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0.1. Introduction (Abstract?)

This is a preliminary report on a question that is almost naive: Is there a ring
(or another structure) that has the same relation to the ring A of symmetric
functions as IF; has to the “mythical field IF;” ?

This question allows for at least two different interpretations. One of them is
just about g-deforming the structure coefficients of the symmetric functions in
such a way that (some of) their combinatorial interpretations are reinterpreted
(i.e., counting sets becomes counting IF;-vector spaces). This naturally leads to
Hall algebras, studied e.g. in [5]. A different option, however, presents itself
if we are willing to replace the bases of A itself (rather than just its structure
coefficients). Namely, recall that all (or most) of the usual bases of A are in-
dexed by integer partitions. An integer partition can be regarded as a weakly
decreasing sequence of positive integers, or, equivalently, a conjugacy class of a
permutation in a symmetric group. A natural “IF;-analogue” of an integer parti-
tion, thus, is a conjugacy class of a matrix in GL, (IFq). Could we find a ring (or
anything similar — a commutative IF, [T]-algebra sounds like a reasonable thing
to expect) which plays a similar role to A and whose bases are indexed by these
IF;-analogues?

This report is a bait-and-switch, as I do not have a good answer to this ques-
tion. Instead I recall the classical interpretation of the ring A as the coordi-
nate ring of the affine group of Witt vectors ([10, §9-§10]), and construct an
F;-analogue of the affine group of Witt vectors. This analogue has a coordi-
nate ring, which can reasonably be called an [F;-analogue of A. But this answer
is lacking something very important: the combinatorial bases. The most inter-
esting structure on the ring A of symmetric functions is not so much its Hopf
algebra structure, but its various bases, such as the homogeneous symmetric
functions (h) ), cp,, the elementary symmetric functions (e, ), cp,, and the Schur
functions (s)),)cp,- I am unable to find a counterpart to any of the bases just
mentioned in the F;-analogue of A suggested. All I can offer is an analogue of
the power-sum functions (pa),cp,, (Which do not even form a basis, although
with functoriality they are sufficient for many computational purposes) and of a
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basis (w, ) cp,, defined in [6, Exercise 2.9.3 (c)] (which, while having interesting
properties, hardly feels at home in combinatorics). So the FF;-analogue of A 1
tind is somewhat of an empty shell. Still, there are some surprises and my hope
is not lost that it can be made whole.

James Borger had a significant role in the studies made below. In particular, he
suggested to me to look for analogues of Theorem [2.6{and Theorem [2.9| (which I
found — Theorem and Theorem [2.28), considering them as a litmus test that
shows whether a functor really deserves to be called a Witt vector functor.

The F;-analogue of the Witt vectors uses the Carlitz polynomials; a highly read-
able introduction to these polynomials appears in [3]].

This report is built as follows: In Section [1, we introduce notations and present
basic definitions. In Section [2, we remind the reader of a construction (actu-
ally, one of many constructions) of the Witt vectors, and then introduce the
IF;-analogue of this construction. In Section {3, we shall give detailed proofs for
some of the claims made before. (This section is still under construction, so only
few of the proofs are available.) In Section 4, we speculate on how this analogue
could lead to an IF;-analogue of A. In Section |5, we prove a formula for the so-
called Carlitz logarithm which, while not having any direct relation to the rest
of this report, has emerged in my experiments in connection to it.

Being a preliminary report, this one will occasionally make for some rough
reading, although I am trying to make the more-or-less finished parts (Section
more-or-less readable. The reader is assumed to know about Witt vectors ([18]
or [10] or [11} §1]) and a bit about Carlitz polynomials ([3]). Symmetric functions
will only be really used in Section [4]

0.2. Remark on Borger’s work

In [1), §1-82], James Borger has generalized the notion of Witt vectors to a rather
broad setting, which includes both the classical and the “nested” Witt vectors.
His generalization also includes my Carlitz-Witt functor Wy in Theorem [2.4{ be-
low, namely when one takes R = F; [T] and E = {all maximal ideals of R}. We
have yet to fill in the details, but in a nutshell, the reason why our constructions
are equivalent is that the universal property of our Wy (B) given in Corollary
below is the same as the one for Wlle,E (A) in [1} Proposition 1.9 (c)] (up to
technicalities). Thus, it appears likely that several of the results below are par-
ticular cases of results from [1]. Nevertheless, our approach to the Carlitz-Witt
functor is different from Borger’s, and somewhat more explicit.
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1. Notations

1.1. General number theory

I use the symbol P for the set of all primes. Further, N denotes the set {0,1,2, ...},
and N, the set {1,2,3,...}.

A nest means a nonempty subset N of IN such that for every element d € N,
every divisor of d lies in N. What I call “nest” is called a “nonempty truncation
set” by some authors (e.g., by James Borger in some of his work), and a “divisor-
stable set” by others (e.g., by Joseph Rabinoff in [18]).

For every prime p, the nest {1,p, p?,p,...} = {p' | i € N} is called p™.

For any prime p and any n € Z, we denote by v, (n) the largest nonnegative
integer m satisfying p™ | n; this is set to be 40 if n = 0.

For any n € N, we denote by PFn the set of all prime divisors of n.

We let 1 denote the Mobius function and ¢ the Euler totient function (both are
defined on IN ).

For every ring R and indeterminate T, we denote by R [T] _ the set of all monic
polynomials in the indeterminate T over R. (All rings are supposed to have a
unity.)

We consider polynomials over fields to be analogous to integersﬂ Under this
analogy, monic polynomials correspond to positive integers; divisibility of poly-
nomials corresponds to divisibility of integers; monic irreducible polynomials
correspond to primes. Thus, for example, if R is a field and M € R[T], is a
monic polynomial, then a sum like Y ap is to be read as a sum over all monic

D|M
divisors of M, not over all arbitrary divisors of M. Moreover, if R is a field and
M € R[T], is a monic polynomial, then PF M will denote the set of all monic
irreducible divisors of M (rather than all irreducible divisors of M). Finally, if 7t
is an irreducible polynomial in R [T], and f is any polynomial in R [T], (for a
field R), then v (f) means the largest nonnegative integer m satisfying 77" | f;
this is set to be +co if f = 0.

1.2. Algebra

We denote by CRing the category of commutative rings, and by CRingj the
category of commutative R-algebras for a fixed commutative ring R. Also, for
any ring R, we denote by RkMod the category of left R-modules.

We denote by A the ring of symmetric functions over Z. (This is also known
as Symm or Sym. See [6, §2] and [19, Chapter 7] for studies of this ring A.)

IThis is a well-known analogy, often taught in number theory classes.
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1.3. Carlitz polynomials

In discussing Carlitz polynomials, I use the notations from Keith Conrad’s [3]
(but I'm using blackboard bold instead of boldface for labelling rings; so what
Conrad calls F, will be called IF;, here, etc.). In particular, let g be a prime power.
For any M € [F, [T], the Carlitz polynomial in [, [T] [X] corresponding to the
polynomial M will be denoted by [M]. Let us recall how it is defined:

Definition 1.1. For every n € IN, define a polynomial [T"] € FF, [T] [X] recur-
sively, by setting [T°] = X and [T"] = [T""!]? + T [T"] for every n > 1.
For example,

] =x; T = [TOV +7[10] = X7+ TX;
72| =[] "rT [T!| = (X74+ TX)" + T (X7 4 TX) = X7 + (T9 + T) X7 + T2X.

(Here, we have used the fact that taking the g-th power is an F -algebra endo-
morphism of FF, [T] [X].)

Now, if M € [, [T], then we define a polynomial [M] € F, [T] [X] to be
ao [T°] + a1 [T'] + - -+ + a; [T¥], where the polynomial M is written in the
form M = agT® + a1 T! + - - - + a; T¥. (In other words, we define a polynomial
[M] € F,[T][X] in such a way that [M] depends [F;-linearly on M, and that
our new definition of [M] does not conflict with our existing definition of [T"]
for n € IN.) We call [M] the Carlitz polynomial corresponding to M.

Carlitz polynomials can be used to take the above-mentioned analogy between
Z and F [T] to a new level. Namely, evaluating a Carlitz polynomial [M] at an
element a of a commutative IF, [T]-algebra A can be viewed as the analogue of
taking the m-th power of an element a of a commutative ring A.

Notice that

(] (X) = X9 mod 7t for any monic irreducible v € IF, [T]. (1)

(This is proven in [3, Theorem 2.11] in the case when g is a prime. In the general
case, the proof is analogous.)

In the Carlitz context there is an obvious analogue of the Mobius function: it
is simply the Mobius function of the lattice IF; [T] (whose partial order is the
divisibility relation). In other words, it is the function p : IF; [T], — {-1,0,1}
defined by

(—1)|PFM| , if M is squarefree;

i . forall M € IF, [T], .
0, if M is not squarefree

Yet, in the Carlitz context, there are two reasonable analogues of the Euler totient
function. Let us give their definitions (which both are taken from [3]):
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1. The first analogue is the function ¢¢ : IF; [T], — F, [T], defined by

1 M
pc(M)=M ] (1—7?):2;1@)5 forall M € TF, [T], .
nEPFM D|M
Some properties of this ¢c are shown in [3|, Theorem 4.5]. In particular, every
M € [, [T], satisfies M = )} ¢c (D).
DM

2. The second analogue is the function ¢ : IF; [T] . — IN. defined by

1
¢ (M) = g™ TT (1 - qdegn) = Y u(D)qsM/D) for all M € Fy [T], .
nEPEM DIM

This function appears in [3| Section 6]. It has the property that ¢ (M) = u (M) mod p
for every M € FF; [T], (where p = char[F;). Thus, ¢ (M) = p (M) in [F;. To us,
this makes this function ¢ less interesting than ¢c.

The existence of two different analogues of the same thing is a phenomenon
that we will see a few more times in this theory.

2. The Carlitz-W,itt suite

2.1. The classical ghost-Witt equivalence theorem

There are several approaches to the notion of Witt vectors. One of these ap-
proaches is based on the following theorem (the “ghost-Witt equivalence theo-
rem”, also known in parts as “Dwork’s lemma”):

Theorem 2.1. Let N be a nest. Let A be a commutative ring. For every n € N,
let ¢, : A — A be an endomorphism of the additive group A.

Further, let us make three more assumptions:

Assumption 1: For every n € N, the map ¢, is an endomorphism of the ring
A.

Assumption 2: We have ¢, (a) = a’ mod pA for everya € Aand p € PNN.

Assumption 3: We have ¢ = id, and we have ¢, o ¢, = @um for everyn € N
and every m € N satisfying nm € N.

Let (bn),cn € AN be a family of elements of A. Then, the following asser-
tionsC, D, &, F, G, H, and J are equivalent:

Assertion C: Every n € N and every p € PFn satisfy

@p (bnyp) = bymod p?r ™M A.

Assertion D: There exists a family (x,),.y € AN of elements of A such that

(bn =Y dx"/? for every n € N) :

d|n
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Assertion E: There exists a family (yu),.n € AN of elements of A such that

by =Y d¢usq (ya) foreveryn € N
dn

Assertion F: Every n € N satisfies

;# (d) @a (bnya) € nA.

Assertion G: Every n € N satisfies

;4’ (d) @a (bnsa) € nA.

Assertion H: Every n € N satisfies

i:ilqon/ ged(i,n) (bgcd(i,n)) € nA.

Assertion J : There exists a ring homomorphism from the ring A to A which
sends p, (the n-th power sum symmetric function) to b, for every n € N.

Definition 2.2. The families (b,), .y € AN which satisfy the equivalent asser-
tions C, D, £, F, G, H, and J of Theorem 2.1 will be called ghost-Witt vectors
(over A).

There are many variations on Theorem An easy way to get a more in-
tuitive particular case of Theorem is to set ¢, = idy for all n € N, after
which Assumptions 1 and 3 become tautologies. However, Assumption 2 is
not guaranteed to hold in this setting; but it holds in Z, and more generally in
binomial rings, and in some non-torsionfree rings as well. Unfortunately, this
case is in some sense too simple: it is too weak to yield the basic properties
of Witt vectors (such as the well-definedness of addition, multiplication, Frobe-
nius and Verschiebung). Instead one needs the case when A is a polynomial
ring Z [E] for some family & of indeterminates, and the maps ¢, are defined
by ¢, (P) = P(E") for every P € Z[E] (wWhere P (E") means the result of P
upon substituting every variable by its n-th power). The only part of Theorem
which is needed for this proof is the equivalence C <= D.

The proof of Theorem P.1|is everywhere and nowhere: it is a straightforward
generalization of arguments easily found in literature, but I haven’t seen it ex-
plicit in this generality anywhere. I've written it up (save for Assertion J) in
[7, Theorem 11]. Also, the proof of the whole Theorem in the case when
N = IN; appears in [6, Exercise 2.9.6]; it is not hard to derive the general case
from it.
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Some parts of Theorem [2.1|are valid in somewhat more general situations. The
equivalence C <= D needs Assumptions 1 and 2 but not 3 (unsurprisingly),
and the equivalence C <= & <= F <= § <= H needs only Assumption 3
(not 1 and 2; actually, A can be any additive group rather than a ring for this
equivalence). The equivalence D <= J needs nothing. This is all old news.

2.2. Classical Witt vectors

We recall a way to define the classical notion of Witt vectors. We work with a
nest N, so that both p-typical and big Witt vectors are provided for.

Definition 2.3. Let N be a nest. Let A be a commutative ring. The ghost ring
of A will mean the ring AN with componentwise ring structure (i. e., a direct
product of rings A indexed over N). The N-ghost map wy : AN — AN is the
map defined by

wn ((Xn)ey) = | Y dx}/ for all (xy),cy € AV,
dn neN

This N-ghost map is (generally) neither additive nor multiplicative.

The following theorem is easily derived from Theorem [2.1| (more precisely, the
equivalence C <= D) applied to the case A = Z [E] and ¢, (P) = P (E"):

Theorem 2.4. Let N be a nest. There exists a unique functor Wy : CRing —
CRing with the following two properties:

— We have Wy (A) = AN as a set for every commutative ring A.

— The map wy : AN — AN regarded as a map Wy (A) — AN is a ring
homomorphism for every commutative ring A.

This functor Wy is called the N-Witt vector functor. For every commutative
ring A, we call the commutative ring Wy (A) the N-Witt vector ring over A. Its
zero is the family (0) and its unity is the family (5,,1),c5 (Where 6, is

neN’
1, ifu=uv
defined tobe { - "~ for any two objects 1 and v).
0, ifu#v

The map wy : Wy (A) — AV itself becomes a natural transformation from
the functor Wy to the functor CRing — CRing, A — AN. We will call this
natural transformation wy as well.

Theorem appears in [18, Theorem 2.6]. Note that a consequence of The-
orem is that the sum and the product of two ghost-Witt vectors over any
commutative ring A are again ghost-Witt vectors. This is not an immediate con-
sequence of Theorem (because it is not clear how we could construct maps
¢y satisfying Assumptions 1, 2 and 3 over any commutative ring A), but rather
requires a detour via Z [E].
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The following theorem ([18, Remark 2.9, part 3]) allows us to prove functorial
identities by working with ghost components:

Theorem 2.5. Let N be a nest. For any commutative Q-algebra A, the map
wy : Wy (A) — AN is a ring isomorphism.

The Witt vector rings allow for an “almost-universal property” [18, Theorem
6.1]:

Theorem 2.6. Let N be a nest. Let A be a commutative ring such that no ele-
ment of N is a zero-divisor in A. For every n € N, let 0;, be a ring endomor-
phism of A. Assume that 0, 0 03, = 0y, for any n € N and m € N satisfying
nm € N. Also assume that 0y = id. Finally, assume that ¢, (a) = a” mod pA
for every prime p € N and every a € A. Then, there exists a unique ring
homomorphism ¢ : A — Wy (A) satisfying

(wno @) (a) = (0 (a)),en for every a € A.

Now let us describe some known functorial operations on Wy (A). I will
follow [18] most of the time.

Theorem 2.7. Let N be a nest.

(a) Let m be a positive integer such that every n € N satisfies mn € N. Then,
there exists a unique natural transformation f,;, : Wy — Wy of set-valued (not
ring-valued) functors such that any commutative ring A and any x € Wy (A)
satisfy

wy (£ (x)) = (mn-th coordinate of wy (x)),cn

where f,, is short for f,, (A).

(b) This natural transformation f, is actually a natural transformation
Wy — Wy of ring-valued functors as well. That is, f,, : Wy (A) — Wy (A) is
a ring homomorphism for every commutative ring A. (Here, again, f,, stands
short for f,, (A).) We call f,, the m-th Frobenius on Wy;.

(c) We have f; = id. Any two positive integers n and m such that f,, and f,,
are well-defined satisfy £, o f;, = £,

(d) Let p be a prime such that every n € N satisfies pn € N. We have
f, (x()A)E x” mod p (in Wy (A)) for every commutative ring A and every x €
Wy (A).

In one or the other form, Theorem 2.7]appears in most sources on Witt vectors;
for example, it can be pieced together from parts of [18, Theorem 5.7, Proposition
5.9 and Proposition 5.12].

Here is the definition of Verschiebung ([18, Theorem 5.5 and Proposition 5.9]):




Function-field analogue for symmetric functions? May 11, 2018

Theorem 2.8. Let N be a nest.

(a) Let m be a positive integer. Then, there exists a unique natural transfor-
mation V,,, : Wy — Wy of set-valued (not ring-valued) functors such that any
commutative ring A and any x € Wy (A) satisfy

n ' .
Wy (Vi (%)) = ({m : (E-th coordinate of wy (x)) , %f m | n,> ’
0, ifmtn .

where V,, is short for V,, (A).

(b) This natural transformation V,, is actually a natural transformation
Wx — Wy of abelian-group-valued functors as well. More precisely, V,, :
Wy (A) — Wy (A) is a homomorphism of additive groups for every commu-
tative ring A. (Here, again, V,, stands short for V,, (A).) We call V,, the m-th
Verschiebung on Wy.

(c) We have V; = id. Any two positive integers n and m satisfy V,, 0 V;,;, =

Vim.
. ifm |
(d) Actually, Vy, ((x4),cn) = ({g’”m ifZJl(Z

teger m, any commutative ring A and any (x,),.n € Wn (A).

) for any positive in-
neN

There are some equalities involving V;, and f,, which should be here, but I
don’t have the time to write them down. They definitely need to be checked for
Carlitz analogues.

Finally, here is one possible definition of the comonadic Artin-Hasse exponen-
tia]ﬂ ([18] Corollary 6.3]):

Theorem 2.9. Let N be a nest. Assume that nm € N for alln € N and m € N.

(a) There exists a unique natural transformation AH : Wy — Wy o Wy (of
functors CRing — CRing) such that every commutative ring A, every n € N
and every x € Wy (A) satisfy

(n-th coordinate of wy (AH (x))) = £, (x)

(where wy; this time stands for the natural transformation wy evaluated at the
ring Wy (A); thus, wy (AH (x)) is an element of (Wy (ANM).

(b) Let n € N, and let A be a commutative ring. Let w, : Wy (A) — A
be the map sending each x € Wy (A) to the n-th coordinate of wy (x). Then,
WN (wn) oAH = fn.

2This is something Hazewinkel, in [10, §16.45], calls Artin-Hasse exponential. I am not sure if
I completely understand its relation to the usual Artin-Hasse exponential...

10
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2.3. The Carlitz ghost-Witt equivalence theorem
Now, let us move to the Carlitz case.

Convention 2.10. From now on until the rest of Section |2, we let g denote an
arbitrary prime power (# 1, that is), and let p be the prime whose power g is.

Definition 2.11. A g-nest means a nonempty subset N of IF; [T] such that for
every element P € N, every monic divisor of P lies in N.

Notice that any g-nest is a subset of IF; [T],. Thus, any element of a g-nest

must be a monic polynomial. Also, every g-nest contains 1 ﬂ We shall use
these facts without mention.

Definition 2.12. Let P € IF;[T],. Then, PFP denotes the set of all monic
irreducible divisors of P in IF, [T],.

Theorem 2.13. Let N be a g-nest. Let A be a commutative IF, [T]-algebra. For
every P € N, let ¢p : A — A be an endomorphism of the IF; [T]-module A.

Further, let us make three more assumptions:

Assumption 1: For every P € N, the map ¢p is an endomorphism of the
IF; [T]-algebra A.

Assumption 2: We have ¢, (a) = [r] (a) mod A for every a € A and ev-
ery monic irreducible 7 € N. (This rewrites as follows: We have ¢, (1) =
a7"*" mod 1A for every a € A and every monic irreducible 7 € N.)

Assumption 3: We have ¢1 = id, and we have ¢p o g = ¢pg for every
P € N and every Q € N satisfying PQ € N.

Let (bp) pey € AN be a family of elements of A. Then, the following asser-
tions Cy, D1, Dy, &1, F1, G1, and Gy are equivalent:

Assertion C1: Every P € N and every 7 € PF P satisfy

¢ (bp/) = bpmod o (P) A,

Assertion Dy: There exists a family (xp)p.y € AN of elements of A such
that

P
bp=)_ D [—} (xp) for every P € N
D|P b

Assertion D,: There exists a family (¥p)p.y € AN of elements of A such
that

deg(P/D)
bp:ZD?qug for every P € N

D|P

3Proof. Let N be a g-nest. We must prove that N contains 1.
Any g-nest is nonempty (by definition). Thus, N is nonempty (since N is a g-nest). In other
words, there exists some P € N. Consider this P. Now, 1 is a monic divisor of P € N, and
thus must itself belong to N (since N is a g-nest). In other words, N contains 1. Qed.

11
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Assertion £;: There exists a family (yp)p.y € AV of elements of A such that

bp =Y De¢p,p (yp) for every P € N
D|P

Assertion JF1: Every P € N satisfies

Y u (D) ¢p (bp/p) € PA.
DIP

Assertion Gy: Every P € N satisfies

Y ¢c (D) ¢p (bp;p) € PA.
D|P

Assertion Gy: Every P € N satisfies

Y_ ¢ (D) ¢p (bp;p) € PA.
DIP

For this Theorem to be a complete analogue of Theorem two asser-
tions are missing: H and J. Finding an analogue of J requires finding an
analogue of A, which is the question that I have started this report with; ap-
proaches to it will be discussed in Section 4 Two other assertions (D and G)
have two analogues each. However, Assertion G, is clearly equivalent to Asser-
tion F; because of ¢ (M) = y (M) mod p for every M € IF; [T] . I have written
out the former assertion merely to produce a clearer view of the analogy.

The proof of Theorem is analogous to that of (the respective parts of)
Theorem and finding it should not be difficult. (One of the easier ways to
proceed is showing Dy <= C) <= D), (1 = F1 = & = (1, F1 = O
and &; <= G;. Two different analogues of Hensel’s exponent lifting are used in
proving C; <= D and C; <= D3.)

Definition 2.14. The families (by), .y € AN which satisfy the equivalent as-
sertions Cq1, Dy, D>, &1, F1, G1, and G, of Theorem will be called Carlitz
ghost-Witt vectors (over A).

What is more interesting is the following observation:

Remark 2.15. Assumption 1 in Theorem can be replaced by the following
weaker one:

Assumption 1’: For every P € N, the map ¢p is an endomorphism of the
F; [T]-module A and commutes with the Frobenius endomorphism A —
A, avral.

12
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Moreover, instead of assuming that A be a commutative IF, [T]-algebra, it
is enough to assume that A is an F; [T]-module with an F;-linear Frobenius
map F : A — A which satisfies

F (Aa) = AMF (a) for every A € IF; [T] and a € A. (2)

Of course, in this general setup, one has to define a7 to mean F (a) for every
a € A. (Once this definition is made, the classical definition of [P] (a) for any
P € I, [T] and any a € A should work perfectly.)

More about this in Subsection

Here is why this is strange. One could wonder whether similar things hold
in the classical case (Theorem [2.I): what if A is not a commutative ring but
just an (additive) abelian group with “power operations” satisfying rules like
(a”)m = a"" ? After all, the only way multiplication in A appears in Theorem
is through taking powers. However, the proof of Theorem [2.1| depends on
exponent lifting, which uses multiplication and its commutativity in a nontrivial
way. In contrast, the two exponent lifting lemmata used in the proof of Theorem
2.13]are both extremely simple and do not use multiplication in A. It seems that
A being a ring is a red herring in Theorem

I am wondering what use this generality can be put to. One possible field
of application would be restricted Lie algebras. What is a good example of a
restricted Lie algebra with an IF; [T]-module structure?ﬁ

2.4. Carlitz-Witt vectors
Parroting Definition 2.3, we define:

Definition 2.16. Let N be a g-nest. Let A be a commutative IF, [T]-algebra. The

Carlitz ghost ring of A will mean the F, [T]-algebra AN with componentwise
IF; [T]-algebra structure (i. e., a direct product of IF, [T]-algebras A indexed
over N). The Carlitz N-ghost map wy : AN — AN is the map defined by

wn ((xp)pen) = | Y D [g] (xp) for all (xp)p.y € AV,
Dip PeN

This N-ghost map is IF;-linear but (generally) neither multiplicative nor IF, [T]-
linear.

From the equivalence C; <= D; in Theorem we can obtainﬂ

*Non-rhetorical question. Please let me know! (darijgrinberg[at]gmail.com)

I'm not going to show the proof, as I don’t think you will have any trouble reconstructing it.
One has to set A = IF; [T] [E], where E is a family of indeterminates, and define morphisms
¢p by ¢p (Q) = Q([P](E)), where [P] (&) means the family obtained by applying [P] to

13
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Theorem 2.17. Let N be a g-nest. There exists a unique functor Wy :
CRing]qu — CRing]qu with the following two properties:

— We have Wy (A) = AN as a set for every commutative I, [T]-algebra A.

— The map wy : AN — AN regarded as a map Wy (A) — AN is an IF, [T]-
algebra homomorphism for every commutative IF, [T]-algebra A.

This functor Wy is called the Carlitz N-Witt vector functor. For every IF, [T]-
algebra A, we call the IF, [T]-algebra Wy (A) the Carlitz N-Witt vector ring over
A.

The map wy : Wy (A) — AV itself becomes a natural transformation from
the functor Wy to the functor CRingIqu — CRingIFq[T], A — AN, We will

call this natural transformation wy as well.

This theorem, of course, yields that the sum and the product of two Carlitz
ghost-Witt vectors over any commutative [F, [T]-algebra is a Carlitz ghost-Witt
vector, and that any IF, [T]-multiple of a Carlitz ghost-Witt vector is a Carlitz
ghost-Witt vector.

But this result is not optimal. In fact, it still holds in the more general setup
of Remark This can no longer be proven using Theorem since the
polynomial ring IF, [T][E] is a free commutative IF; [T]-algebra but not (in a
reasonable way) a free object in the category of IF, [T]-modules A with an IF-
linear Frobenius map F : A — A which satisfies (2). I will lose some more words
on this in Subsection 2.5

Remark 2.18. Let N be a g-nest. The FF -vector space structure on the IF, [T]-
algebra Wy (A) is just componentwise. Thus, wy is an IF;-vector space homo-

morphism when considered as a map AN — AN. As a consequence, the zero
of the IF; [T]-algebra Wy (A) is the family (0)pc -

The unity of the [F; [T]-algebra Wy (A) is not as simple as it was in Theorem

24
We have only used C; <= Dj so far. What about C; <= D, ?

Definition 2.19. Let N be a g-nest. Let A be a commutative IF, [T]-algebra.
The Carlitz tilde N-ghost map wy : AN — AN is the map defined by

~ deg(P/D)
N ((xp)pen) = | Y DxT for all (xp)pcy € AV,

bip PEN

This tilde N-ghost map is IFj-linear but (generally) neither multiplicative nor
IF; [T]-linear.

each variable in the family E. Alternatively, one could define morphisms ¢p by ¢p (Q) =
Q (E‘ldegp) ; these are different morphisms but they also work here.

14
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From the equivalence C; <= D, in Theorem we get:

Theorem 2.20. Let N be a g-nest. There exists a unique functor Wy :
CRing]Fq[T] — CRinqum with the following two properties:

— We have Wy (A) = AN as a set for every commutative I, [T]-algebra A.

— The map @y : AN — AN regarded as a map Wy (A) — AN is an IF, [T]-
algebra homomorphism for every commutative IF, [T]-algebra A.

This functor Wy is called the Carlitz tilde N-Witt vector functor. For every
IF; [T]-algebra A, we call the IF, [T]-algebra Wy (A) the Carlitz tilde N-Witt
vector ring over A. The zero of this IF, [T]-algebra Wy (A) is the family (0)p.p,
) o ) ) . 1, ifu=nuv
and its unity is the family (ép1)pcp (Where 8, is defined to be 0, ifusto
for any two objects u and ©v).

The map @y : Wy (A) — AV itself becomes a natural transformation from
the functor Wy to the functor CNRing]qu — CRing]Fq[T], A — AN, We will
call this natural transformation wy as well.

But we have not really found two really different functors...

Theorem 2.21. Let N be a g-nest. The functors Wy and Wy are isomorphic by
an isomorphism which forms a commutative triangle with wy and wy.

This is again proven using Theorem and universal polynomials.
The following theorem allows us to prove functorial identities by working
with ghost components:

Theorem 2.22. Let N be a g-nest. For any commutative IF, (T)-algebra A,
the maps wy : Wy (A) — AN and @y : Wy (A) — AN are IF; [T]-algebra
isomorphisms.

We have an “almost-universal property” again, following from exponent lift-
ing and the implication C; = D; in Theorem [2.13}

Theorem 2.23. Let N be a g-nest. Let A be a commutative IF, [T]-algebra
such that no element of N is a zero-divisor in A. For every P € N, let op be an
IF; [T]-algebra endomorphism of A. Assume that op ooy = opg forany P € N
and Q € N satistying PQ € N. Also assume that 0y = id. Finally, assume
that o (a) = [7t] (a) mod TA (or, equivalently, o (a) = a7"*" mod 7T A) for
every monic irreducible 77 € N and every a € A. Then, there exists a unique
IF; [T]-algebra homomorphism ¢ : A — Wy (A) satisfying

(wno @) (a) = (op(a))pen for every a € A. (3)

15
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A similar result holds for Wy and @y.
What about Frobenius operations?

Theorem 2.24. Let N be a g-nest.

(@) Let M € IF; [T] . be such that every P € N satisfies MP € N. Then, there
exists a unique natural transformation fy; : Wy — Wy of set-valued (not
IF, [T]-algebra-valued) functors such that any commutative IF, [T]-algebra A
and any x € Wy (A) satisfy

wy (fm (x)) = (MP-th coordinate of wy (X)) pey

where fj; is short for f; (A).

(b) This natural transformation fp; is actually a natural transformation
Wn — Wy of [, [T]-algebra-valued functors as well. That is, fj; : Wy (A) —
Wn (A) is an [F, [T]-algebra homomorphism for every commutative IF, [T]-
algebra A. (Here, again, f); stands short for fy; (A).) We call fj; the M-th
Frobenius on Wy.

(c) We have f; = id. Any P € [F; [T], and Q € [F; [T], such that fp and fg
are well-defined satisfy fp o fo = fpg.

(d) Let 7t € FF;[T] be a monic irreducible such that every P € N satisfies
P € N. We have f; (x) = [71] (x) mod tWy (A) (in Wy (A)) for every com-
mutative IF, [T]-algebra A and every x € Wy (A).

Corollary 2.25. Consider the setting of Theorem Then (from Theorem
we know that there exists a unique IF; [T]-algebra homomorphism ¢ :
A — Wy (A) satisfying (3). Consider this ¢. Let M € N be such that every
P € N satisfies MP € N. Then,

pooy =fpo@ for every M € N.

Corollary 2.26. Consider the setting of Theorem [2.23 Assume that N is closed
under multiplication (i.e., we have MP € N for every M € N and P € N).
Furthermore, let B be a commutative IF, [T]-algebra such that no element of
N is a zero-divisor in B. Let projz : Wy (B) — B be the map sending every
u € Wy (B) to the 1-st coordinate of wy (1) € BN. This proj, is an F, [T]-
algebra homomorphism (since wy is an [F; [T]-algebra homomorphism).

Let ¢ : A — B be an [F, [T]-algebra homomorphism. Then, there exists a
unique [, [T]-algebra homomorphism G : A — Wy (B) with the properties
that w; o G = g and that

Gooy =fpmog for every M € N.

This G can be constructed as follows: Theorem shows that there exists a
unique F, [T]-algebra homomorphism ¢ : A — Wy (A) satisfying (). Con-
sider this ¢. Since Wy is a functor, the IF; [T]-algebra homomorphism g : A —
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B gives rise to an IF, [T]-algebra homomorphism Wy (g) : Wy (A) — Wy (B).
Now, the G is constructed as the composition Wy (g) o ¢.

A Verschiebung exists too:

Theorem 2.27. Let N be a g-nest.

(@) Let M € IF;[T],. Then, there exists a unique natural transformation
Vum : Wy — Wy of set-valued (not IF, [T]-algebra-valued) functors such that
any commutative IF, [T]-algebra A and any x € Wy (A) satisfy

P
M - [ —-th coordinate of wy (x ) , ifM|P;
wy (Vi (%)) = (s v () | ,
0, if Mt P PeN

where V) is short for Vy; (A).

(b) This natural transformation V) is actually a natural transformation
Wy — Wy of abelian-group-valued functors as well. More precisely, Vy :
Wy (A) = Wy (A) is a homomorphism of additive groups for every commu-
tative IF, [T]-algebra A. (Here, again, Vj stands short for Vy; (A).) We call
V) the M-th Verschiebung on Wy;.

(c) We have V{ = id. Any two P € IF;[T], and Q € [F;[T]_ satisfy Vpo
Vo = Vo

(d) Actually, Vv ((xp)pey) = P/ M %f M| P; for any P €
0, if Mt P PeN

I, [T],, any commutative IF, [T]-algebra A and any (xp)pc.y € Wn (A).

And here is a Carlitz analogue of the Artin-Hasse exponential:

Theorem 2.28. Let N be a g-nest. Assume that PQ € N for all P € N and
Q€ N.

(a) There exists a unique natural transformation AH : Wy — Wy o Wy
(of functors CRingg ;) — CRingp, 1) such that every commutative I, [T]-

algebra A, every P € N and every x € Wy (A) satisfy
(P-th coordinate of wy (AH (x))) = fp (x)

(where wy; this time stands for the natural transformation wy; evaluated at the
IF; [T]-algebra Wy (A); thus, wy (AH (x)) is an element of (Wy (ANM).

(b) Let P € N, and let A be a commutative F,[T]-algebra. Let wp :
Wy (A) — A be the map sending each x € Wy (A) to the P-th coordinate
of wy (x). Then, Wy (wp) o AH = fp.

17
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2.5. F-modules

The classical N-Witt vector functor for N C IN; being a nest is a functor CRing —
CRing, and I don’t see how to extend it to any broader category than CRing.
The proof of its well-definedness, at least, uses the whole ring structure, not just
the power maps. The situation with g-nests and their Carlitz N-Witt vector func-
tors is different, as mentioned in Remark Let me develop this a bit further,
although I don’t really understand where this all is headed.

Let F be the F;-algebra IF, (F,T | FT = T9F). This F can be considered as
a skew polynomial ring IF, [T] [F; Frob] over the polynomial ring F, [T], where
Frob : F; [T] — IF, [T] is the Frobenius endomorphism which sends every a ¢
IF; [T] to af.

Note that F is neither an [F, [T]-algebra nor an [F, [F]-algebra in the way I
understand these words, since the center of F is IF;. But we have well-defined
IF;-algebra homomorphisms IF, [T| — F and FF, [F] — F, which make F into a
left IF; [T]-module, a right IF, [T]-module, a left IF; [F]-module, and a right IF, [F]-
module. The left IF; [T]-module structure on F is probably the most useful one.

e Asleft F, [T]-module, F is free with basis (F),. , and thus torsionfree (this
will be useful). B

o As right IF; [T]-module, F is free with basis (T/F'),, it

e Asright IF, [F]-module, F is free with basis (T/ )].>0.

o As left IF, [F]-module, F is free with basis (T/F'),_, g s a conse-

quence, it is torsionfree (but this also follows from the isomorphism F —

IFy [T] [X],_in introduced below).
o As Ty [F|-Fy [T]-bimodule, F is free with basis (T/F') ;g o i) and 0<jq
(that is, F = &) IF, [F] - (T'F') - F, [T), and each Fy [F] -
(i,j)EN?;

o (i=0 or gfj) and 0<j<g’
(T'F') -TF, [T] is isomorphic to IF, [F] @ IF, [T] as an IF, [F]-IF, [T]-bimodule).

These freeness statements actually have little to do with IF; or the fact that g
is a prime power. They are combinatorial consequences of the fact that F is the
monoid algebra (over ;) of the monoid (F,T | FT = T9F), which monoid is
cancellative and whose elements can be uniquely written in the form T/F! with
(i,j) € N2, Actually, this monoid is J-trivial. Finite J-trivial monoids have a
very nice representation theory [4]; does ours?ﬁ

Every commutative IF, [T]-algebra is canonically an F-module, by letting T
act as left multiplication with T, and letting F act as taking the g-th power in the
algebra.

