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0.1. Introduction (Abstract?)

This is a preliminary report on a question that is almost naive: Is there a ring
(or another structure) that has the same relation to the ring Λ of symmetric
functions as Fq has to the “mythical field F1” ?

This question allows for at least two different interpretations. One of them is
just about q-deforming the structure coefficients of the symmetric functions in
such a way that (some of) their combinatorial interpretations are reinterpreted
(i.e., counting sets becomes counting Fq-vector spaces). This naturally leads to
Hall algebras, studied e.g. in [5]. A different option, however, presents itself
if we are willing to replace the bases of Λ itself (rather than just its structure
coefficients). Namely, recall that all (or most) of the usual bases of Λ are in-
dexed by integer partitions. An integer partition can be regarded as a weakly
decreasing sequence of positive integers, or, equivalently, a conjugacy class of a
permutation in a symmetric group. A natural “Fq-analogue” of an integer parti-
tion, thus, is a conjugacy class of a matrix in GLn

(
Fq
)
. Could we find a ring (or

anything similar – a commutative Fq [T]-algebra sounds like a reasonable thing
to expect) which plays a similar role to Λ and whose bases are indexed by these
Fq-analogues?

This report is a bait-and-switch, as I do not have a good answer to this ques-
tion. Instead I recall the classical interpretation of the ring Λ as the coordi-
nate ring of the affine group of Witt vectors ([10, §9–§10]), and construct an
Fq-analogue of the affine group of Witt vectors. This analogue has a coordi-
nate ring, which can reasonably be called an Fq-analogue of Λ. But this answer
is lacking something very important: the combinatorial bases. The most inter-
esting structure on the ring Λ of symmetric functions is not so much its Hopf
algebra structure, but its various bases, such as the homogeneous symmetric
functions (hλ)λ∈Par, the elementary symmetric functions (eλ)λ∈Par and the Schur
functions (sλ)λ∈Par. I am unable to find a counterpart to any of the bases just
mentioned in the Fq-analogue of Λ suggested. All I can offer is an analogue of
the power-sum functions (pλ)λ∈Par (which do not even form a basis, although
with functoriality they are sufficient for many computational purposes) and of a
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basis (wλ)λ∈Par defined in [6, Exercise 2.9.3 (c)] (which, while having interesting
properties, hardly feels at home in combinatorics). So the Fq-analogue of Λ I
find is somewhat of an empty shell. Still, there are some surprises and my hope
is not lost that it can be made whole.

James Borger had a significant role in the studies made below. In particular, he
suggested to me to look for analogues of Theorem 2.6 and Theorem 2.9 (which I
found – Theorem 2.23 and Theorem 2.28), considering them as a litmus test that
shows whether a functor really deserves to be called a Witt vector functor.

The Fq-analogue of the Witt vectors uses the Carlitz polynomials; a highly read-
able introduction to these polynomials appears in [3].

This report is built as follows: In Section 1, we introduce notations and present
basic definitions. In Section 2, we remind the reader of a construction (actu-
ally, one of many constructions) of the Witt vectors, and then introduce the
Fq-analogue of this construction. In Section 3, we shall give detailed proofs for
some of the claims made before. (This section is still under construction, so only
few of the proofs are available.) In Section 4, we speculate on how this analogue
could lead to an Fq-analogue of Λ. In Section 5, we prove a formula for the so-
called Carlitz logarithm which, while not having any direct relation to the rest
of this report, has emerged in my experiments in connection to it.

Being a preliminary report, this one will occasionally make for some rough
reading, although I am trying to make the more-or-less finished parts (Section 2)
more-or-less readable. The reader is assumed to know about Witt vectors ([18]
or [10] or [11, §1]) and a bit about Carlitz polynomials ([3]). Symmetric functions
will only be really used in Section 4.

0.2. Remark on Borger’s work

In [1, §1–§2], James Borger has generalized the notion of Witt vectors to a rather
broad setting, which includes both the classical and the “nested” Witt vectors.
His generalization also includes my Carlitz-Witt functor WN in Theorem 2.4 be-
low, namely when one takes R = Fq [T] and E = {all maximal ideals of R}. We
have yet to fill in the details, but in a nutshell, the reason why our constructions
are equivalent is that the universal property of our WN (B) given in Corollary
2.26 below is the same as the one for Wfl

R,E (A) in [1, Proposition 1.9 (c)] (up to
technicalities). Thus, it appears likely that several of the results below are par-
ticular cases of results from [1]. Nevertheless, our approach to the Carlitz-Witt
functor is different from Borger’s, and somewhat more explicit.
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1. Notations

1.1. General number theory

I use the symbol P for the set of all primes. Further, N denotes the set {0, 1, 2, ...},
and N+ the set {1, 2, 3, ...}.

