Set $$\mathcal{Z} = (\mathcal{N} \times \{+, -\}) \setminus \{-0, +\infty\} = \{+0\} \cup \{+n \mid n \in \{1, 2, 3, ...\}\} \cup \{-n \mid n \in \{1, 2, 3, ...\}\} \cup \{-\infty\}.$$ Recall that the total order on ${\mathcal Z}$ has $$+0 \prec -1 \prec +1 \prec -2 \prec +2 \prec \cdots \prec -\infty$$. #### Fiber-ends • Let $n \in \mathbb{N}$. Let $g : [n] \to \mathcal{N}$ be any map. We define a subset $\mathsf{FE}(g)$ of [n] by $$\begin{split} \mathsf{FE}\left(g\right) &= \left\{ \min \left(g^{-1}\left(h\right)\right) \; \mid \; h \in \left\{1, 2, 3, \ldots, \infty\right\} \right\} \\ &\quad \cup \left\{ \max \left(g^{-1}\left(h\right)\right) \; \mid \; h \in \left\{0, 1, 2, 3, \ldots\right\} \right\} \end{split}$$ (ignore the maxima/minima of empty fibers). In other words, FE(g) is the set comprising - the
smallest elements of all nonempty fibers of g except for $g^{-1}(0)$ as well as - the largest elements of all nonempty fibers of g except for $g^{-1}(\infty)$. #### *K*-series • Let $n \in \mathbb{N}$. If Λ (no connection to symmetric functions) is any subset of [n], then we define a power series $K_{n,\Lambda}^{\mathcal{Z}} \in \operatorname{Pow} \mathcal{N}$ by $$\mathcal{K}_{n,\Lambda}^{\mathcal{Z}} = \sum_{\substack{g:[n] \to \mathcal{N} \text{ is} \\ \text{weakly increasing;} \\ \Lambda \subseteq \mathsf{FE}(g)}} 2^{|g([n]) \cap \{1,2,3,\ldots\}|} x_{g(1)} x_{g(2)} \cdots x_{g(n)}.$$ • **Proposition.** Let $n \in \mathbb{N}$. Let π be an n-permutation. Then, $$\Gamma_{\mathcal{Z}}(\pi) = K_{n,\mathsf{Epk}\,\pi}^{\mathcal{Z}}.$$ This is proven by a counting argument (if a map g comes from an $([n], \pi)$ -partition, then the fibers of g subdivide [n] into intervals on which π is "V-shaped"; a peak can only occur at a border between two such intervals). • Let $n \in \mathbb{N}$. If Λ (no connection to symmetric functions) is any subset of [n], then we define a power series $K_{n,\Lambda}^{\mathcal{Z}} \in \operatorname{Pow} \mathcal{N}$ by $$\mathcal{K}_{n,\Lambda}^{\mathcal{Z}} = \sum_{\substack{g:[n] \to \mathcal{N} \text{ is} \\ \text{weakly increasing;} \\ \Lambda \subseteq \mathsf{FE}(g)}} 2^{|g([n]) \cap \{1,2,3,\ldots\}|} x_{g(1)} x_{g(2)} \cdots x_{g(n)}.$$ • **Proposition.** Let $n \in \mathbb{N}$. Let π be an n-permutation. Then, $$\Gamma_{\mathcal{Z}}(\pi) = K_{n,\mathsf{Epk}\,\pi}^{\mathcal{Z}}.$$ Thus, the product formula above specializes to $$K_{n,\mathsf{Epk}\,\pi}^{\mathcal{Z}}\cdot K_{m,\mathsf{Epk}\,\sigma}^{\mathcal{Z}} = \sum_{ au\in\mathcal{S}(\pi,\sigma)} K_{n+m,\mathsf{Epk}\, au}^{\mathcal{Z}}.$$ • This formula is used to show that Epk is shuffle-compatible, but we need a bit more: we need to show that the "relevant" $K_{n,\Lambda}^{\mathcal{Z}}$ are linearly independent. • Let $n \in \mathbb{N}$. If Λ (no connection to symmetric functions) is any subset of [n], then we define a power series $K_{n,\Lambda}^{\mathcal{Z}} \in \operatorname{Pow} \mathcal{N}$ by $$\mathcal{K}_{n,\Lambda}^{\mathcal{Z}} = \sum_{\substack{g:[n] \to \mathcal{N} \text{ is weakly increasing;} \\ \Lambda \subseteq \mathsf{FE}(g)}} 2^{|g([n]) \cap \{1,2,3,\ldots\}|} x_{g(1)} x_{g(2)} \cdots x_{g(n)}.$$ • **Proposition.** Let $n \in \mathbb{N}$. Let π be an n-permutation. Then, $$\Gamma_{\mathcal{Z}}(\pi) = K_{n,\mathsf{Epk}\,\pi}^{\mathcal{Z}}.$$ • Thus, the product formula above specializes to $$K_{n,\mathsf{Epk}\,\pi}^{\mathcal{Z}}\cdot K_{m,\mathsf{Epk}\,\sigma}^{\mathcal{Z}} = \sum_{ au\in\mathcal{S}(\pi,\sigma)} K_{n+m,\mathsf{Epk}\, au}^{\mathcal{Z}}.$$ - This formula is used to show that Epk is shuffle-compatible, but we need a bit more: we need to show that the "relevant" K_{n,h}^Z are linearly independent. - Not all $K_{n,\Lambda}^{\mathcal{Z}}$ are linearly independent. Rather, we need to pick the right subset. #### Lacunar subsets and linear independence - A set *S* of integers is called *lacunar* if it contains no two consecutive integers. - Well-known fact: The number of lacunar subsets of [n] is the Fibonacci number f_{n+1} . #### Lacunar subsets and linear independence - A set S of integers is called lacunar if it contains no two consecutive integers. - **Well-known fact:** The number of lacunar subsets of [n] is the Fibonacci number f_{n+1} . - **Lemma.