°] wouldn’t hope for much; the representation theory of (F, T | FT = TF) is supposedly ugly.

18



Function-field analogue for symmetric functions? May 11, 2018

Let us notice that FP = PF in F for every P € IF; [T]. This is rather important;
it yields that 7 - P- F C P- F for every P € F,; [T].

By the universal property of the polynomial ring, there exists a unique IF,-
algebra homomorphism Carl : IF; [T| — F which sends T to F + T. This Carl is
a very important homomorphism.

There is another interesting, and important, map around here. Let F, [T] [X], _,
be the IF; [T]-submodule of the polynomial ring IF, [T] [X] consisting of all g-
polynomials, i. e., polynomials in which only the monomials qu, qu, qu,
appear (we consider T as a constant here). Then, F, [T] [X],_y;, is not an algebra
under usual multiplication, but a (noncommutative) algebra under composition
(where again X is the variable and T a constant). It turns out that

F =y [T][X]
F— X1,
T—TX

g—lin~

yields a well-defined F,-algebra isomorphism F — F, [T] [X], ;. This is easy

to check. This isomorphism allows transferring some results from IF, [T] [X] to

F (this is, for example, how I show that F is a torsionfree right IF, [T]-module).
It can be shown that for every monic irreducible 7w € FF, [T],

there exists a unique u (77) € F such that Carl 7w = FI87 7.1 (7).  (4)
Flindeed, this follows easily from the fact that [7r] (X) = X7**"
using the isomorphism F — F, [T] [X]_ ;.

Now, what is a left /-module? One way to see a left /-module is as a left
IF; [T]-module A with an [Fj-linear map F : A — A which satisfies F (Ta) =
TY9F (a) for every a € A. This is easily seen to be equivalent to a left IF, [T]-
module A with an [F;-linear map F : A — A which satisfies F (Aa) = ATF (a)
for every A € F;[T] and a € A. In every left F-module A, we can define the
operation of “taking the g-th power” by a7 = F (a) for every a € A. Hence, we
can define an operation of “taking the g'-th power” for every i > 0. This allows
us to evaluate any Carlitz polynomial at elements of A; that is, for any P € IF, [T]
and a € A we can define [P] (a) € A (in the same way as this is usually defined
for A being a commutative algebra). It is easily seen that

mod 77 in IF, [T] [X]

[P] (a) = (Carl (P)) (a) for any P € F; [T] and a € A.

Now, the situation described in Remark is simply understood as having
a left /-module A, and for every P € N, an /-module endomorphism ¢p of A.
The category of left F-modules has its free objects, which simply are free
left F-modules. If E is a set (to be viewed as a set of “indeterminates”), then

"The notation u () means that u depends on 7; it is not meant to imply that u (7) is a poly-
nomial in 7.
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a family of F-module endomorphisms ¢p of the free /-module FZ satisfying
Assumptions 1’, 2 and 3 can be easily constructed (namely, ¢p is the unique F-
module homomorphism FE — FZ satisfying ¢p () = [P] () for every ¢ € E),
although it took me a while to show that they actually satisfy Assumption 2
(here I used (4)).

If I haven’t done any mistakes, all results of Subsection 2.4| carry over to the
category of F-modules; of course, Wy and Wy will then be functors from rMod
to rMod. One has to be somewhat careful in the proofs because F is noncom-
mutative and it needs to be used that every P € F, [T] satisfies 7 -P-F C P- F.

3. Proofs

In this (so far unfinished) Section, I am going to prove most of the statements
made in Section [2 I shall start from scratch and forget about all the notation
introduced in Section |2} this notation will be reintroduced when the need for it
arises.

In Section 2} I presented the results for the case of commutative IF; [T]-algebras
first, and then pointed out how they can be generalized to /-modules. In the
present Section 3| however, I will proceed the other way round, starting with the
properties of F. The latter properties are unlikely to be new, as they are elemen-
tary and concern a well-studied object (F is one of the most basic examples of
an Ore extension); in particular I suspect that some of them appear in [16] and
[17] (two references I regrettably have not had the time to read).

3.1. The skew polynomial ring M

Let us first show a general fact:

Proposition 3.1. Let K be a commutative ring. Let r be a positive integer. Let
M be the K-algebra K (F,T | FT = T'F). There are well-defined K-algebra
homomorphisms K [T] — M (sending T to T) and K [F] - M (sending F to
F). These homomorphisms make M into a left K [T]-module, a right K [T]-
module, a left K [F]-module, and a right K [F]-module. Any of these two
left module structures can be combined with any of these two right module
structures to form a bimodule structure on M (for example, the left K[T]-
module structure and the right K [F|-module structure on M can be combined
to form an K [T]-K [F]-bimodule structure on M). (However, in general, M
is neither a K [T]-algebra nor a K [F]-algebra.)

(a) We have F*T? = T""?F% in M for every a € N and b € IN.

(b) The K-module M is free with basis (T/ Fi)z.>0, >0

(c) As left K [T]-module, M is free with basis (F')._.
(d) As right K [T]-module, M is free with basis (T/F')

i>0, 0<j<ri’
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(e) As right K [F]-module, M is free with basis (T/ )iso-
(f) As left K [F]-module, M is free with basis (T/F'),_ -
(g) As K [F]-K [T]-bimodule, M is free with basis (T/F’) (i=0 or rfj) and 0<j<ri

(that is, we have M = &) K [F]- (T/F") - K [T], and each K [F] -
(i,j)eN?;
o (i=0 or rfj) and 0<j<r!
(T'F'") - K [T] is isomorphic to K [F] ® K [T] as an K [F]-K [T]-bimodule, where
the tensor product is taken over K).

We notice that the K-algebra M in Proposition is actually the monoid
algebra (over K) of the monoid with generators F,T and relation FT = T'F.
From this viewpoint, all of Proposition is easily revealed to be a monoid-
theoretical statement (with KK being merely a distraction). However, we shall
work with K-algebras rather than monoids for the whole proof, if only for the
sake of habitualness.

The only parts of Proposition [3.1| that will be used in the following are parts
(@), (b), (c) and (e). These are also the easiest ones to prove, so we advise the
reader to skip most of the following technical proof.

The following lemma will be used in our proof of Proposition 3.1] (f):

Lemma 3.2. Let S be a set. Let ¢ : S — S be an injective map. Let £/ : S — IN
be a map. Assume that

C(p(s)) > L(s) for every s € S. (5)
Let B=S\¢(S). Defineamap p: Bx N — S by

0 (s,k) = ¢k (s) for every (s, k) € B x IN.

Then, p is a bijection.

(If we want to interpret Lemma [3.2| constructively, then we should also require
that there is an algorithm which, given an s € S, either reveals that s ¢ ¢ (S) or
computes a preimage of s under ¢.)

Proof of Lemma Let us first prove that the map p is injective.

Indeed, let (s, k) and (s, k') be two elements of B x IN such that p (s,k) =
p (s',k"). We are going to prove that (s, k) = (s/, k).

The definition of p yields p (s,k) = ¢* (s). Thus, ¢* (s) = p (s,k) = p (s',k') =
¢* (s') (by the definition of p).

The map ¢¥ is injective (since ¢ is injective).

We have s’ € B= S5\ ¢ (S). Thus, s’ € ¢ (S).

Now, assume (for the sake of contradiction) that k > k’. Hence, ¢* (s) =

¢k/+(k—k’) (s) = (,bk/ ((pk_k/ (s)) But the map (,bk/ is injective. Therefore, from
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¢k’ (cpk_k/ (s)) = ¢F(s) = (j)k/ (s"), we obtain (pk_k/ (s) =s'. Hence, s’ = 4)""‘/ (s) €

¢ ¥ (S) C ¢ (S) (since k — k' > 1 (since k > k’)). This contradicts s’ ¢ ¢ (S).
This contradiction proves that our assumption (that k > k') was false. Hence,
we cannot have k > k’. In other words, we must have k < k. An analogous
argument shows that kK’ < k. Combining this with k < k/, we obtain k = k.
Thus, ¢F (s) = X (s), so that ¢¥ (s) = ¢F (s) = ¢¥ (s). This yields s = s’ (since
the map ¢ is injective). Combining this with k = k’, we obtain (s, k) = (s/,k').

Let us now forget that we fixed (s, k) and (s/,k’). We thus have shown that
if (s,k) and (s',k’) are two elements of B x IN such that p (s, k) = p (s/,k"), then
(s,k) = (¢/,k’). In other words, the map p is injective.

Let us now show that the map p is surjective. Indeed, we shall prove that

71 (n) Cp(BxN) for every n € IN. (6)

Proof of (6): We shall prove (6) by strong induction over n. Thus, we fix an
N € N, and we assume (as the induction hypothesis) that (6) holds for every
n < N. Now we must prove that (@ holds for n = N. In other words, we must
prove that /=1 (N) C p (B x N).

Let x € ¢"'(N). Thus, x € S and /(x) = N. We shall prove that x €
p (B x NN).

If x ¢ ¢(S), then x € p(BxN) hold§’ Hence, for the rest of the proof
of x C p(B xN), we can WLOG assume that x € ¢ (S). Assume this. Thus,
there exists an s € S such that x = ¢ (s). Consider this s. From x = ¢ (s), we
obtain £ (x) = £ (¢ (s)) > £(s) (by (B)). Hence, £(s) < £(x) = N. Therefore,
the induction hypothesis shows that (6) holds for n = ¢(s). In other words,
071 (4(s)) Cp(BxN). Buts € £71(£(s)) C p(B x N). In other words, there
exists a (t,k) € B x N such that s = p(t k). Consider this (t,k). We have

s = p (t,k) = ¢* (t) (by the definition of p), and x = ¢ S| =9 (9" (1)) =
=¢k(t)

@**+1 (t). Comparing this with p (t,k +1) = ¢**1 (¢) (by the definition of p), we

obtain x = p (t,k+1) € p (B x IN). Hence, x € p (B x IN) is proven.

Let us now forget that we fixed x. We thus have shown that x € p (B x N
for every x € £~! (N). In other words, £~ (N) C p (B x IN). In other words,
holds for n = N. This completes the induction proof of (6).

Now, £ is a map S — IN. Hence, S = U,en £ (nl C Upenp (BxIN) C

Cp(BxNN)
(by (6))
p (B x IN). In other words, the map p is surjective. Hence, the map p is bijective
(since we already know that p is injective). This proves Lemma O

We record two corollaries of Lemma

8Proof. Assume that x ¢ ¢(S). Thus, x € S\ ¢(S) = B, so that (x,0) € B x N. Clearly,
p(x,0) = ¢°(x) = x, so that x = p (x,0) € p (B x N), qed.
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Corollary 3.3. Define a subset B of N? by
B:{(i,j)elN2|i:00rrJ(j}. 7)
Define a map p : B x N — IN? by

o (i) k) = (i+k ) for every ((i,),k) € B x N. 8)

Then, the map p is a bijection.
Proof of Corollary Let ¢ : N2 — IN? be the map defined by
¢ (i,j) = (i+1,r)) for every (i,j) € N2,

It is clear that this map ¢ is injective (since r > 0). Moreover, B = N2\ ¢ (N?) ]
Given an s € S, it is easy to algorithmically check whether s ¢ ¢ (IN?) (because
of the equivalence s ¢ ¢ (N?) <= s € N2\ ¢ <]N2) <= s € B), and
_;,B_/
if s € ¢ (IN?), then it is easy to compute a preimage of s under ¢ (indeed, if
s=(i,j) € ¢ (N?), then ¢~ (s) = (i —1,j/r)).
Every (i,j) € N? and k € N satisfy

ko - . k-
¢ (1)) = (i+k ). ©)
9Proof. We have
=< (i,j) € N? | there exists no (u,v) € IN? such that (i,) = ¢ (u,v)
N——
=(u+1,r0)
(by the definition of ¢)

=< (i,j) € N? | there exists no (u,0) € N? such that (i,j) = (u+1,7v)

= ((i-1/r)¢N?)
<= (i—1¢N or j/r¢IN)

h\/_/
= (i=0) — ()

{(i,j)elN2 | ileé]Norj/reé]N}

={(,)eN? | i=0orrtj} =B,

ged.
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(Indeed, this follows easily by induction on k.) Thus,
0 (s,k) = ¢k (s) for every (s, k) € Bx N (10)
il

Furthermore, define a map ¢ : N> — IN by
0(i,j)=1i for every (i,j) € N2,

It is easy to see that for every s € IN?, we have £ (¢ (s)) = £ (s) +1 > £ (s). Thus,
we can apply Lemma to S = IN? (indeed, the equality shows that our
map o : B x N — IN? is identical with the map p : B x N — S in Lemma .
As a result, we conclude that p is a bijection. This proves Corollary O

Corollary 3.4. Define a subset C of IN? by
cz{(i,j)eN2| (i=0orrfj) andogj<ri}. (11)
Define a map  : C x N x N — IN? by

C(ij), 0k) = (i+ K (j+77)) for every ((i, ),k ¢) € C x N x N.
(12)

Then, the map ( is a bijection.

Proof of Corollary[3.4, Define a subset B of N? by (7). Clearly, C C B.
Define a map 7: C x N — B by

T((i,)),0) = (i,j—i—rlf) for every ((i,j),¢) € C x N.

It is easy to see that this map 7 is well-defined (i.e., that (i,j + r'¢) € B for every
((i,j),€) € CxNN).

For every integer u and every positive integer v, we let u%v denote the re-
mainder of u when divided by v, and we let u//v denote the quotient of u

10Proofof : Let (s,k) € BxIN. Then, s € B C IN2. Hence, s can be written in the form (i,7)
for some i,j € IN. Consider these i,j. We have

9" (\s,,) = 9" (i,j) = (i+k %) (by ©))

=(ij)

=p (@ k) (by (@)

=S

=p(s,k).
This proves (T0).
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when divided by v with remainder. Thus, u//v € Z, u%v € {0,1,...,v—1}
and u = (u//v) v+ u%ov.
Define a map v : B - C x IN by

v (i,j) = <<z j%ri) i/ /rf> for every (i, j) € B.

Again, it is easy to see that this map v is well-defined (i.e., that ((i,j%r') ,j//r') €
C x NN for every (i,j) € B).

Furthermore, it is easy to see that the maps 7 and <y are mutually inverseEl
Hence, the map 7 is a bijection.

We shall identify the set C x IN x IN with (C x IN) x IN. Then, the map T x
idn : (C x IN) x N — B x IN can be viewed as a map C x N x N — B x IN. This
map T X idy sends every ((i,j),¢, k) € CxIN x N to (t((i,j),¢),k). Clearly,
the map 7 x idyy is a bijection (since 7 is a bijection).

On the other hand, define a map p as in Corollary Then, Corollary

1 Proof. Let us first show that T oy = id.
Indeed, every (i,j) € B satisfies

(o) =7| aGg) | =7((ig%r),is/nt) = i ++ (/1)
S—— 7
=((ijowrt),j/ /11 =
(by the definition of T)
= (i)

Thus, T oy =id.
On the other hand, let us prove that y ot = id. Indeed, fix ((i,j),¢) € C x N. Then,
(i,j) € C. Thus, (i=0orr{j)and 0 < j < r'. Now,

(ro0) (i) ) =7 | (i), 0) | = (i+r't)

=(i,j+rit)

= i,(j+r"€)%ri ,(j+r"£)//ri = ((,]),0).

(since 0<j<r) (since 0<j<r)

This proves that y o T = id. Combining this with T o v = id, we obtain that the maps T and
7 are mutually inverse, ged.
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shows that the map p is a bijection. But every ((i,/),¢,k) € C x N x IN satisfies
(oo (T xidn)) (i), £ k)

=p | (txidn) (), 6k) | =p | [ 2(()), 0k

- N——
=(t((@)).4)k) =(i,j+r't)
= ((i,j + rif) , k) = (i +k, r* <] + riﬁ)) (by the definition of p)

p
¢((@]), 4 k) (by (12)) -

Hence, p o (T x idyn) = {. Since the map p o (7 x idy) is a bijection (because
both p and 7 x idyy are bijections), this shows that the map ( is a bijection. This

proves Corollary O
Proof of Proposition (a) First, we have the equality
FT = T"*F (13)

in M for every b € IN (this can be proven by straightforward induction over
b). Using this equality, Proposition (@) can be proven by straightforward
induction over a.

(b) Let \V be the free IK-module with basis (aiff)i>o, > We let f be the K-

linear map N/ — N which sends every a;j to a;jq,j. We let t be the K-linear
map N — N which sends every a;; to a; ;1. Every i,j,k € IN satisfy

P (937) = 8iin (14)
and

t* (a;j) = a4k (15)
(Both of these equalities are easily proven by induction over k.) Using (15), it is

easy to see that fot = t" of. Thus, we can define a K-algebra homomorphism
®: M — End N by setting

d(F) =¥ and D (T)=t (16)

(where End /' denotes the K-algebra of all K-module endomorphisms of N).
Consider this ®. For every i,j € IN, we have

P <T1'Pf> =& (TY o® (F) =t of (by (6))
and thus

(CD (TfFi)) (a0p) = (tj Ofi> (a00) =¥ | §* (a00)

— —li0
=t/of (by )
= f] (111',0) = Elz'/]' (17)

26



Function-field analogue for symmetric functions? May 11, 2018

(by ). Hence, the family (T/F')._, j>0 of elements of M is K-linearly inde-

penden

Let us now show that this family spans M. Indeed, let M’ be the K-submodule
of M spanned by the family (T'F') ., ;>0 Then, 1 = TOEO € M’ . Moreover, the
K-submodule M’ satisfies TM' C M/ (since T - T/F' = TIH1Fi for every i,j € IN)
and FM’ C M/ (since F- T/'Fi = FT/, Fi = T"IFF' = T'IF*! for every i,j € N).

=T/ FE
(by (@3))
Hence, M’ is a left M-submodule of M (since the K-algebra M is generated by

Fand T) Therefore, M- M’ C M. Bt M =M-_1 CM-M C M.
em’
This shows that the family (T/F')._, ;>0 spans the K-module M (since the K-

linear span of this family is M’). Since we already know that this family is
K-linearly independent, we can thus conclude that this family is a basis of the
K-module M. This proves Proposition [3.1] (b).

(c) Let (eg,e1,€p,...) be the standard basis of the left K [T]-module K [T] N),
Define a left K [T]-module homomorphism «a : K [T] N 5 Mm by sending each

e; to P"‘. Define a K-module homomorphism g : M — K|T (N) by sending
each T'F' to Tle;. (This p is well-defined, since Proposition (b) shows that
(T'F') . i is a basis of the K-module M.) Itis easy to see that f is a left K [T]-

module homomorphism. It is straightforward to see that the homomorphisms «
and B are mutually inverse. Thus, « is a left K [T]-module isomorphism. As a

consequence, the left K [T]-module M has a basis | « (e;) = (F'),~o- This
—— =

=F / i>0

2because any linear dependence relation Y )\i,jTj F' = 0 would yield
i>0, >0

Y. A a; = ), A (CI’(TjFi))(ﬂo,o)

i>0, j>0 ~~ i>0, j>0

= D Z /\I,JT]FZ (HO,O) = 0,
i>0, j>0
~————
=0

which would lead to (/\i,j)

pendent
13This argument in more detail:
The K-algebra M is generated by F and T. From this, it is easy to derive the following
fact: If V is an K-vector subspace of some left M-module U/ satisfying FV C V and TV C V,
then V is a left M-submodule of Y. Applying this to !/ = M and V = M’, we conclude that
M’ is a left M-submodule of M (since FM' C M’ and TM’ C M").

0,50 = (0);2, j=o since the family (a;;),. i i linearly inde-
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proves Proposition 3.1 (c).
(d) For every integer u and every positive integer v, we let u%v denote the
remainder of u when divided by v, and we let u//v denote the quotient of u
when divided by v with remainder. Thus, u//v € Z, u%v € {0,1,...,v—1}
and u = (u//v) v+ u%o.
Let G be the free right K [T]-module with basis (gi,),- o i

K [T]-module homomorphism & : G — M by sending each g;; to T/F'. Define

Define a right

a IK-module homomorphism 8 : M — G by sending each T/F to 8i j%ri Ti/ /",
(This B is well-defined, since Proposition 3.1/ (b) shows that (T/F')._ >0

basis of the IK-module M.) It is easy to see that the homomorphisms « and p
are mutually inverselﬂ Thus, « is a right K [T]-module isomorphism. Since the

is a

14Proof. We need to show that # o f = id and Boa = id. o o
To prove that a o B = id, we need to show that (x o B) (T/F') = T/F' for every i,j € N. So
let us fix i, j € IN. Then,

wop) (TF) =u| B(TF) | =a(gipm®") =  a(gip) T/

—_—— N ——
—o. T/ % i
Sy joort (by the definition of &)

(since « is a right K [T] -module homomorphism)

— /%" FiTi/ /7 _ %! Trf (/77 Fi— TF,
_ (777 e (/1) _ o
(by Proposition 3.1] (a), (since j%r ++(j/ /1) =(j/ /1" )ri+j%ri=j)

applied to a=i and b=j/ /1Y)

which is what we wanted to prove.
Thus, & o B = id is proven. It remains to prove that foa = id.
We know that G is spanned by (g; ;) - as a right K [T]-module (by the definition of

i>0, 0<j<ri
G). Hence, G is spanned by (g,-,ka> as a K-module. Hence, in order to prove

i>0, 0<j<ri, k>0
that o a = id, it suffices to show that (Boa) (g,-,]-Tk) = g,-,]-Tk for every i > 0,0 < j < r' and
k>0 | y

Soletus fixi > 0,0 < j < r' and k > 0. The definition of « yields « (gi,j) = T/F!. But since
« is a right K [T]-module homomorphism, we have

(g TF) =a(g)TF=T1T FiT* = TT'*F = T/HrkE,
ij *\8ij) N, ——
—TiFi :TrikFi :Tj+rik
N (by Proposition[3.1] (a),

applied to a=i and b=k)

Now,

(Bow) (3,T) = |« (8:,T") | = B(T*F) = 8f,(j+rik)°/mT(j+”k>/ " (18)
NS

—Tj+rikFi
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right K [T]-module G has a basis (g;,;) this shows that the right K [T]-

i>0, 0<j<ri’

module M has a basis | «(g;,) = (T'FY) This proves
——

i>0, 0<j<ri’
=TF' / i>0, 0<j<ri
Proposition [3.1] (d).

(e) Let (ep, e1,€2,...) be the standard basis of the right K [F]-module K [F] ),
Define a right K [F]-module homomorphism « : K [F] N M by sending
each ¢; to T/. Define a K-module homomorphism g : M — K|[T] ) by
sending each T/F! to ejFi. (This B is well-defined, since Proposition (b)
shows that (T/F') . 50
B is a right K[F]-module homomorphism. It is straightforward to see that

the homomorphisms « and B are mutually inverse. Thus, « is a right K [F]-
module isomorphism. As a consequence, the right K [F]-module M has a basis

is a basis of the IK-module M.) It is easy to see that

@ @ = (T )].20. This proves Proposition [3.1| (e).
=Ti j>0
(f) Define a subset B of IN? by @) Define a map p : B x N — IN? by .
Corollary [3.3|shows that p is a bijection. Hence, its inverse p~1 : N? — B x N is
well-defined.

Now, let H be the free left K [F]-module with basis (h(i,]')) s Define a left
L])e

K [F]-module homomorphism & : H — M by sending each h; ;) to T/F. Define
a K-module homomorphism 8 : M — H by sending each T/F' to F kh(ulv), where
((u,v),k) = p~1(i,j). (This B is well-defined, since Proposition (b) shows
that (T/ Fl)izo, >0 is a basis of the K-module M.) It is straightforward to see

that the homomorphisms a« and B are mutually invers Thus, « is a left K [F]-
module isomorphism. As a consequence, the left K [F|-module M has a basis

d}i(,l]_)l - (iji)(i,j)eB B (TjFi)izo or rfj
=T/Fi (i,j)EB

(since B={(i,j) € N? | i =0orr¢j}). This proves Proposition[3.1] (f).

But 0 < j < r'. Hence, (j+7r'k) %’ = jand (j+rk) //r" = k. In view of these two
equalities, rewrites as (foa) (g,',]»Tk) = gi,ka' This completes our proof of fowa = id.
Thus, we have shown that & and p are mutually inverse.

15Proof. We need to show that x o f = id and Boa = id. . o

To prove that a o f = id, we need to show that (a o B) (T/F') = T/F" for every i,j € N. So

let us fix i,j € N. Set ((u,v),k) = p~1 (i,j). Then, (i,j) = p ((u,0) k) = (u +k, rkv> (by the

k

definition of p). In other words, i = u + k and j = r*v.
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(g) Define C and  as in Corollary In this proof, the ® sign always shall
mean tensor products over K.
Corollary 3.4/ shows that the map ¢ is a bijection. In other words, the map

CxNxN — N2, ((i,1),6,k) <i+k,rk <j+ri£>> (19)

is a bijection (since this map is the map ().
Proposition (b) shows that (T/F') is a basis of the K-module M. We

i>0, j>0
can reindex this basis using the bijection ; thus, we conclude that

The definition of B shows that g (T/F) = Fkh(uﬂ,). Now,

o A ivi) | _ o (rk _ rk
( ﬁ)(TJF) & ,B(TJF)/ tx(Fh(w)) F ‘L(hﬁ‘”_)l

—Fkh e
(1) (by the definition of «)

(since « is a left K [F] -module homomorphism)

k . .
— FkTv 4 — o FkFu — T]Fl,
:Trkvpk =T/ ;Pu+k:Fj .
(by Proposition[3.7] (), (since rkv=j) (since u-+k=i)

applied to a=k and b=0)
which is what we wanted to prove.

Thus, « o B = id is proven. It thus remains to prove that g o a = id.
We know that H is spanned by (h(i j)) (ij)eB as a left K [F]-module (by the definition of #).
5 ij)e

Hence, H is spanned by (Fkh(i,j)> as a K-module. Hence, in order to prove that

((i,j),k)eBxIN
B owa = id, it suffices to show that (o «) (th(i,j)> = Fkh(l-,]-) for every ((i,7),k) € B x N.

So let us fix ((i,j) , k) € B x IN. The definition of & yields « (h(i,j)) = T/Fi. But since & is a
left K [F]-module homomorphism, we have

w (P ) = e (i) = BT =t = i
, ) N ~—
N —T¥ipk =Fiti
=TF (by Proposition (a),

applied to a=k and b=j)

~—

—kti
that ((i,j),k) = p~* (k+i,rkj>. Hence, the definition of B yields B (TrkkaH) = Fkh(l-,j).
Now,

On the other hand, the definition of p yields p ((7,/), k) = (i +k rkj) = (k +1, rkj), so

(Bow) (Fhiy) =B | a (Fhgy ) | = 6 (TTF) = Fig,
:Trkjl:‘k+i

This completes our proof of poa = id. Thus, we have shown that « and B are mutually
inverse.
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(Trk (]'”ig)Fi*k) y is a basis of the K-module M.
((i,j) k) eCxNxN

Let R be the free IK-module with basis (7’(1',]‘)) (e Then,
i,j)€

(T(i,]‘) QFFr® T£>((. L ECHNAN is a basis of the K-module R ® K [F] ® K [T]
i)t

(since (F¥), _ is a basis of K [F], and since (T*),_y, is a basis of K [T]). Hence,
we can define a K-linear map 7 : R @ K [F] ® K[T] - M by

7k

7 <7’(i,j) ®F*® T€> = (i) pitk,

Consider this map 7. It sends the basis (r(i,]-) QFF@T of R ®

')

‘ ((i,j) L k)eCxINxIN

K [F] @ K[T] to the basis (T’k(jJrrw)Fi*k) . of M. Thus, 7 is an
((7,j) L k)eCxINxIN

isomorphism of IK-modules.

Now, R ® K [F] ® K [T] becomes a left K [F]-module (by having K [F] act on
the tensorand K [F]) and a right K [T]-module (by having K [T] act on the ten-
sorand K [T]). The map 7 is a left K [F]-module homomorphism[' and a right
K [T]-module homomorphism[’} Thus, 7 is a K [F]-K [T]-bimodule homomor-
phism.

16Proof. Tt suffices to show that 77 (fz) = fn (z) for every f € K[F] and z € R ® K [F] ® K [T].
So let us prove this.

Fix f € K[F] and z € R ® K [F] ® K[T]. We need to show the equality 1 (fz) = f (z).

Since this equality is K-linear in each of f and z, we can WLOG assume that f belongs to

the basis (Fk) of K [F], and that z belongs to the basis (r(i]«) ®FF® TZ> B
keIN ! ((i,j),4k)eCxINxIN

of R @ K [F] ® K[T]. Assume this. Thus, f = F? for some p € N, and z =r(; ;) ® Fk® T for
some ((i,7),¢,k) € C x N x IN. Consider these p and ((i,]), ¢, k).

From f = FP and z = r(;;) ® Fk® T!, we obtain fz = FP (r(i,]-) ®F® Tz) = 13ij)®
FPEF @T! = r(ij) ® FPtk @ T, Hence,

=Fptk
n(fz) =1 (r(ij) ® Frtf g Té) = 7" () pitptk

(by the definition of 7). On the other hand, from z = r(;  ® Fk® T, we obtain 5 (z) =
1 (7’(1',]') ® FF® TK) = 7" ('O Fitk 5o that

f 1 (zl = pp7r ('t pitk _ (i) pppitk
"~ g - E— N — __. - N - v,
=FP :Tyk(j+ri[) Fitk :Typrk (j+ylc) :T,p+k(j+r1[) —ppritk_Fi+tp+k

14
(by Proposition (a),
applied to a=p and b=r (j-&-rl[))

— PR piprk

Comparing this with 77 (fz) = T () pitp+k | we obtain 1 (fz) = fn(z), qed.
7Proof. Tt suffices to show that 77 (zt) = 1 (z) t for every t € K[T] and z € R @ K [F] @ K [T]. So
let us prove this.
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Now, recall that (r(i/]-)) (i)ec is a basis of the free K-module R. Hence, R =
i,j)€

@i j)ec 7(ijK. Since direct sums commute with tensor products, this yields

ROK[FloK[T| = @ r(i,))K® K[F] @ K [T]
(ij)eC ~ g
=K[F]-(r;, ©F'@T0) K[T]
(this follows easily from the definition of the
KI[F]-K[T]-bimodule structure on RQK[F|QK[T])

= @ KIF- (rg) @ P eT) KT,
(i,j)eC

We can apply the map 7 to this equality. The left hand side becomes M (since
1 is an isomorphism of IK-modules), and the direct sum on the right hand side

Fix t € K[T] and z € R ® K[F] ® K[T]. We need to show the equality 7 (zt) = 5 (z)t.
Since this equality is IK-linear in each of t and z, we can WLOG assume that t belongs to the

basis (Té) of K[T], and that z belongs to the basis (r(i H® FF® Tf) B of
teN o] ((i,) L) ECXN XN

R @ K[F] ® K[T]. Assume this. Thus, t = T? for some p € N, and z = r(; ;) ® F¥® T for
some ((i,7),¢,k) € C x N x IN. Consider these p and ((i,f), ¢, k).

Fromt = TP and z = r; ;) ® F¥ ® T¢, we obtain zt = (r(i,j) ® FF® Tg) TP =715 ® FF®
I@ = 1(j) ® F* @ T**7. Hence,

—Tl+p
n(zt) =1 (V(i,j) ®F'® T””) — 7 (47 (t+p)) pitk

(by the definition of 7). On the other hand, from z = r; ) ® F¥® T!, we obtain 7 (z) =
1 (r(i,j) ®FF® Tg) = 1" (O Fit, so that

n(z) _t =100 Fitkrp = Uy pi
N ~ .
() v =TP it p ik 7Trk(j+,i()+,i+kp
=T Fit (by Proposition[3.1] (a), h

_pF (i)
) ~ (since )
7k (j+r'€)+r’+kp:rk (j+r‘ (€+p)))

applied to a=i+k and b=p)
_ Trk<j+r"(é+p))lji+k.

Comparing this with 7 (zt) = 77 (47 (C+p)) Fitk e obtain 17 (zt) =1 (2)t, qed.
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remains direct (for the same reason). Hence, we obtain

M= P ;7(11< [F]-(r(i,j)®F0®TO> -IK[T])J

(i,j)eC ~~

=K[F|-n(r(; y @F'@T°) - K(T]
(since 7 is a K[F]-K[T]-bimodule homomorphism)
— P KI[F- '7( ®FO®T0> K [T]
(ij)eC ~
_7 (1+f10)Fz‘+0
(by the definition of #)
— @ K [F] . Tro (j-i-TiO) FH—O K [T]
o S——r
(l’])ec :T] :Fi
——
= D
(i,j)eEN?;

(i=0 or rfj) and 0<j<r!

- an K [F] - (TfFf) K [T].
(i,j)EN?; '
(i=0 or rfj) and 0<j<r!
It remains to show that each K [F] - (T/F’) - K [T] is isomorphic to K [F] @ K [T]
as an K [F]-K[T]-bimodule. This follows from # being an isomorphism (the
details are left to the reader). Thus, Proposition 3.1| (g) is proven. O

3.2. The skew polynomial ring F

Now, let us return to the setup of polynomials over IF;.

We are still using the notations of Section [1} In particular, g is a (nontrivial)
power of a prime p.

For every commutative IF;-algebra A, we let Frob4 : A — A be the map which
sends every a € A to a9. This map Frob, is called the Frobenius endomorphism
of A. It is well-known that Frob, is an IF;-algebra homomorphism@ We will
often denote the [F;-algebra homomorphism Frob4 by Frob when no confusion
can arise from the omission of A. A rather important particular case is the
endomorphism Frob = Frobg, 7 of the commutative [F;-algebra IF, [T].

We let F be the Fy-algebra F; (F,T | FT = T9F). We can immediately define
the following IF,-algebra homomorphisms (whose well-definedness is easy to
check using the universal properties of their domains):

e We define an [F;-algebra homomorphism Fincr : F; [F] — F by Fincr (F) =
F. Thus, Fincr (p) = p (F) for every p € [, [F] (where p (F) means the
result of substituting F into the polynomial p).

8This follows from the fact that (Aa)? = A1 a7 = Aaf for every a € A and A € FFy, and

(since://\\EIFq)
the fact that (a +b)7 = a7 + b7 for every a,b € A.
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e We define an IF;-algebra homomorphism Fincr : IF; [T] — F by Fincr (T) =
T. Thus, Fincr (p) = p (T) for every p € [, [T] (where p (T) means the re-
sult of substituting T into the polynomial p).

e We define an FF -algebra homomorphism Carl : I, [T| — F by Carl(T) =
F+T. Thus, Carl(p) = p(F+T) for every p € F;[T] (where p (F+T)
means the result of substituting F + T into the polynomial p).

Furthermore, recall that F is the Fj-algebra IF, (F,T | FT = TF). Thus, F
has the following universal property: If u and v are two elements of an IF;-
algebra U satistying uv = v7u, then there exists a unique IF;-algebra homomor-
phism F — U sending F and T to u and v, respectively. This allows us to define
IF;-algebra homomorphisms out of F, such as the following:

e We define an IF;-algebra homomorphism Fproy : 7 — [F, [F| by Fproy (F) =
F and Fpro, (T) = 0. It is easy to see that Fpro, o Fincy = id. Hence, the
IF;-algebra homomorphism Fincr is injective. Thus, we shall regard Fincg
as an inclusion, so that IF, [F] C F. (Notice that this does not make F into
an [F, [F]-algebra, since IF; [F] is not contained in the center of F.)

e We define an IF;-algebra homomorphism Fpro;. : F — F, [T] by Fpro (F) =
0 and Fpro; (T) = T. It is easy to see that Fpro, o Finct = id. Hence, the
IF;-algebra homomorphism Fincy is injective. Thus, we shall regard Fincr
as an inclusion, so that IF, [T] C F. (Notice that this does not make F into
an [F, [T]-algebra, since IF; [T] is not contained in the center of F.)

e For every a € IF; and b € IF;, we define an [F;-algebra homomorphism
Fscal,; : F — F by Fscal,; (F) = aF and Fscal,;, (T) = bT. (This is well-
defined, since (aF) (bT) = (bT)? (aF).) If a and b are nonzero, then Fscal,,
is invertible (with inverse Fscal -1 ;-1).

Now, we shall derive some structural properties of F straight from Proposition

G.1

Proposition 3.5. The homomorphisms Finct and Fincr make F into a left
IF; [T]-module, a right IF; [T]-module, a left IF, [F]-module, and a right IF, [F]-
module. Any of these two left module structures can be combined with any of
these two right module structures to form a bimodule structure on F (for ex-
ample, the left IF; [T]-module structure and the right IF; [F]-module structure
on F can be combined to form an FF; [T]-IF; [F]-bimodule structure on F).

(@) We have F?T? = T9"'F? in F for everya € N and b € IN.