A nest means a nonempty subset N of N+ such that for every element d ∈ N,
every divisor of d lies in N. What I call “nest” is called a “nonempty truncation
set” by some authors (e.g., by James Borger in some of his work), and a “divisor-
stable set” by others (e.g., by Joseph Rabinoff in [18]).

For every prime p, the nest
{

1, p, p2, p3, ...
}
=
{

pi | i ∈N
}

is called pN.
For any prime p and any n ∈ Z, we denote by vp (n) the largest nonnegative

integer m satisfying pm | n; this is set to be +∞ if n = 0.
For any n ∈N+, we denote by PF n the set of all prime divisors of n.
We let µ denote the Möbius function and φ the Euler totient function (both are

defined on N+).
For every ring R and indeterminate T, we denote by R [T]+ the set of all monic

polynomials in the indeterminate T over R. (All rings are supposed to have a
unity.)

We consider polynomials over fields to be analogous to integers.1 Under this
analogy, monic polynomials correspond to positive integers; divisibility of poly-
nomials corresponds to divisibility of integers; monic irreducible polynomials
correspond to primes. Thus, for example, if R is a field and M ∈ R [T]+ is a
monic polynomial, then a sum like ∑

D|M
aD is to be read as a sum over all monic

divisors of M, not over all arbitrary divisors of M. Moreover, if R is a field and
M ∈ R [T]+ is a monic polynomial, then PF M will denote the set of all monic
irreducible divisors of M (rather than all irreducible divisors of M). Finally, if π
is an irreducible polynomial in R [T]+ and f is any polynomial in R [T]+ (for a
field R), then vπ ( f ) means the largest nonnegative integer m satisfying πm | f ;
this is set to be +∞ if f = 0.

1.2. Algebra

We denote by CRing the category of commutative rings, and by CRingR the
category of commutative R-algebras for a fixed commutative ring R. Also, for
any ring R, we denote by RMod the category of left R-modules.

We denote by Λ the ring of symmetric functions over Z. (This is also known
as Symm or Sym. See [6, §2] and [19, Chapter 7] for studies of this ring Λ.)

1This is a well-known analogy, often taught in number theory classes.
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1.3. Carlitz polynomials

In discussing Carlitz polynomials, I use the notations from Keith Conrad’s [3]
(but I’m using blackboard bold instead of boldface for labelling rings; so what
Conrad calls Fp will be called Fp here, etc.). In particular, let q be a prime power.
For any M ∈ Fq [T], the Carlitz polynomial in Fq [T] [X] corresponding to the
polynomial M will be denoted by [M]. Let us recall how it is defined:

Definition 1.1. For every n ∈ N, define a polynomial [Tn] ∈ Fq [T] [X] recur-
sively, by setting

[
T0] = X and [Tn] =

[
Tn−1]q

+ T
[
Tn−1] for every n ≥ 1.

For example,[
T0
]
= X;

[
T1
]
=
[

T0
]q

+ T
[

T0
]
= Xq + TX;[

T2
]
=
[

T1
]q

+ T
[

T1
]
= (Xq + TX)q + T (Xq + TX) = Xq2

+ (Tq + T) Xq + T2X.

(Here, we have used the fact that taking the q-th power is an Fq-algebra endo-
morphism of Fq [T] [X].)

Now, if M ∈ Fq [T], then we define a polynomial [M] ∈ Fq [T] [X] to be
a0
[
T0] + a1

[
T1] + · · · + ak

[
Tk], where the polynomial M is written in the

form M = a0T0 + a1T1 + · · ·+ akTk. (In other words, we define a polynomial
[M] ∈ Fq [T] [X] in such a way that [M] depends Fq-linearly on M, and that
our new definition of [M] does not conflict with our existing definition of [Tn]
for n ∈N.) We call [M] the Carlitz polynomial corresponding to M.

Carlitz polynomials can be used to take the above-mentioned analogy between
Z and Fq [T] to a new level. Namely, evaluating a Carlitz polynomial [M] at an
element a of a commutative Fq [T]-algebra A can be viewed as the analogue of
taking the m-th power of an element a of a commutative ring A.

Notice that

[π] (X) ≡ Xqdeg π
mod π for any monic irreducible π ∈ Fq [T] . (1)

(This is proven in [3, Theorem 2.11] in the case when q is a prime. In the general
case, the proof is analogous.)

In the Carlitz context there is an obvious analogue of the Möbius function: it
is simply the Möbius function of the lattice Fq [T]+ (whose partial order is the
divisibility relation). In other words, it is the function µ : Fq [T]+ → {−1, 0, 1}
defined by

µ (M) =

{
(−1)|PF M| , if M is squarefree;
0, if M is not squarefree

for all M ∈ Fq [T]+ .

Yet, in the Carlitz context, there are two reasonable analogues of the Euler totient
function. Let us give their definitions (which both are taken from [3]):
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1. The first analogue is the function ϕC : Fq [T]+ → Fq [T]+ defined by

ϕC (M) = M ∏
π∈PF M

(
1− 1

π

)
= ∑

D|M
µ (D)

M
D

for all M ∈ Fq [T]+ .