** For each permutation π , the set $\operatorname{Epk} \pi$ is a nonempty lacunar subset of [n]. (And conversely although we won't need it –, any such subset has the form $\operatorname{Epk} \pi$ for some π .) #### Lacunar subsets and linear independence - A set S of integers is called lacunar if it contains no two consecutive integers. - Well-known fact: The number of lacunar subsets of [n] is the Fibonacci number f_{n+1} . - **Lemma.** For each permutation π , the set $\operatorname{Epk} \pi$ is a nonempty lacunar subset of [n]. (And conversely although we won't need it –, any such subset has the form $\operatorname{Epk} \pi$ for some π .) - Lemma. The family $$\left(K_{n,\Lambda}^{\mathcal{Z}}\right)_{n\in\mathbb{N};\ \Lambda\subseteq[n]} \text{ is lacunar and nonempty}$$ is Q-linearly independent. This actually takes work to prove. But once proven, it completes the argument for the shuffle-compatibility of Epk. # The kernel $\mathcal{K}_{\mathsf{Epk}}$ • Recall: The *kernel* \mathcal{K}_{st} of a descent statistic st is the \mathbb{Q} -vector subspace of QSym spanned by all differences of the form $F_{\alpha} - F_{\beta}$, with α and β being two st-equivalent compositions: $$\mathcal{K}_{\mathsf{st}} = \left\langle \mathit{F}_{\alpha} - \mathit{F}_{\beta} \; \mid \; |\alpha| = |\beta| \; \mathsf{and} \; \mathsf{st} \, \alpha = \mathsf{st} \, \beta \right\rangle_{\mathbb{O}}.$$ # The kernel $\mathcal{K}_{\mathsf{Epk}}$ • Recall: The *kernel* \mathcal{K}_{st} of a descent statistic st is the \mathbb{Q} -vector subspace of QSym spanned by all differences of the form $F_{\alpha} - F_{\beta}$, with α and β being two st-equivalent compositions: $$\mathcal{K}_{\mathsf{st}} = \left\langle \mathit{F}_{\alpha} - \mathit{F}_{\beta} \; \mid \; |\alpha| = |\beta| \; \mathsf{and} \; \mathsf{st} \, \alpha = \mathsf{st} \, \beta \right\rangle_{\mathbb{O}}.$$ - Since Epk is shuffle-compatible, its kernel \mathcal{K}_{Epk} is an ideal of QSym. How can we describe it? - Two ways: using the F-basis and using the M-basis. #### The kernel $\mathcal{K}_{\mathsf{Epk}}$ in terms of the *F*-basis - If $J=(j_1,j_2,\ldots,j_m)$ and K are two compositions, then we write $J\to K$ if there exists an $\ell\in\{2,3,\ldots,m\}$ such that $j_\ell>2$ and $K=(j_1,j_2,\ldots,j_{\ell-1},1,j_\ell-1,j_{\ell+1},j_{\ell+2},\ldots,j_m)$. (In other words, we write $J\to K$ if K can be obtained from J by "splitting" some non-initial entry $j_\ell>2$ into two consecutive entries 1 and $j_\ell-1$.) - Example. Here are all instances of the → relation on compositions of size ≤ 5: $$egin{aligned} (1,3) & ightarrow (1,1,2) \,, & (1,4) & ightarrow (1,1,3) \,, \ (1,3,1) & ightarrow (1,1,2,1) \,, & (1,1,3) & ightarrow (1,1,1,2) \,, \ (2,3) & ightarrow (2,1,2) \,. \end{aligned}$$ • **Proposition.** The ideal $\mathcal{K}_{\mathsf{Epk}}$ of QSym is spanned (as a \mathbb{Q} -vector space) by all differences of the form $F_J - F_K$, where J and K are two compositions satisfying $J \to K$. #### The kernel $\mathcal{K}_{\mathsf{Epk}}$ in terms of the *M*-basis - If $J=(j_1,j_2,\ldots,j_m)$ and K are two compositions, then we write $J\underset{M}{\longrightarrow} K$ if there exists an $\ell\in\{2,3,\ldots,m\}$ such that $j_\ell>2$ and $K=(j_1,j_2,\ldots,j_{\ell-1},2,j_\ell-2,j_{\ell+1},j_{\ell+2},\ldots,j_m)$. (In other words, we write $J\underset{M}{\longrightarrow} K$ if K can be obtained from J by "splitting" some non-initial entry $j_\ell>2$ into two consecutive entries 2 and $j_\ell-2$.) - Example. Here are all instances of the → relation on compositions of size ≤ 5: $$(1,3) \underset{M}{\to} (1,2,1), \qquad (1,4) \underset{M}{\to} (1,2,2),$$ $$(1,3,1) \underset{M}{\to} (1,2,1,1), \qquad (1,1,3) \underset{M}{\to} (1,1,2,1),$$ $$(2,3) \underset{M}{\to} (2,2,1).