(b) The F;-module F is free with basis (T/ Fi)z.>0, >0

(c) As left F; [T]-module, F is free with basis (F'),. .
(d) As right F, [T]-module, F is free with basis (T/F')._, , <j<q
(e) As right F, [F]-module, F is free with basis (T’ )].20.
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(f) As left IF, [F]-module, F is free with basis (T/F')

i=0 or gfj
(8) As I, [F]-F, [T]-bimodule, F is free with basis (T/F') (10 or qfj) and 0<j<q’
(that is, we have F = ’ ')6311\12 IF, [F]- (T/F") - F, [T], and each F, [F] -
i, ;

(i=0 or qfj) and 0<j<q’
(T/F") - F, [T) is isomorphic to Fy [F] ® F, [T] as an F, [F]-IF, [T]-bimodule,
where the tensor product is taken over IF;).

Proof of Proposition Proposition 3.5/ follows immediately from Proposition
by setting K = IF; and r = g. O

One simple identity in F is the following;:
| Proposition 3.6. Let P € I, [T]. Then, FP = PF in F.

Proof of Proposition We are going to prove that FP = (Frob P) F. Since both
sides of this equality are IF;-linear in P (because Frob is an [F -linear map), we

can WLOG assume that P belongs to the basis (Ti)l.>0 of the F -vector space
IF, [T]. Assume this. Thus, P = T’ for some i € N. Consider this i. The

q
definition of Frob yields Frob P = ( P ) = (Ti)q = T4,
—~
—Ti

Now, F _P =FIT! = T9F! (by Proposition3.5 @), so that FP =  T9¢ ! =
= ~ =~
=F1 =Ti =T9=FrobP =F

(Frob P) F.
Thus, FP = (Frob P) F is proven. Hence, FP = (Frob P) F = P7F. This proves
—Ppq
Proposition [3.6] O

| Corollary 3.7. Let P € F, [T]. Then, 7 -P-F C P F.

Proof of Corollary We first claim that
FPeP-F for every i € IN. (20)

Proof of (20): We shall prove by induction on i.

The induction base (i.e., the case i = 0) is trivial.

For the induction step, we fix an n € IN, and we assume that holds for
i = n. We then must prove that holds for i = n + 1.

By assumption, holds for i = n. In other words, F'P € P - F. Now,

frtlp — FEp ¢ [P .F= P1 F.F
S~~~ S~~~ N~ ~—
=FF" epP-F =PIF =ppi-1
(by Proposition 3.6)
=PPI-lF.FCpP.F.
S—_———
CF
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In other words, holds for i = n 4 1. This completes the induction step. Thus,
is proven.
Recall that (T'F') ;>0 1s a basis of the [Fy-module F (by Proposition 3.5/ (b)).
Now, we shall prove that

uPeP-F for every u € F. (21)

Proof of (21): Let u € F. We must prove the equality (2I). Since this equality is

qu-linear in u, we can WLOG assume that u belongs to the basis (Tj Fi)izo, >0 of

the F;-module F. Assume this. Thus, u = T/F' for some (i,j) € IN2. Consider
this (7,). Now,

— T I ] F = 1. FCP.
u P=T FP € I'p F=PU-ECP-F.
—TiFi eP-F =PT/ CF
(by 20)) (since P and T’ both
lie in IF4[T])

This proves (21).

Now, (21) immediately yields #-P C P-F. Hence, f -B-F C P-F-F C
CP-F CF
P - F. This proves Corollary O

3.3. g-polynomials

Next, we shall see an alternative description of the IF;-algebra 7. We begin with
a general definition:

Definition 3.8. Let A be a commutative F;-algebra. A polynomial in A [X]
is said to be a g-polynomial if it is an A-linear combination of the monomials

Xe, X1, X%, ... We let A[X],
Thus, A [X], _jin

(X‘lo, xa' X )

be the set of all g-polynomials in A [X].

—lin
is an A-submodule of A [X]; as an A-submodule, it has basis

Thus, a polynomial in A [X] belongs to A [X] g—lin if and only if the only mono-

mials it contains are (some of) the monomials X‘?O, qu, X‘72,. ..

The A-submodule A [X] _y;, of A[X] is not a subring of A [X] (unless A =
0). However, it is closed under a different operation: namely, composition of
polynomials. Let us see this in more detail:

Definition 3.9. Let A be a commutative ring. Let f € A[X] and g € A [X].
Then, f o g denotes the polynomial f (g¢) € A[X]. (This is the polynomial
obtained from f by substituting ¢ for X.) This defines a binary operation o on
the set A [X].
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Proposition 3.10. Let A be a commutative ring.
(@) The pair (A [X], o) is a monoid with neutral element X.

(b) Assume that A is a commutative IF;-algebra. Then, A [X] is a sub-

g—lin
monoid of the monoid (A [X], o). Moreover, (A [X]g—tin -+ O> is a (noncom-
mutative) IF;-algebra with unity X (where the IF;-module structure is the one
obtained by restricting the A [X]-module structure to IFy).

Proof of Proposition (@) If B is any commutative A-algebra, and if b € B is
any element, then there exists a unique A-algebra homomorphism ¢ : A [X] — B
satisfying ¢ (X) = b. [IY] We shall denote this homomorphism ¢ by ev,. It has
the property that

evy (f) = f(b) for every f € A[X]. (22)

Now, every f, g € A [X] satisfy

eve (f) =f(8) (by (22), applied to B = A[X] and b = g)
=fog (since fog=f(g))- (23)

Let f,¢,h € A[X]. Then, yields evg (f) = f o g. Furthermore, (ap-
plied to f o g and h instead of f and g) yields ev, (fog) = (fog)oh. But
(applied to g and h instead of f and g) yields evy, (g) = g o h. Finally, (23)
(applied to g o h instead of ) yields evg; (f) = fo(goh).

The defining property of evg., yields evgo, (X) = goh. But the defining
property of ev, yields evy (X) = g. Now,

(evioevy) (X) =evy | evg (X) | =evy(g) =goh.
~——
=8
Comparing this with evg,, (X) = goh, we obtain (ev,cevy) (X) = evgop (X).
The two maps evy, o evy and ev,, thus agree on the generator X of the A-algebra

A[X]. Since these two maps are A-algebra homomorphisms (because evy, ev,
and ev,y, are A-algebra homomorphisms), this shows that these two maps are

equal. In other words, ev, o evy = evg,y,. Hence, (evy,oevy) (f) = eveo (f) =
—_——

=€Veol

fo(goh). Thus,

fo(goh) = (evyoevy) (f) =evy | evg(f) | =evy(fog) =(fog)oh
=fog

9This is simply the universal property of the polynomial ring A [X].
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Now, let us forget that we fixed f, g, h. We thus have shown that fo (goh) =
(fog)ohftorevery f,g,h € A[X]. Thus, (A[X], o) is a semigroup. Furthermore,
X is a neutral element of this semigroup (since every f € A [X] satisfies X o f =
X(f) = fand foX = f(X) = f). Therefore, this semigroup (A [X],o0) is a
monoid with neutral element X. This proves Proposition (a).

(b) Step 1: Let End (A [X]) denote the IF;-algebra of all endomorphisms of
the IF;-vector space A [X]. It is easy to see that Frob = Frob,x] € End (A [X]).
Hence, Frob” € End (A [X]) for every n € IN. It is straightforward to see (by
induction over n) that

n

Frob” (f) = f19 for every f € A[X] and n € N. (24)
It is easy to see that
Frob (A [X]qflin> cA [X]qflin (25)
@ Using this fact, it is straightforward to see (by induction over n) that
Frob” (A [X] qfhn> C A[X], i for every n € IN. (26)

Step 2: Now, let us prove that

fo(Mgr+Aag2) =AM (fog1)+A2(fog2) (27)

for every f € A [X]q_hn, g1 € A[X], 2 € A[X], Ay € F;and A; € Fy.
Proof of @): Let f € A[X],

20Proof of : Let g € A[X],_j,. We shall prove that Frobg € A [X]
Indeed, g € A [X]

g—lin-
g—lin- Thus, g is an A-linear combination of (qu, Xq], X‘fz,. . ) (since the
A-module A [X] g—lin has basis (qu,qu,X‘?Z,. . .)). In other words, there exists a sequence
(ap,a1,ay,...) € AN of elements of A such that g= Y 1,X7", and such that all but finitely

neN
many n € IN satisfy a, = 0. Consider this sequence.

Applying the map Frob to the equality g = Y a,X7", we obtain

nelN
Frob g = Frob ( Z aann> = Z Frob (aann> (since the map Frob is IFq—linear)
nelN neN  ~—-—
=(anx1")T=a} (x")"
n\ 9
=Yd (x") e ¥ alAX) g S AKX g
neN N——— neN

:Xqﬂq:Xq»H—l GA[X]q—hn

(since A [X], i,
Now, let us forget that we fixed g. We thus have proven that Frob g € A [X]
g€ AX

is an A-module).

g—1in fOT every

g—tin- In other words, Frob (A [X]q—lin) C A[X],_jin- This proves .
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Wehave f € A[X],_j;,. Thus, f is an A-linear combination of (X‘?O, X1, X7, .. )
(since the A-module A [X] has basis (XqO,qu,X"/Z, .. .)). In other words,

there exists a sequence (agp,a1,a,...) € AN of elements of A such that f =

Y. a,X7, and such that all but finitely many n € IN satisfy a, = 0. Consider
nelN
this sequence.

Let f denote the element Y a, Frob” of End (A [X]). (This is well-defined,
nelN

since Frob” € End (A [X]) for every n € IN.) Now, every h € A [X] satisfies
foh=f(n) (28)

g—lin

Now, let g1 € A[X], g0 € A[X], My € F; and Ay € F,. Applying to
h = A1 + Axg2, we obtain

fo (Mg +Aag) = f (Mg +Aag2) = Mf (1) + Aaf (g2)
(since f € End (A [X])). Comparing this with

M (fogr)+A2 (foga) = Mf (1) +Aaf (g2),
~—— ——

=f(g1) =f(g2)
(by (28)) (by @28))

we obtain f o (A191 +A292) = A (fogr) + Az (f o g2). Thus, is proven.
Step 3: Furthermore, we have

(MfitAaf2)og=A1(ficg) +A2(f208) (29)

forevery fi € A[X], L€ A[X], g€ A[X], A1 € Fjand A; € F,.
Proof of R9): Let f1 € A[X], fo € A[X], g € A[X], My € F;and A; € FF,. Then,

(Mfi+Arfa) og = (Mfi+Aaf2) (8) = Mfi1(g) +A2fa(8)-

2L Proof of : Let h € A[X]. Then,

foh=f(h)y=Y a,n" (sincef =) aan”) .

nelN nelN

Comparing this with

f(h) = Y a,  Frob" (h) (since f= Y. an Frob")
neN H’”_/ neN
=h1
(by @3, ail)plied toh
instead of f)
= Z a,h?",
nelN

~

this yields f oh = f (h), qed.
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Comparing this with A (fio0g)+A2(f20g) = A1f1(g) + Aaf2(g), we obtain
N—— N——

=f1(8) =f2(8)

(AMfi +A2f2) 0g = A1 (frog) + A2 (f2 0 g). This proves (29).
Step 4: Now, let us show that

foge AlX] for every f,g € A[X] (30)

g—lin g—lin *

Proof of : Let f,g € A[X],_j- Define the sequence (ag,a1,a2,...) € AN

and the element f € End (A[X]) as in the proof of . Then, holds. Ap-
plying to h = g, we obtain

og=Ff(o) = a, Frob" since f = a, Frob”
8 8 8
nelN ~ nelN
EA[X]qflin
€ ¥ anFrob" (A[X]; ) € ¥ anA[X]; iy € ALX] o
nelN ~- nelN
CAX], in
(by @6))
(since A [X],_y, is an A-module). Thus, we have proven .

Step 5: We have X = X! € A[X] g—lin- Lhis, combined with , shows that

A[X],_j, is a submonoid of the monoid (A [X], o). Furthermore, the binary
operation o on A [X] g—lin is IF;-bilinear (by and ) and associative (since
(A[X],o) is a monoid) and has neutral element X (since (A [X], o) is a monoid
with neutral element X). Thus, (A [X] qfhn,+,0> is a (noncommutative) IF,-
algebra with unity X. This concludes the proof of Proposition (b). O

Definition 3.11. Let A be a commutative ring. Whenever f € A[X] and
n € IN, we shall use the notation f°" for the n-th power of f in the monoid
(A[X],0).

Definition 3.12. Let A be a commutative IF;-algebra. The (noncommutative)
IF,;-algebra (A [X]g—tin -+ O) constructed in Proposition [3.10 (b) will be called

the Ore polynomial ring over A, and simply denoted by A [X g—1in (since there
are no other FF -algebra structures on A [X] that could be confused with
this one).

g—lin

The connection between these Ore polynomial rings and our F is the follow-

ing:
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Theorem 3.13. Consider the Ore polynomial ring IF, [T] [X],_, over Fg [T];

recall that this is the IF -algebra (]Fq [T [X]g—tin -+ o). (Notice that polyno-
mials in Fy [T] [X],_y,
of X they can contain are XqO,X‘il,qu, ....) Define an [F;-algebra homomor-
phism Fqpol : 7 — F, [T] [X],_y;,, by Fqpol (F) = X7 and Fqpol (T) = TX.

(@) This homomorphism Fqgpol is well-defined.

(b) This homomorphism Fqpol is an [F;-algebra isomorphism.

(c) We have Fqpol (T/F') = T/X7 for every i € N and j € N.

(d) We have Fqpolt = t - X for every t € IF, [T|. (Here, we regard FF, [T] as

an IF;-subalgebra of F as before. The expression “t - X” means the product of
t € F, [T] C IF, [T] [X] with X in [F, [T] [X].)

can contain arbitrary powers of T, but the only powers

Proof of Theorem For every n € IN, we have

(TX)°" = T"X in F, [T] [X] (31)

g—lin "
(This follows by a straightforward induction on n.) Furthermore, for every n €
IN, we have

(XT)°" = X7 in F, [T] [X] (32)

g—lin -
(Again, this is easy to prove by induction.)

(@) In IFg [T] [X],_};p,, we have X0 (TX) = (TX)? o X7 (indeed, this follows by
comparing X70 (TX) = X7(TX) = (TX)? = T7X7 and (TX)™1 oX1 =

———
—TIX
(by (1), applied to n=q)

(T7X) o X7 = T7X7). Now, recall that if u and v are two elements of an IF-
algebra U satisfying uv = ©v7u, then there exists a unique IF;-algebra homo-
morphism F — U sending F and T to u and v, respectively. Applying this to
U = Fg[T][X], i, v = X7 and v = TX, we thus conclude that there exists
a unique Fg-algebra homomorphism F — U sending F and T to X and TX,
respectively. In other words, the homomorphism Fqpol is well-defined. This

proves Theorem (a).
(c) For every i € N and j € IN, we have

O] o1
Fqpol <TjPi> = (F&pol T) o (Fﬂpol P)
=TX =X1
(since Fqpol is an IF,-algebra homomorphism)

= (TX)% 0 (X7)% = (fo) o X7 = TiX".

—— N —
=TiX —xq'
by B) oy (2)
This proves Theorem (c).
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(b) The FF, [T]-module F, [T] [X] has basis (X"O, X1, XP, .. > = (X‘?l)

g—lin i>0"

Thus, as an [F;-module, it has basis (Tf Xqi) 0 150"
i>0, j>
On the other hand, Proposition 3.5/ (b) says that the IF;-module F is free with
basis (T/F') >0 |
For every i € N and j € IN, we have Fqpol (T/F') = T/X7 (by Theorem {3.13
(c)). Hence, the F,-linear map Fqpol sends the basis (T/F) of the IF,-

module F to the basis (Tf Xqi)
i>0, j>0

quently, Fqpol is an IF;-module isomorphism, thus an [F;-algebra isomorphism.

This proves Theorem (b).
(d) Let t € FF;[T]. We must prove the equality Fqpolt = t- X. Since this
equality is clearly IFj-linear in ¢, we can WLOG assume that t belongs to the

basis (T/ )].>O of the F,-module F, [T]. Assume this. Thus, t = T/ for some j € IN.

Consider this j. We have t = T/ = T/F® in F. Thus, Fqpolt = Fqpol (T/F?) =
j qo 1 1 p— pu j qO =

T'X7 (by Theorem [3.13| (c), applied to i = 0). Hence, Fqpol ¢t Tt X1

=t —X1=X

t - X. Thus, Theorem [3.13|(d) is proven. O

Theorem (b) shows that the [Fg-algebra IFg [T] [X],_j;, is isomorphic to F;
this algebra can thus be regarded as a rather concrete manifestation of 7. We
shall make more use of this later.

Let us prove one further simple property of A [X]

i>0, >0

of the IF;-module FF, [T] [X] Conse-

g—lin-

g—lin (for general A):

Proposition 3.14. Let A be a commutative Fy-algebra. Let f € A [X]_ ;. Let

B be a commutative A-algebra. Then, the map B — B, b — f (b) is [F;-linear.
(It might not be A-linear.)

Proof of Proposition Let End B denote the IF;-algebra of all endomorphisms
of the IF;-vector space B. It is easy to see that Frob = Frobg € End B. Hence,
Frob" € End B for every n € IN. It is straightforward to see (by induction over
n) that

Frob” (b) = b7" for every b € Band n € IN. (33)

Wehave f € A[X],_j;,. Thus, f is an A-linear combination of (qu, X1, X7, .. )
(since the A-module A [X] has basis (qu,qu,X‘f, .. .>). In other words,

there exists a sequence (ag,a1,as,...) € AN of elements of A such that f =

Y a,X7, and such that all but finitely many n € IN satisfy a, = 0. Consider
nelN
this sequence.

Let f denote the element ) a,Frob” of End B. (This is well-defined, since
nelN

Frob" € End B for every n € IN.) Now, every b € B satisfies

f(b)=f(b) (34)

g—lin
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Hence, the map B — B, b — f (b) equals the map B — B, b — f (b). But the
latter map is simply the map f € End B, and thus clearly [F;-linear. Hence, the
former map is IF;-linear. Proposition is thus proven. O

Proposition also has a partial converse:

Proposition 3.15. Let A be a commutative [Fj-algebra which is an integral
domain. Let f € A [X] be such that, for every commutative A-algebra B, the
map B — B, b — f (D) is Fy-linear. Then, f € A [X],_j,.

The proof of Proposition can be found in [3 Corollary A.3]; we shall not
give it here, as we shall not use Proposition Propositions and 3.15 are
the reason why the g-polynomials over A (that is, the elements of A [X] g—lin)
are often called the “IF;-linear polynomials over A”, but we shall not use this
terminology (as it is mildly misleading: it sounds too much like degree-1 poly-
nomials).

3.4. g-polynomials from subspaces

We shall now see a classical way to construct g-polynomials.

Definition 3.16. Let A be a commutative [F;-algebra. For every finite subset V
of A, let fy be the polynomial [] (X +v) € A[X].
veV

The following result is a consequence of [15, (7.7)] (and also appears in [3,
Theorem A.1 2)] in the particular case when A is an integral domain):

Theorem 3.17. Let A be a commutative IF -algebra. Let V be a finite IF,-vector
subspace of A. Then, fy is a g-polynomial.

We shall prove Theorem following an idea that appears in [15, proof of
(7.15)]; but first, let us slightly generalize it:

22Proof of : Letb € B. From f = ¥ a,X7, we obtain f (b) = Y. a,b?. Comparing this
h neN nelN
wit

f(b) =Y a,Frob" (b) <since f=Y au Frob”)

nelN N nelN
=p1
(by @3))

= Z aann,

nelN

this yields f (b) = f (b), qed.
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Definition 3.18. Let A be a commutative IF;-algebra. For every finite set V and
every map ¢ : V — A, we let fy , be the polynomial [] (X + ¢ (v)) € A[X].
veV

Theorem 3.19. Let A be a commutative [Fj-algebra. Let V be a finite IF;-vector
space, and let ¢ : V — A be an [Fy-linear map. Then, fy , is a g-polynomial.

Theorem is not significantly more general than Theorem (it is easily
derived from the latter), but this little generality helps in proving it. The proof
will need the following lemmas:

Lemma 3.20. Let A be a commutative [F -algebra. Let V and W be two finite
IF;-vector spaces. Let ¢ : V — A and ¢ : W — A be two FFj-linear maps.
Assume that fiy 4 is a g-polynomial. Let i : A — A be an F;-linear map such
that every a € A satisfies

h(a) = fwy (a). (35)

Let x : V& W — A be the F;-linear map which sends every (v,w) € VO W
to ¢ (v) + ¢ (w) € A. Then,

fvaw,x = fvhop © fwvy in A [X].

Proof of Lemma The definition of f y yields

fwp=T1 X+¢ @) =11 X+¢(w) (36)

veW weW

(here, we renamed the summation index v as w).
Fix some v € V. If we substitute X + ¢ (v) for X on both sides of (36), then we

obtain

fwy X+o @) =] (X+¢@)+¢w)). (37)
weW

We have assumed that fy y is a g-polynomial. In other words, fiw,y € A [X],_jp-
Hence, Proposition (applied to B = A [X] and f = fy ) shows that the map
A[X] = A[X], b fwy (b) is Fy-linear. Hence, fyvy (X1 +x2) = fw,yp (x1) +
fw,y (x2) for every x1,x2 € A[X]. Applying this to x; = X and x; = ¢ (v), we

obtain

fwy (X+9(0) = fwy (X) + fw,p (9 (0))
—— —_——
=fw,p =h(¢(v))

(because (applied to a=¢(v))
yields h(¢(v))=fw,y(¢(v)))

= fwy +h(e(v) = fwy + (ho¢)(v).
H/—/
=(hog)(v)
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Comparing this with (37), we obtain

[T X+9@+¢w)=fwy+ (hoe)(v). (38)

weW

Let us now forget that we fixed v. We thus have shown proven the equality
forallv e V.
The definition of fy ., yields

N [TX+ (hog)(v)).

veV

Substituting fiy,y for X on both sides of this equality, we obtain

fviop (fwy) =TT (fwy + (hog) (v)). (39)

veV

The definition of fyow , yields

frawx= I X+x@)= TI [X+ x@w)
veVOW (vw)eVeW :¢(U)V+¢(w)
=11 II (by the definition of x)
veV weW

(here, we renamed the index v as (v, w) in the product)

=1 [] X+o@+yp@)) =] (fwy+ (hop) (2))

veV weW ., veV
i+ (199 0)
(by (8))
= fvop (fwy) (by G9)
= [V hog © fwp-
This proves Lemma [3.20] O

Lemma 3.21. We have

[T x=AY)=Xx7—XxY7"! (40)
A€F,

in the polynomial ring IF, [X, Y].
Proof of Lemma It is well-known that

[[] X—2)=Xx7-X (41)
A€F,

45



Function-field analogue for symmetric functions? May 11, 2018

in the polynomial ring IF,; [X]
Now, consider the element X/Y in the quotient field [F, (X,Y) of the ring
IF; [X,Y]. Substituting this element X/Y for X in (#1), we obtain

[T X/Yy—=2A)=(X/Y)T-X/Y.

A€l
Multiplying this equality by Y¥, we obtain

YITT (X/Y =A) =Y1((X/Y)T—X/Y) = XT—XYT~ L.

A€F,
Hence,
XT—XYyT =Y T (X/Y-A) =[] (Y(X/Y=A)) (since |Fy| = q)
A€F, AEF, RO g
=[] X—=AY).
A€F,
This proves Lemma [3.21] O

ZLet us give a proof of (41) for the sake of completeness:
The polynomial [] (X — A) is a product of ‘]Fq’ = g monic polynomials of degree 1. Thus,

A€F,

it is a monic polynomial of degree q. Hence, both polynomials ] (X —A) and X9 — X
A€F,

are monic polynomials of degree 4. Their difference J] (X —A) — (X7 — X) therefore is a

A€y
polynomial of degree < g (since the subtraction causes their leading terms to cancel).
On the other hand, every u € IF; satisfies

ITw=2 - ul —p| =0—(p—p)=0.
/\GIFq :V
(since p€lFy)

=0
(since one of the factors of
this product is y—pu=0)

In other words, every u € IF; is a root of the polynomial ] (X —A) — (X7 — X). Hence, the
A€F,

polynomial [] (X —A) — (X7 — X) has at least g roots (since IF; has at least g elements).
A€,
But [y is a field. Hence, any polynomial in [F; [X] whose degree is smaller than its number

of roots must be the zero polynomial. The polynomial [] (X —A)— (X7 —X) is such a
A€,

polynomial (since its degree is < g, but it has at least g roots), and thus must be the zero

polynomial. In other words, [] (X —A) = (X7 — X). This proves .
A€l
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Lemma 3.22. Let A be a commutative IF;-algebra. Let V be a one-dimensional
IF;-vector space. Let ¢ : V — A be an [F-linear map. Let e be a nonzero

element of V. Then, fy, = X7 — (¢ (¢))"' X.

Proof of Lemma The element —e of V is nonzero (since e is nonzero).

The IF;-vector space V is one-dimensional, and thus any nonzero element of
V forms a basis of V. Thus, —e forms a basis of V' (since —e is a nonzero element
of V). In other words, the map F, — V, A + A (—e) is a bijection. Now, the
definition of fy , yields

fro =TT (X +o@) =TT | X+9|2(=2)

veV A€EF, e

here, we have substituted A (—e) for v in the product,
since the map [F; — V, A — A (—e) is a bijection

=1 [ X+ g(-2e) = [[ X=2¢(e))
AelF, — A€,
=—Ap(e)
(since ¢ is IF;-linear)
= XT—X (¢ ()T (this follows by substituting ¢ (e) for Y in (40))

=X (p(e)" ' X.
This proves Lemma [3.22] O

Proof of Theorem We shall prove Theorem by induction over dim V:

Induction base: Theorem holds in the case when dimV = 0 P4 This
completes the induction base.

Induction step: Let N € IN. Assume (as the induction hypothesis) that Theorem
holds in the case when dimV = N. We need to show that Theorem
holds in the case when dimV = N + 1.

Consider the setting of Theorem and assume that dim V = N + 1. Thus,
dimV = N +1 > 0. Hence, V contains a nonzero element e. Consider this e.
Let U be the [F;-vector subspace Fye of V; thus, dim U = 1 (since e is nonzero).

24Proof. Consider the setting of Theorem and assume that dim V = 0. From dim V' = 0, we
obtain V' = 0. The definition of fy,, yields

fve = H(X+q)(v)):X+ w (since V = 0)

veV 0
(since ¢ is IFg-linear)

= X.

Thus, fy 4 is a g-polynomial (since X is a g-polynomial). Thus, Theorem is proven in the
case when dim V' = 0.
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Pick any complement W to the subspace U of V (such a complement exists by
one of the basic theorems of linear algebra). Then, W is an IF,-vector subspace
of V satisfying U ® W = V. We shall identify V' with the external direct sum
of U and W (that is, we shall identify each element v of V with the unique pair
(u,w) € U x W satisfying v = u + w). Thus, the [F;-linear map ¢ : V — A can
be regarded as an [F -linear map ¢ : U W — A.

Define two [F-linear maps v : U — Aand ¢ : W — A by v = ¢ |y and
¢ = ¢ |w. Then, the [F;-linear map ¢ : U® W — A sends every (v,w) € U W
to7(0)+¢(w) B

From V = U & W, we obtain dimV = dimU + dim W, so that dimW =
dimV — @3}_ U= N+1-1= N. Thus, (according to the induction hypothesis)
=N+1 =1
Theorem can be applied to W and ¢ instead of V and ¢. As a consequence,
we obtain that fiyy is a g-polynomial. In other words, fwy € A [X],_y;,- Thus,
Proposition (applied to f = fwy and B = A) shows that the map A —
A, b — fwy (b) is Fy-linear. Let us denote this map by h. Thus, h is the map
A — A, b fwy (b), and is [Fy-linear. Every a € A satisfies h (a) = fw y (a) (by
the definition of h).

Now, Lemma (applied to U, ¢ and ¢ instead of V, ¢ and x) shows that
fuew,p = funey © fw,yp in A [X].

But the IF;-vector space U is one-dimensional (since dim U = 1) and contains
the nonzero vector e (since U = Fze O ¢). Thus, Lemma (applied to U and

h o7 instead of V and ¢) shows that fi;;., = X7 — ((ho7) (e))q_1 X. This is
clearly a g-polynomial (since ((ho ) (¢))7 ! is just a coefficient in A). In other
words, funoy € A[X],_jin-

Proposition (b) shows that A[X],_j,
(A[X],0). Hence, A[X], _j;, is closed under the binary operation o. There-
fore, funoy © fwy € A[X] i (since fupoy € A[X] _pn and fwy € A[X] _ypn).
But V.= U®W, so that fyv, = fuew,ey = funoy© fwy € A [X]q—lin' In other
words, fy 4 is a g-polynomial. Thus, Theorem is proven in the case when

dim V = N + 1. This completes the induction step.
The proof of Theorem is thus complete. O

is a submonoid of the monoid

As a consequence of Theorem we can remove one unneeded assumption

from Lemma

B Proof. Let (v,w) € U & W. We must show that ¢ (v, w) = v (v) + ¥ (w).
We have v € U, and thus 7 (v) = ¢ (v) (since v = ¢ |7). We have w € W, and thus ¢ (w)

¢ (w) (since ¥ = ¢ |w). The map ¢ is Fy-linear, and thus ¢ (v +w) = ¢ (v) + ¢ (w)
\v/ \\/_/
=1(0)  =p(w)

v (v) + ¢ (w). But recall that we are identifying (v,w) € U® W with v +w € V. Thus,
¢ (v,w) =¢(v+w)=7(v)+¢(w), qged.
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Corollary 3.23. Let A be a commutative IF;-algebra. Let V and W be two IF;-
vector spaces. Let ¢ : V — Aand ¢ : W — A be two [F;-linear maps. Let
h: A — Abe an [Fy-linear map such that every a € A satisfies h (a) = fw,y (a).
Let x : V® W — A be the F,-linear map which sends every (v,w) € VO W
to ¢ (v) +¢ (w) € A. Then,

fvawx = fvhop © fw,p in A[X].

Proof of Corollary Theorem (applied to W and ¢ instead of V and ¢)
shows that fyy 4 is a g-polynomial. Thus, Lemma shows that fyow, =
[

fv hog © fw,p in A [X]. This proves Corollary
Let us finally derive Theorem from Theorem [3.19;

Proof of Theorem [3.17] Let 1 be the canonical inclusion map V — A. Thus, ¢ is
an F,-linear map. Hence, Theorem 3.19| (applied to ¢ = 1) shows that fy, is a
g-polynomial. But the definition of fy, shows that

fra=T11|X+ o) |[=]]X+0)=Ff
veV \:7 veV
(since ¢ is an
inclusion map)

(since this is how fy is defined). Thus, fy is a g-polynomial (since fy, is a
g-polynomial). This proves Theorem [3.17] O

3.5. Further consequences of the Fqpol isomorphism

Let us return to F. We shall now exploit the isomorphism Fqgpol to obtain
properties of F.

First, let us recall that if A is any commutative [F;-algebra, then A [X] g—lin 18
an A-submodule of A [X]. Applying this to A = F; [T], we see that
IF, [T] [X]qflin is an IF, [T] -submodule of F, [T] [X]. (42)

We shall write this [F; [T]-module structure on the left (i.e., we use it to make
Fy [T] [X],_jin into a left IF, [T]-module). This left IF, [T]-module structure is

given by plain multiplication inside IF, [T] [X]. It has the following property:

Proposition 3.24. The map Fqgpol : F — FF, [T] [X] is an isomorphism of

left IF; [T]-modules.

g—lin
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Proof of Proposition [3.24] Proposition (b) says that the [F;-module F is free
with basis (T/F') . >0

Theorem (b) shows that Fqpol is an IF;-algebra isomorphism. Thus, it
remains to prove that Fqpol is a homomorphism of left IF; [T]-modules. In other
words, it remains to prove that Fqpol (fu) = fFqpol (u) for every f € IF, [T]
and u € F.

Solet f € F;[T] and u € 7. We need to prove the equality Fqpol (fu) =
f Eqpol (u). This equality is IF4-linear in u. Hence, we can WLOG assume that

u belongs to the basis (T'F'),. i>o of the Fy-module F. Assume this. Thus,
u = T/'F' for some i € IN and j € IN. Consider these i and ;.

We still need to prove the equality Fqpol (fu) = f Fqpol (1). This equality is
[F;-linear in f. Hence, we can WLOG assume that f belongs to the basis (T*),
of the F;-module F, [T]. Assume this. Thus, f = T* for some k € IN. Consider
this k.

Multiplying the equalities f = TX and u = T/F!, we obtain fu = If;l;] F' =

—Tk+j
THIF. Hence, Fqpol (fu) = Fqpol (TFF) = TFX7 (by Theorem [3.13{ (o),
applied to k + j instead of j). On the other hand, u = T/F', so that Fqpol (1) =
Fqpol (T/'F) = T/X4 (by Theorem [3.13| (c)). Multiplying the equalities f = T*
and Fqgpol (1) = TIX7, we obtain f Eqpol (1) = @X”li — TkHXA, Compar-

=Tk+j
ing this with Fqpol (fu) = T/ X7, we obtain Fqpol (fu) = fFqpol (u). As
explained, this completes the proof of Proposition [3.24} O

Notice that we can use Proposition to recover Proposition 3.5/ (c):
Second proof of Proposition 3.5] (c). Proposition yields that 7 = F, [T] [X],_y,
as left IF; [T]-modules, via the isomorphism Fqpol. Since the left IF; [T]-module
Fy [T] [X], i, has basis <X‘70,X’11,X”72, ...}, we can therefore conclude that the

left IF; [T]-module F has basis (quor1 <X”70 ,Fqpol ! (X‘71> ,Fqpol ! <Xq2> yoen ).

Since Fqpol <X‘7i> = F' for every i € N this rewrites as follows: The left
IF, [T]-module F has basis (Fi)iz()' This proves Proposition 3.5/ (c) again. O

Let us make some more remarks (in less detail, since these will not be used in
the following):
Proposition can be rewritten as follows: If we transport the left IF; [T}]-

module structure on F to Fg[T] [X],_y, via the isomorphism Fqpol : F —

26Proof. Let i € N. Theorem 3.13|(c) (applied to j = 0) yields Fqpol (T°F)) = T X4 = X1
=1

Thus, Fqpol ™! (X‘ii) = T° F' = F, qed.
=1
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g [T] [X],_jin, then we obtain the left IF; [T]-module structure on Fy [T] [X],_;,
constructed in [@#2). Of course, we can also use the isomorphism Fqpol to trans-
port all the other module structures from F to [F, [T] [X] along Fgpol. In
more detail:

From Proposition we know that F is a left IF; [T]-module, a right IF, [T]-
module, a left IF; [F|-module, and a right IF, [F]-module. Thus, we have alto-
gether four module structures on F. Using the isomorphism Fqpol : F —
g [T] [X],_jin, We can transport them to F, [T] [X],_j;,; therefore, Fy [T] [X],_;,
becomes a left IF, [T]-module, a right IF, [T]-module, a left F; [F]-module, and
a right IF; [F]-module. As we have already said, the first of these four module
structures is precisely the left IF; [T]-module structure on F constructed in (42).
The other three structures are new. Explicitly, two of them are characterized as
follows:

g—lin

o If t € IF; [T], then the action of ¢ on the right IF, [T]-module F, [T] [X]

g—lin
sends every m € Fy[T][X] _j, to mo Fqpol t =mo (t-X) =
~——
(by Theoram B3 (@)
m (t- X) (that is, the result of substituting ¢ - X for X in m).
o If f € I, [F], then the action of f on the left F; [F]-module F, [T] [X],_,

sends every m € IF, [T] [X] g—1in t0 Fqpol fom=f (FrOb]Fq[T} [X]> o m.

3.6. Frobenius IF, [T]-modules

In the following, “F-module” will always mean “left /-module”, unless stated
otherwise. The following fact is a simple consequence of the definition of F
(specifically, of the fact that F is generated by F and T as an IF;-algebra):

Lemma 3.25. Let M and N be two F-modules. Let f : M — N be an [F;-linear
map. Assume that

f(Tu) =Tf (u) for every u € M.
Assume also that

f (Fu) = Ff (u) for every u € M.

Then, f is an F-module homomorphism.

This lemma shall be used tacitly further below; it is the most reasonable way
to prove that a certain map between two F-modules M and N is an F-module
homomorphism, particularly in the case when the F-module structure on at
least one of M and N is defined not explicitly but by providing the actions of F
and T.
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Part of the interest in the IF;-algebra F is due to its category of modules: it can
be described as the category of “Frobenius IF; [T]-modules”, by which we mean
IF; [T]-modules equipped with a “Frobenius map” satisfying a certain rule. Let
us define this in more detail:

Definition 3.26. (a) A Frobenius IF, [T|-module means a pair (M, f), where M is
an [F, [T]-module, and where f : M — M is an [F -linear map satisfying

f(Tm) = T (m) for every m € M. (43)

This map f is called the Frobenius map of the Frobenius IF; [T]-module (M, f).
By abuse of notation, we shall often speak of the “Frobenius IF; [T]-module
M” instead of the “Frobenius IF; [T|-module (M, f)”, leaving the Frobenius
map f implicit; in this situation, the Frobenius map § will be denoted by f.

(b) Let M and N be two Frobenius [F, [T]-modules. Then,amap h: M — N
is said to be a homomorphism of Frobenius IF, [T]-modules if and only if it is
IF; [T]-linear and “respects the Frobenius maps” (i.e., satisfies fx o h = h o fj).