Some properties of this ϕC are shown in [3, Theorem 4.5]. In particular, every
M ∈ Fq [T]+ satisfies M = ∑

D|M
ϕC (D).

2. The second analogue is the function ϕ : Fq [T]+ →N+ defined by

ϕ (M) = qdeg M ∏
π∈PF M

(
1− 1

qdeg π

)
= ∑

D|M
µ (D) qdeg(M/D) for all M ∈ Fq [T]+ .

This function appears in [3, Section 6]. It has the property that ϕ (M) ≡ µ (M)mod p
for every M ∈ Fq [T]+ (where p = char Fq). Thus, ϕ (M) = µ (M) in Fq. To us,
this makes this function ϕ less interesting than ϕC.

The existence of two different analogues of the same thing is a phenomenon
that we will see a few more times in this theory.

2. The Carlitz-Witt suite

2.1. The classical ghost-Witt equivalence theorem

There are several approaches to the notion of Witt vectors. One of these ap-
proaches is based on the following theorem (the “ghost-Witt equivalence theo-
rem”, also known in parts as “Dwork’s lemma”):

Theorem 2.1. Let N be a nest. Let A be a commutative ring. For every n ∈ N,
let ϕn : A→ A be an endomorphism of the additive group A.

Further, let us make three more assumptions:
Assumption 1: For every n ∈ N, the map ϕn is an endomorphism of the ring

A.
Assumption 2: We have ϕp (a) ≡ ap mod pA for every a ∈ A and p ∈ P∩ N.
Assumption 3: We have ϕ1 = id, and we have ϕn ◦ ϕm = ϕnm for every n ∈ N

and every m ∈ N satisfying nm ∈ N.
Let (bn)n∈N ∈ AN be a family of elements of A. Then, the following asser-

tions C, D, E , F , G, H, and J are equivalent:
Assertion C: Every n ∈ N and every p ∈ PF n satisfy

ϕp
(
bn/p

)
≡ bn mod pvp(n)A.

Assertion D: There exists a family (xn)n∈N ∈ AN of elements of A such thatbn = ∑
d|n

dxn/d
d for every n ∈ N

 .
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Assertion E : There exists a family (yn)n∈N ∈ AN of elements of A such thatbn = ∑
d|n

dϕn/d (yd) for every n ∈ N

 .

Assertion F : Every n ∈ N satisfies

∑
d|n

µ (d) ϕd (bn/d) ∈ nA.

Assertion G: Every n ∈ N satisfies

∑
d|n

φ (d) ϕd (bn/d) ∈ nA.

Assertion H: Every n ∈ N satisfies

n

∑
i=1

ϕn/ gcd(i,n)

(
bgcd(i,n)

)
∈ nA.

Assertion J : There exists a ring homomorphism from the ring Λ to A which
sends pn (the n-th power sum symmetric function) to bn for every n ∈ N.

Definition 2.2. The families (bn)n∈N ∈ AN which satisfy the equivalent asser-
tions C, D, E , F , G, H, and J of Theorem 2.1 will be called ghost-Witt vectors
(over A).

There are many variations on Theorem 2.1. An easy way to get a more in-
tuitive particular case of Theorem 2.1 is to set ϕn = idA for all n ∈ N, after
which Assumptions 1 and 3 become tautologies. However, Assumption 2 is
not guaranteed to hold in this setting; but it holds in Z, and more generally in
binomial rings, and in some non-torsionfree rings as well. Unfortunately, this
case is in some sense too simple: it is too weak to yield the basic properties
of Witt vectors (such as the well-definedness of addition, multiplication, Frobe-
nius and Verschiebung). Instead one needs the case when A is a polynomial
ring Z [Ξ] for some family Ξ of indeterminates, and the maps ϕn are defined
by ϕn (P) = P (Ξn) for every P ∈ Z [Ξ] (where P (Ξn) means the result of P
upon substituting every variable by its n-th power). The only part of Theorem
2.1 which is needed for this proof is the equivalence C ⇐⇒ D.

The proof of Theorem 2.1 is everywhere and nowhere: it is a straightforward
generalization of arguments easily found in literature, but I haven’t seen it ex-
plicit in this generality anywhere. I’ve written it up (save for Assertion J ) in
[7, Theorem 11]. Also, the proof of the whole Theorem 2.1 in the case when
N = N+ appears in [6, Exercise 2.9.6]; it is not hard to derive the general case
from it.
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Some parts of Theorem 2.1 are valid in somewhat more general situations. The
equivalence C ⇐⇒ D needs Assumptions 1 and 2 but not 3 (unsurprisingly),
and the equivalence C ⇐⇒ E ⇐⇒ F ⇐⇒ G ⇐⇒ H needs only Assumption 3
(not 1 and 2; actually, A can be any additive group rather than a ring for this
equivalence). The equivalence D ⇐⇒ J needs nothing. This is all old news.