$$ • **Proposition.** The ideal $\mathcal{K}_{\mathsf{Epk}}$ of QSym is spanned (as a \mathbb{Q} -vector space) by all sums of the form $M_J + M_K$, where J and K are two compositions satisfying $J \to K$. #### What about other statistics? • Question. Do other descent statistics allow for similar descriptions of \mathcal{K}_{st} ? # Section 4 # Left-/right-shuffle-compatibility #### References: - Darij Grinberg, Shuffle-compatible permutation statistics II: the exterior peak set, draft. - Darij Grinberg, Dual immaculate creation operators and a dendriform algebra structure on the quasisymmetric functions, Canad. J. Math. 69 (2017), pp. 21–53. # Left/right-shuffle-compatibility (repeated) - We further begin the study of a finer version of shuffle-compatibility: "left/right-shuffle-compatibility". - ullet Given two disjoint nonempty permutations π and σ , - a *left shuffle* of π and σ is a shuffle of π and σ that starts with a letter of π ; - a *right shuffle* of π and σ is a shuffle of π and σ that starts with a letter of σ . - We let $S_{\prec}(\pi, \sigma)$ be the set of all left shuffles of π and σ . We let $S_{\succ}(\pi, \sigma)$ be the set of all right shuffles of π and σ . - A statistic st is said to be *left-shuffle-compatible* if for any two disjoint nonempty permutations π and σ such that the first entry of π is greater than the first entry of σ , the multiset $$\{\operatorname{\mathsf{st}} au \mid au \in \mathcal{S}_{\prec}(\pi,\sigma)\}_{\mathsf{multiset}}$$ - depends only on st π , st σ , $|\pi|$ and $|\sigma|$. - We show that Des, des, Lpk and Epk are left- and right-shuffle-compatible. (But not maj or Rpk.) ## Dendriform structure on QSym, introduction This proof will use a dendriform algebra structure on QSym, as well as two other operations and a bit of the Hopf algebra structure. I don't know of a combinatorial proof. This structure first appeared in: Darij Grinberg, Dual immaculate creation operators and a dendriform algebra structure on the quasisymmetric functions, Canad. J. Math. 69 (2017), pp. 21–53. But the ideas go back to: - Glânffrwd P. Thomas, Frames, Young tableaux, and Baxter sequences, Advances in Mathematics, Volume 26, Issue 3, December 1977, Pages 275–289. - Jean-Christophe Novelli, Jean-Yves Thibon, *Construction of dendriform trialgebras*, arXiv:math/0510218. Something similar also appeared in: Aristophanes Dimakis, Folkert Müller-Hoissen, *Quasi-symmetric functions and the KP hierarchy*, Journal of Pure and Applied Algebra, Volume 214, Issue 4, April
2010, Pages 449–460. - For any monomial \mathfrak{m} , let Supp \mathfrak{m} denote the set $\{i \mid x_i \text{ appears in } \mathfrak{m}\}.$ - **Example.** Supp $(x_3^5x_6x_8) = \{3, 6, 8\}.$ - For any monomial \mathfrak{m} , let Supp \mathfrak{m} denote the set $\{i \mid x_i \text{ appears in } \mathfrak{m}\}.$ - **Example.** Supp $(x_3^5x_6x_8) = \{3, 6, 8\}.$ - We define a binary operation \prec on the \mathbb{Q} -vector space $\mathbb{Q}[[x_1, x_2, x_3, \ldots]]$ as follows: - On monomials, it should be given by $$\mathfrak{m} \prec \mathfrak{n} = \left\{ \begin{array}{ll} \mathfrak{m} \cdot \mathfrak{n}, & \text{ if } \min \left(\mathsf{Supp} \, \mathfrak{m} \right) < \min \left(\mathsf{Supp} \, \mathfrak{n} \right); \\ 0, & \text{ if } \min \left(\mathsf{Supp} \, \mathfrak{m} \right) \geq \min \left(\mathsf{Supp} \, \mathfrak{n} \right) \end{array} \right.$$ for any two monomials \mathfrak{m} and \mathfrak{n} . - It should be Q-bilinear. - It should be continuous (i.e., its Q-bilinearity also applies to infinite Q-linear combinations). - Well-definedness is pretty clear. - Example. $(x_2^2x_4) \prec (x_3^2x_5) = x_2^2x_3^2x_4x_5$, but $(x_2^2x_4) \prec (x_2^2x_5) = 0$. - For any monomial \mathfrak{m} , let Supp \mathfrak{m} denote the set $\{i \mid x_i \text{ appears in } \mathfrak{m}\}.$ - **Example.** Supp $(x_3^5x_6x_8) = \{3, 6, 8\}.