(c) We let FrobModp, |77 denote the category whose objects are the Frobenius
IF; [T]-modules, and whose morphisms are the homomorphisms of Frobenius
IF; [T]-modules.

It turns out that this category FrobModg, 1] is isomorphic to the category of
F-modules:

Proposition 3.27. Let Mod r be the category of all (left) F-modules.

Recall that we are regarding the IF;-algebra homomorphism Fincr
F,; [T] — F as an inclusion. Thus, [F, [T] is an [F,-subalgebra of F.

(@) Let M be a Frobenius IF; [T]-module. Then, there exists a unique F-
module structure on M which extends the IF; [T]-module structure on M and
satisfies

F-m=fp (m) for every m € M.

(b) Let N be an F-module. Then, N becomes an IF;[T]-module (since
F,; [T] € F). Let f be the action of F € F on N (that is, the [F;-linear map
N — N, n+~ F-n). Then, (N, ) is a Frobenius F, [T]-module.

(c) Proposition @ (a) defines a functor from FrobModg, (1) to Modr (be-

cause, to any Frobenius IF; [T]-module M, it assigns an F-module structure
on M, and this assignment can easily be extended to morphisms). Proposi-
tion (b) defines a functor from Mod r to FrobMod]Fq[T] (because, to any
F-module N, it assigns a Frobenius F; [T]-module (N, f), and this assignment
can easily be extended to morphisms). These two functors are mutually in-
verse. Thus, the categories FrobModIqu and Mod r are isomorphic.

Proof of Proposition (a) We let End M denote the IF;-algebra of all IF;-module
endomorphisms of M.
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It is clear that there exists at most one F-module structure on M which ex-
tends the IF; [T]-module structure on M and satisfies

F-m = fp (m) for every m € M (44)

It thus remains to prove that there exists at least one such structure. So let
us construct such a structure.
As usual, we abbreviate fy; as f.
Let t be the [F;-linear map M — M, m +— T - m. Then, for every n € N and
m € M, we have
t"(m)=T" -m. (45)

(This is easy to prove by induction over 1.)
For every m € M, we have

(Ffot) (m) =7 t(m) =§(T-m) =§(Tm) = T (m) (by @3))

S
=T-m
(by the definition of t)

= 1 (f (m))
because (applied to g and § (m) instead of n and m)
shows that t7 (f (m)) = T7 - f (m) = T9f (m)

= (tTof) (m).

Hence, fot =t70f.

Now, recall the universal property of F: If u and v are two elements of an
IF;-algebra U satisfying uv = v7u, then there exists a unique IF;-algebra homo-
morphism F — U sending F and T to u and v, respectively. Applying this to
U =EndM, u = and v = t, we conclude that there exists a unique ]Fq-algebra
homomorphism F — End M sending F and T to § and t, respectively. Let ® be
this homomorphism. The definition of ® shows that ® (F) = fand ® (T) = t.

We have

(®(f))(m)=f-m for every f € F, [T| and m € M (46)

Thus, the F-module structure on M obtained from the map ® : ¥ — End M
extends the IF, [T]-module structure on M.

ZIndeed, the requirement that this structure extends the IF, [T]-module structure on M uniquely
determines how T acts on M. Meanwhile, the requirement uniquely determines how F
acts on M. Thus, the actions of both T and F on M are uniquely determined. But therefore,
the action of any element of F on M is uniquely determined as well (since the [F;-algebra F is
generated by T and F); in other words, the F-module structure on M is uniquely determined,
qed.

28Proofof: Let f € IF; [T] and m € M. We have to prove the equality (P (f)) (m) = f - m. This
equality is IF;-linear in f; we can therefore WLOG assume that f belongs to the basis (T"), -
of the I[F;-module F; [T]. Assume this. Hence, f = T" for some n € IN. Consider this #. From
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Furthermore, (® (F)) (m) = fp (m) for every m € M. Thus, the F-module
N——
==im
structure on M obtfai;ed from the map ® : 7 — End M satisfies (44).

Hence, there exists at least one F-module structure on M which extends the
IF; [T]-module structure on M and satisfies (namely, the F-module structure
on M obtained from the map ® : 7 — End M). This completes the proof of
Proposition (a).

(b) We need to show that (N, §) is a Frobenius FF; [T]-module. In other words,
we need to show that N is an IF; [T]-module, that f : N — N is an [F;-linear map,
and that this map f satisfies

f(Tm) = T (m) for every m € N. (47)

The first two of these statements are obvious. It thus remains to prove the
third statement, i.e., to prove that the map f satisfies (47).

So let m € N. The definition of § yields f(m) = Fm and f(Tm) = F-Tm =

FT m=T9 Fm, = T7 (m). Thus, (47) is proven. As we have already explained,
~— —~—

=T4F =f(m)

this completes the proof of Proposition (b).

(o) It is clear that if we apply the functor FrobMod, 1) — Mod r first and then
the functor Modr — FrobMod]Fq[T], then we get back to where we started. It
is somewhat less obvious, but still easy, to prove that if we apply the functor
Modr — FrobMod]Fq[T] first and then the functor FrobMod]qu — Mod g, then

we get back to where we starte Thus, the functors FrobMod]Fq[T] — Mod r
?r;d Modr — FrobModg, 1] are mutually inverse. This proves Proposition
). L]

An ample supply of Frobenius FF; [T]-modules (and thus, F-module) is given
by commutative IF, [T]-algebras and their Frobenius homomorphisms:

Proposition 3.28. (a) If A is a commutative IF, [T]-algebra, then (A, Frob,) is
a Frobenius IF, [T]-module.

(b) If A and B are two commutative [F, [T]-algebras, and if f : A — B is an
IF; [T]-algebra homomorphism, then f is also a homomorphism of Frobenius
IF; [T]-modules from (A, Frob,) to (B, Frobg).

f = T", we obtain @ (f) = ®(T") = (®(T))" (since P is an Fy-algebra homomorphism).
Since @ (T) = t, this rewrites as ® (f) = t". Therefore, (P (f)) (m) = t" (m) = T" - m (by
——
—n
(5)). Hence, (@ (f)) (m) = T" -m = f-m. This proves (45).
=f
ZIn order to prove this, it suffices to observe that an F-module structure on a given F,-vector

space is uniquely determined by the actions of F and T (because the F;-algebra F is gener-
ated by F and T).
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(c) Proposition (a) assigns a Frobenius IF; [T]-module (A,Frob,) to
each commutative IF, [T]-algebra A. This defines a functor from the cate-
gory of commutative IF; [T]-algebras to the category FrobModp, 1) of Frobe-
nius [F, [T]-modules (the action of this functor on morphisms just leaves mor-
phisms unchanged), and thus to the category Mod r of F-modules (because
Proposition (c) shows that FrobModp 1) = Mod r). Explicitly, this shows
that every commutative F; [T]-algebra A canonically becomes an F-module,
and this F-module structure extends the F, [T]-module structure on A and
has the property that

F-m = Froby (m) for every m € A.

Proof of Proposition (@) Let A be a commutative IF, [T]-algebra. As we know,
Froby : A — A is an [Fj-algebra homomorphism, and thus an IF,-linear map.
Furthermore, it satisfies

Froby (Tm) = T9Frob 4 (m)

for every m € A m Hence, (A, Frob,) is a Frobenius [F, [T]-module (by the
definition of a “Frobenius IF; [T]-module”). This proves Proposition (@).

(b) The proof of Proposition (b) is straightforward.

(c) Proposition (c) follows from what we have proven above. (Specifi-
cally, the statement that the F-module structure on A extends the IF, [T]-module
structure on A and has the property that

F-m = Froby (m) for every m € A
is a consequence of Proposition (@.) O

Restricted Lie algebras (see, e.g., [14]) can be used as another source of Frobe-
nius [F; [T]-modules, provided they can be equipped with an appropriate IF, [T]-
module structure. We are not currently aware of specific examples of interest,
however.

Convention 3.29. Let A be a commutative IF, [T]-algebra. Then, (A,Frob,)
is a Frobenius IF; [T]-module (by Proposition (@), and thus Proposition
(a) (applied to M = A) defines an F-module structure on A. In the
following, we shall always regard a commutative IF, [T]-algebra A as equipped
with this F-module structure by default. This structure extends the IF, [T]-
module structure on A, and satisfies

F-m = Froby (m) = m1 (by the definition of Frob,) (48)

for every m € A.

3Proof. Let m € A. Then, the definition of Frob 4 shows that Frob4 (m) = m7 and Froby (Tm) =
(Tm)T=T1 m7 = T9Froby (m), ged.

=Frob 4 (m)
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Proposition 3.30. Let A be a commutative IF, [T]-algebra. Then, A is an F-
module (according to Convention 3.29). This F-module structure has the
tollowing property: For every k € IN and m € A, we have

F*om=m?. (49)

Proof of Proposition 3.30} Only needs to be proven.
From (48), we know that

F-m=m1 for every m € A. (50)

Thus,
FCom=mT for every m € A and k € IN. (51)

(Indeed, can be proven by a straightforward induction over k; the induction
step will rely on (50). The details of this proof are left to the reader.)

So we know that holds. In other words, holds. This proves Proposi-
tion O

Proposition 3.31. The commutative IF, [T|-algebra FF; [T] [X] becomes an F-
module (by Convention applied to A = [F; [T] [X]). Let Fqpol denote the
map Fqpol : F — T, [T]|X],_j;,, considered as a map F — F, [T] [X] (this
is well-defined because F, [T] [X],_y;,, € F4[T][X]). Then, this map Fqpol :
F — F, [T] [X] is an F-module homomorphism.

Proof of Proposition Proposition shows that the map Fqpol : ' — F, [T] [X]

is an isomorphism of left IF; [T]-modules. Thus, the map Fqpol : 7 — [F, [T] [X]
(which differs from Fqpol : 7 — [F, [T] [X] only in its target) is also a homo-

morphism of left IF, [T]-modules. In other words, Fqpol (fu) = fEqpol (u) for
every f € IF; [T] and u € F. Applying this to f = T, we obtain

g—lin

g—lin

Eqpol (Tu) = TFqpol (u) for every u € F. (52)

On the other hand, let u € F. Then,

Fqpol (Fu)
= Fqgpol (Fu) <by the definition of quol)
= (Egpol (F)) o (Fgpol (u))

=X1

<since Fgpol is an [F;-algebra homomorphism F — (]Fq [T] [X]g—tin -+ o))
— X1 (Fqpol (1)) = (Fqpol (u))"".
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Comparing this with

FEqpol (u) = F - Fqpol (1) = Fqpol (u)
—_———
=Fqpol(u)
(by the definition of Fqpol)

(by (48), applied to A = IF; [T] [X] and m = Fqpol (u)>
— (Fapol (1))’

we obtain Fqpol (Fu) = FFqpol (u). Let us now forget that we fixed u. We thus
have shown that

Fqpol (Fu) = FEqpol (u) for every u € F. (53)

Now, Lemma (applied to M = F, N = FF; [T] [X] and f = Fqpol) shows that
Fgpol is an F-module homomorphism (because of and ). This proves
Proposition [3.31] O

3.7. The Carlitz action

Now, let us recall the Carlitz polynomials [M] defined in Definition [I.1] We can
connect these polynomials to F in the following wa

Proposition 3.32. Let A be a commutative IF, [T]-algebra. Thus, A becomes
an F-module (by Convention [3.29).

For every M € FF; [T] and a € A, we have [M] (a) = (Carl M) - a. (Here, the
[M] (a) on the left hand side means the result of substituting a for X in the
polynomial [M] € [, [T] [X], whereas the (Carl M) - a on the right hand side
denotes the action of Carl M € F ona € A.)

Proof of Proposition We first claim that
[T"] (a) = (F+T)"a for every n € N and a € A. (54)

Proof of (54): We shall prove by induction over n:
Induction base: We have [T°] = X, thus [T°] (a) = X (a) = a. Comparing this
with (F+ T)a = a, we obtain [T°] (a) = (F + T)"a. In other words, l) holds
T/
for n = 0. This completes the induction base.
Induction step: Fix a positive integer N. Assume that holds for n = N — 1.
We now need to show that holds for n = N.

31Recall that Carl is the Fy-algebra homomorphism FF, [T] — F sending T to F + T.
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We have assumed that holds for n = N — 1. In other words, we have
[TN_l} (a)=(F+T)N"1a for every a € A. (55)

Now, fix a € A. Applying to m = [TN"1] (), we obtain

[ () = ([T (@) (56)

The recursive definition of [TN] yields [TN] = [TN=1]7 4 T [TN~1]. Hence,

o= (P s - (o)
:F.[T‘Nr—l](a)

~F. [TNﬂ (a)+T- [TNﬂ ()= (F+T) [TZ\H] (a)
N———  o——
=(F+T)N"1q

(by @)

=(F+T)(F+T)" la=(F+T)Va.

=(F+T)N

Now, let us forget that we fixed a. We thus have shown that [TV] (a) = (F + )N a
for every a € A. In other words, holds for n = N. This completes the induc-
tion step, and thus is proven.

Now, let M € F;[T] and a € A. Write the polynomial M in the form M =

agT® + a1 T + - - - + a; T for some k € N and ag, ay, . .., a, € F,. Thus,
k
M=a T +a1T' + -+, TF = Y a,T".
n=0
The definition of [M] now yields
k
[M] = ag [TO] + [Tl} Fo [Tk} = Y a, [T
n=0

Recall that Carl is the F;-algebra homomorphism [F, [T] — F sending T to
F+T. Thus, CarlT = F+ T. The map Carl commutes with applications of
polynomials in [F, [T] (since it is an [F;-algebra homomorphism). Thus,

Carl (M (T)) =M (CarlT) =M(F+T)= i}an (F+T)"
—F4T n=

58



Function-field analogue for symmetric functions? May 11, 2018

k
(since M = Y a,T"). Since M (T) = M, this rewrites as
n=0

k
CarlM =) a,(F+T)".

n=0
Hence,
k n k n
(CarlM) -a (71;) an (F+T) ) a Z ap (F_;nT)a) a
(by (>4))
k k
=) an[T"] (a) = (Z an [T”]> (a) = [M] (a)
n=0 n=0
=[M]
This proves Proposition [3.32] O

Corollary 3.33. Let M € FF,;[T]. Then, the homomorphism Fqpol : F —
IF, [T] [X] satisfies [M] = Fqpol (Carl M).

g—lin
Corollary yields, in particular, that every M € IF,[T] satisfies [M] =
Fqpol (Carl M) € Eqpol F C F, [T] [X]

Proof of Corollary[3.33, Let M € FF, [T].
Consider the map Fqpol : 7 — IF;[T] [X] defined in Proposition This
map Fqpol is an F-module homomorphism (according to Proposition [3.31).
The definition of Fqpol shows that Fqpol (1) = Fqpol (1) = X (since Fqpol is

g—lin"

an [F;-algebra homomorphism F — (qu [T] [X]g—tin -+ o), and since the unity
of the IF;-algebra (qu [T [X]g—tin -+ O> is X).

But the definition of Fqpol shows that Fqpol (Carl M) = Fqpol (Carl M), so
that

Eqpol (Carl M) = Fqpol ( CarlM ) = Fqpol ((Carl M) - 1)
=(Carl M)-1
= (Carl M) - Eqpol (1)

——
=X

(since Fgpol is an F-module homomorphism)
= (Carl M) - X. (57)

On the other hand, Proposition (applied to A = F, [T] [X] and a = X) yields
[M] (X) = (Carl M) - X. Comparing this with (57), we obtain Fqpol (Carl M) =
[M] (X) = [M]. This proves Corollary O
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3.8. “Fermat’s Little Theorem’ for the Carlitz action

Let us first state a simple fact:

Lemma 3.34. Let A be an [F, [T|-algebra which is torsionfree as an IF, [T]-
module. Let f be a nonzero element of FF, [T]. Let u € A[X] be such that

fue A[X],_y,. Then, u e A[X] ..

Proof of Lemma We have fu € A[X],_j,. In other words, the polynomial
fu € A[X] is a g-polynomial, that is, an A-linear combination of the monomials
X”/O, X”ll, X‘?z, .... In other words, for every k € IN'\ {qo, ql, qz, .. .}, we have

(the X*-coefficient of f u) = 0. (58)
Now, for every k € N\ {¢°4%,4?,...}, we have
f- (the X*-coefficient of u) = (the Xk-coefficient of f u) =0

(by ), and thus (the Xk-coefficient of u) = 0 (because f # 0, and because

A is torsionfree as an IF; [T]-module). In other words, the polynomial u is an
A-linear combination of the monomials qu, X‘fl, qu, .... In other words, u is a
g-polynomial; that is, u € A [X], ;. This proves Lemma W O

We now shall prove a crucial fact:

Proposition 3.35. Let 77 be a monic irreducible polynomial in IF,; [T]. Then,
there exists a unique u (71) € F such that Carl 7t = FI87 4 1. 4 (77). (The
notation u (71) means that u depends on 77; it is not meant to imply that u (77)
is a polynomial in 7.)

The first proof of this proposition will reveal it to be a translation of part of [3|
Theorem 2.11]:

First proof of Proposition The left F; [T]-module F is free (by Proposition
(0)), and thus torsionfree.
T deg T

From [3, Theorem 2.11], we know that [77] (X) = X7 ° ", where [77] (X) denotes
the projection of [71] (X) = [n] € F, [T] [X] onto (I, [T] /7) [X]. In other words,

(7] (X) = X9"*" mod K, where K is the kernel of the projection F, [T] [X] —
(I, [T] /) [X]. Since this kernel K is simply 7lF, [T] [X], this rewrites as follows:

7] (X) = X9°*" mod nFF, [T] [X].
Thus, 1] =[] (X) = X7 mod I, [T] [X]. In other words, 7 | [7r] — X1
in the ring IF, [T] [X]. Hence, % ([7‘(] - quegn> is a well-defined polynomial in

deg 7
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the ring IF; [T] [X] (since this ring is an integral domain). Let us denote this

polynomial by u.
We have
[7t] = Fqpol (Carl 75) (by Corollary applied to M = )
eF
€ Carl F C Fy [T] [X],_yin -
1 qdegn’ qdegn .
But u = p ([n] -X ), so that mu = [1] — X € Fy [T] [X],;_yin (since

eg

both [7] and X7° belong to F, [T] [X], ;). Therefore, u € Fy [T] [X],_y, (by
Lemma applied to A = IF; [T] and f = 7).

Theorem (c) (applied to j = 0 and i = deg ) yields Fqpol (TOFde8™) =
0 deg 7 deg 7 deg 7 0
TO X177 = X7*", so that X7 = Fqpol [ T° Fde87 | = Fqpol (FI87).

=1 =1

Theorem (b) shows that the map Fqpol : F — [, [T] [X]
algebra isomorphism. Thus, its inverse map Fqpol ' is well-defined. Set u =
Fqpol ! (u). Thus, U € F and Eqpol (1) = u.

But Fqpol is an isomorphism of left IF; [T]-modules (according to Proposition

3.24). Hence,

g—lin 18 an ]Fq-

Fgpol (7ra) = mFqpol (1) = 7u = [7] _ Xtidegi
=u =Fqpol(Carl 77) =Fqpol (Fdes ™)

(by Corollary
applied to M=)

= Fqpol (Carl 1) — Fqpol (Fdeg"> = Fqpol (Carl T — Fdeg ”)

(since the map Fqpol is IF;-linear). Since Fqpol is injective (because Fqpol is an
isomorphism), this yields 7tti = Carl 7t — F4e87,

Hence, there exists at least one u (71) € F such that 77 - u (71) = Carl 7 — Fde87
(namely, u (7t) = u). Moreover, such a u (7) is clearly unique (because any
element u (1) € F is uniquely determined by 7t - u (77) (since 7= # 0, and since
the left IF; [T]-module F is torsionfree)). Thus, there exists a unique u (71) € F
such that 77 - u (7r) = Carl7r — F487. In other words, there exists a unique
u (71) € F such that Carl 7t = FI¢87 + 7.y (77). This proves Proposition O

3.9. A second proof of Proposition

Let us next give another proof of Proposition which does not rely on Carlitz
polynomials. This proof is not directly relevant for the rest of this report, but
illustrates some techniques of working with F.

We first state a classical fact:
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Proposition 3.36. Let 7 be a monic irreducible polynomial in [F, [T]. Let d =
deg 1.

Let IF,; denote the field IF, [T] /7IF; [T]. This is a field extension of IF,. Let
a € Fr be the residue class of T € IF; [T] modulo the ideal 7lF,; [T]. Thus,
Fr=TF]|a] and 7t (&) = 0.

(a) The F,-vector space F has basis (a%,al,.. .,ocd_l).

(b) The elements a7, a7 ,...,a9" ' are pairwise distinct and are precisely the
roots of 7.

(c) We have
d—1 '
7T=H<T—tx‘7) in Fr [T]. (59)

k=0

Proof of Proposition (a) This is well-known (and holds for any commutative
ring instead of IF,).

(c) Recall that Frob, is an [F;-algebra endomorphism of A whenever A is a
commutative [F;-algebra. Applying this to A = IF,;, we conclude that Froby  is
an [F,-algebra endomorphism of IF;. Denote this IF;-algebra endomorphism by
f. Thus, f = Frobg_.

We have f = Froby_, and thus

f (a) = Frobg,_ (a) = a' (by the definition of Frobg, ) (60)

for every a € IF;. Now,

k

*(a) =a for every k € N and a € F. (61)

(Indeed, this can be proven by a straightforward induction on k, using (60).)
But F; = IF,;[T]/nlF,[T] is an [F-vector space of dimension degm = d.

Hence, |F| = ‘qu‘d = qd (since }IFq‘ = gq). But it is well-known that if L is
a finite field, then every a € L satisfies alll = a. Applying this to L = F, we
conclude that every a € IF, satisfies alF=| = 4. Hence,

f=id (62)

Thus, id = f¢ = f9 1o f. Hence, the map f is left-invertible, and thus
injective.

32Proof of : We have just shown that every a € F, satisfies alf7l = 2. Now, every a € F,

satisfies
4 (a) = a' (by (61), applied to k = d)
= ¢/Fr| (since g = |]F7I|)
=a=1id(a).

In other words, f¢ = id. Qed.
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Every nonzero polynomial ¢ € IF,[T] has at most deg g roots (since [F; is a
tield). Applying this to ¢ = 71, we conclude that the polynomial 7t has at most
deg 7m = d roots.

Now, we notice that

n(aﬂk> =0foreach k € {0,1,...,d — 1} (63)
F3 Also,
k
al £ foreachk € {1,2,...,d —1} (64)
@ Hence,
the elements ocqo, oﬂl,. ..,aT " are pairwise distinct (65)

33 Proof of : Letk € {0,1,...,d —1}. Then, (applied to a = a) yields f* (a) = af”.
Recall that f is an [F;-algebra endomorphism of F,. Thus, f*is an IF;-algebra endomor-

phism of F, as well. Hence, f¢ commutes with polynomials in IF; [T]. In other words,
Y (g(B) =g (fk (ﬁ)) for every ¢ € F; [T] and every B € F;. Applying this to ¢ = 7 and

B = a, we obtain f¥(rr(a)) = 7 w = n(aqk>. Hence, n(oﬂk> = fk w =
—ad =0

£%(0) = 0 (since f* is an F,-algebra endomorphism of F). This proves .
34 Proof of : Letk € {1,2,...,d — 1}. We shall show that al" # .

Indeed, assume the contrary. Thus, a1 = a. But (applied to a = a) yields f* (a) =
' =a.

Let x € [F;. We are going to show that M —x=0.

Indeed, x € F; = F; [«]. Hence, x = & () for some polynomial / € IF; [T]. Consider this
h.

Recall that f is an IF;-algebra endomorphism of F,. Thus, f*is an IF;-algebra endomor-

phism of F, as well. Hence, f¥ commutes with polynomials in F; [T]. In other words,
f ) =g (fk (,B)) for every ¢ € IF; [T] and every B € FF. Applying this to ¢ = h and

B = &, we obtain f* (h(x)) = h (fk (zx)) = h («). Since x = I («), this rewrites as f* (x) = x.
S~

=

But (applied to a = x) yields f* (x) = x1°. Hence, x1" = f*(x) = x, so that 0 —x=0.

Now, forget that we fixed x. We thus have proven that every x € IF, satisfies M —x=0.
In other words, every x € F; is a root of the polynomial T —T ¢ IF; [T]. Hence, the
polynomial T7° — T has at least |F,| roots. Since [F.| = ¢ > gk (since d > k (because
ke {1,2,...,d —1})), this shows that the polynomial T7 — T has > g* roots.

But k > 0, so that the polynomial T — T is a nonzero polynomial of degree
deg (qu — T) = ¢*. Tt is well-known that each nonzero polynomial w € IF; [T] has at most

degw roots (since IF; is a field). Applying this to w = T7 — T, we conclude that the poly-
nomial T7° — T has at most deg (T‘?k — T) = gF roots. This contradicts the fact that the

polynomial T7 — T has > q* roots. This contradiction shows that our assumption was false.
Hence, af" # a is proven, ged.
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Bl
Let 7 be the polynomial

d—1 ‘
n—lgo(T—oﬂ) € Fr [T].

The polynomial 7t is monic and has degree degrm = d. The polynomial
d-1
I (T - oﬂk) is also obviously a monic polynomial of degree d (since it is a
k=0
product of d monic polynomials of degree 1). Thus, 7 is a difference of two
d—1
monic polynomials of degree d (since v = 7 — [] (T — oﬂk)). Consequently,
k=0
is a polynomial of degree < d (because the difference of two monic polynomi-
als of degree d must always be a polynomial of degree < d). In other words,
degy < d.
Assume (for the sake of contradiction) that v # 0.
Every nonzero polynomial ¢ € F, [T] has at most deg g roots (since Fj is a
tield). Applying this to g = v, we conclude that -y has at most deg y roots (since

v # 0). Thus, 7y has < d roots (since degy < d).
But for every ¢ € {0,1,...,d — 1}, the element a1 of IF is a root of In

other words, zxqo, oﬂl, e, a7 are d roots of 7. These d roots are pairwise distinct
. Thus, the polynomial 7 has at least d roots. This contradicts the fac
(by (65)). Thus, the poly ial v has at least d ts. Thi tradicts the fact

35 Proof of : Assume the contrary. Thus, two of the elements ot ', a1 are equal. In
other words, there exist two elements i and j of {0,1,...,d — 1} satisfying i < j and ol = ot
Consider these i and j.

We have j —i € {1,2,...,d — 1} (since i and j belong to {0,1,...,d — 1} and satisfy i < j).
Hence, (applied to k = j — i) yields o’ £ a. But (applied toa = a and k = j — i)
yields fi~ (a) = a? ' # .

Applying to a = « and k = i, we obtain f (a) = ol Applying toa=wand k =,
we obtain f/ () = a7 . Thus, a7 = \f; (&) = (flofI7) (a) = f1 (77 (a)).

(e <

Now, fi () = Wl = ot = f(f77" (a)). Since the map f' is injective (because f is injective),

this entails « = f/7' () # a. This is clearly absurd. This contradiction proves that our

assumption was false. Hence, (65) is proven.
d-1

k .
36Proof. Let/ € {0,1,...,d —1}. From v = 7w — T] (T —af ), we obtain
k=0
d—1
4 0 l k
'y(uﬂ>: n(aq> - H(uﬂ —oﬂ) =0-0=0.
——— k=0
-0 \_V_J
(by ' =0 ¢
applied to k=/) (because one of the factors in this product is a? —af

(namely, the factor for k=/), and this factor is clearly 0)

In other words, the element " of F is a root of . Qed.
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that v has < d roots. This contradiction proves that our assumption (that 7y # 0)
d—1

was false. Hence, we have v = 0. Thus, 0 = v = 7 — [] (T— oﬂk), so that
k=0
d—1 .
=11 <T —af > This proves Proposition 3.36 (c).
k=0

(b) The elements 04‘70, oﬂl, ...,«7 "~ are pairwise distinct (by ) and are pre-
cisely the roots of 77 (because of (59)). This proves Proposition (b). O

Here are some more useful lemmas:

Lemma 3.37. Let K be a commutative ring. Let d € IN. Let w € K|[T] be
a polynomial of degree < d. For each i € N, let 71; be the coefficient of T
in t. For each k € {0,1,...,d}, define a polynomial p; € K|[T| by p; =
d )
Y. m;T717 Then:

i=k+1
(a) We have p;_1 = m; (a constant polynomial) and p; = 0.

a— .
(b) We have 7 (X) —(Y) = (X -Y) 21 pi (X) Y" in the ring K [X, Y].
i=0

Proof of Lemma The definition of p; 1 yields

d d
_ pie1-(d—1) _ pie1-(d-1) _ d-1—(d—1) _
Pi-1= Z T = Z T, T =T = 11,4.
i=(d—1)+1 i=d 01
The definition of p; yields
d .
pa= ). ;T 1% = (empty sum) = 0.
i=d+1
This proves Lemma (a).
For every i € {0,1,...,d}, we have
. . iil .
X-Y=(X-Y) ) xkyi-1-k (by a known formula)
k=
S
:lil xi—1-Lyl
(here, wé:}?ave substituted ¢
for i—1—k in the sum)
i-1
=(X-Y) Y x1fyh (66)

=0
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d .
We have 7t = } 7;T' (since 7t is a polynomial of degree < d, and since the 7;

1=0

d ) d .
are its coefficients). Thus, 7 (X) = ¥ m; X' and 7 (Y) = Y m;Y". Hence,
i=0 i=0
d d
m(X)—m(Y)=) mX =) mY
i=0 i=0
d d —1
=Yy m (X-Y) =Y me(x-v) L XY
i=0 ——— i=0 (=0
—(X-Y) lil xi—1-tyt
(=0
(by (66))
A i-1
=X-VY m) XY
i=0 /=0
Since
A i-1 d i1 , d d ,
Z 7T Z Xl—l—fyf — Z Z nixl—l—fyﬂ — Z Z nixl—l—f Yf
i=0 /=0 i=0¢=0 (=0 i=(+1
;N/_/ " J/
¢ :WLSX)
(=0i=0+1 (since py= Y. mTi—1-¢
i=0+1
(by the definition+of pe) and thus
d . ,
po(X)= ¥ mx—1h
i=0+1
d , , )
=Y XY =Y pe(X)Y'+ pa(X) Y
(=0 (=0 5
(since—deO)

i1 = .
=Y p(X)Y =) pi(X)Y
=0 =0

(here, we have renamed the summation index ¢ as i),

a—1 .
this rewrites as 7 (X) — (Y) = (X -Y) ¥ p; (X)Y". This proves Lemma
i=0

(b). l

acts on the first tensorand).

means the element alr = a ® 1 of F5.) Then, h € . F.

3.37

L]

Lemma 3.38. Let 77 be a monic irreducible polynomial in IF; [T]. Let d = deg .

Let F;; denote the field IF, [T] /7IF, [T]. This is a field extension of FF,.
w € FF be the residue class of T € [, [T] modulo the ideal 7lF, [T]. Thus,
F,; = F[a] and 7t (¢) = 0. Let F denote the F,-algebra F,; ® F (where F,

Let

Leth € Fbesuchthatl®h € (1® T — a) Fr. (Notice that the a here really
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Remark 3.39. Lemma [3.38] can be viewed as a noncommutative version of
the following known fact: If h € F; [T] is such that h € (T — ) F [T], then
h € nlF,[T]. (That is, a polynomial in IF, [T] that vanishes at « must be a
multiple of 77.)

Proof of Lemma For each i € IN, let 71; be the coefficient of T’ in 7. For

d .
each k € {0,1,...,d}, define a polynomial py € Fy[T] by pp = Y mT 17K
i=k+1
Then, Lemma (@) (applied to K = IF,) yields that p;_; = 714 (a constant
polynomial) and p; = 0. But r; = 1 (since 7t is a monic polynomial of degree
d). Thus, pyj_1 =my = 1.
Furthermore, Lemma (b) (applied to K = IF,) yields

d—1

ﬂOQ—ﬂW%#X—ﬂE%mM) (Zn )X Y)

in the ring K [X,Y]. Since the two elements 1 ® T and « of F,; commute with
each other, we can substitute 1 ® T and « for X and Y in this identity. We thus
obtain

d—1
7(1RT)—m(a) = (1T o 10T —«
( ) () ggp( ) < ( )
=1@p;(T)=1®p; =a'®1

(since p;(T)=p;) (since & 'eFr)

_ ;<1®pi)(0f®1) (1eT-a)

=a'®p;
i—1
= Z(Xl®pi (1®T—£¥)
i=0
in the ring 7 = F,® F. Since 1(1®T) —n(a) =n(1®7T) =1 (T) =
0 ey
1 ® 7T, this rewrites as
-1
lon=|) d®p|(10T—a). (67)
i=0
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Now,
i-1
Z o' @ pih

(“l®p1) (1h)
1

:;<a®pl> (1@ h) (2%@%) ashn)

€(1®T—a)Fr

-1
€ (Zoﬁ@pi) (1T —a)Fr=(1®m) Fr.
i=0

S

=1
(by @)

But Proposition 3.36|(a) shows that the F-vector space F; has basis (%, al,. ..

Hence, we can define an [ -linear map A : F; — I, by

</\ (af) = 0141 for eachi € {0,1,...,d — 1}) .

(68)

(69)

Consider this A. The Fg-linear map A : Fr — [F; induces an [Fj-linear map
A®idr : Fr® F — F;® F. In view of F, ® F = Fr and F; ® F = F, this

latter map is thus an [F -linear map A ® idr : F — F. This map satisfies

(A®idr) (18 7) Fr) C nF

(70)

m Now, applying the map A ® id 7 to both sides of the equality (68), we obtain

)\®1d]: (ZIX ®P1> A@ldf)((l@ﬁ)fn)gﬂf

37Proof of : We have

(A®idr) ((1®n) @)
=Fr®F

=(A®idr) (1on) (FoF)) =A®idr)(Fr® nF)

=F,QnF
(seen as a subspace of Fr®F)

=A(Fr) ®idg (nF) (seen as a subspace of F; @ F)
—— N —

Q]Fq =nF

CF,@nF =nF (using our identification of F; ® F with F),

ged.
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(by (70)). Since

d—1 d—1

=Y A (a )@wlf pil) = X 641 pil
S T s
=0id—1 =pil
(by ©9))
d—1
= Z 0i g—1pih (using our identification of IF, ® F with F)
i=0
d—2 d—2
= Sia—1  Pih+04-14- 1 04— 1h—ZOch+h—h
=0 —O/ =1 —1 ; P
(since_i;éd—l - B -0

(since i<d—2))
this rewrites as 1 € 71.F. This proves Lemma [3.38 O

Lemma 3.40. Let R be a ring (not necessarily commutative). If by, by, ..., b1

d—1

are some elements of R (for some d € IN), then the product [] by shall be de-
k=0

tined as bob; - - - by_1. (Thus, we have defined this product even if the elements

bo,b1,...,b;_1 do not commute.)
Let r € IN. Let f, t and a be three elements of R satisfying ft =t'f, fa = af
and ta = at. Let d € IN. Then, every d € N satisfies

d—1

H(f—kt—ark) = fimod (t —a) R. (71)

k=0

(Note that (+ — a) R is only a right ideal of R, not necessarily an ideal of R.)

Proof of Lemma We have
fit = trifi for every i € IN. (72)

(This can be proven by a straightforward induction on i, using the relation ft =
t"f.) Also, the relation fa = af shows that the Z-subalgebra of R generated by a
and f is commutative. Thus, every i € N and j € IN satisfy

fld =df (73)

(since both fi and a/ belong to this commutative Z-subalgebra).
Moreover, every i € IN satisfies

t' —a' =0mod (t —a) R (74)
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B3l

We shall prove by induction over d:

Induction base: For d = 0, the congruence is obviously true (because both
sides of this congruence equal 1). This completes the induction base.

Induction step: Let D € IN. Assume that holds for d = D. We must prove
that holds ford = D + 1.

We have assumed that holds for d = D. In other words,

D—-1
H <f+t—ark> = fPmod (t —a) R. (75)
k=0
Now,
D & D—1 ¢ b
[T(f+t=a") =TT (f+t=a") ) (F+t—a)
k=0 R k=0 .
=fD m;dr t—a)R
(by (73))
= (fre-a) = Pr v o - o
N ~ ——
:fD-H :trD D :arD D
(by (72), applied to i=D)  (by (73), applied to
i=D and j=rP)
— fD+1 + terD _ aerD — fD—I—l + <trD . arD> fD
5 —_——
:(t’ —ar )fD =0mod(t—a)R

(by (74), applied to i=rP)
= fP* mod (t —a) R.

In other words, holds for d = D + 1. This completes the induction step.
Hence, is proven by induction. In other words, Lemma is proven. [l
Now we can prove Proposition again:

Second proof of Proposition The left IF; [T]-module F is free (by Proposition
(c)), and thus torsionfree.