2.2. Classical Witt vectors

We recall a way to define the classical notion of Witt vectors. We work with a
nest N, so that both p-typical and big Witt vectors are provided for.

Definition 2.3. Let N be a nest. Let A be a commutative ring. The ghost ring
of A will mean the ring AN with componentwise ring structure (i. e., a direct
product of rings A indexed over N). The N-ghost map wN : AN → AN is the
map defined by

wN
(
(xn)n∈N

)
=

∑
d|n

dxn/d
d


n∈N

for all (xn)n∈N ∈ AN.

This N-ghost map is (generally) neither additive nor multiplicative.

The following theorem is easily derived from Theorem 2.1 (more precisely, the
equivalence C ⇐⇒ D) applied to the case A = Z [Ξ] and ϕn (P) = P (Ξn):

Theorem 2.4. Let N be a nest. There exists a unique functor WN : CRing →
CRing with the following two properties:

– We have WN (A) = AN as a set for every commutative ring A.
– The map wN : AN → AN regarded as a map WN (A) → AN is a ring

homomorphism for every commutative ring A.
This functor WN is called the N-Witt vector functor. For every commutative

ring A, we call the commutative ring WN (A) the N-Witt vector ring over A. Its
zero is the family (0)n∈N, and its unity is the family (δn,1)n∈N (where δu,v is

defined to be

{
1, if u = v;
0, if u 6= v

for any two objects u and v).

The map wN : WN (A) → AN itself becomes a natural transformation from
the functor WN to the functor CRing → CRing, A 7→ AN. We will call this
natural transformation wN as well.

Theorem 2.4 appears in [18, Theorem 2.6]. Note that a consequence of The-
orem 2.4 is that the sum and the product of two ghost-Witt vectors over any
commutative ring A are again ghost-Witt vectors. This is not an immediate con-
sequence of Theorem 2.1 (because it is not clear how we could construct maps
ϕn satisfying Assumptions 1, 2 and 3 over any commutative ring A), but rather
requires a detour via Z [Ξ].
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The following theorem ([18, Remark 2.9, part 3]) allows us to prove functorial
identities by working with ghost components:

Theorem 2.5. Let N be a nest. For any commutative Q-algebra A, the map
wN : WN (A)→ AN is a ring isomorphism.

The Witt vector rings allow for an “almost-universal property” [18, Theorem
6.1]:

Theorem 2.6. Let N be a nest. Let A be a commutative ring such that no ele-
ment of N is a zero-divisor in A. For every n ∈ N, let σn be a ring endomor-
phism of A. Assume that σn ◦ σm = σnm for any n ∈ N and m ∈ N satisfying
nm ∈ N. Also assume that σ1 = id. Finally, assume that σp (a) ≡ ap mod pA
for every prime p ∈ N and every a ∈ A. Then, there exists a unique ring
homomorphism ϕ : A→WN (A) satisfying

(wN ◦ ϕ) (a) = (σn (a))n∈N for every a ∈ A.

Now let us describe some known functorial operations on WN (A). I will
follow [18] most of the time.

Theorem 2.7. Let N be a nest.
(a) Let m be a positive integer such that every n ∈ N satisfies mn ∈ N. Then,

there exists a unique natural transformation fm : WN →WN of set-valued (not
ring-valued) functors such that any commutative ring A and any x ∈ WN (A)
satisfy

wN (fm (x)) = (mn-th coordinate of wN (x))n∈N ,

where fm is short for fm (A).
(b) This natural transformation fm is actually a natural transformation

WN → WN of ring-valued functors as well. That is, fm : WN (A)→ WN (A) is
a ring homomorphism for every commutative ring A. (Here, again, fm stands
short for fm (A).) We call fm the m-th Frobenius on WN.

(c) We have f1 = id. Any two positive integers n and m such that fn and fm
are well-defined satisfy fn ◦ fm = fnm.

(d) Let p be a prime such that every n ∈ N satisfies pn ∈ N. We have
fp (x) ≡ xp mod p (in WN (A)) for every commutative ring A and every x ∈
WN (A).

In one or the other form, Theorem 2.7 appears in most sources on Witt vectors;
for example, it can be pieced together from parts of [18, Theorem 5.7, Proposition
5.9 and Proposition 5.12].

Here is the definition of Verschiebung ([18, Theorem 5.5 and Proposition 5.9]):

9
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Theorem 2.8. Let N be a nest.
(a) Let m be a positive integer. Then, there exists a unique natural transfor-

mation Vm : WN →WN of set-valued (not ring-valued) functors such that any
commutative ring A and any x ∈WN (A) satisfy

wN (Vm (x)) =

({
m ·
( n

m
-th coordinate of wN (x)

)
, if m | n;

0, if m - n

)
n∈N

,

where Vm is short for Vm (A).
(b) This natural transformation Vm is actually a natural transformation

WN → WN of abelian-group-valued functors as well. More precisely, Vm :
WN (A)→WN (A) is a homomorphism of additive groups for every commu-
tative ring A. (Here, again, Vm stands short for Vm (A).) We call Vm the m-th
Verschiebung on WN.