$ - We define a binary operation \succeq on the \mathbb{Q} -vector space $\mathbb{Q}[[x_1, x_2, x_3, \ldots]]$ as follows: - On monomials, it should be given by $$\mathfrak{m} \succeq \mathfrak{n} = \left\{ \begin{array}{ll} \mathfrak{m} \cdot \mathfrak{n}, & \text{ if } \min \left(\mathsf{Supp} \, \mathfrak{m} \right) \geq \min \left(\mathsf{Supp} \, \mathfrak{n} \right); \\ 0, & \text{ if } \min \left(\mathsf{Supp} \, \mathfrak{m} \right) < \min \left(\mathsf{Supp} \, \mathfrak{n} \right) \end{array} \right.$$ for any two monomials \mathfrak{m} and \mathfrak{n} . - It should be Q-bilinear. - It should be continuous (i.e., its Q-bilinearity also applies to infinite Q-linear combinations). - Well-definedness is pretty clear. - Example. $(x_2^2x_4) \succeq (x_3^2x_5) = 0$, but $(x_2^2x_4) \succeq (x_2^2x_5) = x_2^4x_4x_5$. • We now have defined two binary operations \prec and \succeq on $\mathbb{Q}[[x_1, x_2, x_3, \ldots]]$. They satisfy: $$a \prec b + a \succeq b = ab;$$ $(a \prec b) \prec c = a \prec (bc);$ $(a \succeq b) \prec c = a \succeq (b \prec c);$ $a \succeq (b \succeq c) = (ab) \succeq c.$ • We now have defined two binary operations \prec and \succeq on $\mathbb{Q}[[x_1, x_2, x_3, \ldots]]$. They satisfy: $$a \prec b + a \succeq b = ab;$$ $(a \prec b) \prec c = a \prec (bc);$ $(a \succeq b) \prec c = a \succeq (b \prec c);$ $a \succeq (b \succeq c) = (ab) \succeq c.$ • This says that $(\mathbb{Q}[[x_1, x_2, x_3, \ldots]], \prec, \succeq)$ is a dendriform algebra in the sense of Loday (see, e.g., Zinbiel, Encyclopedia of types of algebras 2010, arXiv:1101.0267). • We now have defined two binary operations \prec and \succeq on $\mathbb{Q}[[x_1, x_2, x_3, \ldots]]$. They satisfy: $$a \prec b + a \succeq b = ab;$$ $(a \prec b) \prec c = a \prec (bc);$ $(a \succeq b) \prec c = a \succeq (b \prec c);$ $a \succeq (b \succeq c) = (ab) \succeq c.$ - This says that $(\mathbb{Q}[[x_1, x_2, x_3, \ldots]], \prec, \succeq)$ is a dendriform algebra in the sense of Loday (see, e.g., Zinbiel, Encyclopedia of types of algebras 2010, arXiv:1101.0267). - QSym is closed under both operations \prec and \succeq . Thus, QSym becomes a dendriform subalgebra of $\mathbb{Q}[[x_1, x_2, x_3, \ldots]]$. # The kernel criterion for left/right-shuffle-compatibility • Recall the **Theorem:** The descent statistic st is shuffle-compatible if and only if \mathcal{K}_{st} is an ideal of QSym. # The kernel criterion for left/right-shuffle-compatibility - Similarly, we have: - **Theorem.** The descent statistic st is left-shuffle-compatible if and only if \mathcal{K}_{st} is a \prec -ideal of QSym (that is: QSym $\prec \mathcal{K}_{st} \subseteq \mathcal{K}_{st}$ and $\mathcal{K}_{st} \prec \mathsf{QSym} \subseteq \mathcal{K}_{st}$). - **Theorem.** The descent statistic st is right-shuffle-compatible if and only if \mathcal{K}_{st} is a \succeq -ideal of QSym (that is: QSym $\succeq \mathcal{K}_{st} \subseteq \mathcal{K}_{st}$ and $\mathcal{K}_{st} \succeq \mathsf{QSym} \subseteq \mathcal{K}_{st}$). # The kernel criterion for left/right-shuffle-compatibility - Similarly, we have: - **Theorem.** The descent statistic st is left-shuffle-compatible if and only if \mathcal{K}_{st} is a \prec -ideal of QSym (that is: QSym $\prec \mathcal{K}_{st} \subseteq \mathcal{K}_{st}$ and $\mathcal{K}_{st} \prec \mathsf{QSym} \subseteq \mathcal{K}_{st}$). - **Theorem.** The descent statistic st is right-shuffle-compatible if and only if \mathcal{K}_{st} is a \succeq -ideal of QSym (that is: QSym $\succeq \mathcal{K}_{st} \subseteq \mathcal{K}_{st}$ and $\mathcal{K}_{st} \succeq \mathsf{QSym} \subseteq \mathcal{K}_{st}$). - Corollary. Let st be a descent statistic. If st has 2 of the 3 properties "shuffle-compatible", "left-shuffle-compatible" and "right-shuffle-compatible", then it has all 3. (To prove this, recall $ab = a \prec b + a \succeq b$.) # The kernel criterion for left/right-shuffle-compatibility - Similarly, we have: - **Theorem.** The descent statistic st is left-shuffle-compatible if and only if \mathcal{K}_{st} is a \prec -ideal of QSym (that is: QSym $\prec \mathcal{K}_{st} \subseteq \mathcal{K}_{st}$ and $\mathcal{K}_{st} \prec \text{QSym} \subseteq \mathcal{K}_{st}$). - **Theorem.