S i-1 ,
38Proof of (74): Let i € N. Then, a known formula shows that X! — Y/ = (X - Y) ¥ Xky"=1-kin
k=0

the polynomial ring Z [X, Y]. Since the elements ¢ and a of R commute (becau;e ta = at), we
can substitute t and a for X and Y in this formula. We thus obtain

. . i_l .
H—a'=(t—a) ) tha ke (t—a)R.
k=0

—_———
E€R

In other words, ' — a’ = 0mod (t — a) R. This proves .
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Define d, IF;, « and F as in Lemma Defineh € F by h = Carl T — [degm
We shall show that h € .F.

Recall that Carl is the [F;-algebra homomorphism [F, [T] — F sending T to
F + T. This homomorphism sends every polynomial ¢ € F,[T] to g(F+T)
(where ¢ (F+ T) denotes the result of substituting F + T for T in g, not the
product of ¢ with F + T). In other words, Carlg = g (F + T) for every ¢ € IF, [T].
Applying this to ¢ = 71, we obtain Carlt = 7 (F+ T).

Now, we can substitute 1 ® F+1® T € Fx for T in the equality (since
1® F+1®T is an element of the [F-algebra F). As a result, we obtain

d—1
rleF+1eT) =[] (10F+10T—a’). (76)
k=0

But the elements 1 ® F, 1 ® T and « of F; satisfy

= — ir — q
(10F)(1®T) =18 FT.=19TIF=(12T)T(1®F),

=T49F
(1®F)a=a(1XF) (since « really means « ® 1 € F),
1T)a=a(1®T) (since « really means a ® 1 € Fp).

Hence, Lemma (appliedtoR = Fr,r=q, f=1®F,t=1®T and a = «)
yields

d—1
H<1®F+1®T—aﬂk> =(1®F)'=19Fmod(1®T - a) Fr.
k=0

Hence, becomes

d—1 .
n(1®F+1®T):H<1®F+1®T—M>
k=0

=19 F'mod(1®T —a) Fr.

Since

T|1F+1eT | =n(1® (F+T)) =1 (F+T),
N——————

=1®(F+T)
this rewrites as
1@n(F+T)=1®@F'mod (1®T — &) F. (77)
_ d _ d
Now, h = Carl — f_ff_f = (F+T)— F% so that
=n(F+T) —=Fd

(since deg r=d)

1@h=18(r(F+T)—F) =1 (F+T) - 10 F € 10T —a) F
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(by ). Hence, Lemma shows that h € wF. Hence, there exists at least
one u (7r) € F such that 7 - u (7r) = h. Moreover, such a u (77) is clearly unique
(because any element u (7r) € F is uniquely determined by 77 - u (77) (since 7w #
0, and since the left IF; [T]-module F is torsionfree)). Thus, there exists a unique
u (rr) € F such that 7t - u (7r) = h. In other words, there exists a unique u (71) €
F such that Carl 71 = F9¢87™ 4 77 4 (71) (because we have the logical equivalence

(n-u(ﬂ) \h,./ ) — (n.u(n):Carln—Fdegﬂ>

=Carl r—Fdegn

= (Carln = F4e87 1.y (7r)>
). This proves Proposition again. O

Remark 3.41. Now that we have a proof of Proposition that is indepen-
dent of [3, Theorem 2.11], we can turn the cart around and give a new proof
of [3, Theorem 2.11, last equality] (though this proof, of course, will be rather
roundabout):

Let 7t be a monic irreducible polynomial in IF, [T]. Our goal is to show that

7] (X) = X1“®" | where [7] (X) denotes the projection of [r] (X) = [n] €
F, [T} [X] onto (F, [T] /) [X].
We have X7°®" = Fgpol (Fdeg” ) (This can be proven as in our first proof

of Proposition ) Also, Fqpol is an isomorphism of left IF; [T]-modules
(according to Proposition [3.24).

Proposition [3.35] shows that there exists a unique u (1) € F such that
Carlt = F9¢87 + 77 u (7). Consider this u (7r). Corollary (applied to
M = n) yields

[7t] = Fqpol Carl = Fqpol (Fdeg" +7m-u (n))

:Fdeg”+n~u(7r)

= (quol (FdegT[)) +7t Fqpol (u (7))

. 7

e <Fy(T][X]

(since Fgpol is a homomorphism of left IF, [T] —modules)
e X1 4+ 1, [T] [X].

eg

In other words, [r1] = X7*" mod nlF, [T] [X]. Projecting both sides of this
congruence down to F, [T] [X] / (7F, [T][X]) = (F,[T] /) [X], we obtain

7] , qed.

deg 7 T eg

. In other words, [7t] (X) = x4

7] = X1
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3.10. Corollary: Carlitz action vs. Frobenius power

Corollary 3.42. Let 7t be a monic irreducible polynomial in FF, [T]. Let A be
an F-module. Then, (Carl 1) a = F48"amod 7t A for every a € A.

Proof of Corollary|3.42, Let a € A. Proposition shows that there exists a
unique u (71) € F such that Carl 7t = F487 4 77 .y (71). Consider this u (7).
Now,

(Carlmt) a= (Fdeg” +7-u (7()) a=FI87g 4 7.y (m)a = F% T amod mA.
—— —————
—[deg 7T+7-(.1,[(7'[) =0mod A

This proves Corollary O

3.11. Exponent lifting for F-modules

Next, we shall show a series of simple propositions which will culminate (if this
can be called a culmination) in a Carlitz analogue of the classical “lifting the
exponent” theorem (see, e.g., [6, version with solutions (ancillary file), (12.68.8)]
for it).

Proposition 3.43. (a) The IF;-vector subspace FF of F is a two-sided ideal of
F.
(b) Let P € IF; [T]. Then, Carl P = Pmod FF.

Proof of Proposition (a) First, we claim that
Fu € FF for every u € F. (78)

Proof of (78): Proposition .5 (b) shows that the IF;-module F is free with basis
(T'F') 12, j>0°

Let u € F. We must prove the relation (78). Since this relation is IF;-linear
in u (because FF is an IF;-vector subspace of F), we can WLOG assume that

u belongs to the basis (Tf Fi)l.>0 >0 of the IF;-module F. Assume this. Thus,
u = T/F' for some i € N and j € IN. Consider these i and j. Now,

. . Ny . NG
Fu= kU F=(T) FE = (T)FFeFr
=TiFi :(Tj)qp =Fitl1=FiF T
(by Proposition <

applied to P=T/)

This proves (78).
Now,

FF={Fu | uecF}CFF (by 79)) .
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Butitis clear that FF is a left ideal of F. Since we furthermore have F f\f L C
=FFCFF
FF F C FF, we thus conclude that FF is a two-sided ideal of F. This proves

cF

Proposition (a).
(b) Proposition (a) shows that FF is a two-sided ideal of F. Hence,

F/ (FF) is a quotient ring of F, hence a quotient [F,-algebra of . Let 7t de-
note the canonical projection map F — F/ (FF). Then, 7 is an [F;-algebra
homomorphism (since 7/ (FF) is a quotient IF;-algebra of F).
But Carl (T) = F+ T = Tmod FF (since F = _1 F € FF). In other words,
eF
rt(Carl (T)) = n(T) (since 7t is the canonical projection map F — F/ (FF)).
Thus,

(moCarl) (T) =mn(Carl(T)) =mn ( \7;_/ ) = 7t (Fincr (T))

=Fincr(T)
= (7o Finer) (T). (79)

But the three maps 71, Carl and Fincr are IF;-algebra homomorphisms; hence,
7t o Carl and 7 o Fincr are [Fj-algebra homomorphisms as well. The two Fg-
algebra homomorphisms 7r o Carl : IF,; [T| — F/ (FF) and 7 o Fincr : F; [T] —
F/ (FF) are equal to each other on the generator T of the IF;-algebra IF, [T]
(because of (79)). Therefore, these two homomorphisms must be identical. In
other words, 7t o Carl = 7t o Fincy.

Now,
7 (Carl P) = (moCarl) (P) = (moFincr) (P) =7 Fincr (P) =t (P).
Fi P
=rtorimcr =

(since we are regarding the
map Fincr as an inclusion)

In other words, Carl P = Pmod FF (since 7t is the canonical projection map
F — F/ (FF)). This proves Proposition (b). O

Proposition 3.44. Let A be an /-module. Let P € I, [T].
(@) We have FPA C P1A.
(b) The F;-vector subspace PA of A is a left F-submodule of A.
(c) Let k be a positive integer. Then, FPFA C P*1A.
(d) Let k be a positive integer. Then, (Carl P) PFA C PF1A.

Proof of Proposition (a) Propositionyields FP = P9Fin F. Hence, FP A =
—PiF

P9 FA C P7A. Thus, Proposition [3.44{ (a) is proven.
CA
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(b) Proposition [3.44| (a) yields FPA C _P1, A = PPI"'A C PA. Also,
~~~ ~——

—ppi—1 CA
(since g>1)

TP A=PTA C PA.
~~ ~~
=PT CA

Now, recall that the IF;-algebra 7 is generated by F and T. From this, it is easy
to derive the following fact: If V is an [F;-vector subspace of some left /-module
U satisfying FV C V and TV C V, then V is a left /-submodule of /. Applying
this tod = A and V = PA, we conclude that PA is a left F-submodule of A
(since FPA C PA and TPA C PA). Proposition (b) is thus shown.

(c) Proposition (a) (applied to P¥ instead of P) yields

FPkA C (Pk>j A= (Pk>2 <Pk>q2A C (Pk>2A _ pF ?P;:l A
_ (Pk)2 (pk)ﬂ*Z CA (since k is a positive

(since g>2) integer)

= Pfp pF=1a C pPH1A,
~ ——
—pk+1  CA
This establishes Proposition (c).
(d) Proposition (b) yields Carl P = Pmod FF. In other words, Carl P —
P € FF. In other words, there exists some u € F such that CarlP — P = uF.
Consider this u.
Proposition (b) (applied to P**1 instead of P) shows that the IF;-vector
subspace P¥*1A of A is a left F-submodule of A. Hence, uP*1A C P14

(since u € F).
But Carl P — P = uF shows that Carl P = P + uF. Hence,

(Carl P) P*A = (P4 uF) P"A C PP A+u FPFA C PMA £ uptA
—— ~~~ S~ N——
=P+uF =Pkt1 Ccpktig CPpk+1A

(by Proposition 344 (c))
C Pk+1A 4 Pk+1A C Pk+1A.

This proves Proposition (d). O
Proposition 3.45. Let A be an F-module. Let P € IF; [T]. Let k be a positive
integer.

Let a and b be two elements of A such that 2 = bmod P¥A.
(a) We have Fdeg8P; = pdegPpmod PF+1A,
(b) We have (Carl P) a = (Carl P) bmod P*1A.

Proof of Proposition From a = bmod P¥A, we obtain a — b € P*A.
(@) If P = 0, then the claim of Proposition (a) is tru Hence, we WLOG

3Proof. Assume that P = 0. Thus, P = 0¥ = 0 (since k is positive), so that PK'A = 0A = 0.
Hence, 2 = bmod PXA rewrites as 2 = bmod 0. In other words, 2 = b. Hence, F48P; =
Fde8Pp, 50 that F48° 7 = F48Ppmod P¥*1 A. In other words, the claim of Proposition [3.45|(a)
is true; ged.

75



Function-field analogue for symmetric functions? May 11, 2018

assume that P # 0.

If deg P = 0, then the claim of Proposition (a) is true@ Hence, we WLOG
assume that deg P # 0. Thus, deg P > 1.

Let d = deg P. Then, d > 1, so that rd = Fpi-1,

But Proposition (b) (applied to P* instead of P) shows that the Fy-vector
subspace P¥A of A is a left F-submodule of A. Hence, F - PXA C PFA.

Now, deg P = d, so that

FdegPy — pdesPp — plg _Flp = F! (a—b) e FF* 'P*AC FF - PrA
=FF=1  _pky eF CPkA
C FPFA C PFF1A (by Proposition ().

In other words, F4¢873 = F4¢8Pp mod P*1 A. This proves Proposition ().
(b) We have

(Carl P)a — (Carl P) b = (Carl P) (a — b) € (Carl P) PA C PF+1A

;\/_J
€PkA

(by Proposition (d)). In other words, (CarlP)a = (Carl P) bmod PF+1A.
This proves Proposition (b). O

Corollary 3.46. Let A be an F-module. Let P € IF;[T]. Let k be a positive
integer.

Let a and b be two elements of A such that a = bmod P*A.

(a) We have F98(P") 3 = F48(P") h mod P/ A for every £ € N.

(b) We have (Carl (P*)) a = (Carl (P")) bmod Pk A for every ¢ € N.

Proof of Corollary (a) We can prove Corollary (a) by induction over £:

Induction base: We have deg <PO> = deg1 = 0 and thus Fdes(P’) = p0 = 1.

~—
=1

Hence, Fdeg(PO)a = la = a and similarly Fdeg(Po)b — b. But a = bmod P*A.
Since k + 0 = k, this rewrites as 2 = bmod P**0A. Now, Fles(P) g — g = p =
F48(P")p mod P<*0A. In other words, Corollary [3.46 (a) holds for ¢ = 0. This
completes the induction base.

Induction step: Let L € IN. Assume that Corollary (@) holds for ¢ = L. We

must now prove that Corollary [3.46| (a) holds for £ = L + 1.
We have assumed that Corollary E (a) holds for ¢ = L. In other words, we

have Pdeg(PL>a = Fdeg(PL)bmod PKHL A,

40Proof. Assume that deg P = 0. Thus, the polynomial P is constant. Since P # 0, this shows
that the polynomial P is invertible in F; [T]. Hence, P is invertible in . Therefore, pk+1
is also invertible in F. Hence, P*"1A = A. But F4¢8Pq = FI8Ppmod A is obviously true.
Since PA*1A = A, this rewrites as FI¢8Pg = Fdeg P mod Pkt1 A, In other words, the claim of
Proposition [3.45 (a) is true; qed.

76



Function-field analogue for symmetric functions? May 11, 2018

But k is a positive integer, and hence k + L is a positive integer. Hence, Propo-

sition (3.45| (a) (applied to k+ L, F4e8(P") g and FAe8(P")p instead of k, a and b)
yields

FlesPpdes(P) = pdegPFdeg(P')p mod Pri+ia, (80)

Now, deg (I:fji) = deg (PPL) = degP + deg (PL). Hence, ples(P) —
=PPL
pdegP+deg(P) _ pdegPpdeg(P") Therefore, rewrites as follows:

ples(P) 5 — pdeg(PM) o d prHLtla,

In other words, Corollary (@) holds for £ = L + 1. This completes the
induction step. The induction proof of Corollary (a) is thus finished.
(b) We can prove Corollary (b) by induction over ¢:

Induction base: We have Carl P0> = Carll = 1 (since Carl is an [F -algebra
N~

=1

homomorphism). Hence, (Carl ( O)) a = la = a and similarly (Carl (PO)) b=0.
But a = bmod P¥A. Since k + 0 = k, this rewrites as @ = bmod P*t?A. Now,
(Carl (P%))a = a = b = (Carl (P°)) bmod P**°A. In other words, Corollary
(b) holds for ¢ = 0. This completes the induction base.

Induction step: Let L € IN. Assume that Corollary (b) holds for ¢ = L. We
must now prove that Corollary [3.46] (b) holds for £/ = L + 1.

We have assumed that Corollary [3.46] (b) holds for £ = L. In other words, we
have (Carl (P))a = (Carl (PL)) bmod P*+LA,

But k is a positive integer, and hence k + L is a positive integer. Hence, Propo-
sition [3.45 (b) (applied to k + L, (Carl (PL))a and (Carl (PL)) b instead of k, a
and b) yields

(Carl P) <Carl (PL>> a = (Carl P) <Carl <PL>> bmod PFIH1A. (81)

Now, Carl &Lii = Carl (PPL) = (Carl P) (Carl (PF)) (since Carl is an Fy-

=PPL
algebra homomorphism). Thus, rewrites as follows:

<Carl (PLH)) a= (Carl (PL+1>> bmod PFHEH1 A,

In other words, Corollary (b) holds for £ = L+ 1. This completes the
induction step. The induction proof of Corollary (b) is thus finished. O

In order to state the last corollary in this section, we need a definition:
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Definition 3.47. Let K be a field. Let 7t be a monic irreducible polynomial
in K[T]. Let f be any polynomial in K [T]. Then, v, (f) means the largest
nonnegative integer m satisfying 77" | f; this is set to be +o0 if f = 0. Thus,
v (f) € NU {400} for each f.

We set P+ = 0 for each P € K [T]. Thus, 7°%() | f holds for each f € K [T]
(including the case when f = 0).

Corollary 3.48. Let A be an F-module. Let N € IF;[T]. Let 7 be a monic
irreducible polynomial in IF, [T].

Let a and b be two elements of A such that a = bmod T A.

(a) We have Fde8Ny = pdegNp mod 707(N)+1 4. (Here, F9e8N is understood
to mean 0 when N = 0.)

(b) We have (Carl N)a = (Carl N) bmod ?x(N)+1 A,

Proof of Corollary We have 2 = bmod 7tA. In other words, 2 = bmod 7' A
(since 7T = 71).
If N = 0, then Corollary is easily seen to hold (since F4&N = 0 and
Carl N = Carl0 = 0 in this case). Hence, we WLOG assume that N # 0. Thus,
=0
vz (N) € N. Set £ = v; (N). Then, t* | N. In other words, there exists some
polynomial M € F, [T] such that N = Mr’. Consider this M.
Proposition (b) (applied to P = 7t'**) shows that the F-vector subspace
A of A is a left F-submodule of A. Hence, F - tt A C 7!t A.
(@) From N = M7, we obtain deg N = deg (M7nt‘) = deg M + deg ("), so
that FdegsN — FdegMereg(ne) _ FdegMFdeg(né).
Corollary (a) (applied to P = 7 and k = 1) yields
Faes() g = pdes(m) p mod 71+ A (since a = bmod 71! A). In other words, Fleg(n') 4 —
Fies(™)p € 71+ A. But
Fdeg N, _ Fdeg Ny
FdegN (tl _ b) — FdegM Fdeg(n[) (Cl o b)
——" S— <
eF

_ pdeg mpdes (')

c F-atttA C 7itA.

—poes(r) s (n) pe i

In other words, F48Ng = Fd8Npmod 7'+ A. Since1+ ¢ =1+0v,(N) =
=0(N)
vx (N) + 1, this rewrites as FdegNg = pdegNpmod 797 (N)+1 A This proves Corol-

lary 3.48] (a).
(b) From N = Mn’, we obtain Carl N = Carl (Mr*) = (Carl M) (Carl (7))

(since Carl is an [F;-algebra homomorphism).
Corollary (b) (applied to P = 7 and k = 1) yields (Carl (7'))a =
(Carl (7)) bmod 7t'** A (since a = bmod 7' A). In other words, (Carl (7)) a —
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(Carl (7)) b € A, But
(CarlN)a — (Carl N) b
= (CalN)  (@-b)=(CarlM)  (Carl (7)) (a~b)

J/

-~

= (Carl M)(Carl(")) &7 _(Carl(n) )a—(Carl(nt) )beri+tA

c F-attA C mita,

In other words, (CarlN)a = (CarlN)bmod 7'tfA. Since 1+ ¢ = 1+

=07(N)
vz (N) = v (N) + 1, this rewrites as (CarlN)a = (Carl N) bmod m?7(N)+1A4,
This proves Corollary (b). O

Each of the two parts of Corollary can be viewed as an analogue of
the classical “exponent lifting lemma” [6, version with solutions (ancillary file),
(12.68.8)].

3.12. The Chinese Remainder Theorem

Next, we recall one of the many versions of the Chinese Remainder Theorem:

Theorem 3.49. Let A be a commutative ring. Let M be an A-module. Let
N € N. Let I, I,..., Iy be N ideals of A. Assume that I; + I; = A for any
two elements i and j of {1,2,..., N} satisfying i < j.

(@ Wehave 1 ,--- Iy - M=I1MNLMN---NIyM.

(b) The canonical A-module homomorphism

N
M/ (LI - =] M/1M),
k_

m—+ Ll In- Mr—>(m+11M m+ bLM,. m+INM)

is well-defined and an A-module isomorphism.

Theorem is precisely [8, Theorem 1 (a) and (b)]; thus, we are not giving a
proof of it here.
For us, the following restatement of Theorem will be more useful:

Theorem 3.50. Let A be a commutative ring. Let M be an A-module. Let S
be a finite set. For every s € S, let I; be an ideal of A. Assume that the ideals
I; of A are comaximal; this means that every two distinct elements s and t of S
satisfy Is + I; = A. Then:

(a) We have

(116) -m= Q)

seS seS
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(b) The canonical A-module homomorphism

M/ <<HIS> -M) — [[(M/LM),

sES seS

m+ (1‘[ 15> ‘M (m+ LM), g
seS

is well-defined and an A-module isomorphism.

Proof of Theorem [3.50] We can freely relabel the elements of S. Thus, we can
WLOG assume that S = {1,2,...,N} for some N € IN. Assume this, and
consider this N. Then, the claim of Theorem becomes identical with the
claim of Theorem But since we already know that Theorem holds, we
thus conclude that Theorem holds as well. O

We shall only use part (a) of Theorem [3.50|
As a consequence of Theorem (a), we have the following;:

Corollary 3.51. Let A be an [F; [T]-module. Let P be a monic polynomial in
IF; [T]. Then,
N 7P A=PA.
nePFP

Before we can prove Corollary we need a simple lemma:

Lemma 3.52. Let F be a field. Let s and ¢ be two distinct monic irreducible
polynomials in IF[T]. Let n € IN and m € IN. Let R be the ring FF [T]. Then,
s"R +t"R = R.

Proof of Lemma The polynomials s and ¢ are two distinct monic irreducible
polynomials in IF [T]. Hence, s and t are coprime. Consequently, s” and " are
coprime as well (since FF [T] is a principal ideal domain). By Bezout’s theorem,
we thus conclude that there exist polynomials a4 and b in FF [T] satisfying as" +
bt" = 1. Consider these a and b.

The unity 1 of the ring R = FF [T] satisfies

l=as"+bt"=s" a +t" b €s"R+t"R.

But s"R 4 t"R is an ideal of R (since s"R and t"R are ideals of R). This ideal
s"R + t"R contains 1 (since 1 € s"R + t"R), and thus must equal the whole ring
R (because if an ideal of some ring contains 1, then this ideal must equal the
whole ring). In other words, s”R 4 "R = R. This proves Lemma [3.52| O

80



Function-field analogue for symmetric functions? May 11, 2018

Proof of Corollary[3.51} For each s € PFP, define an ideal Is of IF, [T] by I; =
svs(P )qu [T]. Notice that IF; [T] is a principal ideal domain.
For each s € PF P, we have

LA =s%PA (82)

il

On the other hand, P is a monic polynomial in IF,;[T]. Hence, the prime

factorization of P in the principal ideal domain IF; [T]is P = T[] s%(P) (indeed,
SEPFP
for each s € PF P, the multiplicity of s in the prime factorization of P is vs (P)).

Now,

I1 \Ii./ - T1 <SUS(P)IFq [T]> _ ( T1 s”s(P)> F, [T]

sePFP zsvs(p>Fq[T] sePFP . sePF P

(by the =P
definition of I)

= P-F,[T]. (83)

If s and t are two distinct elements of PF P, then I + I; = FF,; [T] Hence,
Theorem (a) (applied to IF, [T], A and PF P instead of A, M and S) shows

that
(I11)a= () g2y = ) #®a= ) wioa
SEPFP SEPFP _:?56;;4 SEPFP TEPF P
(by B

(here, we have renamed the index s as 7t in the intersection). Thus,

N =~PA= ( IT IS) A=P-F,[T]-A=PA.

mEPE P sePEP _:;‘_/
=P-F,[T]
(by @3))

41Proof of (82): Let s € PF P. Then, the definition of I yields I; = s**(")F, [T]. Now,

I, A=s"PF[T].A=s>PA4
~~ ———
=5 (P)IFy[T] =A

This proves .
#2Proof. Let s and t be two distinct elements of PFP. Thus, s and t are two distinct monic

irreducible polynomials in IF; [T]. Hence, Lemma (applied to F = [F;, n = vs(P),

m = v; (P) and R = F, [T)) yields s%(P)F, [T] + t*(P)F, [T] = F, [T].

The definition of I yields I; = s%(P )]Fq [T]. The definition of I; shows that I; = t%1(P )]Fq [T].
Hence,
Lo+ A = %P, [T] + (PR, [T] = IR, [T).

ZSUS(P)]Fq[T] :t”t(P)]Fq[T]

Qed.
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This proves Corollary O

Let me also state the “ring version” of the Chinese Remainder theorem:

Theorem 3.53. Let A be a commutative ring. Let S be a finite set. For every
s € S, let I; be an ideal of A. Assume that the ideals I; of A are comaximal; this
means that every two distinct elements s and t of S satisfy I; + I; = A. Then:

(a) We have
[[L=L

seS )

(b) The canonical A-algebra homomorphism

A/ (HIS> —>H(A/Is), ‘1+HIS'_>(‘1+IS)SES

seS sES sES

is well-defined and an A-algebra isomorphism.

Theorem can easily be derived by applying Theorem to M = A.
(The extra claim that the homomorphism in Theorem B.53] (b) is an A-algebra
homomorphism is straightforward to check.) But Theorem [3.53]is also a classical
fact that appears in many textbooks on algebra (it is probably easier to find than
Theorem [3.50).

Let me continue with another simple lemma about divisibility of polynomials:

Lemma 3.54. Let P be a polynomial in [F; [T]. Let 7 be a monic irreducible
divisor of P. Let D be a divisor of P satisfying D { P/ 7. Then, t°(") | D.

Proof of Lemma From D { P/, we obtain P/ 7t # 0, hence P # 0.

We have D t P/mt. In other words, iDn ¢ I, [T]. This rewrites as P/D ¢
P P/D
IF; [T] (since # = /T). Equivalently, 7t { P/D (since P/D € IF; [T] (because

D is a divisor of P)). In other words, v, (P/D) = 0. Hence, 0 = v, (P/D) =
v (P) — vy (D), so that v, (P) = vy (D).

But 7%7(P) | D (obviously). Since v, (P) = vx (D), we now have 7%*(P) =
7°7(D) | D. This proves Lemma O

Here is a well-known fact about quotients of polynomial rings over fields:

Proposition 3.55. Let FF be a field. Let s € [F[T] be a monic irreducible poly-
nomial. Let n be a positive integer. Let B be the ring IF [T] /s"F [T]. Then:

(@) We have B = B\ sB. (Here, B* denotes the group of units of the ring
B.)

(b) We have sB = IF [T] /s"'IF [T] as FF-vector spaces.
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Proof of Proposition For every a € F[T], we let @ denote the canonical pro-
jection of a on F [T] /s"IF [T] = B.

(a) We shall prove the inclusions B* C B\ sB and B\ sB C B* separately:

Proof of B* C B\ sB: Letb € B*.

We have b € B*. In other words, the element b of B is invertible. In other
words, there exists some d € B such that bd = 1. Consider this d.

We have d € B. Thus, d = ¢ for some ¢ € [F[T]. Consider this c.

Now, assume (for the sake of contradiction) that b € sB. In other words, b = sf
for some f € B. Consider this f.

We have f € B. Thus, f = e for some e € FF [T|. Consider this e. Multiplying
the equalities f = e and d = ¢, we obtain fd =e¢-¢ = ec = ce.

Now, bd = 1,sothat1 = b d =s fd = sce = sce. In other words, 1 =
f
=S —ce

scemod s"IF [T]. In other words, s | 1 — sce. But since n is positive, we have s |
s" | 1 — sce. Thus, the polynomial 1 — sce is divisible by s. Also, the polynomial
sce is divisible by s (clearly). Hence, the sum of these two polynomials 1 — sce
and sce must also divisible by s. In other words, (1 — sce) + sce is divisible by
s. In other words, 1 is divisible by s (since (1 — sce) + sce = 1). This is clearly
absurd (since s is irreducible). Thus, we have found a contradiction. This shows
that our assumption (that b € sB) was false.

Hence, b ¢ sB. Combining this with b € B, we obtain b € B \ sB.

Now, forget that we fixed b. We thus have proven that b € B\ sB for each
b € B*. In other words, B* C B\ sB.

Proof of B\ sB C B*: Letb € B\ sB. Then, b € B\ sB C B. Hence, b = a for
some a € [F[T]. Consider this a.

We have s ta @ Hence, the polynomials a and s are coprime (since s is irre-
ducible, and since F [T] is a principal ideal domain). Therefore, the polynomials
a and s" are coprime (since [ [T] is a principal ideal domain). By Bezout’s the-
orem, we thus conclude that there exist polynomials « and f in [F [T] satisfying
aa + Bs" = 1. Consider these x and B.

The unity 1 of the ring F [T] satisfies 1 = aa + = aamod s"F [T].

s"
—~—
=0mod s"F[T]
(since s"|Bs™)
In other words, 1 = @a. Comparing this with ® _b = & -a = &a, we obtain

=7
&b =1 = 1. Hence, the element b of B is invertible. In other words, b € B*.
Now, forget that we fixed b. We thus have proven that b € B* for each

b € B\ sB. In other words, B\ sB C B*.

43Proof. Assume the contrary. Thus, s | 4. In other words, a = cs for some ¢ € F[T]. Consider
this ¢. From a = cs = sc, we obtaind =¢S =5 =s_¢ € sB. Buta = b € B\ sB and thus
eB
a ¢ sB. This contradicts @ € sB. This contradiction shows that our assumption was wrong;
ged.
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Combining the two relations B* C B\ sB and B\ sB C B*, we obtain B* =
B\ sB. Thus, Proposition (a) is proven.

(b) Let p be the map F[T] — sB, f + sf. It is straightforward to see that
this map p is well-defined and FF-linear. Moreover, Kerp C s" 1 [T] and
s" 1R [T] C Kerp Combining these two inclusions, we obtain Kerp =
s"~1F [T]. Moreover, the map p is surjective’®| Hence, p (IF [T]) = sB.

Now, the first isomorphism theorem (applied to the F-linear map p : F [T| —
sB) yields p (F [T]) = F[T] / Eere = F[T] /s"~'F[T] as F-vector spaces. In

~—

=s"—1F[T]
light of p (IF [T]) = sB, this rewrites as sB = IF [T] /s"~'IF[T]. Thus, Proposition
(b) is proven. O

3.13. Ghost-Witt integrality: a general equivalence

Recall the notion of a “g-nest” defined in Definition Recall also Definition
Furthermore, recall the following convention:

#Proof. Let a € Kerp. Thus, a € F[T] and p (a) = 0. Now, the definition of p yields p (a) = sa =
5a. Hence, sa = p (a) = 0. In other words, sa € s"IF[T|. In other words, s" | sa in F [T]. In
other words, there exists some g € F [T] satisfying sa = s"g. Consider this g.

The polynomial s is irreducible and thus nonzero. Hence, we can cancel s from the equation

sa = _s" g = ss" !¢ (since F[T] is an integral domain). We thus obtain 2 = s"~1 ¢ €
~~~ ~—
=ss"~1 E€F[T]

s" IR [T).
Now, forget that we fixed a. We thus have shown that a € s"~!F [T] for each a € Kerp. In
other words, Ker p C s"~!F [T]. Qed.
#Proof. Let f € s"~!F [T]. Thus, there exists some ¢ € F [T] satisfying f = s"~'g. Consider this
g. Now, the definition of p yields

p(f) =sf =ss"—1g (since f= 5”71g>

=ss""1lg =0 since ss" 1 ¢ = " € s"F[T
8 e 8 g [T}
=5 €F[T]

In other words, f € Kerp.
Now, forget that we fixed f. We thus have proven that f € Kerp for each f € s" 'F[T]. In
other words, s"~!IF [T] C Ker p. Qed.
46Pproof. Let a € sB. Thus, there exists some b € B such that a = sb. Consider this b. Now, we
have b € B. Hence, b = f for some f € FF[T]. Consider this f. The definition of p yields

p (f) = sf = sb (since f = b). Compared with a = sb, thisyieldsa =p | f | € p(F[T)).
~—

€F[T|
Now, forget that we fixed a. We thus have proven that a € p (IF[T]) for each a2 € sB. In
other words, sB C p (IF[T]). In other words, the map p is surjective. Qed.
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Definition 3.56. Let P be a monic polynomial in IF, [T]. Then, the summation

sign ), means a sum over all monic polynomials D dividing P.
D|P

We shall now prove a very general fact that encompasses some of the claims
of Theorem

Theorem 3.57. Let N be a g-nest. Let A be an F-module. For every P € N, let
@p and ¢p be two endomorphisms of the IF;-vector space A. Let us make the
following five assumptions:

Assumption 1: For every P € N, the map ¢p is an endomorphism of the
F-module A.

Assumption 2: We have ¢, (a) = (Carlr)amod tA for every a € A and
every monic irreducible 7t € N.

Assumption 3: We have ¢1 = id. Furthermore, ¢p o pg = ¢@pg for every
P € N and every Q € N satisfying PQ € N.

Assumption 4: We have ¥p (a) = @ (¢p, (a)) mod 7°7(P) A for every a € A,
every P € N and every 7r € PFP.

Assumption 5: We have ¢; = id.

Let (bp) pey € AN be a family of elements of A. Then, the following asser-
tions C; and &y are equivalent:

Assertion C1: Every P € N and every 7t € PF P satisfy

¢ (bp)z) = bpmod %7 A,
Assertion Ey: There exists a family (zp)p.y € AN of elements of A such that

bp =Y Dyp,p (zp) forevery P € N
D[P

Before we prove this theorem, let us make a few comments.

Remark 3.58. Let N be a g-nest. Let A be an /-module. For every P € N,
let ¢p be an endomorphism of the IF;-vector space A. Then, Assumption 2
in Theorem is equivalent to the following statement: We have ¢, (a) =
F4e873mod T A for every a € A and every monic irreducible 7w € N.

Proof of Remark It is clearly enough to show that (Carl 7) a = F48"amod A
for every a € A and every monic irreducible 7t € N. But this follows from Corol-

lary Thus, Remark is proven. O

Next, let us show examples of endomorphisms ¥p satisfying the Assumption
4 of Theorem
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Proposition 3.59. Let N be a g-nest. Let A be an F-module. For every P ¢
N, let ¢p be an endomorphism of the IF;-vector space A. Assume that the
Assumptions 1 and 2 of Theorem are satisfied.

For every P € N, define an endomorphism ¢p of the [F;-vector space A by

(yp (a) = (CarlP)a for every a € A).

Then, Assumptions 4 and 5 of Theorem are satisfied.

Proposition 3.60. Let N be a g-nest. Let A be an F-module. For every P ¢
N, let ¢p be an endomorphism of the IF;-vector space A. Assume that the
Assumption 1 and 2 of Theorem are satisfied.

For every P € N, define an endomorphism ¢p of the [F;-vector space A by

<ll)p (a) = FdeePy for every a € A) .
Then, Assumptions 4 and 5 of Theorem are satisfied.

Proposition 3.61. Let N be a g-nest. Let A be an /-module. For every P ¢
N, let ¢p be an endomorphism of the F;-vector space A. Assume that the

Assumption 3 of Theorem is satisfied.
For every P € N, define an endomorphism ¢p of the [F;-vector space A by

¥r = ¢p-
Then, Assumptions 4 and 5 of Theorem are satisfied.

Proof of Proposition [3.59, Assumption 5 of Theorem is satisfied”’] Hence,
it remains to show that Assumption 4 of Theorem is satisfied. In other
words, we must prove that we have ¢p (a) = @ (p, (a)) mod (") A for
every a € A, every P € N and every t € PFP.

Soletusfixa € A, P € N and 7 € PFP. Clearly, 7 | P (since 7 € PFP), and
7t is a monic irreducible polynomial in IF; [T] (since 7t € PF P). From these two
facts, we obtain 71 € N (since N is a g-nest). Thus, Assumption 2 of Theorem
B.57yields ¢ (a) = (Carl ) (a) mod T A.

Also, P/t € Iy [T] (since 7t | P). Hence, ¢p,, (a) = (Carl (P/m)) (a) (by the
definition of p, ).

4 Proof. We have Carl1 = 1 (since Carl is an [F;-algebra homomorphism). Now, every a € A
satisfies

Y1 (a) = (Carll)a (by the definition of ;)
——
=1

=la=a=1id(a).