(c) We have V1 = id. Any two positive integers n and m satisfy Vn ◦Vm =
Vnm.

(d) Actually, Vm
(
(xn)n∈N

)
=

({
xn/m, if m | n;
0, if m - n

)
n∈N

for any positive in-

teger m, any commutative ring A and any (xn)n∈N ∈WN (A).

There are some equalities involving Vm and fm which should be here, but I
don’t have the time to write them down. They definitely need to be checked for
Carlitz analogues.

Finally, here is one possible definition of the comonadic Artin-Hasse exponen-
tial2 ([18, Corollary 6.3]):

Theorem 2.9. Let N be a nest. Assume that nm ∈ N for all n ∈ N and m ∈ N.
(a) There exists a unique natural transformation AH : WN → WN ◦WN (of

functors CRing→ CRing) such that every commutative ring A, every n ∈ N
and every x ∈WN (A) satisfy

(n-th coordinate of wN (AH (x))) = fn (x)

(where wN this time stands for the natural transformation wN evaluated at the
ring WN (A); thus, wN (AH (x)) is an element of (WN (A))N).

(b) Let n ∈ N, and let A be a commutative ring. Let wn : WN (A) → A
be the map sending each x ∈ WN (A) to the n-th coordinate of wN (x). Then,
WN (wn) ◦AH = fn.

2This is something Hazewinkel, in [10, §16.45], calls Artin-Hasse exponential. I am not sure if
I completely understand its relation to the usual Artin-Hasse exponential...
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2.3. The Carlitz ghost-Witt equivalence theorem

Now, let us move to the Carlitz case.

Convention 2.10. From now on until the rest of Section 2, we let q denote an
arbitrary prime power ( 6= 1, that is), and let p be the prime whose power q is.

Definition 2.11. A q-nest means a nonempty subset N of Fq [T]+ such that for
every element P ∈ N, every monic divisor of P lies in N.

Notice that any q-nest is a subset of Fq [T]+. Thus, any element of a q-nest
must be a monic polynomial. Also, every q-nest contains 1 3. We shall use
these facts without mention.

Definition 2.12. Let P ∈ Fq [T]+. Then, PF P denotes the set of all monic
irreducible divisors of P in Fq [T]+.

Theorem 2.13. Let N be a q-nest. Let A be a commutative Fq [T]-algebra. For
every P ∈ N, let ϕP : A→ A be an endomorphism of the Fq [T]-module A.

Further, let us make three more assumptions:
Assumption 1: For every P ∈ N, the map ϕP is an endomorphism of the

Fq [T]-algebra A.
Assumption 2: We have ϕπ (a) ≡ [π] (a)mod πA for every a ∈ A and ev-

ery monic irreducible π ∈ N. (This rewrites as follows: We have ϕπ (a) ≡
aqdeg π

mod πA for every a ∈ A and every monic irreducible π ∈ N.)
Assumption 3: We have ϕ1 = id, and we have ϕP ◦ ϕQ = ϕPQ for every

P ∈ N and every Q ∈ N satisfying PQ ∈ N.
Let (bP)P∈N ∈ AN be a family of elements of A. Then, the following asser-

tions C1, D1, D2, E1, F1, G1, and G2 are equivalent:
Assertion C1: Every P ∈ N and every π ∈ PF P satisfy

ϕπ (bP/π) ≡ bP mod πvπ(P)A.

Assertion D1: There exists a family (xP)P∈N ∈ AN of elements of A such
that bP = ∑

D|P
D
[

P
D

]
(xD) for every P ∈ N

 .

Assertion D2: There exists a family (x̃P)P∈N ∈ AN of elements of A such
that bP = ∑

D|P
Dx̃qdeg(P/D)

D for every P ∈ N

 .

3Proof. Let N be a q-nest. We must prove that N contains 1.
Any q-nest is nonempty (by definition). Thus, N is nonempty (since N is a q-nest). In other

words, there exists some P ∈ N. Consider this P. Now, 1 is a monic divisor of P ∈ N, and
thus must itself belong to N (since N is a q-nest). In other words, N contains 1. Qed.

11
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Assertion E1: There exists a family (yP)P∈N ∈ AN of elements of A such thatbP = ∑
D|P

DϕP/D (yD) for every P ∈ N

 .

Assertion F1: Every P ∈ N satisfies

∑
D|P

µ (D) ϕD (bP/D) ∈ PA.

Assertion G1: Every P ∈ N satisfies

∑
D|P

ϕC (D) ϕD (bP/D) ∈ PA.