** The descent statistic st is right-shuffle-compatible if and only if \mathcal{K}_{st} is a \succeq -ideal of QSym (that is: QSym $\succeq \mathcal{K}_{st} \subseteq \mathcal{K}_{st}$ and $\mathcal{K}_{st} \succeq \text{QSym} \subseteq \mathcal{K}_{st}$). - Corollary. Let st be a descent statistic. If st has 2 of the 3 properties "shuffle-compatible", "left-shuffle-compatible" and "right-shuffle-compatible", then it has all 3. (To prove this, recall $ab = a \prec b + a \succeq b$.) - Question. Are there non-shuffle-compatible but left-shuffle-compatible descent statistics? (I don't know of any, but haven't looked far.) # The kernel criterion for left/right-shuffle-compatibility - Similarly, we have: - **Theorem.** The descent statistic st is left-shuffle-compatible if and only if \mathcal{K}_{st} is a \prec -ideal of QSym (that is: QSym $\prec \mathcal{K}_{st} \subseteq \mathcal{K}_{st}$ and $\mathcal{K}_{st} \prec \mathsf{QSym} \subseteq \mathcal{K}_{st}$). - **Theorem.** The descent statistic st is right-shuffle-compatible if and only if \mathcal{K}_{st} is a \succeq -ideal of QSym (that is: QSym $\succeq \mathcal{K}_{st} \subseteq \mathcal{K}_{st}$ and $\mathcal{K}_{st} \succeq \mathsf{QSym} \subseteq \mathcal{K}_{st}$). - **Corollary.** Let st be a descent statistic. If st has 2 of the 3 properties "shuffle-compatible", "left-shuffle-compatible" and "right-shuffle-compatible", then it has all 3. - (To prove this, recall $ab = a \prec b + a \succeq b$.) - Okay, but how do we actually prove that \mathcal{K}_{st} is a \prec -ideal of QSym ? # The dendriform product formula for the F_{α} • An analogue of the product formula for $F_{\mathsf{Comp}\,\pi} \cdot F_{\mathsf{Comp}\,\sigma}$: **Theorem.** Let π and σ be two disjoint nonempty permutations. Assume that the first entry of π is greater than the first entry of σ . Then, $$F_{\mathsf{Comp}\,\pi} \prec F_{\mathsf{Comp}\,\sigma} = \sum_{\tau \in S_{\prec}(\pi,\sigma)} F_{\mathsf{Comp}\,\tau}$$ and $$F_{\mathsf{Comp}\,\pi} \succeq F_{\mathsf{Comp}\,\sigma} = \sum_{\tau \in S_{\smile}(\pi,\sigma)} F_{\mathsf{Comp}\,\tau}.$$ # The dendriform product formula for the F_{α} • An analogue of the product formula for $F_{\mathsf{Comp}\,\pi} \cdot F_{\mathsf{Comp}\,\sigma}$: **Theorem.** Let π and σ be two disjoint nonempty permutations. Assume that the first entry of π is greater than the first entry of σ . Then, $$F_{\mathsf{Comp}\,\pi} \prec F_{\mathsf{Comp}\,\sigma} = \sum_{\tau \in S_{\prec}(\pi,\sigma)} F_{\mathsf{Comp}\,\tau}$$ and $$F_{\mathsf{Comp}\,\pi} \succeq F_{\mathsf{Comp}\,\sigma} = \sum_{\tau \in S_{\succ}(\pi,\sigma)} F_{\mathsf{Comp}\,\tau}.$$ This theorem yields that Des is left-shuffle-compatible and right-shuffle-compatible, just as the product formula showed that Des is shuffle-compatible. ## The dendriform product formula for the F_{α} • An analogue of the product formula for $F_{\mathsf{Comp}\,\pi} \cdot F_{\mathsf{Comp}\,\sigma}$: **Theorem.** Let π and σ be two disjoint nonempty permutations. Assume that the first entry of π is greater than the first entry of σ . Then, $$F_{\mathsf{Comp}\,\pi} \prec F_{\mathsf{Comp}\,\sigma} = \sum_{\tau \in S_{\prec}(\pi,\sigma)} F_{\mathsf{Comp}\,\tau}$$ and $$F_{\mathsf{Comp}\,\pi} \succeq F_{\mathsf{Comp}\,\sigma} = \sum_{\tau \in S_{\succ}(\pi,\sigma)} F_{\mathsf{Comp}\,\tau}.$$ - This theorem yields that Des is left-shuffle-compatible and right-shuffle-compatible, just as the product formula showed that Des is shuffle-compatible. - Can we play the same game with Epk, using our $K_{n,\Lambda}^{\mathcal{Z}}$ series instead of F_{α} ? # The dendriform product formula for the F_{lpha} • An analogue of the product formula for $F_{\mathsf{Comp}\,\pi} \cdot F_{\mathsf{Comp}\,\sigma}$: **Theorem.** Let π and σ be two disjoint nonempty permutations. Assume that the first entry of π is greater than the first entry of σ . Then, $$F_{\mathsf{Comp}\,\pi} \prec F_{\mathsf{Comp}\,\sigma} = \sum_{\tau \in S_{\prec}(\pi,\sigma)} F_{\mathsf{Comp}\,\tau}$$ and $$F_{\mathsf{Comp}\,\pi} \succeq F_{\mathsf{Comp}\,\sigma} = \sum_{\tau \in S_{\sim}(\pi,\sigma)} F_{\mathsf{Comp}\,\tau}.$$ - This theorem yields