In other words, ¥; = 1. In other words, Assumption 5 of Theorem is satisfied, qed.
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Corollary (b) (applied to P/ 7, ¢ (a) and (Carl 1) a instead of N, a and
b) shows that

(Carl (P/ 7)) (¢ (a)) = (Carl (P/ 7)) ((Carl 77) a) mod 77 (P/7)+1 4,
In view of

vz (P/m) + \1/ =07 (P/7) 4+ vy () =0g ((P/j/‘[)_g) =0, (P),

—on() %

this rewrites as

(Carl (P/ 7)) (¢ (a)) = (Carl (P/ 7)) ((Carl ) a) mod 77 (P A, (84)

But ¢ is an endomorphism of the /-module A (by Assumption 1 of Theorem
3.57 applied to 7t instead of P). Hence,
pp

(Carl (P/ 7)) (9= (a)) = ¢ | (Carl (Pjﬂ)) (@) | = ¢n(Pp/x(a)).
=p/n(a)

Thus,

¢r ($p/x (a)) = (Carl (P/ 7)) (¢r (a)) = (Carl (P/ 7)) ((Carl 7r) a) (by 9)
= (Carl (P/m) - Carlm)a

. i
~~

=Carl((P/m)m)
(since Carl is an IFj-algebra
homomorphism)

N——
=P

— ¢p (a) mod r°7(P) A

= (Carl((P/n) n)) a= (CarlP)a

(since ¢p (a) = (CarlP)a (by the definition of ¥p)). In other words, Pp (a) =
@r (Wp/x (a)) mod 77(P) A, Thus, Assumption 4 of Theorem is satisfied.
This proves Proposition 3.59 O

Proof of Proposition Assumption 5 of Theorem is satisfiedlﬂ Hence,
it remains to show that Assumption 4 of Theorem is satisfied. In other

8 Proof. Every a € A satisfies

1 (a) = Fie81g (by the definition of 1)
=1la (since deg1 = 0 and thus Fd¢&! = 0 = 1)
=a=id(a).

In other words, ¥; = 1. In other words, Assumption 5 of Theorem is satisfied, qed.
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words, we must prove that we have ¢p (a) = ¢ (Pp,, (a)) mod () A for
every a € A, every P € N and every 7t € PFP.

Soletusfixae€ A, P € Nand m € PFP. Clearly, 7 | P (since 7 € PFP), and
7t is a monic irreducible polynomial in IF, [T] (since 7t € PF P). From these two
facts, we obtain 71 € N (since N is a g-nest). Thus, Assumption 2 of Theorem
B.57)yields ¢ (a) = (Carl 7t) (a) mod 7t A. Thus,

¢ (a) = (Carl 77) (a) = F48gmod A (85)

(by Corollary 3.42).

Also, P/7t € T, [T] (since 7w | P). Hence, p,, (a) = FIBP/7) () (by the
definition of ¢¥p, ).

Corollary (a) (applied to P/, ¢ (a) and F487 instead of N, a and b)
shows that

Fdeg(P/r() ((PT( (a)) = Fdeg(P/n) (Fdegna) mod n—Un(P/Tf)‘HA.

In view of

N~ | S —
=0 () =P
this rewrites as
s/ (g () = PU8(P/™) (FI870) mod (P A, (86)

But ¢ is an endomorphism of the 7-module A (by Assumption 1 of Theorem
applied to 7t instead of P). Hence,

ISP/ (9 (a)) = @ | FISP/7) (a) | = g (tp (a))
———
=yp/n(a)
Thus,
9 (P (1)) = F50/) (g (a)) = PO/ (Fo87a) — (by @)

_ (Fdeg(P/n)Fdeg n) q — FdegP,

N

:Fdeg(P/n)Eeg 7_pdegP
(since deg(P/m)+degm=degP
(since deg(P/m)=deg P—deg m))

— ¢p (a) mod 1°7(P) A
(since Yp (a) = F98P4 (by the definition of ¢p)). In other words, ¥p (a) =

¢r (Wp/x (a)) mod 77(P) A, Thus, Assumption 4 of Theorem is satisfied.
This proves Proposition [3.60] O

88



Function-field analogue for symmetric functions? May 11, 2018

Proof of Proposition [3.61] Assumption 5 of Theorem is satisfied®] Hence,
it remains to show that Assumption 4 of Theorem is satisfied. In other
words, we must prove that we have ¢p (a) = ¢ (p,, (a)) mod (") A for
every a € A, every P € N and every 77 € PFP.

Soletusfixa € A, P € N and m € PFP. Clearly, 7 | P (since 7 € PFP), and
7 is a monic irreducible polynomial in [F, [T] (since 7t € PF P). From these two
facts, we obtain 1 € N (since N is a g-nest). Also, P/ is a monic polynomial
in IF, [T] (since P and 7t are monic and since 7t | P), and divides P. Therefore,
P/m € N (since P € N). Now, the second sentence of Assumption 3 of Theorem
(applied to 7t and P/ 7 instead of P and Q) shows that ¢ 0 ¢p/x = @.(p/ )
(since - (P/m) = P € N). Since 7t - (P/ ) = P, this rewrites as ¢ 0 ¢p,r = @p.
But the definition of ¢p yields ¢p = ¢p. Hence, p = ¢p = @5 © ¢p,, so that

wp  (a) = (@xo@p/x) (a) = @r (¢p/n (a)) . (87)
~—~

=@roPp/x

On the other hand, the definition of ¢p,, yields ¢p,r» = @p,r. Thus,
p)

rewrites as Pp (a) = @z (Pp, (a)). Therefore, Yp (a) = ¢x (Yp, (a)) mod t°7
Thus, Assumption 4 of Theorem is satisfied. This proves Proposition [3.61]
[

A.

Let us now turn to the proof of Theorem 3.57P"

Proof of Theorem We shall prove the two implications C; = &£y and &y =
C1 separately:

Proof of the implication 54] — (7: Assume that Assertion 54, holds. That is,
there exists a family (zp)pcy € AV of elements of A such that

bp = Z Dyp,p (zp) forevery P € N | . (88)
D|P

Consider this family (zp)pcy-
We need to prove that Assertion C; holds, i.e., that every P € N and every
nt € PF P satisfy

¢ (bp/z) = bpmod 7P A, (89)

So let us fixa P € N and a 7t € PF P. We need to prove (89).

The polynomial P is monic (since P € N). We have m € PFP. Thus, 7 is
a monic irreducible divisor of P. Hence, P/ is a monic polynomial in IF, [T]
(since P and 7t are monic). Since N is a g-nest, we obtain P/ € N (since P € N,
and since P/t is a monic divisor of N). Since N is a g-nest, we also obtain 7 € N
(since P € N, and since 7t is a monic divisor of N).

4 Proof. Assumption 3 of Theorem shows that ¢; = 1. Now, the definition of ; yields
Y1 = @1 = 1. In other words, Assumption 5 of Theorem is satisfied, qed.
500ur proof imitates [6} solution to Exercise 2.9.6].
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Assumption 1 (applied to 7t instead of P) shows that ¢, is an endomorphism
of the /-module A.

Applying (88) to P/ instead of P, we obtain bp;r = Y. D p,x)/p (2D)-
D|P/n
Applying the map ¢ to both sides of this equality, we obtain

D|P/m D|P/m

¢ (bp/n) = %( Y. D/ (ZD)) = ) Do¢x (lP(p/n)/D (ZD)> (90)

(since @ is an endomorphism of the /-module A). On the other hand, every
monic divisor D of P/ satisfies

Dyp,p (zp) = Dox (gb(P/n)/D (zD)) mod %7 (P) A (91)
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El Now,

Y Dyp/p (2p)
D|P
= Y, D¢p/p(zp)+ Y. Dyp/p (2p)
DI|P; DI|P; _%f—“o A
P\|P//_z Dip/m (since Ifemnrlr?a 3:.154 shows that
=Y 7o (P)| D)
D|P/m
= Y Dypp(zp)+ ), 0= ) Dyp,p (zD) (92)
DIP/m D|P; D|P/7 — )
DiP/7 =D (Y(p/n)/p(zp)) mod 7 (P) A
= ), Do (1P(P/n)/D (ZD)> (93)
D|P/n
= ¢ (bp, ) mod 17(P) A (94)

31 Proof of : Let D be a monic divisor of P/mt. Thus, D | P/m, so that D | P/m | P and
therefore P/D < IF; [T].

P/D P
Also, P/D _ # € I, [T] (since D | P/m). In other words, 7t | P/D (since P/D €

s
IF; [T]). Hence, 7 € PF (P/D) (since 7t is monic irreducible). Also, P/D is a monic divisor of
P (since P and D are monic, and since D | P); thus, P/D € N (since P € N and since N is a
g-nest). Hence, Assumption 4 (applied to zp and P/D instead of a and P) yields

¥p/0 (20) = o (¥(p/)/x (20) ) mod 2*~(P/P) A,

In other words, ¢p,p (zp) — ¢x (gb(p/D)/ﬂ (ZD)) e nx(P/D) A, Since (P/D) /7t = (P/7) /D,

this rewrites as ¥p,p (zp) — ¢r (’P(P/n)/D (ZD)> c 70x(P/D) A.

Now,
Dyp/p (zp) — Dox (lzb(P/n)/D (ZD)>
=D (l/’P/D (zp) — ¢ (IP(P/n)/D (ZD)))
enon(P/D) A
e Dn?x(P/P)pg = zo=(P/D) DA C 0x(P/D) gon(D) A
<~ = —
QT[U”(D)A —vn(P/D)+or(D)
(since ﬂ””(D)\D)
_ nvn(P/D)Jrv,r(D)A _ HU"(P)A
(since vy (P/D)+ vz (D) = vz | (P/D)D | = vz (P)). In other words, Dyp,p (zp) =

——

=P
Do, (lp(p/n)/D (zD)) mod 77%7(P) A. This proves .
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(by (90)). But yields

bp = Z Dyp/p (zp) = ¢r (bp/r) mod o7 (P) A
DIP

(by (94)). Thus, is proven. In other words, Assertion C; holds. This com-
pletes the proof of the implication £y = C;.

Proof of the implication Cy = &y: Assume that Assertion C; holds. In other
words, every P € N and every 7t € PF P satisfy

¢r (bp/z) = bpmod () A, (95)

We now need to prove that Assertion &y holds as well. In other words, we
need to show that there exists a family (zp)p.y € AN of elements of A such that

(bp =Y Dyp,p (zp) forevery P € N) :

D|P

In other words (renaming P as Q), we need to show that there exists a family
(z0) 0N € AN of elements of A such that

(bQ =) Dyg,p (zp) forevery Q € N) .
DIQ

We construct this family (z() recursively, by induction over deg Q. So we

QeN
fix some P € N, and assume that an element zg of A is already constructed for

every Q € N satisfying deg Q < deg P; we furthermore assume that these zg

satisfy
bo = ). Dyo/p (2) (9)
DIQ

for every Q € N satisfying deg Q < deg P. We now need to construct a zp € A
such that is satisfied for Q = P. In other words, we need to construct a
zp € A satisfying bp = Y, Dyp,p (zp).
D|P

Let us first choose zp arbitrarily (with the intention to tweak it later). Let
t € PFP be arbitrary. Thus, 77 is a monic irreducible divisor of P. Then, the
polynomial P/7t is monic (since P and 7t are monic), and is a divisor of P;
hence, P/t € N (since P € N, and since N is a g-nest). Moreover, it satisfies

deg (P/mt) = deg P — deg w < deg P. Hence, (applied to Q = P/ ) shows
——

>0
that

bp/x =Y, D¥p;m/p (2D) -
D|P/n
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Thus, holds (indeed, this can be proven precisely as in our proof of the
implication £y, = C; above). Hence,

Z DIPP/D (ZD) = QPr (bp/ﬂ) = bpmod nvn(P)A
D|P

(by ). In other words, bp = Y. Dwp,p (zp) mod °7(P) A. In other words,
D[P

bp — Z Dlpp/D (ZD) S ﬂv”(P)A.
D|P

Now, let us forget that we fixed 7. We thus have shown (for our arbitrarily
chosen zp) that

bp— Y_ Dyp/p (zp) € 7 (P) A for each 7t € PFP.
D[P

As a consequence,

bp — Z Dyp,p (zD) € ﬂ (") A = PA
D|P mePF P

(by Corollary [3.51). In other words, there exists a v € A such that

bp — Z Dl/)p/D (ZD) = P’)/.
D|P

Consider this 7.
We have assumed that Assumption 5 of Theorem is satisfied. In other
words, 1; = id. Hence,

Ppsp (zp +7v) — Pippyp (zp)

= Pid (zp+ ) — Pid (zp) (since ¢p,p = 1 = id)
=P-(zp+79)—P-zp =Py

= bp — Z DQIJP/D (ZD) .

D|P

In other words,

Y Dyp,p (zp) + (Pp,p (zp +7) — Pp,p (2p))
D|P

— bp. 97)

Now, if we replace zp by zp + 7, then the sum Y, Dyp,p (zp) increases by
DIP

Pyp,p (zp + ) — Pyp,p (zp) (because the only addend of the sum that changes

is the addend for D = P), and thus the new value of this sum is bp (by (97)).
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Hence, by replacing zp by zp + 7, we achieve that bp = Y. Dp,p (zp) holds.
D|P

Thus, we have found the zp we were searching for, and the recursive construc-

tion of the family (zq) gen has proceeded by one more step. The proof of the

implication C; = &y is thus complete.
We have now proven both implications C; = £y and £, = C;. Combining
them, we obtain the equivalence C; <= £y. Thus, Theorem is proven. [

3.14. [, [T]| -analogues of the M&bius and Euler totient
functions

Next, we shall discuss the functions y, ¢ and ¢¢ introduced in Section[I} Let me
tirst repeat their definitions:

Definition 3.62. Define a function y : IF, [T], — {—1,0,1} by

(—1)|PFM| , if M is squarefree;

) _ for all M € IF, [T], .
0, if M is not squarefree

(Recall that a monic polynomial M € IF;[T], is said to be squarefree if it
satisfies the following three equivalent conditions:

e No nonconstant polynomial P € F, [T] satisfies P? | M.
e Every monic irreducible polynomial 7r € IF, [T] satisfies v, (M) < 1.

e The polynomial M is a product of pairwise distinct monic irreducible
polynomials.

) The function y is called the Mobius function on IF, [T .

Definition 3.63. Define a function ¢c : IF; [T], — I, [T] by

M
(pc(M):Zy(D)ﬁ forall M € IF, [T], .
D|M
Definition 3.64. Define a function ¢ : IF; [T], — Z by

p(M)= )Y u(D) qdes(M/D) for all M € IF, [T], .
DIM

The function y is an analogue of the number-theoretical Mobius function,
whereas the functions ¢c and ¢ are two distinct analogues of the Euler totient
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function. These functions have a number of properties (some well-known) that
often imitate analogous properties of the number-theoretical Mobius function
and the Euler totient function. See [3, Theorem 4.5] for some properties of ¢c,
and see [3] Section 6] for the function ¢. We shall prove a number of their prop-
erties, many of which will be used below. We begin by citing a well-known
combinatorial fact:

Lemma 3.65. Let Z be a finite set.
(a) We have
Y (-)l=z=2].
Icz
(b) Let R be a commutative ring. Let r; be an element of R for each i € Z.

Then,
S TTr=T10+m).

ICZ icl icZ

Proof of Lemma Lemma (b) can be proven by induction over |Z| (or, less

rigorously, just by expanding the product [T (14 7;)). Lemma [3.65 (a) can be

i€z
proven in many ways (e.g., it can be obtained by setting R = Z and r; = —1 in
Lemma [3.65| (b)). ]

Proposition 3.66. Let M € [F; [T], . Then, . u (D) = [M = 1]. Here, we are
DM

using the Iverson bracket notation: If A is any logical statement, then [.A] stands
1, if Ais true;
0, if Ais false

for the integer {

Proof of Proposition (This proof is a carbon copy of [6, proof of (12.68.3)],
with minor changes.)

Let M = P'Py2 - - - P* be the factorization of M into monic irreducible poly-
nomials, with all of a1, ay,...,a, being positive integers (and with Py, Py, ..., P
being distinct) Then, the squarefree monic divisors D of M all have the form
[T P; for some subset I of {1,2,...,k}. More precisely, there exists a bijection
i€l

{I €{1,2,...,k}} — (the set of all squarefree monic divisors of M),
I—]]P- (98)

iel

Moreover, every subset I of {1,2,...,k} satisfies PF (H Pi) ={P | i€l}and
iel

thus
PF (H Pi>
i€l

>2This is well-defined, since M is monic and since F, [T] is a principal ideal domain. Of course,
k can be 0 (when M = 1).

=P [ iel}| =] (99)
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(since Py, Py, ..., Py are distinct) and therefore

” (le) _ (_1)‘1)1:(21”‘)

iel

<since H P; is squarefree>

i€l

= (- (by (99)) . (100)

Now,
Y uD= )  uD+ > 1 (D)
D|M D|M; D|M; \;0"
D is squarefree D is not squarefree (by the ‘definition
of u, since D
is not squarefree)
= ), u(D)+ Y, 0= )  u(D)
D|M; D|M; D|M;
D is squarefree D is not squarefree D is squarefree
=0
here, we have substituted [] P; for D
= 2 U H Pi iel
IC{12,..,k}  \iel due to the bijection (98)
- ‘.\/_
=(-pl"
(by (T00D)
= Y =] 2. k=0
1€{1,2,...k} This is equivalent to k=0
(by Lemma (@), applied to Z = {1,2,...,k})
= [k = 0] = [M is constant]
since k is the number of monic irreducible divisors of M,
and thus we have k = 0 if and only if M is constant
=[M=1] (since M is monic) .
This proves Proposition [3.66] O

Let us explicitly state a simple consequence of Proposition for the sake of
convenience:

Corollary 3.67. Let M € [F; [T], . Let E be a monic divisor of M. Then,

>, u(B)=[E=M].
B|M;
BE|M
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Proof of Corollary We have % € IF, [T] (since E is a divisor of M). Moreover,

M M
the polynomial T is monic (since M and E are monic). Hence, — € IF;[T] .

E

Proposition [3.66 (applied to % instead of M) thus shows that Y. u (D) =
M
E

D|

M
F=1 | =[E=M].
——
This is equivalent to
E=M

But E | M. Hence, the monic divisors B of M satisfying BE | M are exactly the

monic divisors B of M Therefore, Y, = Y . Thus,

E BM;, M
BEM Bl
>, w(B)= ) u(B)= ) u(D)
BEIM 52 b2
—~— E E
= L
M
B g
(here, we renamed the summation index B as D)
= [E= M].
Corollary is therefore proven. O

Next come some simple properties of ¢c:

Proposition 3.68. Let M € F, [T],.
(@) We have ¢¢c (M) € F, [T],.

(b) We have pc (M) =M T[] (1 — l)
mEPFM T

(c) We have ¢oc (M) = Y, Du (M>
DIM D

Proof of Proposition (a) Let 4 = deg M. Then, the polynomial M is monic of

degree d.

Now, let V; be the IF;-vector subspace of IF; [T] consisting of all polynomials
of degree < d — 1. (This subspace is spanned by T, T,..., Td’l.) Then, the
monic polynomials in IF, [T] of degree d are precisely the polynomials in IF, [T]
that are congruent to T? modulo V. Thus, the polynomial M is congruent to T*
modulo V; (since M is monic of degree d). In other words, M = T4 mod V.
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If D is a monic divisor of M satisfying D # 1, then
M
1 (D) D= Omod V; (101)

@ Now, the definition of ¢ yields

M
pc (M) =) P‘(D)B
D|M
M M
=u(l) — + Y uD=
1 . D
=1 ~ DlM/h\f—/
=M=T%modV; D#1 =0modV;,
(by (T0T))

(here, we have split off the addend for D = 1 from the sum)

=T+ Z 0 = T%mod V.
D|M;
D#1
0

In other words, the polynomial ¢ (M) is congruent to T% modulo V. In other
words, the polynomial ¢ (M) is monic of degree d (since the monic polynomials
in [F; [T] of degree d are precisely the polynomials in IF; [T] that are congruent
to T modulo V). Hence, ¢c (M) € F, [T], . This proves Proposition (a).

(b) Let M = P'P;2---P* be the factorization of M into monic irreducible
polynomials, with all of a1, ay, . . ., a; being positive integers (and with Py, P, ..., Pk
being distinct)@ Then, the squarefree monic divisors D of M all have the form
[T P; for some subset I of {1,2,...,k}. More precisely, there exists a bijection
icl

{I €{1,2,...,k}} — (the set of all squarefree monic divisors of M),

I— P (102)
iel

93 Proof of : Let D be a monic divisor of M satisfying D # 1.

We have % € T, [T] (since D is a divisor of M). If we had degD = 0, then we would

have D = 1 (because D is monic), which would contradict D # 1. Thus, we cannot have

degD = 0. Hence, we must have degD > 1 (since D € IF;[T]). Thus, the polynomial
M € F,; [T] satisfies deg M_ deg M —deg D < d — 1. Hence, M is a polynomial of degree
D D ——r N—— D

=d >1

M
< d — 1. In other words, D€ Vy (since V; is the IF;-vector subspace of IF; [T] consisting of all

polynomials of degree < d — 1). In other words, % = 0mod V. Hence, i (D) % = Omod V;
as well (since u (D) € {—1,0,1} C Z). This proves (101).

%4This is well-defined, since M is monic and since IF; [T] is a principal ideal domain. Of course,
k can be 0 (when M = 1).
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Moreover, every subset I of {1,2,...,k} satisfies (100). (This is proven as in
our proof of Proposition 3.66])

The definition of Py, Py, ..., P, shows that (P, P,,. .., Py) is a list of all prime
factors of M, with no repetitions. Thus, the map {1,2,...,k} - PFM, i — P; is
a bijection.
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The definition of ¢¢ yields

M M M
pcM)=) pD)z= ) kD F+ ) pD) 5
DIM D|M; D|M; T
D is squarefree D is not squarefree (by the ‘definition
of y, since D
is not squarefree)
M M M
= ) uDx+ ). 0= ), wD=
D|M; D D|M; D D|M; D
D is squarefree D is not squarefree D is squarefree
=0

e

1C{1,2,...k icl /iel P;
=(-1)!!
(by (Z00))
here, we have substituted [] P; for D
zel
due to the bijection (98)
M M
S NI (H— )
1 1
12k} = ) i IC{1,2,...k} \i€l i
iel
ez(_l) —1
=M ! - M H_
1C{1,2,...k} Z.GHIPZ 1C{1,2,...k} i€l P;
—— h ~~
-1 -1
=TT — = I 14+—-
iei P; i€{12,..k} P;
(by Lemma 3.65| (b), applied to R=IF,|T],
Z={1.2,...k} and r,:_?i)
-1 -1
i€{1,2,...k} i TEPF M, T/
1
. P—
T

here, we have substituted 7 for P; in the product,
since the map {1,2,...,k} — PFM, i — P;is a bijection

MHEI;I!M (1 - —)

This proves Proposition (b).

(c) Let 2 be the set of all monic divisors of M. Thus, }, = ) .
DeA DM

100



Function-field analogue for symmetric functions? May 11, 2018

But M itself is monic. Hence, the map A — 2, D — % is well-defined and a

M M
bijection. Thus, we can substitute D for D inthesum ) u (D) —. Asaresult,

DE D
we obtain
M M M M M
Y n(D) 5= u(—)—z Zu(—)DZ ZDV(—)-
De D De D (M) D|M D DM D
=% D/
DM S
Comparing this with
M M since ¢c (M) is defined
Z#(D)§:ZV(D)5:¢C(M) to be ZM(D)M ,
Det DM D|M D
-T
D|M
: M : .
we obtain ¢c (M) = Y, Du (B) This proves Proposition (3.68] (c). O
D|M

Proposition 3.69. Let M € IF; [T]_. Then, M = Y ¢c (D).
D|M

Proposition is [3, Theorem 4.5 (2)], but let me nevertheless give an inde-
pendent proof of it:

Proof of Proposition We shall use the notation of Proposition [3.66
Every E € IF; [T], satisfies

E
¢c(E)=Y_u(D) D (by the definition of ¢c)

D|E

E
=) 1B g (103)
B|E
(here, we have renamed the summation index D as B).
For any monic divisor B of M, we have
D

> 5= L E (104)
D|M M

B|D E|§

Fil

5 Proof of : Let B be a monic divisor of M. Then, the map

M
{D is a monic divisor of M such that B| D} — {E is a monic divisor of B} ,

D
Dw+— —
B
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Now,
)3 ¢c (D)
D|M _“"B D
—B%DM( )8
(by (103), applied to E=D)
D D D
=Y X wBz=2 Y B g=) ) kB3
DIM  BID D|M B|M; B|M D|M;
S~~~ B|D B|D
=) N——
B|M; =Y ¥
B|D BIM D|M;
(since D|M) B|D
D
Sy ) L = T > :
B|M D|M; B|M M
B|D E|§
~—— N
=L E —
M = L
E|— E|M;
B BE|M
(by (T04))
(since the monic divisors E of —- are precisely
the monic divisors E of M satisfying BE|M)
=) w(B) ) E=) ) wBE=) ) p(B) E
B|M E|M; B|M E|M; EM  B|M;
BE|M BE|M BE|M
—_—— ———’
=X X =[E=M]
EIM B|M; (by Corollary [3.67)
BE|M
=Y [E=ME=M=M|M+ ) [E=M]E
EM N — E[M; N——

=1 E#M (since B£M)

(here, we have split off the addend for E = M from the sum)
=M+ ) O0E=M.

E|M;
EAM
=0
This proves Proposition [3.69 O

Next, let us study the function ¢:

(where the symbol “|” means “divides”, not “such that”) is well-defined and a bijection.
D D D
Hence, we can substitute E for — in the sum Y. —. We thus obtain Y. — = Y E. This
B DIM; DIM;
B|D B|D E|—

B
proves (104).
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Proposition 3.70. Let M € F, [T],.

(a) We have ¢ (M) € N,

(b) We have ¢ (M) = gdesM  T] (1 - dl )
nEPEM qeee’

(c) We have ¢ (M) = u (M) mod p.

(d) We have ¢ (M) = y( ) in IF,.
(e) Let A be the ring IF; [T]. For any ring B, we let B* denote the group of

units of B. Then, ¢ (M) = ‘ (A/MA)™

Proposition (e) is used as a definition of ¢ (M) in [3} §6].

Proof of Proposition[3.70} (b) Let M = P['P;? - - - P* be the factorization of M into
monic irreducible polynomlals with all of ai,ay, ..., A4 being positive integers
(and with Py, P,, ..., P, being distinct @ Then, the squarefree monic divisors D
of M all have the form [TP; for some subset I of {1,2,...,k}. More precisely,

iel
there exists a bijection

{I €{1,2,...,k}} — (the set of all squarefree monic divisors of M),
I—]]P- (105)
iel

Moreover, every subset I of {1,2,...,k} satisfies (100). (This is proven as in
our proof of Proposition [3.66})
Furthermore, every subset I of {1,2,...,k} satisfies

deg( M/ 1 P; deg M—Y_ deg(P;)
q eg( il ) =gq wE <since deg (M/ HP{) =deg M — ) deg (
iel iel
qdegM
= s (106)
i€l

The definition of Py, Py, ..., P, shows that (P, P,,. .., Py) is a list of all prime
factors of M, with no repetitions. Thus, the map {1,2,...,k} - PFM, i — P; is
a bijection.

*®This is well-defined, since M is monic and since F, [T] is a principal ideal domain. Of course,
k can be 0 (when M = 1).

103
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The definition of ¢ yields
Z ‘M deg (M/D)

D|M
_ deg(M/D deg(M/D
= Y pDgEMP Y (D) glesM/P)
D|M; D|M; -0
D is squarefree D is not squarefree (by the definition

of u, since D
is not squarefree)

= Z u (D) qdeg(M/D) + Z queg(M/D)

D|M; D|M;
D is squarefree D is not squarefree
=0
deg (M/ I Pi)
= Z i (D) qdeg(M/D) = Z u (H pl.) q i€l
D|M; 1c{1,2,..k}y  \iel N
D is squarefree \_\T/ deg M
1) =1 dee(P)
oy 10
1€
(by (08))
here, we have substituted [] P; for D
i€l
due to the bijection (98)
degM
9 q
S SN Gl s Sy [0
~—— |] deg(P;) . IT deg(P,
1C€{1,2,...k} o iel‘i 1€{1,2,..k} \i€l lelq
icl
d IGTI v d 1
— M ! _ degM —
=gt ) 7 =4 Il aE
1C{12,...k} iEHqueg(Pl) rcqiz ket 98P
- ~~ -
! = —
L s et T gdes®)
(by Lemma 3.65] (b), applied to R=Q,
Z:{1,2,...,k} and T’i:m)
—1 1
_ degM _ degM
=q7* . 1_-[ (1+qdeg(Pi)> =q°® H <1+qdeg7r)
ie{1,2,...k} 7EPEM
1
=1- qdegn

here, we have substituted 7t for P; in the product,
since the map {1,2,...,k} = PFM, i — P;is a bijection

1
d M
8 H ( degn)'

nePFM
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This proves Proposition (b).

(a) The definition of ¢ yields ¢ (M) = Y. u(D)q98M/D) ¢ Z (since u (D)
Y

and ¢9e8(M/D) are integers for all D | M). But every 7 € PF M satisfies deg 7 > 0
(since 7t is irreducible) and thus qdeg” > 1 (since g > 1) and therefore

1> % (107)
gdeg ™

Proposition (b) yields

1
_ degM
q)(M) =q 6 I I (1_ qdegn) > 0.
N ——  —

~—~— tEPFM
>0

>0
(by (107))
Combining this with ¢ (M) € Z, we find that ¢ (M) € IN. This proves Propo-

sition ().
(c) If D is a monic divisor of M satisfying D # M, then

1 (D) q%eM/P) = gmod p (108)
ﬂ Now, the definition of ¢ yields
Z ‘M deg M/D) _ = u (M) qdeg(M/M) + Z ‘u deg M/D)
DM T DLM _o&rod

(since deg(M/M)=deg1=0) bEM (by -)
(here, we have split off the addend for D = M from the sum)
=u(M) ¢° + Y, 0=p(M)modp.
> bim
= D#M
~——
=0
This proves Proposition (c).
(d) Proposition (c) shows that ¢ (M) = u (M) mod p. Hence, ¢ (M) =
# (M) holds in any field of characteristic p. In particular, ¢ (M) = u (M) holds
in IF; (since IF, is a field of characteristic p).
(e) Let us first observe two general facts:

57Proof of (108): Let D be a monic divisor of M satisfying D # M. From M # D, we obtain
M/D #1.

We have M/D € [, [T] (since D is a divisor of M). Also, the polynomial M/D is
monic (since M and D are monic). If we had deg(M/D) = 0, then we would have
M/D = 1 (because M/D is monic), which would contradict M/D # 1. Thus, we can-
not have deg (M/D) = 0. Hence, we must have deg(M/D) > 1 (since M/D < IF,[T]).

Hence, q4¢8(M/D) s divisible by g, and thus also divisible by p (since p | g). In other words,
q9e8(M/D) = 0mod p. Hence, (D) q%8M/P) = 0mod p (since u (D) € {—1,0,1} C Z). This
N———

proves (108).

=0mod p
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e If s € IF; [T] is a nonzero polynomial, then
|A/sA| = gie8s (109)
F8l

e If s € [F; [T] is a monic irreducible polynomial, and if 7 is a positive integer,

then

ndegs _ q(n—l)degs (110)

\(A/S”A)X =q

Fl

The polynomial M is monic. Hence, the factorization of M into monic irre-
ducible polynomialsis M = [] s%M). Notice that vs (M) is a positive integer

s€PEM
for each s € PF M.
From M= T[] s%®M), we conclude that
sePF M
degM =deg [] s0s M) — Y deg (svs(M)> ,
sePF M sePF M
and thus w0
)y, deg(s™ vs
qdegM = gscPEM eg(s+) = H qdeg(s “). (111)
s€PFM

58Proof of : Let s € IF; [T] be a nonzero polynomial. Then, it is well-known that A/sA is
an deg s-dimensional IF,-vector space (since A = I, [T]). Hence, |[A/sA| = |1Fq‘deg °. Since
|Fy| = g, this rewrites as |A/sA| = q9¢8°. This proves .
% Proof of : Let s € IF; [T] be a monic irreducible polynomial, and let # be a positive integer.
Applying to s"~! instead of s, we obtain |A/s"1A| = qdeg(snfl) = g(n=1)degs (since
deg (s"7!) = (n — 1) degs).
Applying to s” instead of s, we obtain |A/s"A| = q9e8(5") = g"degs (since deg (s") =
ndegs).
Le%c 1)3 be the ring A/s"A. Then, B = \A;/ /s" \/L = I, [T] /s"FF; [T]. Hence, Propo-
=Fq[T]  =Fy[T]
sition (b) (applied to F = ;) shows that sB = F, [T] /s"~'F, [T] as [F,-vector spaces.
Thus, sB = F, [T] /s" 1 F, [T] = A/s" 1A as [F;-vector spaces. Hence, |sB| = |A/s" 1A| =
——"

=A =A
g~V degs  Also, from B = A/s" A, we obtain |B| = |A/s"A| = g"de8s.
But Proposition (a) (applied to IF = IF;) yields B* = B\ sB. Hence,

|B*| =|B\sB|= |B|] — |[sB| (since sB C B)
~— ~—
:qndegs :q(nfl)degs
— qndegs _ q(n—l)degs.

Since B = A/s" A, this rewrites as ’(A/S”A) *

= g"degs _ g(n—1)degs Hence, 1} is proven.
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For each s € PF M, define an ideal Is of A by I; = s%(M) A Notice that A is a
principal ideal domain (since A = IF; [T]). We have

— gdes (=) (1 _ ) (112)

qdeg s

(A/1)"

foreachs e PEM [Q
Every two distinct elements s and t of PF M satisfy Is 4+ I} = A @ Hence,

Theorem (b) (applied to S = PF M) shows that the canonical A-algebra
homomorphism

A/( H Is) — H A/Is a—+ H ISH(a—}_IS)SGPFM

scePFM scPFM sePFM

is well-defined and an A-algebra isomorphism. Hence, A/ ( 11 IS) = TI (A/L)
sePFM sePFM
as A-algebras.

But

1 . = I (=™ ):(Hs >A MA.

sePFM y sePFM scPFM
:SUS(M)A . ~ v

=M

60 Proof of : Let s € PF M. Thus, s is a monic irreducible polynomial dividing M.
Let n = vs (M). Then, n = vs (M) is a positive integer (since s divides M). Hence, (110)
yields

‘(A/SHA)X — qndegs _ q(nfl) degs — qndegs _ qndegsfdegs
| — | S —
:qndegs—degs qn degs
(since (n—1) degs=n degs—degs) :W
d
_ qndegs _ q" o8’ — qndegs 1— 1 — qdeg(s”) 1— 71
qdeg s qdeg s qdeg s

:qdeg(s”)
(since ndegs=deg(s"))

- qug(SUS(m) (1 — 1) (since n = vs (M)) .

qdeg s

Also, I, = sMA = s"A (since vs (M) = n). Hence, ‘(A/IS

= ‘ A/s"A)

qdeg(svsw)) (1 - dl) This proves 1}
q egs

®1Proof. Let s and t be two distinct elements of PFM. Thus, s and t are two distinct monic
irreducible polynomials in F; [T]. Hence, Lemma (applied to IF = IFy, n = vs (M), m =
v (M) and R = A) yields s%M A + (M) A = A,
On the other hand, I; = s%(M) A (by the definition of [;) and I; = ot (M) A (by the definition
of It). Adding these two equalities, we obtain I + I; = sU(M)A 4 porM) A = A, Qed.
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Thus,A/< 11 15) = A/MA. Hence,A/MAzA/( I IS> ~ J] (A/L)

scPEM sePFM sePFM
——

=MA
as A-algebras. Therefore,

s€ePFM scPFM

(A/MA)X%< [I <A/Is>> =[] (A/1)”

as groups. Hence,

((A/MA)X =TT Aa/)*|= 11 ‘(A/Is)x
sePFM sePFM ——
deg (7 (M) 1
=q g( )<1_@)
(by ([12)
_ H (qdeg(sT’S(M)) (1 B 1 >>
SEPFM qiess
. d vs (M) 1
_ < T 4o )) 1 (1_ degs)
\sePFM | sEPEM q
_deg M 7 1
(by (11 :neggM (1_ qdeg 7r>
(here, we have renamed the
index s as 77 in the product)
1
= qdegM H (1 o degﬂ) = ¢ (M)
nePFM q
(by Proposition (b)). This proves Proposition (e). O

Finally, here is an identity that connects the functions y and ¢¢ (an analogue
of [6) (12.68.6)]):

Proposition 3.71. Let M € IF; [T] . Then,

Y Du(D)ge () =n(M) i1

DM

Proof of Proposition We shall use the notation of Proposition [3.66]
Every E € T, [T], satisfies (103). (This can be proven as in our proof of
Proposition above.) Now, every monic divisor D of M satisfies

M) M

| = B) — (113)

(PC (D B%/I; y( ) BD
BD|M
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@ Also, every monic divisor B of M satisfies

Y u(D)=[B=M] (114)
D|M;
BD|M

62Proof of (113): Let D be a monic divisor of M. Thus, M/D € F,[T]. Also, the polynomial
M/ D is monic (since M and D are monic). Hence, M/D € FF; [T] . Thus, (103) (applied to
E = M/D) yields

M/D M
¢c (M/D) = Y V(B)T: ZV(B)ﬁ'
B|M/D ~——  B|M;
N—— M BD|M
= v _
B|M; BD

BD|M
(since the monic divisors B of M /D
are exactly the monic divisors B of M
that satisfy BD|M)

Thus, ¢c <M> =¢c(M/D)= Y, u(B) ﬂ This proves (113).
BD|M
63 Proof of : We can rename the variables E and B as B and D in Corollary As a result,
we conclude that Y, u (D) = [B=M]. Hence, [ B=M| = Y, u(D)= Y. u(D). This
D|M; D|M; DIM

proves (114).

|M;

DB|IM DB|M BD|M
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Now,
M
> ou(0) ¢c(p)
_ v ol
siis, | BD
BD|M
(by ([13))
= ). Du(D) )}, w(B)gy =2 ), Du(D
D|M B|M; D|M BIM; ~
BD|M BD|M
h\/_/
= D
BIM D|M;
BD|M
Y ¥ 2o = ¥ Mo
BIM D|M; B B|M B D|M
BD|M BD|M

————

&{az

p (M) [M = M+ZBu B) [B=M

-1 =0
(since B#M)

(here we have split off the addend for B = M from the sum)

)+ ) Bu = p (M)
B|M;
B£M
—_——
=0

in F; [T]. This proves Proposition 3.71}

3.15. The Carlitz ghost-Witt equivalence

We are now ready to prove a generalization of Theorem

JF-module A.

every monic irreducible 7t € N.