Assertion G2: Every P ∈ N satisfies

∑
D|P

ϕ (D) ϕD (bP/D) ∈ PA.

For this Theorem 2.13 to be a complete analogue of Theorem 2.1, two asser-
tions are missing: H and J . Finding an analogue of J requires finding an
analogue of Λ, which is the question that I have started this report with; ap-
proaches to it will be discussed in Section 4. Two other assertions (D and G)
have two analogues each. However, Assertion G2 is clearly equivalent to Asser-
tion F1 because of ϕ (M) ≡ µ (M)mod p for every M ∈ Fq [T]+. I have written
out the former assertion merely to produce a clearer view of the analogy.

The proof of Theorem 2.13 is analogous to that of (the respective parts of)
Theorem 2.1, and finding it should not be difficult. (One of the easier ways to
proceed is showing D1 ⇐⇒ C1 ⇐⇒ D2, C1 =⇒ F1 =⇒ E1 =⇒ C1, F1 ⇐⇒ G2
and E1 ⇐⇒ G1. Two different analogues of Hensel’s exponent lifting are used in
proving C1 ⇐⇒ D1 and C1 ⇐⇒ D2.)

Definition 2.14. The families (bn)n∈N ∈ AN which satisfy the equivalent as-
sertions C1, D1, D2, E1, F1, G1, and G2 of Theorem 2.13 will be called Carlitz
ghost-Witt vectors (over A).

What is more interesting is the following observation:

Remark 2.15. Assumption 1 in Theorem 2.13 can be replaced by the following
weaker one:

Assumption 1’: For every P ∈ N, the map ϕP is an endomorphism of the
Fq [T]-module A and commutes with the Frobenius endomorphism A →
A, a 7→ aq.

12
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Moreover, instead of assuming that A be a commutative Fq [T]-algebra, it
is enough to assume that A is an Fq [T]-module with an Fq-linear Frobenius
map F : A→ A which satisfies

F (λa) = λqF (a) for every λ ∈ Fq [T] and a ∈ A. (2)

Of course, in this general setup, one has to define aq to mean F (a) for every
a ∈ A. (Once this definition is made, the classical definition of [P] (a) for any
P ∈ Fq [T] and any a ∈ A should work perfectly.)

More about this in Subsection 2.5.

Here is why this is strange. One could wonder whether similar things hold
in the classical case (Theorem 2.1): what if A is not a commutative ring but
just an (additive) abelian group with “power operations” satisfying rules like
(an)m = anm ? After all, the only way multiplication in A appears in Theorem
2.1 is through taking powers. However, the proof of Theorem 2.1 depends on
exponent lifting, which uses multiplication and its commutativity in a nontrivial
way. In contrast, the two exponent lifting lemmata used in the proof of Theorem
2.13 are both extremely simple and do not use multiplication in A. It seems that
A being a ring is a red herring in Theorem 2.13.

I am wondering what use this generality can be put to. One possible field
of application would be restricted Lie algebras. What is a good example of a
restricted Lie algebra with an Fq [T]-module structure?4

2.4. Carlitz-Witt vectors

Parroting Definition 2.3, we define:

Definition 2.16. Let N be a q-nest. Let A be a commutative Fq [T]-algebra. The
Carlitz ghost ring of A will mean the Fq [T]-algebra AN with componentwise
Fq [T]-algebra structure (i. e., a direct product of Fq [T]-algebras A indexed
over N). The Carlitz N-ghost map wN : AN → AN is the map defined by

wN
(
(xP)P∈N

)
=

∑
D|P

D
[

P
D

]
(xD)


P∈N

for all (xP)P∈N ∈ AN.

This N-ghost map is Fq-linear but (generally) neither multiplicative nor Fq [T]-
linear.

From the equivalence C1 ⇐⇒ D1 in Theorem 2.13, we can obtain:5

4Non-rhetorical question. Please let me know! (darijgrinberg[at]gmail.com)
5I’m not going to show the proof, as I don’t think you will have any trouble reconstructing it.

One has to set A = Fq [T] [Ξ], where Ξ is a family of indeterminates, and define morphisms
ϕP by ϕP (Q) = Q ([P] (Ξ)), where [P] (Ξ) means the family obtained by applying [P] to

13
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Theorem 2.17. Let N be a q-nest. There exists a unique functor WN :
CRingFq[T] → CRingFq[T] with the following two properties:

– We have WN (A) = AN as a set for every commutative Fq [T]-algebra A.
– The map wN : AN → AN regarded as a map WN (A) → AN is an Fq [T]-

algebra homomorphism for every commutative Fq [T]-algebra A.
This functor WN is called the Carlitz N-Witt vector functor. For every Fq [T]-

algebra A, we call the Fq [T]-algebra WN (A) the Carlitz N-Witt vector ring over
A.

The map wN : WN (A) → AN itself becomes a natural transformation from
the functor WN to the functor CRingFq[T] → CRingFq[T], A 7→ AN. We will
call this natural transformation wN as well.