that Des is left-shuffle-compatible and right-shuffle-compatible, just as the product formula showed that Des is shuffle-compatible. - Can we play the same game with Epk, using our $K_{n,\Lambda}^{\mathcal{Z}}$ series instead of F_{α} ? Not to my knowledge: I don't know of an analogue of the above theorem. Instead, I use a different approach. # The ♦ and X operations - I need two other operations on quasisymmetric functions. - We define a binary operation Φ on the \mathbb{Q} -vector space $\mathbb{Q}[[x_1,x_2,x_3,\ldots]]$ as follows: - On monomials, it should be given by $$\mathfrak{m} \, \Phi \, \mathfrak{n} = \left\{ \begin{array}{ll} \mathfrak{m} \cdot \mathfrak{n}, & \text{ if } \max \left(\mathsf{Supp} \, \mathfrak{m} \right) \leq \min \left(\mathsf{Supp} \, \mathfrak{n} \right); \\ 0, & \text{ if } \max \left(\mathsf{Supp} \, \mathfrak{m} \right) > \min \left(\mathsf{Supp} \, \mathfrak{n} \right). \end{array} \right.$$ for any two monomials \mathfrak{m} and \mathfrak{n} . - It should be Q-bilinear. - It should be continuous (i.e., its Q-bilinearity also applies to infinite Q-linear combinations). - Well-definedness is pretty clear. - Example. $(x_2^2x_4) \Phi (x_4^2x_5) = x_2^2x_4^3x_5$ and $(x_2^2x_4) \Phi (x_3^2x_5) = 0$. # The ♦ and X operations - I need two other operations on quasisymmetric functions. - We define a binary operation \mathbb{X} on the \mathbb{Q} -vector space $\mathbb{Q}[[x_1,x_2,x_3,\ldots]]$ as follows: - On monomials, it should be given by $$\mathfrak{m} \ \, \mathbb{X} \ \, \mathfrak{n} = \left\{ \begin{array}{ll} \mathfrak{m} \cdot \mathfrak{n}, & \text{ if } \mathsf{max} \, (\mathsf{Supp} \, \mathfrak{m}) < \mathsf{min} \, (\mathsf{Supp} \, \mathfrak{n}); \\ 0, & \text{ if } \mathsf{max} \, (\mathsf{Supp} \, \mathfrak{m}) \geq \mathsf{min} \, (\mathsf{Supp} \, \mathfrak{n}) \end{array} \right.$$ for any two monomials \mathfrak{m} and \mathfrak{n} . - It should be Q-bilinear. - It should be continuous (i.e., its Q-bilinearity also applies to infinite Q-linear combinations). - Well-definedness is pretty clear. ### The ϕ and X operations - Belgthor (\$\phi\$) and Tvimadur (\$\pi\$) are two calendar runes signifying two of the 19 years of the Metonic cycle. I sought two (unused) symbols that (roughly) look like "stacking one thing (monomial) atop another", allowing overlap (\$\phi\$) and disallowing overlap (\$\pi\$). • **Proposition.** For any $a \in \mathbb{Q}[[x_1, x_2, x_3, \ldots]]$ and $b \in \mathsf{QSym}$, we have $$\sum_{(b)} \left(S\left(b_{(1)}\right) \, \diamond \, a \right) b_{(2)} = a \prec b,$$ where we use the Hopf algebra structure on QSym and the following notations: - S for the antipode of QSym; - Sweedler's notation $\sum\limits_{(b)} b_{(1)} \otimes b_{(2)}$ for Δ (b). • **Proposition.** For any $a \in \mathbb{Q}[[x_1, x_2, x_3, \ldots]]$ and $b \in \mathsf{QSym}$, we have $$\sum_{(b)} \left(S\left(b_{(1)} \right) \, \diamond \, a \right) b_{(2)} = a \prec b,$$ where we use the Hopf algebra structure on $\operatorname{\mathsf{QSym}}\nolimits$. This proposition was important in my study of "dual immaculate creation operators"; it is equally helpful here. Corollary. Let M be an ideal of QSym. If QSym Φ M ⊆ M, then M ≺ QSym ⊆ M. • **Proposition.** For any $a \in \mathbb{Q}[[x_1, x_2, x_3, \ldots]]$ and $b \in \mathsf{QSym}$, we have $$\sum_{(b)} \left(S\left(b_{(1)} \right) \, \diamond \, a \right) b_{(2)} = a \prec b,$$ where we use the Hopf algebra structure on QSym . - This proposition was important in my study of "dual immaculate creation operators"; it is equally helpful here. Corollary. Let M be an ideal of QSym. If QSym Φ M ⊆ M, then M ≺ QSym ⊆ M. - A similar identity for X yields: Corollary. Let M be an ideal of QSym. If QSym X M ⊆ M, then QSym ≥ M ⊆ M. • **Proposition.