Theorem 3.72. Let N be a g-nest. Let A be an /-module. For every P € N,
let pp be an endomorphism of the IF;-vector space A. (The notation ¢p for
these endomorphisms should not be confused with the notation ¢ defined
in Definition we shall ensure this by never using the notation C for a
polynomial in this context.) Let us make the following three assumptions:
Assumption 1: For every P € N, the map ¢p is an endomorphism of the

Assumption 2: We have ¢, (a) = (Carlr)amod tA for every a € A and
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Assumption 3: We have ¢1 = id. Furthermore, ¢p o pg = ¢pg for every
P € N and every Q € N satisfying PQ € N.

Let (bp) pey € AN be a family of elements of A. Then, the following asser-
tions C1, D1, Dy, &1, F1, G1, and G, are equivalent:

Assertion C1: Every P € N and every 7t € PF P satisfy

¢ (bp,z) = bpmod 97 (P) A,

Assertion Dy: There exists a family (xp)p.y € AN of elements of A such
that

(bp = Z D- (Carl%) xp for every P € N) )

D|P

Assertion D,: There exists a family (¥p)p.y € AN of elements of A such
that

(bp =) DFIe8(P/D) g}, for every P € N) :
D|P

Assertion & : There exists a family (yp)pcy € AN of elements of A such that

(bp =Y Dgp,p (yp) for every P € N) :
D|P

Assertion JF1: Every P € N satisfies

Y u (D) ¢p (bp,p) € PA.
DIP

Assertion Gy: Every P € N satisfies

Y 9c (D) ¢p (bp;p) € PA.
DIP

Assertion Gy: Every P € N satisfies

Y_ ¢ (D) ¢p (bp,p) € PA.
DIP

Theorem is a generalization of Theorem — namely, it is precisely the
generalization outlined in Remark In order to see this, the reader should
recall Proposition which says that (roughly speaking) F-modules are the
same as Frobenius I, [T]-modules (which are precisely IF; [T]-modules A with
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an ]Fq-linear Frobenius map F : A — A which satisfies HWD
Before we prove Theorem let us show two more general facts:

Lemma 3.73. Let N be a g-nest. Let A be an [F; [T]-module. For every P € N
and every monic divisor D of P, let gpp be an element of A. Let «, B and
are three maps from N to IF, [T].

Assume that

B(P)=) Dy(D)u (g) for every P € N. (115)
D|P

Furthermore, assume that every P € N and every monic divisor E of P
satisfy

E Y «a(D)gppE € PA. (116)
DI|P;
DE|P
Then, every P € N and every monic divisor E of P satisfy
E ) B(D)gprpE € PA. (117)

D|P;
DE|P

Proof of Lemma Let P € N. Let E be a monic divisor of P. Then, every
monic divisor F of P satisfies

F Y «(M)gpmr € PA (118)
M|P;
MFE|P

@ Furthermore, every monic divisor D of P satisfies

M
Y a (5> gp,ME =Y «(M)gpmDE (119)
M|P; M|P;
ME|P; MDE|P
DM

®4This is slightly nontrivial, because the equalities and are not obviously equivalent.
Nevertheless, the equivalence of the equalities (2) and is easy to show.
65 Proof of : Let F be a monic divisor of P. Then,

F Z a(M)gpmr=F Z a (D) gppr (here, we have renamed the summation index M as D)
M|P; DI|P;
MF|P DF|P
€ PA

(by (116) (applied to E = F)). This proves (T18).
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@ Finally, every monic divisor D of P satisfies

DE ) «(M)gpmpE € PA (122)
M|P;
MDE|P

% Proof of : Let D be a monic divisor of P.
Let 2 be the set of all monic divisors M of P satisfying ME | P and D | M. Thus,

L= L.
MeA  M|P;
ME|P;
D|M
Let B be the set of all monic divisors M of P satisfying MDE | P. Thus, Y. = Y .
Me®  M|P;
MDE|P
We have
M/D €8 for each M € 2. (120)

[Proof of (120): Let M € 2. In other words, M is a monic divisor of P satisfying ME | P and
D | M (by the definition of ). Now, D | M, so that M/D € T, [T] . The polynomial M/D is
monic (since M and D are monic), and is a divisor of P (since M/D | M | P). It furthermore
satisfies (M /D) DE = ME | P. Thus, M/D is a monic divisor of P satisfying (M/D) DE | P.
In other words, M/D € B (by the definition of 9B). This proves (120).]
Furthermore, we have
MD €2 for each M € 8. (121)

[Proof of (121): Let M € B. In other words, M is a monic divisor of P satisfying MDE | P
(by the definition of ©8). Now;, the polynomial MD is monic (since M and D are monic), and
is a divisor of P (since MD | MDE | P). Furthermore, it satisfies (MD) E = MDE | P and
D | MD. Thus, MD is a monic divisor of P satisfying (MD)E | P and D | MD. In other
words, MD € 2 (by the definition of 2(). This proves (121).]

Now, the map

A — B, M +— M/D

is well-defined (according to (120)). Furthermore, the map
B — 2, M — MD

is well-defined (according to (121)). These two maps are mutually inverse (because one of
them divides input by D, whereas the other multiplies its input by D). Hence, they are both
invertible. In particular, the map

A — B, M— M/D

is invertible, i.e.,, is a bijection. ~Thus, we can substitute M/D for M in the sum
Y. « (M) gp,mpe.- We thus obtain
MeB

Y, a(M)gpmpe= ), a|M/D|gpm/pipE= ), “() 8P, ME-
Me® Me2L [ ——— M[P;

\E’ M =8P,ME ME|P;

M|P; D bim

ME|P;

D|M
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F7

Thus,
M
Yo« <D> geme= ), «(M)gpmpe= ), «(M)gpMDE
M|P, MESB M|P,
ME|P: —— MDE|
D‘M - MX“IP.
MDE|P

This proves (T19).
%7 Proof of : Let D be a monic divisor of P. We must prove .

We are in one of the following two cases:

Case 1: We have DE | P.

Case 2: We have DE 1 P.

Let us consider Case 1 first. In this case, we have DE | P. Also, the polynomial DE is
monic (since D and E are monic). Hence, DE is a monic divisor of P. Thus, (applied to
F =DE)yields DE Y, a(M)gpmpe € PA. Thus, 1b is proven in Case 1.

M|P;

MDE|P
Let us now consider Case 2. In this case, we have DE t P. Thus, there exists no M | P
satisfying MDE | P (because if such an M would exist, then it would satisfy DE | MDE | P,
which would contradict DE t P). Hence, the sum Y, «a(M)gpmpg is empty, and thus
M|P;

MDE|[P
equals 0. In other words, Y. & (M)gpmpe = 0. Now, DE Z a (M) gpmpe = 0 € PA.
M|P; M|P;
MDE|P MD‘E|P

=0
Thus, (122) is proven in Case 2.
We have now proven (122) in both Cases 1 and 2. Thus, (122) always holds.
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Now,
Y. B(D)grpE
D|p;
DE|P
= 2 B (M) QP ME (here, we have renamed the summation index D as M)
MIP; — M
ME|P _ M
_D\ZM DW(D)IX( D )

(by (T15) (applied

to M instead of P))

M
=) )3 Dy (D)a (5) 8P,ME
M|P; D|M
ME|P N~
=L
D|P;
D|M
(since every monic divisor D of M
is also a monic divisor of P (since M|P))
M M
= Z Z D’Y(D)“ (B) gP,ME - Z Z D')’(D)DC (B) gP,ME
M|P; D|P; D|P M|P;
ME|P D|M ME|P;
S——— D|M
=X X
D|P M|P;
ME|P;
D|M
M
=Y Dy(D) )_ « <—) gpme = )_ Dy (D) Y, «(M)gpmpE.
D|P M|P; D|P M|P;
ME|P; MDE|P
D|M
= Y a(M)gpMDE
M|P;
MDE|P
(by @19
Multiplying both sides of this equality by E, we find
E ). B(D)grpoE
D|P;
DE|P
=E Z D")/ (D) Z [ (M) gP,MDE = Z DE’)’ (D) Z 14 (M) gP,MDE
D|P M|P; D|P M|P;
MDE|P MDE|P
=) 7(D)DE ), «(M)gpmpe € )7 (D)PAC PA.
D|P M|P; D|p
MDE|P
€PA
(by (122)
O

This proves Lemma [3.73]
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Lemma 3.74. Let N be a g-nest. Let A be an [F; [T]-module. For every P € N
and every monic divisor D of P, let gpp be an element of A. Then, the
following two assertions are equivalent:

Assertion L: Every P € N and every monic divisor E of P satisfy

E Z U (D) 8pP,DE € PA.
D|P;
DE|P

Assertion M: Every P € N and every monic divisor E of P satisfy

E Y ¢c(D)gppE € PA.
D|P;
DE|P

Proof of Lemma[3.74, We shall consider ¢c : F,[T], — F;[T] as a map N —
IF; [T] (by restricting it to the subset N of IF; [T],). We shall also consider y :
F, [T], — {-1,0,1} as a map N — IF; [T] (by restricting it to the subset N of
IF; [T],, and by composing it with the canonical map {—1,0,1} — Z — F, [T)).

We shall prove the implications £ = M and M = L separately:

Proof of the implication L = M: Assume that Assertion £ holds. We must
show that Assertion M holds.

Define a map y : N — [F; [T] by (v (P) =1 for every P € N).

For every P € N, we have

pc(P) =) D_nu (g) (by Proposition [3.6§| (c), applied to M = P)
DIP =p1
P P
:ZD \1/ y(5>:2D7(D)y(B).
D|P =+(D) D|P

(since y(D)=1
(by the definition of 7))

Furthermore, every P € N and every monic divisor E of P satisfy

E Z 1 (D) gppE € PA
D|p;
DE|P

(because Assertion £ holds). Thus, Lemma (applied to @ = y and B = ¢¢)
shows that every P € N and every monic divisor E of P satisfy

E Y ¢c(D)gppE € PA.
D|P;
DE|P

In other words, Assertion M holds. Thus, we have proven the implication £ =

M.
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Proof of the implication M == L: Assume that Assertion M holds. We must
show that Assertion £ holds.
For every P € N, we have

¥ Dy (D) gc () = (P

D|P
(by Proposition applied to M = P) and thus

u(P) =) Du(D)gc (g) :

D|P
Furthermore, every P € N and every monic divisor E of P satisfy

E Z @c (D) 8p,DE € PA
D|P;
DE|P
(because Assertion M holds). Thus, Lemma (applied to &« = ¢c, p = p and
v = ) shows that every P € N and every monic divisor E of P satisfy

E Z U (D) 8pP,DE € PA.
D|p;
DE|P

In other words, Assertion £ holds. Thus, we have proven the implication M —
L.

We have now proven the two implications £ = M and M = L. Combin-
ing them, we obtain the equivalence £ <= M. Thus, Lemma is proven. [

Proof of Theorem Let us observe a few simple facts:

e If D and E are two monic polynomials in IF, [T] satisfying DE € N, then

D © PE = PDE (123)
e8]

e Every P € N and every monic divisor D of P satisfy

D © Pp/p = @p (124)

%8 Proof of : Let D and E be two monic polynomials in IF, [T] satisfying DE € N.
The polynomial D is a monic divisor of DE (since D is monic and D | DE). Since DE € N,
this entails D € N (because N is a g-nest). Similarly, E € N.
But Assumption 3 shows that ¢p o g = @pg for every P € N and every Q € N satisfying
PQ € N. Applying this to P = D and Q = E, we obtain ¢p o ¢ = ¢pg. This proves (123).
Proof of : Let P € N, and let D be a monic divisor of P. Then, P/D € F, [T] (since D is a
divisor of P). The polynomial P/D is monic (since P and D are monic). Also, D - (P/D) =
P € N. Hence, (applied to E = P/D) yields ¢p © ¢p/p = ¢p.(p/p) = ¢p- This proves
(124).
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e Assumption 3 furthermore shows that ¢; = id.

Assumption 1 shows that, for every P € N, the map ¢p is an endomorphism
of the /-module A. In other words, for every P € N,

the map ¢p is F-linear. (125)

Notice that Assertion C; of Theorem is identical with Assertion C; of
Theorem B.571

Let us now prove the equivalences C; <= Dj, C; <= D, and C; < &;.
These three equivalences will be derived from Theorem [3.57

Proof of the equivalence C; <= D;: For every P € N, define an endomorphism
Pp of the IF,-vector space A by

(yp (a) = (CarlP)a for everya € A).

The Assumptions 1, 2 and 3 of Theorem are satisfied (because they are
precisely the Assumptions 1, 2 and 3 of Theorem [3.72). Hence, Proposition [3.59
shows that Assumptions 4 and 5 of Theorem are satisfied. Hence, Theorem
shows that the assertions C; and &y of Theorem [3.57]are equivalent. In other
words, C1 <= &y.

But Assertion D; can be rewritten as follows:

Assertion D}: There exists a family (zp)pcy € AV of elements of A
such that

P
bp = D-|Carl = | zp forevery P € N
= o (e ) frevry

Assertion D] is obtained from Assertion D; by renaming the family (xp)p.y
as (zp) pen- Hence, we have the equivalence Dy <= 7.
But every P € N and every monic divisor D of P satisfy

Yp/p (zp) = (Carl (P/D)) zp (by the definition of ¥p,p)

P
= (Carl 5) zZD.

Thus, Assertion S¢ of Theorem is equivalent to our Assertion D{. In other
words, we have the equivalence &p <— Di. Thus, we have the chain of equiva-
lences D <= D] <= &£y <= C;. This proves the equivalence C; <= D;.

Proof of the equivalence C; <= D;: For every P € N, define an endomorphism
Pp of the IF,-vector space A by

<1PP (a) = Fdeg Py for every a € A> .
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The Assumptions 1, 2 and 3 of Theorem are satisfied (because they are
precisely the Assumptions 1, 2 and 3 of Theorem [3.72). Hence, Proposition [3.60]
shows that Assumptions 4 and 5 of Theorem are satisfied. Hence, Theorem
shows that the assertions C; and &y of Theorem [3.57]are equivalent. In other
words, C1 <= &y.

But Assertion D, can be rewritten as follows:

Assertion D)y: There exists a family (zp)p.y € AN of elements of A
such that

bp=)_ DFe8(P/P)z for every P € N
D[P

Assertion D} is obtained from Assertion D, by renaming the family (xp)p oy
as (zp) pen- Hence, we have the equivalence D, <= Dj.
But every P € N and every monic divisor D of P satisfy

¥p,p (zp) = FIe&(P/D)7 (by the definition of ¢p,p) .

Thus, Assertion &y of Theorem is equivalent to our Assertion D). In other
words, we have the equivalence £y, <= D). Thus, we have the chain of equiva-
lences D, <= D) <= &y <= C;. This proves the equivalence C; <= D;.

Proof of the equivalence C; <= £;: For every P € N, define an endomorphism
Yp of the IF -vector space A by yp = ¢p. The Assumptions 1, 2 and 3 of The-
orem are satisfied (because they are precisely the Assumptions 1, 2 and 3
of Theorem [3.72). Hence, Proposition shows that Assumptions 4 and 5 of
Theorem [3.57| are satisfied. Hence, Theorem [3.57| shows that the assertions C;
and &y of Theorem [3.57|are equivalent. In other words, C; <= &y.

But Assertion £; can be rewritten as follows:

Assertion £]: There exists a family (zp)p.y € AN of elements of A
such that

bp = Y_ D¢p,p (zp) forevery P € N
D|P

Assertion £] is obtained from Assertion £; by renaming the family (yp)p.p as
(zp) pen- Hence, we have the equivalence £; <= &].

But every P € N and every monic divisor D of P satisfy $p,p = ¢p,p (by
the definition of ¢p,p). Thus, Assertion £y of Theorem is equivalent to
our Assertion 5{. In other words, we have the equivalence &y <= 5{. Thus,
we have the chain of equivalences £ <= &] <= &y <= C;. This proves the
equivalence C; <= &;.
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Combining the equivalences C; <= D, C; <= D; and C; <= &1, we obtain
the chain of equivalences C; <= D; <= D; <= &;. Let us now show some
further logical implications. We shall use the notations of Proposition [3.66]

Proof of the implication £ = Fj: Assume that Assertion &£; holds. That is,
there exists a family (yp)p.y € AN of elements of A such that

bp =Y De¢p,p (yp) forevery PEN | . (126)
D|P

Consider this family (yp)p.y. We need to prove that Assertion F; holds, ie.,
that every P € N satisfies

Y u (D) ¢p (bp/p) € PA.
DIP

Fix P € N. Then, every monic divisor D of P satisfies

bp/p =Y, E@wp/Ey/p (VE) (127)
E|P;
DJ|E|P

Moreover, if D and E are two monic divisors of P satisfying DE | P, then

®D (‘P(P/E)/D (w)) = ¢p/E (VE) (128)

70 Proof of : Let B be a monic divisor of P. Thus, P/B € IF; [T], . Moreover, the polynomial
P/ B is monic (since P and B are monic), and is a divisor of P. Hence, P/B € N (since N is a
g-nest, and since P € N). Thus, (126) (applied to P/B instead of P) yields

bp/p = ) D ®(P/B)/D (yp) = Y. D9p/py/B (YD)
D|P/B N—— D|p;
~—— =9(r/D)/B BD|P
=y (since (P/B)/D=(P/D)/B)
D|Pp;
BD|P

(since the monic divisors D of P/B
are precisely the monic divisors D of P
satisfying BD|P)

=Y. E¢w/E)/s (VE)
E|P;
BE|P

here, we have renamed the
summation index D as E

Now, forget that we fixed B. We thus have shown that every monic divisor B of P satisfies
bp/p = Y E@p/E)/8 (yE). Renaming B as D in this result, we obtain the following: Every
E|P;

BE|P
monic divisor D of P satisfies bp;p = Y. E@(p/g),p (y£)- This proves (127).
E|P;
DE|P
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&l

Hence, every monic divisor D of P satisfies

¢D

E|P;
DE|P

(by (127))

bp,p
—~—

= ZP E¢p/E)/p(VE)

oo | Y Eew/eypWe) | = ). Ee¢p <€0(P/E)/D (}/E))

E|P; E|P; N ~ s
DE|P DE|P =@p/E(VE)
(by (128))

since the map ¢p is F-linear
(by (125), applied to D instead of P)

Y Eop/e (yE)-

E|P;
DE|P

(129)

71 Proof of : Let D and E be two monic divisors of P satisfying DE | P. We have E | DE | P.
Thus, P/E € IF;[T]. Moreover, the polynomial P/E is monic (since P and E are monic).
Hence, P/E is a monic divisor of P € N. Thus, P/E € N (since N is a g-nest). Moreover,

P/E

P

D | P/E (since B = DE € I, [T] (since DE | P)). Hence, D is a monic divisor of P/E.
Thus, (124) (applied to P/E instead of P) yields ¢p © ¢(p/r),p = @p/E-

Now, ¢p ((P(p/E)/D (%5)) = (fPD o <P(P/E)/D) (ye) = @p/E (yE). This proves -
N ——

=9p/E
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Hence,

Y. u(D ¢ (bp/D)
D|P D
= Y E¢p/e(yE)
E|P;

DE|P

(by (129))
=Y u(D) Y Egp/e(ye) =) u(B) Y. Egpse (vE)

D|P E|P; B|P E|P;
DE|P BE|P

here, we have renamed the summation
index D as B in the outer sum

Y w(B)Egpe(ye) =), Y, #(B) E¢pse(ye)

E|P; E|[P  B|P;

BE\P BE|P
—— —_———
=L X =[E=P]

E[P B|P; (by Corollary [3.67,

BE|P applied to M=P)

=Y [E=P|Egp/E (vE)
E|P
=[P =P|P ®p/p (yp)+ ). [E=P] Egp/e (vE)
N—— ~—— ETP; ——
= =id E-LD =0
(by Assumption 1) 7 (since E#P)

(here, we have split off the addend for E = P from the sum)

= Pid (yp) + Y OE@p,e (ye) =P yp € PA.
—— ~—

E|P;

-~

=0

Thus, Assertion F7 holds. We have thus proven the implication £&; = F;.
Proof of the implication F; = &1: Assume that Assertion /7 holds. That is,

every P € N satisfies
Y #(D) ¢p (bp/p) € PA. (130)
D|P

Now we need to prove that Assertion & holds, i.e., that there exists a family
(yp)pen € AN of elements of A such that every P € N satisfies

(bp =Y D¢p;p (yp) for every P € N) . (131)
D|P

We shall construct such a family (yp)pcy recursively, by induction over deg P.
That is, we fix some Q € N, and we assume that we already have constructed a
yp € A for every P € N satistfying deg P < deg Q; we furthermore assume that
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these yp satisfy

bp =Y Dop,p (yp) (132)
D|P

for every P € N satisfying deg P < deg Q. We now need to constructa yg € A
such that (132) is satisfied for P = Q. In other words, we need to construct a

Yo € A satisfying bg = % D¢o/p (¥D)-
DIQ

From (130) (applied to P = Q), we obtain Y. u (D) ¢p (bg/p) € QA. Thus,
D|Q

there exists a t € A such that Y (D) ¢p (bg/p) = Qt. Consider this . Set

DIQ
yo =t.
For every monic divisor E of Q satisfying E # 1, we have
bo/e = ). D9(a/p)/E (yp) (133)
D|Q;
DE|Q

@ If D and E are two monic divisors of Q satisfying DE | Q, then

PE <4’(Q/D)/E (yD)> = ¢o/p (VD) (134)

72Proof of : Let E be a monic divisor of Q satisfying E # 1. We have E | Q and thus

Q/E € [, [T]. The polynomial Q/E is monic (since Q and E are monic) and thus is a monic

divisor of Q € N. Hence, Q/E € N (since N is a g-nest). Also, E is a monic polynomial

satisfying E # 1; therefore, deg E > 0. Hence, deg (Q/E) = degQ — degE < deg Q. Thus,
~——

>0
we can apply (132) to P = Q/E (since we have assumed that (132) holds for every P € N
satisfying deg P < deg Q). As a result, we obtain

bo/E = Y. D ®(Q/E)/D (yp) = Y D¢o/py/E (¥p)-
D|Q/E —— DIQ;
—— =®(Q/D)/E DE|Q
-5 (since (Q/E)/D=(Q/D)/E)
|Q;

DEIQ
(since the monic divisors D of Q/E
are precisely the monic divisors D of Q
satisfying DE|Q (since E|Q))

This proves (133).
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m If D is a monic divisor of Q, then

Y u(E)=D=Q]-1 (135)
E|Q;
DE|Q;
E#1

73Proof of (134): Let D and E be two monic divisors of Q satisfying DE | Q. We have D | Q
and thus Q/D € IF; [T]. The polynomial Q/D is monic (since Q and D are monic), and thus

is a monic divisor of Q € N. Hence, Q/D € N (since N is a g-nest). Moreover, DE | Q,
D
and thus % € F,; [T]. Hence, Q/D _ % € [F; [T]. Thus, E is a divisor of Q/D (since

Q/D € F,; [T]). Hence, (124) (applied to Q/D and E instead of P and D) shows that

PEC P(Q/D)/E = $Q/D-

Now, ¢k (fP(Q/D)/E (yD)) = (<PE o (P(Q/D)/E) (yp) = ¢q/p (yp)- This proves ~
—_—

4
=¢Q/D
74Proof of : Let D be a monic divisor of Q. We must prove (135).
The polynomial 1 is a monic divisor of Q satisfying D -1 | Q (since D -1 = D | Q). Hence,
we can split off the addend for E = 1 from the sum Y. p(E). As a result, we obtain

E|Q;
DE|Q
Yo u(E)= ) wE) +p1)= ) w(E)+1
E|Q; E|Q; T EY
DE|Q DE|Q; - DE|Q;
E#1 E#1
Comparing this with
Y u(E)= ) 1 (B) (here, we have renamed the summation index E as B)
E|Q; B|Q;
DE|Q DB|Q
—~—
= Iy
B|Q;
BD|Q

(since DB=BD
for every B|Q)

B e by Corollary [3.67] applied to Q and D
N B‘ZQ. w(B)=[D=q] ( instead of M and E ’

BDIQ

we obtain ), u(E)+1=[D = QJ. In other words, Y, u(E)= [D = Q] — 1. This proves

E|Q; E|Q;
DE|Q; DE|Q;
E#1 E#1

(135).
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Now,
=Y u(D)ep (bg/p) = Y u(E) e (bgsE)
D|Q E|Q

(here, we have renamed the summation index D as E)

=u(1) o1 | bon | + ) u(E) gk bg/E
N \9,// E%; \9,/./
=1 =id \ =bp E£1 = Y Dog/py/e(yp)
D|Q;
DE|Q
(by (33))

(here, we have split off the addend for E = 1 from the sum)

=id (bg) + ) u(E)¢e | ). Dew/py/e (YD)
E—V—b E|Q; D|Q;
=bg E#1 DE|Q

= ¥ Dos(9/p)/evp))
D|Q;
DE[0
(since the map ¢f is F-linear
(by (125), applied to E instead of P))

=bo+ Y #(E) ¥ Do (pia/mye(p)) =bo+ L n(E) ¥ Doosp (o).

E|Q; D|Q; ™ ~ 4 E|Q; D|Q;
E#1 DE|Q =90/p (YD) E#1 DE|Q
(by (1349)

125



Function-field analogue for symmetric functions? May 11, 2018

Subtracting b from both sides of this equality, we obtain

Qt—bo=Y_ u(E) Y. Deo/p(yp)= Y, Y. u(E)Deg/p (yp)

EIQ; D|Q; E[Q; D|Q;
E#1 DE|Q E#1DE|Q
H/—/
=X X
DIQ E|Q;
DE|Q;
EA1
=) Y. #(E)Degp(yp) = }_ ([D=Q]—1) Deg/p (yp)
D|Q E|Q; D|Q
DE|Q;
EA1
—_——
~[D=Q]-1
(by (135))
= ) [D=Q]Dgg/p (yp) — Y 1D ¢g/p (yp)
DIQ ) blQ =p

=[Q=Q]Q¢pg,0(v0)+ D|ZQ' [D=Q]D¢g/p(yp)

D#Q
(here, we have split off the addend for D=Q from the sum)

=Q= Q]QG"Q/Q yo) + ), [D= Q] Deg/p (yp) — Y. Dog,p (yp)

T ST D|Q; D|Q
= D#Q(smce D#Q)
= Qid (yo) + Y 0D¢g,p (yp) — Y Deg/p (¥p)
——~ DIy D|Q
T D#Q

-

=0

=Qt—Y_ Dog/p (yp)-
D|Q

Subtracting Qt from both sides of this equality, we obtain

~bg=—)_ Deg/p (yp)-
D|Q

In other words, bo = Y. D¢g,p (yp). In other words, (132) is satisfied for
D|Q

P=Q.

Thus, we have constructed a yo € A such that is satisfied for P = Q.
This completes a step of our recursive construction of the family (yp)p.y. This
family therefore exists. In other words, Assertion £ holds. Thus, the implication
F1 = & is proven.

We have now proven the two implications £ = F7 and F; = &;. Combin-
ing them, we obtain the equivalence & <= F;.

Let us define one more notation: For every P € N and every monic divisor
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D of P, we define an element gpp of A by gpp = ¢p (bp/p). (This is well-

defined”])

Next, let us introduce two more assertions:
Assertion L: Every P € N and every monic divisor E of P satisfy

E Z U (D) 8p,DE € PA.
D|P;
DE|P

Assertion M: Every P € N and every monic divisor E of P satisfy

E Z Qc (D) 8p.DE € PA.
D|P;
DE|P

Lemma shows that these two Assertions £ and M are equivalent. In
other words, we have the equivalence £ <= M.

We shall now prove the implications /1 = L, L = F;, G = M and
M= g1:

Proof of the implication F; = L: Assume that Assertion /7 holds. That is,
every P € N satisfies

Y _ (D) ¢p (bp/p) € PA. (136)
DIP

Now we need to prove that Assertion £ holds, i.e., that every P € N and every
monic divisor E of P satisfy

E ) u(D)gppE € PA. (137)
D|p;
DE|P

Let P € N. Let E be a monic divisor of P. Thus, E | P, so that P/E € F, [T].
Moreover, the polynomial P/E is monic (since P and E are monic). Hence, P/E
is a monic divisor of P € N. Thus, P/E € N (since N is a g-nest). Hence,
(applied to P/E instead of P) yields

Y. #(D)g¢p (b(p/E)/D) € (P/E) A. (138)
D|P/E

But the map ¢f is F-linear (by (125), applied to E instead of P). Furthermore,
we have

QE O QYD = @PDE for every monic divisor D of P/E (139)

75Proof. Let P € N, and let D be a monic divisor of P. Since D is a monic divisor of P € N,
we have D € N (since N is a g-nest). Hence, ¢p is well-defined. Also, P/D € I, [T] (since
D | P). The polynomial P/D is monic (since P and D are monic), and thus is a monic divisor
of P € N. Hence, P/D € N (since N is a g-nest). Thus, bp,p is well-defined. Therefore,
¢p (bp,p) is well-defined (since ¢p is well-defined). Qed.
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el
Applying the map ¢ to both sides of the relation (138)), we obtain

oe | L #(D) oo (bpsryp) | € 9x ((P/E)A) € (P/E) gr (A)
D|P/E

(since the map ¢f is F-linear). In view of

PE Z u(D) ¢p (b(P/E)/D>

D|P/E
= Y u(D)ge (goD <b(P/E)/D>> (since the map ¢ is F-linear)
D|P/E - ~ -
=(¢eo9p) (bp/E)/D)
= ) #(D)(geo¢p) bp/Ey/D
D|P/E — ——
(b ) :bP/(DE)
y (since (P/E)/D=P/(DE))
= Y (D)  ¢pE (bP/(DE))
D|P/E - ~ %
——— =8P,DE
= L (since ¢p,pE=¢DE (bp/(DE))
gyl’l;) (by the definition of gp p))

(since the monic divisors D of P/E
are exactly the monic divisors D of P
satisfying DE|P (since E|P))

= Z 1 (D) gr,DE,

D|P;
DE|P

this rewritesas Y. u(D)gppr € (P/E) ¢g (A). Hence,
D|P;
DE|P

E Y u(D)gppe € E(P/E) ¢r (A) C PA.
D|P; N— e N——

DE|P =P cA

-~

€(P/E)gE(4A)

76Proof of : Let D be a monic divisor of P/E.

We have D | P/E, thus % € IF; [T]. Also, the polynomial DE is monic (since D and E

P P/E
are monic) and divides P (since — = P/E € IF; [T]). Thus, DE is a monic divisor of P € N.

Hence, DE € N (since N is a g-nest). Thus, (123) (applied to E and D instead of D and E)
shows that ¢r o ¢p = ¢rp = ¢pg. This proves (139).
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In other words, holds. Thus, Assertion £ holds. We have thus proven the
implication F; = L.

Proof of the implication J; = L: Assume that Assertion £ holds. That is,
every P € N and every monic divisor E of P satisfy

E ) u(D)gppE € PA. (140)
D|Pp;
DE|P

Now we need to prove that Assertion F; holds, i.e., that every P € N satisfies
Y u (D) ¢p (bp/p) € PA. (141)
D|P

Let P € N. Then, 1 is a monic divisor of P. Hence, (140) (applied to E = 1)
yields
1 Z 1 (D) gpp1 € PA.

D|p;
D-1|P
In view of
1 ) u(D) §p,D11
D|p; ~—
D-1|P =&p,p=¢D(bp/p)
N (by the definition of gp p)
=Y =X
D|p;, DIP
D|P
=1)_ u(D)¢p (bpyp) =) u(D)¢p (bp/p),
D|P D|P

this rewrites as ) u (D) ¢p (bp;p) € PA. In other words, (141) holds. Thus,
D|P
Assertion F; holds. We have thus proven the implication £ — F;.

Proof of the implication G; == M : The implication G; = M can be proven in
exactly the same way as the implication /7 = L (except that every appearance
of “u” must be replaced by “¢c”).

Proof of the implication M = Gy: The implication M = G; can be proven in
exactly the same way as the implication £ = F7 (except that every appearance

of “u” must be replaced by “@c”).

We now have proven the four implications /7 = £, L = F;, 1 = M
and M = G;. Combining them, we obtain the two equivalences F; <= L
and G| <— M.

Finally, let us prove the equivalence F; <= Gp:

Proof of the equivalence Jy <=> G,: For every P € N and D € FF; [T],, we have

¢ (D) ¢p (bp/p) = 1 (D) ¢p (bp/D) -
——

=u(D) in I,
(by Proposition d),
applied to M=D)
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Therefore, Assertion G, is equivalent to 7. In other words, we obtain the equiv-
alence F; <= 0.
We now have obtained the following equivalences:

C1 <= Dy < Dy <&, & <— F, L<— M,
F1 < L, g <= M, F1 <= Q.

Combining them all, we obtain the chain of equivalences
Cl<=Di<—=Dy<= & <— Fi<—= L= M= G < G.

In particular, the assertions Cy, Dy, Dy, &1, F1, 1, and Gy are equivalent. This
proves Theorem [3.72] O

3.16. Examples: “Necklace congruences” for F, [T|

Theorem shows the equivalence of several assertions, but we have yet to
see a situation in which these assertions hold. Let us now explore a few such
situations. We begin with the simplest ones:

Proposition 3.75. Let N be the g-nest IF; [T], . Let A = IF; [T]. Notice that A is
a commutative IF, [T]-algebra, and thus an F-module (according to Conven-
tion [3.29).

For every P € N, define an endomorphism ¢p of the IF;-vector space A by
Pp = id.

Fix a polynomial Q € IF, [T].

(@) The three Assumptions 1, 2 and 3 of Theorem are satisfied.

(b) The assertions Cy, D1, D,, &1, F1, G1, and G of Theorem [3.72] are satisfied
for the family (bp)p.y = (FI87Q) pen € AN

(c) The assertions Cy1, Dy, D, &1, F1, G1, and Gy of Theorem [3.72]are satisfied
for the family (bp)p.y = ((Carl P) Q)p.y € AV.

(d) The assertions Cy, D1, Dy, £1, F1, G1, and G, of Theorem [3.72]are satisfied
for the family (bp)pcy = (Q)pey € AN.

Before we prove this proposition, let us get two simple lemmas out of our way:

Lemma 3.76. Let 7t be a monic irreducible polynomial in [F; [T]. Set d = deg .
Let P € F, [T]. Then, P? = Pmod 7, [T].

T]. This is a field ex-
I, [T] /7, [T] is an
IF;-vector space of dimension degrm = d. Hence, |Fr| = ‘qu‘d = ¢ (since
|F;| = g). In particular, F is a finite field.
If Q is any element of IF; [T], then we let Q denote the residue class of Q €
IF; [T] modulo the ideal 7, [T]. This residue class Q lies in IF; [T] /I, [T] =

Proof of Lemma Let [F; denote the field F, [T] /7IF, [
tension of IF;. Furthermore, it is well-known that F; =
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F,. Applying this to Q = P, we conclude that P lies in [F,. In other words,
P e Fy.

But another known fact says that if L is a finite field, then every a € L satisfies

alll = a. Applying this to L = F; and a = P, we obtain Pl = P. Since g =

F,e|, we have P7" = P« = P™*| — P In other words, P"" = Pmod 7, [T]

(because if Q is any element of IF,; [T], then Q denotes the residue class of Q €
IF; [T] modulo the ideal 7lF; [T]). This proves Lemma 3.76] O

Lemma 3.77. Let A = [F,; [T]. Notice that A is a commutative IF, [T|-algebra,
and thus an F-module (according to Convention B.29). Let 77 be a monic
irreducible polynomial in IF, [T]. Let P € A.

(a) We have (Carl ) P = Pmod 7tA. Here, (Carl ) P denotes the image of
P under the action of Carl 7t € F on the F-module A.

(b) We have F487P = Pmod A.

Proof of Lemma[3.77] (b) Set d = degm. Observe that P € A = F;[T]. Thus,

Lemma (3.76| yields P’ = Pmod nilF, [T]. In other words, P’ = Pmod A
(because F, [T] = A).

Now, 1@} (applied to k = d and m = P) yields F¥ - P = P?" = Pmod 7 A. Since
d = degm, this rewrites as Fde87 . P = Pmod tA. In other words, FIe87p =
Pmod 7tA. This proves Lemma (b).