This theorem, of course, yields that the sum and the product of two Carlitz
ghost-Witt vectors over any commutative Fq [T]-algebra is a Carlitz ghost-Witt
vector, and that any Fq [T]-multiple of a Carlitz ghost-Witt vector is a Carlitz
ghost-Witt vector.

But this result is not optimal. In fact, it still holds in the more general setup
of Remark 2.15. This can no longer be proven using Theorem 2.17, since the
polynomial ring Fq [T] [Ξ] is a free commutative Fq [T]-algebra but not (in a
reasonable way) a free object in the category of Fq [T]-modules A with an Fq-
linear Frobenius map F : A→ A which satisfies (2). I will lose some more words
on this in Subsection 2.5.

Remark 2.18. Let N be a q-nest. The Fq-vector space structure on the Fq [T]-
algebra WN (A) is just componentwise. Thus, wN is an Fq-vector space homo-
morphism when considered as a map AN → AN. As a consequence, the zero
of the Fq [T]-algebra WN (A) is the family (0)P∈N.

The unity of the Fq [T]-algebra WN (A) is not as simple as it was in Theorem
2.4.

We have only used C1 ⇐⇒ D1 so far. What about C1 ⇐⇒ D2 ?

Definition 2.19. Let N be a q-nest. Let A be a commutative Fq [T]-algebra.
The Carlitz tilde N-ghost map w̃N : AN → AN is the map defined by

w̃N
(
(xP)P∈N

)
=

∑
D|P

Dxqdeg(P/D)

D


P∈N

for all (xP)P∈N ∈ AN.

This tilde N-ghost map is Fq-linear but (generally) neither multiplicative nor
Fq [T]-linear.

each variable in the family Ξ. Alternatively, one could define morphisms ϕP by ϕP (Q) =

Q
(

Ξqdeg P
)

; these are different morphisms but they also work here.

14
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From the equivalence C1 ⇐⇒ D2 in Theorem 2.13, we get:

Theorem 2.20. Let N be a q-nest. There exists a unique functor W̃N :
CRingFq[T] → CRingFq[T] with the following two properties:

– We have W̃N (A) = AN as a set for every commutative Fq [T]-algebra A.
– The map w̃N : AN → AN regarded as a map W̃N (A) → AN is an Fq [T]-

algebra homomorphism for every commutative Fq [T]-algebra A.
This functor W̃N is called the Carlitz tilde N-Witt vector functor. For every

Fq [T]-algebra A, we call the Fq [T]-algebra W̃N (A) the Carlitz tilde N-Witt
vector ring over A. The zero of this Fq [T]-algebra W̃N (A) is the family (0)P∈N,

and its unity is the family (δP,1)P∈N (where δu,v is defined to be

{
1, if u = v;
0, if u 6= v

for any two objects u and v).
The map w̃N : W̃N (A) → AN itself becomes a natural transformation from

the functor W̃N to the functor CRingFq[T] → CRingFq[T], A 7→ AN. We will
call this natural transformation w̃N as well.

But we have not really found two really different functors...

Theorem 2.21. Let N be a q-nest. The functors WN and W̃N are isomorphic by
an isomorphism which forms a commutative triangle with wN and w̃N.

This is again proven using Theorem 2.13 and universal polynomials.
The following theorem allows us to prove functorial identities by working

with ghost components:

Theorem 2.22. Let N be a q-nest. For any commutative Fq (T)-algebra A,
the maps wN : WN (A) → AN and w̃N : W̃N (A) → AN are Fq [T]-algebra
isomorphisms.

We have an “almost-universal property” again, following from exponent lift-
ing and the implication C1 =⇒ D1 in Theorem 2.13:

Theorem 2.23. Let N be a q-nest. Let A be a commutative Fq [T]-algebra
such that no element of N is a zero-divisor in A. For every P ∈ N, let σP be an
Fq [T]-algebra endomorphism of A. Assume that σP ◦ σQ = σPQ for any P ∈ N
and Q ∈ N satisfying PQ ∈ N. Also assume that σ1 = id. Finally, assume
that σπ (a) ≡ [π] (a)mod πA (or, equivalently, σπ (a) ≡ aqdeg π

mod πA) for
every monic irreducible π ∈ N and every a ∈ A. Then, there exists a unique
Fq [T]-algebra homomorphism ϕ : A→WN (A) satisfying

(wN ◦ ϕ) (a) = (σP (a))P∈N for every a ∈ A. (3)

15
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A similar result holds for W̃N and w̃N.
What about Frobenius operations?