** For any $a \in \mathbb{Q}[[x_1, x_2, x_3, \ldots]]$ and $b \in \mathsf{QSym}$, we have $$\sum_{(b)} \left(S\left(b_{(1)} \right) \, \diamond \, a \right) b_{(2)} = a \prec b,$$ where we use the Hopf algebra structure on QSym . - This proposition was important in my study of "dual immaculate creation operators"; it is equally helpful here. Corollary. Let M be an ideal of QSym. If QSym Φ M ⊆ M, then M ≺ QSym ⊆ M. - A similar identity for X yields: Corollary. Let M be an ideal of QSym. If QSym X M ⊆ M, then QSym ≻ M ⊆ M. - Corollary. Let M be an ideal of QSym that is a left $\,\Phi$ -ideal (that is, QSym $\,\Phi$ $M \subseteq M$) and a left $\,X$ -ideal (that is, QSym $\,X$ $M \subseteq M$). Then, M is a $\,X$ -ideal and a $\,Y$ -ideal of QSym. ### "Runic calculus" #### "Runic calculus" - For any two nonempty (i.e., \neq ()) compositions α and β , we have $$M_{\alpha} \Phi M_{\beta} = M_{[\alpha,\beta]} + M_{\alpha \odot \beta};$$ $M_{\alpha} X M_{\beta} = M_{[\alpha,\beta]};$ $F_{\alpha} \Phi F_{\beta} = F_{\alpha \odot \beta};$ $F_{\alpha} X F_{\beta} = F_{[\alpha,\beta]},$ where $[\alpha, \beta]$ and $\alpha \odot \beta$ are two compositions defined by $$[(\alpha_1, \alpha_2, \dots, \alpha_\ell), (\beta_1, \beta_2, \dots, \beta_m)]$$ = $(\alpha_1, \alpha_2, \dots, \alpha_\ell, \beta_1, \beta_2, \dots, \beta_m)$ and $$(\alpha_1, \alpha_2, \dots, \alpha_\ell) \odot (\beta_1, \beta_2, \dots, \beta_m)$$ = $(\alpha_1, \alpha_2, \dots, \alpha_{\ell-1}, \alpha_\ell + \beta_1, \beta_2, \beta_3, \dots, \beta_m).$ #### "Runic calculus" - They satisfy $$(a \Leftrightarrow b) \mathbin{\%} c - a \Leftrightarrow (b \mathbin{\%} c) = \varepsilon (b) (a \mathbin{\%} c - a \Leftrightarrow c);$$ $$(a \mathbin{\%} b) \Leftrightarrow c - a \mathbin{\%} (b \Leftrightarrow c) = \varepsilon (b) (a \Leftrightarrow c - a \mathbin{\%} c),$$ where $\varepsilon : \mathbb{Q} [[x_1, x_2, x_3, \ldots]] \to \mathbb{Q}$ sends f to $f (0, 0, 0, \ldots).$ As a consequence, $$(a \Leftrightarrow b) \times c + (a \times b) \Leftrightarrow c = a \Leftrightarrow (b \times c) + a \times (b \Leftrightarrow c).$$ This says that (QSym, Φ , X) is a $As^{\langle 2 \rangle}$ -algebra (in the sense of Loday). • **Question.** What other identities do ϕ , X, \prec and \succeq satisfy? • Recall the **Corollary:** Let M be an ideal of QSym that is a left ϕ -ideal (that is, QSym ϕ $M \subseteq M$) and a left X-ideal (that is, QSym X $M \subseteq M$). Then, M is a X-ideal and a X-ideal of QSym. - Recall the **Corollary:** Let M be an ideal of QSym that is a left Φ -ideal (that is, QSym Φ $M \subseteq M$) and a left X-ideal (that is, QSym X $M \subseteq M$). Then, M is a X-ideal and a X-ideal of QSym. - Given a shuffle-compatible descent statistic st, we thus conclude that if \mathcal{K}_{st} is a left Φ -ideal and a left \mathbb{X} -ideal, then st is left-shuffle-compatible and right-shuffle-compatible. - Recall the **Corollary:** Let M be an ideal of QSym that is a left Φ -ideal (that is, QSym Φ $M \subseteq M$) and a left X-ideal (that is, QSym X $M \subseteq M$). Then, M is a X-ideal and a Y-ideal of QSym. - Given a shuffle-compatible descent statistic st, we thus conclude that if \mathcal{K}_{st} is a left Φ -ideal and a left \mathbb{X} -ideal, then st is left-shuffle-compatible and right-shuffle-compatible. - Fortunately, this is easy to apply: Proposition. Let st be a descent statistic. - \mathcal{K}_{st} is a left Φ -ideal of QSym if and only if st has the following property: If J and K are two st-equivalent nonempty compositions, and if G is any nonempty composition, then $G \odot J$ and $G \odot K$ are st-equivalent. - \mathcal{K}_{st} is a left \mathbb{X} -ideal of QSym if and only if st has the following property: If J and K are two st-equivalent nonempty compositions, and if G is any nonempty composition, then [G,J] and [G,K] are st-equivalent. - Recall the **Corollary:** Let M be an ideal of QSym that is a left Φ -ideal (that is, QSym Φ $M \subseteq M$) and a left X-ideal (that is, QSym X $M \subseteq M$). Then, M is a X-ideal and a X-ideal of QSym. - Given a shuffle-compatible descent statistic st, we thus conclude that if \mathcal{K}_{st} is a left Φ -ideal and a left \mathbb{X} -ideal, then st is left-shuffle-compatible and right-shuffle-compatible. - Fortunately, this is easy to apply: Proposition. Let st be a descent statistic. - $\mathcal{K}_{\mathsf{st}}$ is a left Φ -ideal of QSym if and only if for each fixed nonempty composition A, the value $\mathsf{st}(A \odot B)$ (for a nonempty composition B) is uniquely determined by |B| and $\mathsf{st}(B)$. - $\mathcal{K}_{\mathsf{st}}$ is a left \mathbb{X} -ideal of QSym if and only if for each fixed nonempty composition A, the value $\mathsf{st}([A,B])$ (for a nonempty composition B) is uniquely determined by |B| and $\mathsf{st}(B)$. • Thus, proving that Epk is left- and right-shuffle-compatible requires showing that Epk $(A \odot B)$ and Epk ([A, B]) (for nonempty compositions A and B) are uniquely determined by |B| and Epk B when A is fixed. - Thus, proving that Epk is left- and right-shuffle-compatible requires showing that $\operatorname{Epk}(A \odot B)$ and $\operatorname{Epk}([A, B])$ (for nonempty compositions A and B) are uniquely determined by |B| and $\operatorname{Epk} B$ when A is fixed. - This is not hard: $$\mathsf{Epk}\,(A\odot B) = ((\mathsf{Epk}\,A)\setminus\{n\})\cup(\mathsf{Epk}\,B+n)\,;$$ $$\mathsf{Epk}\,([A,B]) = (\mathsf{Epk}\,A)\cup((\mathsf{Epk}\,B+n)\setminus\{n+1\})\,,$$ where $n=|A|$. - Thus, proving that Epk is left- and right-shuffle-compatible requires showing that Epk $(A \odot B)$ and Epk ([A, B]) (for nonempty compositions A and B) are uniquely determined by |B| and Epk B when A is fixed. - This is not hard: $$\mathsf{Epk}\,(A\odot B) = ((\mathsf{Epk}\,A)\setminus\{n\})\cup(\mathsf{Epk}\,B+n)\,;$$ $$\mathsf{Epk}\,([A,B]) = (\mathsf{Epk}\,A)\cup((\mathsf{Epk}\,B+n)\setminus\{n+1\})\,,$$ where $n=|A|$. - Similarly, - Des is left- and right-shuffle-compatible
(again); - des is left- and right-shuffle-compatible; - maj is **not** left- or right-shuffle-compatible (maj $(A \odot B)$ and maj ([A, B]) depend not just on |A|, |B|, maj A and maj B, but also on des B). - Thus, proving that Epk is left- and right-shuffle-compatible requires showing that Epk $(A \odot B)$ and Epk ([A, B]) (for nonempty compositions A and B) are uniquely determined by |B| and Epk B when A is fixed. - This is not hard: $$\mathsf{Epk}\,(A\odot B) = ((\mathsf{Epk}\,A)\setminus\{n\})\cup(\mathsf{Epk}\,B+n)\,;$$ $$\mathsf{Epk}\,([A,B]) = (\mathsf{Epk}\,A)\cup((\mathsf{Epk}\,B+n)\setminus\{n+1\})\,,$$ where $n=|A|$. - Similarly, - (des, maj) is left- and right-shuffle-compatible; - Lpk is left- and right-shuffle-compatible; - Rpk is **not** left- or right-shuffle-compatible; - Pk is not left- or right-shuffle-compatible. - More statistics remain to be analyzed. ### **Further questions** - Question (repeated). Can a statistic be shuffle-compatible without being a descent statistic? (Would FQSym help in studying such statistics?) - Question (repeated). Can a descent statistic be left-shuffle-compatible without being shuffle-compatible? - **Question.** What mileage do we get out of \mathcal{Z} -enriched (P, γ) -partitions for other choices of \mathcal{N} and \mathcal{Z} ? - Question (repeated). Where do the $\Gamma_{\mathcal{Z}}(P,\gamma)$ live? - **Question.** Hsiao and Petersen have generalized enriched (P,γ) -partitions to "colored (P,γ) -partitions" (with $\{+,-\}$ replaced by an m-element set). Does this generalize our results? #### **Thanks** **Thanks** to Ira Gessel and Yan Zhuang for initiating this direction (and for helpful discussions), and to Sara Billey for an invitation to Seattle. And thanks to you for attending! ``` slides: http: //www.cip.ifi.lmu.de/~grinberg/algebra/seattle18.pdf paper: http: //www.cip.ifi.lmu.de/~grinberg/algebra/gzshuf2.pdf project: https://github.com/darijgr/gzshuf ```