(a) Corollary @I (applied to a = P) yields (Carl7r) P = F4*8™P = Pmod A
(by Lemma [3.77] (b)). Lemma (a) is thus proven. O

Proof of Proposition (a) Assumptions 1 and 3 of Theorem are clearly sat-
isfied (since @p = id for each P € N). It thus remains to prove that Assumption
2 of Theorem is satisfied.

Proof of Assumption 2 of Theorem Let a € A. Let 1 € N be monic ir-
reducible. We must prove that ¢, (a) = (Carl)amod wA. Here, (Carlm)a
denotes the image of a under the action of Carl 7 € F on the F-module A.

Proposition shows that there exists a unique u (7r) € F such that Carl 7 =
F4e87 4 71y (71). Consider this u (7r). We have

(Carlmt) a= (Fdeg” +7T-u (71)) a=F8"g 1. u(m)ac FI%8Tq + A,
—— N——
=Fdeg ™ L.y (77) €A

In other words, (Carl7r) 2 = F48"gmod 7t A. Thus,
(Carl ) a = F4%8™3 = gmod A (142)
(by Lemma (b), applied to P = a).
But ¢, = id (by the definition of ¢,), and thus ¢, (a) = id(a) = a =

(Carl r) amod A (by (142)). This completes our proof of Assumption 2 of The-
orem [3.72
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Thus, all three Assumptions 1, 2 and 3 of Theorem are satisfied. This

proves Proposition (a).
(b) Define a family (bp)pey € AN by (bp)pey = (FI8PQ) - Thus,

bp = Fd8PQ for every P € N. (143)
y

We now must prove that the assertions Cy, Dy, Dy, &1, F1, G1, and G, of Theorem
are satisfied for this family.

We shall first show that Assertion C; is satisfied:

Proof of Assertion C1: Let P € N and 7 € PF P. We must prove that ¢, (bp, ;) =
bp mod 7197 (P) A.

We have 71 € PF P, thus P/m € IF; [T]. The polynomial P/t is monic (since P
and 7t are monic), and thus belongs to IF, [T], = N. Hence, the equality

(applied to P/ instead of P) yields bp,, = Fdeg(P/7M) Q. But ¢ = id (by the
definition of ¢), and thus

g (bp/n) =id (bP/TC) = bP/n = Pdeg(P/n)Q. (144)

Lemma (b) (applied to Q instead of P) yields F48™Q = Qmod 7t A. Thus,
Corollary (a) (applied to P/7t, F487™Q and Q instead of N, a and b) yields

Pdeg(P/ ) pdeg nQ = Pdeg(P/ ) Qmod 7_(vn(P/ T()—HA.

Since
Pdeg(P/rr)Fdegr( _ Fdeg(P/r()eregr( — pdegP
(since deg (P/m) + degm = deg ((P/m) m) = deg P)
ﬁ?)_/
and
vr (P/t) +1=v,(P)—vz () 4+l =0v7(P)—14+1=0,(P),

——— ——
=07 (P)—vx(7) =1

this rewrites as
rdeg P = pdeg(P/m) ) mod 707(P) A,
Now, (143) becomes
bp = FIe8PQ = FAs(P/M ) — . (bp ) mod 727 (P) A

(by ). In other words, ¢ (bp,;) = bpmod 7°7(P) A. Thus, Assertion C; is
proven.

We now have shown that Assertion C; is satisfied. Thus, all the assertions Cq,
D1, Dy, &1, F1, G1, and G, of Theorem are satisfied (since Theorem says
that these assertions are equivalent). This proves Proposition (b).
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(c) Define a family (bp)pcp € AN by (bp)pey = ((Carl P) Q) pey- Thus,
bp = (CarlP) Q for every P € N. (145)

We now must prove that the assertions C1, D1, D>, &1, Fi, G1, and G, of Theorem
B.72) are satisfied for this family.

We shall first show that Assertion C; is satisfied:

Proof of Assertion C1: Let P € N and 7 € PF P. We must prove that ¢ (bp,;) =
bpmod (D) A.

We have 7t € PF P, thus P/ 7 € IF; [T]. The polynomial P/t is monic (since P
and 7t are monic), and thus belongs to IF; [T], = N. Hence, the equality (14
(applied to P/ instead of P) yields bp,,; = (Carl (P/7)) Q. But ¢, = id (
the definition of ¢), and thus

¢r (bpyr) =1id (bp,r) = bp,r = (Carl (P/ 7)) Q. (146)

Lemma (@) (applied to Q instead of P) yields (Carl7r) Q = Qmod rtA.
Thus, Corollary (b) (applied to P/, (Carl 7) Q and Q instead of N, a and
b) yields

€]

on

y

(Carl (P/m)) (Carl 1) Q = (Carl (P/7)) Qmod r¥<(P/™M+1 4,

Since
B since Carl is an IF -algebra
(Carl (P/)) (Carl 7t) = Carl ((i/ 7T) n) ( homomorphism )
=p
= Carl P
and

vr (P/t) +1=v,(P)—vx () 4+l =0v7(P)—14+1=0,(P),
o (P)on() h

this rewrites as
(Carl P) Q = (Carl (P/ 7)) Qmod 7?7 A,
Now, becomes
bp = (Carl P) Q = (Carl (P/ 7)) Q = ¢ (bp, ) mod 7(P) A

(by ). In other words, ¢ (bp,;) = bpmod 7°7(P) A, Thus, Assertion C; is
proven.

We now have shown that Assertion C; is satisfied. Thus, all the assertions Cq,
D1, Dy, &1, F1, G1, and G, of Theorem are satisfied (since Theorem says
that these assertions are equivalent). This proves Proposition (0).
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(d) Define a family (bp)p.y € AN by (bp)peny = (Q) pen- Thus,
bp=Q for every P € N. (147)

We now must prove that the assertions C1, D1, D», &1, Fi, G1, and G, of Theorem
are satisfied for this family.

We shall first show that Assertion C; is satisfied:

Proof of Assertion C1: Let P € N and 7 € PF P. We must prove that ¢ (bp,;) =
bpmod (P A.

We have 7t € PF P, thus P/m € IF; [T|. The polynomial P/t is monic (since P
and 7t are monic), and thus belongs to IF, [T], = N. Hence, the equality
(applied to P/ instead of P) yields bp,, = Q. But ¢, = id (by the definition of
@), and thus

¢ (bp/r) =id (bp/n) = bp/n = Q. (148)

Now, (T43) becomes bp = Q = ¢ (bp,) (by (T48)). Hence,
bp = ¢ (bp)) mod 797(P) A,

In other words, ¢ (bp,,) = bp mod 71°%(P) A. Thus, Assertion C; is proven.

We now have shown that Assertion C; is satisfied. Thus, all the assertions C;,
D1, Dy, &1, F1, G1, and G, of Theorem are satisfied (since Theorem says
that these assertions are equivalent). This proves Proposition (d). O

Spelling out the claims of Theorem in basic terms provides a plethora of
congruences between polynomials in IF; [T]. We will not list of all them, but only
give one example, conjectured by the math.stackexchange user “Levent” in [13]:

Corollary 3.78. Let Q € IF, [T]. Then,

P | Z(p( ) gieE? for every P € IF; [T]
D|P

First proof of Corollary[3.78} Define N, A and ¢p (for all P € N) as in Proposition
Define a family (bp)p.y € AN by (bp)pey = (F egPQ)PGN Then, every
P € N satisfies
bp = FdegPQ — FdegP Q= quegP
(by @9), applied to k = deg P and m = Q).
Proposition 3.75] (b) shows that the assertions C1, D1, Dy, &1, F1, G1, and G, of
Theorem @ are satisfied for this family (bp)p.y = (Fi87Q) In particular,
2

Assertion U 1s satisfied. In other words, every P € N satisfies

(149)

PeN"

Y_ ¢ (D) ¢p (bp,p) € PA. (150)
D|P
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Now, let P € F;[T]

IF, [T].).
But the polynomial P is monic. Hence, the map

o Thus, P € F;[T], = N (since N was defined to be

(the set of all monic divisors of P) — (the set of all monic divisors of P),
Dw— P/D

is well-defined and a bijection (actually, it is an involution). Thus, we can sub-
stitute P/D for D in the sum Y. ¢ (D) ¢p (bp,p). We thus obtain
D|P

Y. ¢ (D) ¢p (bp/p)

D[P
=) ¢|P/D ®p/D bp/(p/D)
DIp P " id degD
- €
=-— | (by the definition of ¢p,p) =bp=Q1 i
(by (149), applied

to D instead of P)

D
—Z(P(P>1d< degD) Zq)( ) degD
:quegD D|P

Hence,

Yo ( ) Q™" = ¥ ¢ (D) ¢p (bp;p) € PA

D|P D|P

(by (150)). In other words, P | Y ¢ ( > Q‘? " This proves Corollary 3.78, [
D|P

This said, it is not much harder to prove Corollary without any reference
to Theorem using just the results of Subsection [3.14;

Second proof of Corollary[3.78} Let Frob denote the Frobenius endomorphism of
the IF;-algebra IF, [T]. This is the map F, [T] — I, [T] that sends each P € [F, [T|
to P1. It is well-known that Frob is an [F;-algebra endomorphism of IF, [T].

We make a few auxiliary observations:

Observation 1: Let u € N, a € F; [T] and b € IF, [T]. Then, a® — b7 =

(a—Db)T.
[Proof of Observation 1: We have

Frob® ¢ = ¢ for every k € N and ¢ € IF; [T]. (151)

135



Function-field analogue for symmetric functions? May 11, 2018

(Indeed, this is easy to prove by induction over k, using the definition of Frob.)
Now, recall that Frob is an [F;-algebra endomorphism of IF; [T]. Hence, so is
its u-th power Frob”. Thus,

Frob" (a —b) = Frob" a — Frob" b = a7 — b7,

:uqu :bqu
(by (151), applied to c=a)  (by (151), applied to c=b)

Thus, .
a?" — b7 = Frob" (a —b) = (a —b)7

(by (151), applied to ¢ = a — b). This proves Observation 1.]

Observation 2: Let 7 be a monic irreducible polynomial in FF, [T]. Let
a and b be two elements of IF; [T] such that 2 = bmod 7lF, [T]. Let

N € F, [T] be nonzero. Then, 21" = p1"*" mod o (N)HF, [T,

[Proof of Observation 2: We can regard Observation 2 as a particular case of
Corollary (@) (applied to A = IF, [T]). But let us give a self-contained proof
instead.

We have a — b € 7ilF; [T] (since a = bmod 7lF; [T]). In other words, a — b = 7c
for some c € IF; [T]. Consider this c. Now, define u € IN by u = deg N.

But every nonnegative integer m satisfies 2™ > m + 1 (this is easy to prove).

Applying this to m = u, we find 2* > 1+ 1. But 7%7(N) | N and thus deg (nU"(N)> <

deg N = u. Hence, u > deg (ﬂU"(N)> = vy (N)degmm > v; (N). But g > 2 and
T
thusg* >2*> u  +1>v;(N)+1
20z(N)

——
=7rc

m?" | a? — b1 in B, [T]. But g > v (N) + 1, and thus 7% (N1 | 70" | g7" — pd".
In other words, a7 = b7 mod 7~(N )“qu [T]. Since u = deg N, this rewrites as
= p1°*" mod 7= (N J*1F, [T]. Thus, Observation 2 is proven.]

Next, fix P € IF; [T] . Let S be the set of all squarefree monic divisors of P.

qll
But Observation 1 yields a7 — b1 = (a — b) = (ﬂc)qu = m1"c?". Hence,

deg N
a1"®

Observation 3: We have

P deg D deg(P/D
qu(B)Qq ¥ = Y (et

D|P DeS

[Proof of Observation 3: Let D be the set of all monic divisors of P. Then, the
map
D — D, Dw— P/D
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is well-defined (since P itself is monic) and invertible (since it is its own inverse).
Thus, this map is a bijection. Hence, we can substitute P/D for D in the sum

Y. ( > Qq . We thus obtain

DeD
degD
Y o
DeD
p gdes(P/D) gdes(P/D)
=Y. 2|59 =) ¢ (D) Q
DeD —— DeD :‘M(D") in ]Fq

(by Proposition (d)
(applied to D instead of M))

_ Z I (D) queg(P/D) _ Z y (D) queg(P/D)

DeD D|P

2

D|P
(since D is the set of all
monic divisors of P)

deg(P/D) deg(P/D)
=y rD L w(D)
D|P; D|P; \"’
D is squarefree D is not squarefree (by the deﬁmtlon
v of u, since D
" Des is not squarefree)
(since S is the set
of all squarefree
monic divisors of P)
deg(P/D) deg(P/D) deg(P/D)
=) #(D)Q L 0T =) w(DRT

DeS D|P; DeS
D is not squarefree

i

=0

Comparing this with

deg D P deg D
o e(p)e=Te(p) o™
DeD D|P

~—~—

=X

D|P
(since D is the set of all
monic divisors of P)

this yields

Z q) ( > quegD _ Z ],[ deg(P/D).

D|P DeS

This proves Observation 3.]
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Observation 4: Let P € F;[T],_. Let 1 € PFP. Let D be a monic
divisor of P such that 77 1 D. Then,

Q1 = Q1

[Proof of Observation 4: Observe that P/D € IF;[T] (since D is a divisor of
P). Also, m { D and thus v, (D) = 0. But m € PFP, so that 7 | P and thus
v (P) > 0. Now, v (P/D) = vz (P) — vz (D) = vz (P) > 0. In other words,

~—
=0

deg(P/D) deg(P/(nD))

mod 777 ("), [T].

m| P/D. Hence, (P/D) /m € F, [T].
Set d = deg 7t. Lemma (applied to Q instead of P) yields

Q" = Qmod nfF, [T].

Hence, Observation 2 (applied to a = Q”,b=Qand N = (P/D) /) yields

deg((P/D)/m)
(@)™ = Q1P mod 7o ((P/DY M (7],
Since
(qu>qdeg((P/D)/”> _ o dgdeg((P/D)/m) _ qu+deg((P/D)/7r)
(since qdqdeg((P/D)/n) _ qd+deg((P/D)/n)>
and
_vn(P/D) (7'() =v,(P) :1

this rewrites as

qu+deg((P/D )/ ) — queg ((P/D)/m) mod ﬂv”(P)IFq [T] '
Since
¢ +deg ((P/D) /m) = degm+deg((P/D) /n)
=degm
=deg [ - ((P/D)/m) | =deg(P/D)
=P/D
and

deg | (P/D)/mt | =deg(P/ (D)),
A/_/

=P/(nD)
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this rewrites as

deg(P/D deg(P/(nD)

) ) U
Q1 = Q1 mod 7t (P)IFq [T].

This proves Observation 4.]
Recall that S is the set of all squarefree monic divisors of P. Each of these

squarefree monic divisors has the form [] # for some subset I of PFP. More
nel

precisely, the map

{I CPFP} — S,
I—T]n (152)

nel

is a bijection. Moreover, every subset I of PF P satisfies

" (H’?) =(-1)
nel
= (- (since PF <H17> = I) . (153)

nel

ITn

PF
('161 )‘ <since [1nis squarefree>

nel

Now, we claim the following:

Observation 5: Let 7t € PFP. Let I C PF P be such that 7t € I. Then,
deg <P/ 1 17) deg (P/( IT ’7))
q nel q nelu{m}

[Proof of Observation 5: From 7 ¢ I, we obtain

[T n==I1In (154)

nelu{m} nel

Q =0 mod n”"(P)qu [T].

We have I C PFP. Thus, the elements of I are monic irreducible divisors of
P. In particular, the elements of I are monic irreducible polynomials in F, [T].
These monic irreducible polynomials are all distinct from 7 (since 7 ¢ I), and
therefore coprime to 7t (since 7t is irreducible). Hence, the elements of I are
polynomials coprime to 7t. Therefore, [] # is a product of polynomials coprime

nel
to 7t. Thus, [] # itself is coprime to 7r. Consequently, 77 { [T 7.
nel nel

But [T # € S (since ]] 7 is the image of I under the bijection (152)). In other

nel nel
words, [] 7 is a squarefree monic divisor of P. Hence, Observation 4 (applied
nel
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to D = [] ) yields

nel
deg (P/ ’71;[111> deg (P/ (nﬂlgl 17) )
Q1 =1 mod nU”(P)IFq [T].
In view of (154), this rewrites as
afra) o)
Q7 U = QI nelu{n} mod ﬂU”(P)]Fq [T] )

This proves Observation 5.]

Observation 6: Let 7w € PF P. Then,

Y u(D)Qf

DeS

deg(P/D

" = 0mod (P, [T].

[Proof of Observation 6: Recall that (152) is a bijection. Thus, we can substitute

[1# for D in the sum Y. u (D) queg(P/D
nel DeS

). Thus, we obtain

™ n(0) 0"

DeS

_ Z V<H,7> queg<P/’71;IIn> B Z (_1)|I\ queg(P/ql;[]n>

ICPEP nel ICPFP
| S ——
=(-1)""
(by (153))
deg (P/ H111> deg (P/ H,”)
ne ne
= Y (- - (- QI (155)
ICPE P; ICPE P;
el ¢l

(since every I C PF P satisfies either 7t € I or 7t ¢ I (but not both)).
But we have 7w € PF P. Hence, the map

{ICPFP | m¢1} - {ICPFP | mel},
J = Ju{m}

is well-defined and a bijectionm Hence, we can substitute ] U {7t} for I in the

7’This is a particular case (obtained by setting G = PF P and ¢ = ) of the following fact:
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o (_1)I|queg<1°/nl;[1v)

. We thus obtain
ICPEP;
deg(P/ HI71>
q "<

el

-1l
ICPF P;
el

I1

deg(P/ I1 17) deg(P/ ,7>
= Z (_1)|]U{7T}| Qq neJu{n} _ Z (_1)U|Qq neju{n}

JEPEP; v

JCPEP;
n¢] :,(,1)\1\ ]
(since |JU{m}|=|]]+1
(since 7t¢])))

=— Y () queg<”neﬂ{n}”)

(156)
ICPEP;
¢l

(here, we have renamed the summation index | as I).

Let G be a set. Let ¢ € G. Then, the map

{ICG | g¢l}—>{ICG | g€el},
J—Tu{g}

is well-defined and a bijection. (Its inverse is the map

(ICG | gel}»{ICG | ge},
J= T\ {8}
This is all straightforward to check.)

141



Function-field analogue for symmetric functions? May 11, 2018

Now, (155) becomes

deg(P/D)
Y. u(D)Q!
DeS
_ ¥ (g - oV
ICPE P; ICPE P; S——
N\ el ~~ _ nél deg (P/( TI ;7))
el T =Q1 nelu{n} modnvﬂ(P)]Fq[T]
= ¥ (_1)\I|Qq ’ '761U{7T};7 (by Observation 5)
ICPE P;
¢l
(by (156))
deg(P/ IH{ }"]) deg(P/( IH{ }1]))
— I nelu{n I nelU{n
=— Yy -yl + Y (-plhq
ICPF P; ICPF P;

¢l ¢l
= 0mod 7P, [T].

Thus, Observation 6 is proven.]

Recall that P is a monic polynomial. Hence, ] 7%%(") is the factorization
mePF P

of P into monic irreducible factors. Thus, [J =~() = P.
7EPF P

But the polynomials 77°%(P) for distinct 7 € PF P are mutually coprime. Hence,
their least common multiple is their product. In other words, the least common
multiple of the polynomials v (P) (where 7 ranges over PFP)is ] rvn(P) =

b 7EPF P
Now, define a polynomial Z € [, [T] by
p deg D
Z=)9 <5) Q1.
D|P
Then, for every 7 € PF P, we have
Z=)Y ¢ (g) quegD =Y u(D) queg(P/D) (by Observation 3)
D|P DeS
= 0mod 7¢7(P )qu [T] (by Observation 6),

and thus 71%7(P) | Z. Therefore, the least common multiple of the polynomials
x(P) (where 7t ranges over PF P) divides Z. In other words, P divides Z (since
the least common multiple of the polynomials 71°%(") (where 7t ranges over PF P)

is P). Thus,
P deg D
P|Z:Z¢(B>Q‘7 .
D|P

This proves Corollary again. O
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3.17. (More sections to be added here!)
[.]

XTODO: Conclude torsionfreeness in two ways.
XTODO: polynomial ring example.

]

4. Speculations

4.1. So what is Ac,g ?

So what is the Carlitz analogue of the ring of symmetric functions?

I'm still groping in the dark here. But at least I'm seeing some hints of why this
isn’t as simple as in the classical case (although I guess the theory of symmetric
functions can only be called “simple” with the wisdom of hindsight anyway).
After Subsection [2.5]it appears to me that the multiplication isn’t crucial to the
functor Wy, but rather an extra structure that gets carried along (whatever this
means) This suggests that I shouldn’t be looking at the representing object of
the functor Wy : CRingqum — CRingIqu, but at the representing object of the
functor Wy : rMod — rMod, or at least that the latter is more fundamental
than the former. To begin with, it’s smaller.

A representing object of a functor rMod — rMod is the same as an F-F-
bimodulelﬂ The F-F-bimodule which represents the functor Wy : rMod —
7Mod is the free left F-module Ar with basis (xp)pcy, and with right F-

module structure defined as follows: Let pp = Z| D {%] (xp) for every P € N.
D|P

(The intuition is that xp are analogues of the “Witt vector coordinates” of A

and pp are “power sum symmetric functions”.) Then, set ppf = fpp for every

P € N and f € F. This uniquely determines a right /-module structure (since

it has to commute with the left one), although its existence is not really obvious.

Thus A r is defined.

When N is the whole set [F; [T],, the F-F-bimodule Ar has some claims to
be the Carlitz analogue of the ring of symmetric functions, although it is an F-
F-bimodule rather than a ring. Nevertheless, I don’t feel able to realize it as an
actual set of symmetric power series. The Carlitz structure is way too additive
for that. In some sense, what made the power sums algebraically independent

over the integers was the fact that (x + y)2 # x>+ y? etc; but in the Carlitz

78What about Lie algebras? What properties should a Lie algebra structure on an F-module A
satisfy so that Wy (A) also is a Lie algebra? Will Wy (A) then also share these properties?
7This is a particular case of the following general fact: If A and B are two algebras, then any

A-B-bimodule M gives rise to a representable functor Hom , 4 (4M, —) : 4AMod — pMod.
80These are the symmetric functions w;, in [6, Exercise 2.9.3]. Their name stems from their
relation to the Witt vectors; from a combinatorial viewpoint, they are a rather exotic family.
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case, [P] is additive and even IF;-linear for every P € IF,; [T], so that if we would
define the “P-th power sum polynomial” in some variables ¢; to mean }_ [P] (¢;),

1

then all these polynomials would be linearly dependent over F simply because
217l @) = 171 (&) = (Carl (7)) (£61).
1 1 1

The absence of multiplicative structure makes it hard to even guess what
“elementary symmetric functions” or “complete homogeneous symmetric func-
tions” would be in the Carlitz situation. But Carlitz exponential and Carlitz
logarithm are well-defined on every left /-module on which F; [T] acts invert-
ibly (i. e., whose IF; [T]-module structure extends to an IF,; (T)-module structure)
and which has appropriate closure properties. We might try to use them to con-
struct the “elementary symmetric functions” by some analogue of the classical

Y (-1)"e,T" = exp (— )3 %pn T”) formula from the theory of symmetric
neN n>1

functions@ The problem is that this is an identity in power series, and we
would first have to find out what the right analogue of power series is in this
context.

There is other stuff to do as well. One can look for explicit formulas for
the right F-action on the xp in Ar. And one can try to define the analogue
of plethysm (which, as far as I understand, should be an F-F-bilinear map
from Ar ® 7 Ay to Ar making Ay into what would be an F-algebra if it were
commutative?).

4.2. Some computations in Ar

Let me see if I'm able to get something concrete out of the above reveries. How
about computing the right F-action on concrete basis elements of Ar ?
Assume that N is the whole [F, [T, .

By definition, p; = x1, so that |x1f = fx; for every f € F | (since p1f = fp;
for every f € F). Thatis, x; is central with respect to the two F-actions. Nothing

to see here.
By definition, pr = [T| (x1) +Tx7r = (F+T) x1 + Txr. Now, prf = fpr for

:(F:‘/Exl
every f € F. Apply this to f = T and substitute pr = (F+ T) x; + Tx; you
obtain

((F+T)x1+TxT)T:T((P+T)x1+TxT).

81 Another suggestion by James Borger.
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Since

((P—l—T) X1+TXT)T: (P+T) xlT —|—TXTT: (F+T) TX1 —|—TXTT
N~ ~—

N\

=T —T(T9-1F+T
(since x7 is central) ( + )x1

—T ((T”’_lF n T) X1+ xTT> )

this rewrites as T ((T9'F+T) x; 4+ x7T) = T ((F+ T) x; + Txr). Since T is a

left non-zero-divisor in F and thus also in Ar (as Ar is a free left /-module),

we can cancel the T out of this, and obtain (T9'F +T) x1 +x7T = (F+ T) x1 +

Txt. Hence, x7T = (F+ T) x1 + TxT — (T‘lle + T) x1. This simplifies to

xrT = Txp — (T971 — 1) Fx |
Let’'s do xtF. Apply prf = fpr to f = F, and substitute pr = (F+T) x1 +

Txt again; the result is

((P+T)x1+TxT)F:F((F—i—T)xl—i—TxT).
Subtraction of (F + T) x1F turns this into

TxtF =F ((P + T) X1+ TXT) — (P + T) x1F

= FFxy+ FT x1+ FT xp—F x1T —Tx1F
—T9F =T9F ¥y

(since xq is central)

= FFxq + T9Fxy; + T9Fxy — FFxy — Txq1F = T9Fxy + T9Fx1 — Tx1F
—T (Tq_lFxl T Py — le) .
Cancelling T, we obtain
x7F = T ' Fxy + T9 'Fxp — x1F T9 'Fx; + T7 'Fxr — Fx;.
~~

=F X1
(since xq is central)

This simplifies to | xpF = (T97! — 1) Fx; + T9 1 Fxr |,

Let’s be more bold and try a general irreducible polynomial, just to see how
far we can simplify. Let 7 € IF,[T], be irreducible. What is x,T ? As usual,
pr = (Carl ) x1 + 7tx; satisfies prf = fpx for every f € F. Applying this to
f = T and substituting p, = (Carl 7r) x1 + 7x,, we get

((Carlm) x1 + mx,) T = T ((Carl 7t) x1 + 7tx7) .
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Subtracting (Carl 77) x1 T from here, we get

nx,T =T ((Carl ) x1 + mxy) — (Carl ) x1 T
= T (Carl 7r) x; + Trtx,; — (Carl ) x1T
~—

:TX1
(since xq is central)

= T (Carl 7t) x; + Trtx; — (Carl 7r) Txq
= Trix, + [T, Carl 7t] xy.

Thus, [T, Carl 7] must lie in 77, and an explicit formula for the quotient would

be very useful. Well, the fact that [T, Carl 7] lies in 7t.F is easily derived from

(@), but there seems to be no way to write the quotient in finite terms. Let

us rather introduce a notation for it: Let 01 (71) denote the (unique) f € F

satisfying [T,Carl 7r] = 7f (for mr irreducible monic). In more elementary (and

T[] (X) = [7] (TX)
T

commutative) terms, 97 (77) = . Now,

nx,T = Tt x;+ [T,Carl ﬂlxl = tTxy; + o7 (77) x7.

=T =707 (7r)

Cancelling 7r, we obtain | x;T = Tx; + Ot (77) x1 |

The question is: Do we get x,F explicitly using 97 (71), or will we have to
introduce another new operator? Apply p.f = fpr to f = F and substitute
pr = (Carl 7r) x1 + x5. The result is

((Carl ) x1 + mx,) F = F ((Carl 7t) x1 4+ 7mx7) .
Subtracting (Carl 7)) x1 F from here, we get
nix F = F ((Carl 7t) x1 + rtxy) — (Carl t) x1 F
= F (Carl ) x1 + Frix; — (Carl ) x1F
~—

:Fx1
(since xq is central)

= F (Carl ) x1 + Frixy; — (Carl 7r) Fxq
= Frix, + [F,Carl 7] x1.

Oh, but [F,Carl 1] + [T, Carl 7] = [f_j—j,Carl 7'(] = [Carl T, Carl ] = Carl [T, ] =
=Carl T ;/0-
0, so that [F,Carl 7] = — [T, Carl t| = —7m0dr (7). Hence,
——
:71'5]"(7'[)
X F = Frixy + [F,Carl | x1 = Frt x; — 07 (1) x1 = m1Fx; — w07 (71) x71.

~—
=—n07(7) =miF

Cancelling 7, we obtain | x;F = 717 'Fx, — 97 (77) x1 |
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5. The logarithm series

Here is my result on the logarithm series, which so far has not found any appli-
cation.

Theorem 5.1. Let g be a prime power. Consider the Carlitz logarithm log- €
IF; (T) [[X]] defined in [3, Section 7] (but with q instead of p). Then, in the
power series ring IF, (T) [[X, S]], we have

loge (5X) =y (-t grt INIX)
NeF,[T].

(157)

(The right hand side of this converges in the usual topology on F; [[X, S]].)

Let us recall the definition of log- for the sake of completeness: For every

j € N, let Lj be the polynomial (T7 —T) (T7"' =T)..(T7 = T) € F,[1].
Then, log- € F,; (T) [[X]] is defined by

x4

logc (X) = ) (-1) T

JEN j

(158)

It should be noticed that it is possible to specialize S to 1 in (157), but then
the right hand side will only be convergent in a rather weak sense (it will only
converge if all terms with N having a given degree are first added up, and then
the sums are being summed over the degree rather than the single terms).

In contrast to the preceding results, Theorem [5.1| seems to be neither straight-
forward nor provable by translating some classical argument. So let me sketch a
proof (which is rather roundabout and hopefully simplifiable). First, I need an
auxiliary result which itself seems rather interesting:

Proposition 5.2. Let g be a prime power. Let A be a commutative IF;-algebra.
Let n € N. Let P € A [X] be a polynomial such that deg P < g" — 1. Let ey, ey,
..., &, be n elements of A. Then,

p ()&161 + Aper + ...+ /\nen) =0.
(Al,/\z,...,/\n)eng

Proof of Proposition |5.2| (sketch). We can WLOG assume that P = X* for some
k €{0,1,..,9" —2}. Assume this and consider this k. Since k < 4" — 1, we can
write k in the form k = k,,l_lc]”_1 + kn_zq”_2 + ..+ koqo with k; < g and with
ko+ki+..+kq1 <n (q — 1) — 1. Thus,

n—1 ) n—1 < k.

_xek ek g ko _ T xkid 7\

P=x=X =TI x =TT (x7)".
=0 i=0
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Hence,

2 P (Alel + Aper + ...+ Anen)
()\1,)\2,...,)\;1)6]1:3

n—1 ‘
- Z H (A1e1 + Agen + .. + Ayey)T
(A A2 An) EFL i=0 | ~ .

d oy q
=A1e] +Aze5 +.tAney
(since we are over IFg)

- )3 (Alei” + AzeZ’ + ...+ AneZ)
(/\1/)\2/-“/)%)6]1:3 =0

=
—_

ki

n—1 i i i ki
Now, consider the product [] (/\16;’ +)\zeg + ...+Ane?1) as a polynomial
i=0

(over A) in the variables Ay, Ay, ..., A,. Then, it is a polynomial of degree
ko+ki+...+ky,—1 <n(g—1)—1. Itis well-known (e. g., from the proof of the
Chevalley-Warning theorem) that any such polynomial yields 0 when summed
over all (Aq, Ay, ..., Ay) € IFg (because each of its monomials has at least one ex-
ponent < g — 1, and then summing the variable which has this exponent over IF,
already gives 0 with all other variables remaining fixed). This proves Proposition

Another auxiliary result:

Proposition 5.3. Let g be a prime power. Let L be a field extension of IF,. Let
V be a finite IF;-vector subspace of L. Let t € L\ V. Then,

s () (1

veV veV veV\0

veV
This polynomial is a g-polynomial (indeed, Theorem (applied to L = A)

shows that fy is a g-polynomial, but clearly fiy = W); hence, its derivative
equals its coefficient in front of X! (because the derivative of any g-polynomial
in characteristic p | g equals its coefficient in front of X'). But this coefficient is

[T ©. Thus, we know that the derivative of W equals [] v. Hence, W' (t) =
veV\0 veV\0

I o

veV\0

Proof of Proposition |5.3| (sketched). Let W be the polynomial [] (X +v) € L[X].
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On the other hand, since W = [] (X + v), the Leibniz formula yields

veV
IT (X+0)
W =Y X+w) T[] (X+0) = (X+0)=Y) &2
w;\/ — vle—‘[/; w;V UE; w;V X +w
= vFEW vEW
1
(o) (5 k)
<z;l;\[/ weVX+w
Applying this to X = t, we obtain
W (1) = <H<t+v>) ( . )
veV wEVt+w
so that
1 1 1
5 _ W =—=2 T
ey ttw I+ == 1 {t+0) (veV\O

veV\0

_ (};tL)) . (UEI_IV\OU> .

Rename the index w as v and obtain the claim of Proposition
Proof of Theorem [5.1| (sketched). By (158), we have

. q Cxd
loge (SX) = ¥ (~1) (Sf) =Y (~1) sq]XL—7.

JEN j JEN j
Hence, it is clearly enough to show that every m € IN satisfies

X1 _ [N] (X)
E_N ) N (159)
€lF,y[T],;
deg N=m

So let m € IN. Introduce the polynomials E; (Y) € IF; (T) [Y] for all j € IN as
in [3} Section 7], but with g instead of p. Let’s spell out their definition: With ec
denoting the Carlitz exponential, the power series ec (Ylog- X) € F, (T) [[X, Y]]

is a g-power series, i. e., its coefficient before XYP can only be nonzero if
both « and B are powers of q. Now, for every j € IN, define E; (Y) to be the
coefficient of this power series ec (Ylog- X), regarded as a power series in X
over [F, (T) [Y], before X7 . Of course, this E;(Y) is a g-polynomial in IF, (T) [Y].
Moreover, deg (E;) = ¢/ and E; (0) = 0 for all j € N. Furthermore, E; (M) = 0
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for every M € TF, [T] satisfying deg M < j. Finally, E; (M) = 1 for every M €
IF, [T] satisfying deg M = j. But most importantly, [M] (X) = ¥ E; (M) X? in
jEN

ﬁq (T) [X] for every M € F,[T]. Hence, for every nonzero M € FF, (T) [X], we
ave

L Ej (M) X7 deg M
M M &M LM
(since Ej (M) = 0 whenever degM < j)
— degg_l E] (M) Xq] + EdegM (M) quegM
LM M
= T

M
(since Ej(M)=1 whenever deg M=j)

deg M—1 E. (M) ) 1
] j deg M
% M M (160)

But since E; (0) = 0 for all j € IN, we know that for every j € IN, the polynomial

Ei (Y ,
E; (Y) is divisible by Y. Thus, ! 1(/ ) is a polynomial of degree g/ — 1 for every

j € N (since deg (E;) = ¢/). Renaming Y as X, we see that

E (X+TM)
A )
. X 1 Tm € F,; (T) [X] also is a
polynomial of degree ¢/ — 1 for every j € IN. Hence, for every j € {0,1,...,m — 1},

we can apply Proposition 5.2(to A = F,(T), n = m, P = X and

Ej (X)

is a polynomial

of degree ¢/ — 1 for every j € IN. Hence,

e; = T""1 and conclude that

Ei (MTO+ AT 4+ A T L+ T

=0
MTO + AT+ ...+ Ay, T—1 4 T

(Al,/\z,‘..,Am)EIFq

(since j < m and thus ¢/ — 1 < g™ — 1). Since the sums of the form AT + A, T' +
e F A T T with (A, Ao, o, A € IF, are precisely the monic polynomials
in IF, [T] with degree m (each appearing exactly once), this rewrites as

E; (N
Y. ]I(\T ) =0 for every j € {0,1,...,.m — 1}. (161)
NeF,[T],;
deg N=m
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Now,
y [N] (X)
Nefm,; Y
deg N=m
— Z <degZN_1 M X7 + 1 x9N >
NeF,[T],; \ j=0 N N
deg N=m
(here we applied (160) to M = N)
m—1 . .
e BNy v Ly
j=0 NeF,[T],; N NeF,[T]; N
deg N=m deg N=m
(by)
1 m 1 m
= Z —X7T = Z X1
NeF,[T],; N velF, [T]; m+v
deg N=m degv<m
since the monic polynomials in IF; [T] of degree m are exactly
the sums of the form T™ + v with v being a polynomial in
IF; [T] of degree < m
-| I & [T o|x"
m
el [T); m+o oelF, [T);
degv<m degv<m;
v#0
by Proposition 5.3} applied to L = F, (T), t = T"
and V = {v € F; [T] | degv < m}
1 w_ X7
NelF,[T],; v€elF,[T]; "
deg N=m degov<m;
v#0
1
L

m
(this is relatively straightforward to prove
using standard results on finite fields)

This proves (I59) and thus Theorem
I hope there is a better proof.
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