Theorem 2.24. Let N be a q-nest.
(a) Let M ∈ Fq [T]+ be such that every P ∈ N satisfies MP ∈ N. Then, there

exists a unique natural transformation fM : WN → WN of set-valued (not
Fq [T]-algebra-valued) functors such that any commutative Fq [T]-algebra A
and any x ∈WN (A) satisfy

wN (fM (x)) = (MP-th coordinate of wN (x))P∈N ,

where fM is short for fM (A).
(b) This natural transformation fM is actually a natural transformation

WN → WN of Fq [T]-algebra-valued functors as well. That is, fM : WN (A) →
WN (A) is an Fq [T]-algebra homomorphism for every commutative Fq [T]-
algebra A. (Here, again, fM stands short for fM (A).) We call fM the M-th
Frobenius on WN.

(c) We have f1 = id. Any P ∈ Fq [T]+ and Q ∈ Fq [T]+ such that fP and fQ
are well-defined satisfy fP ◦ fQ = fPQ.

(d) Let π ∈ Fq [T] be a monic irreducible such that every P ∈ N satisfies
πP ∈ N. We have fπ (x) ≡ [π] (x)mod πWN (A) (in WN (A)) for every com-
mutative Fq [T]-algebra A and every x ∈WN (A).

Corollary 2.25. Consider the setting of Theorem 2.23. Then (from Theorem
2.23) we know that there exists a unique Fq [T]-algebra homomorphism ϕ :
A → WN (A) satisfying (3). Consider this ϕ. Let M ∈ N be such that every
P ∈ N satisfies MP ∈ N. Then,

ϕ ◦ σM = fM ◦ ϕ for every M ∈ N.

Corollary 2.26. Consider the setting of Theorem 2.23. Assume that N is closed
under multiplication (i.e., we have MP ∈ N for every M ∈ N and P ∈ N).
Furthermore, let B be a commutative Fq [T]-algebra such that no element of
N is a zero-divisor in B. Let projB : WN (B) → B be the map sending every
u ∈ WN (B) to the 1-st coordinate of wN (u) ∈ BN. This projB is an Fq [T]-
algebra homomorphism (since wN is an Fq [T]-algebra homomorphism).

Let g : A → B be an Fq [T]-algebra homomorphism. Then, there exists a
unique Fq [T]-algebra homomorphism G : A → WN (B) with the properties
that w1 ◦ G = g and that

G ◦ σM = fM ◦ g for every M ∈ N.

This G can be constructed as follows: Theorem 2.23 shows that there exists a
unique Fq [T]-algebra homomorphism ϕ : A → WN (A) satisfying (3). Con-
sider this ϕ. Since WN is a functor, the Fq [T]-algebra homomorphism g : A→
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B gives rise to an Fq [T]-algebra homomorphism WN (g) : WN (A)→ WN (B).
Now, the G is constructed as the composition WN (g) ◦ ϕ.

A Verschiebung exists too:

Theorem 2.27. Let N be a q-nest.
(a) Let M ∈ Fq [T]+. Then, there exists a unique natural transformation

VM : WN → WN of set-valued (not Fq [T]-algebra-valued) functors such that
any commutative Fq [T]-algebra A and any x ∈WN (A) satisfy

wN (VM (x)) =

M ·
(

P
M

-th coordinate of wN (x)
)

, if M | P;

0, if M - P


P∈N

,

where VM is short for VM (A).
(b) This natural transformation VM is actually a natural transformation

WN → WN of abelian-group-valued functors as well. More precisely, VM :
WN (A)→WN (A) is a homomorphism of additive groups for every commu-
tative Fq [T]-algebra A. (Here, again, VM stands short for VM (A).) We call
VM the M-th Verschiebung on WN.

(c) We have V1 = id. Any two P ∈ Fq [T]+ and Q ∈ Fq [T]+ satisfy VP ◦
VQ = VPQ.

(d) Actually, VM
(
(xP)P∈N

)
=

({
xP/M, if M | P;
0, if M - P

)
P∈N

for any P ∈

Fq [T]+, any commutative Fq [T]-algebra A and any (xP)P∈N ∈WN (A).

And here is a Carlitz analogue of the Artin-Hasse exponential:

Theorem 2.28. Let N be a q-nest. Assume that PQ ∈ N for all P ∈ N and
Q ∈ N.

(a) There exists a unique natural transformation AH : WN → WN ◦WN
(of functors CRingFq[T] → CRingFq[T]) such that every commutative Fq [T]-
algebra A, every P ∈ N and every x ∈WN (A) satisfy

(P-th coordinate of wN (AH (x))) = fP (x)

(where wN this time stands for the natural transformation wN evaluated at the
Fq [T]-algebra WN (A); thus, wN (AH (x)) is an element of (WN (A))N).

(b) Let P ∈ N, and let A be a commutative Fq [T]-algebra. Let wP :
WN (A) → A be the map sending each x ∈ WN (A) to the P-th coordinate
of wN (x). Then, WN (wP) ◦AH = fP.
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2.5. F-modules

The classical N-Witt vector functor for N ⊆N+ being a nest is a functor CRing→
CRing, and I don’t see how to extend it to any broader category than CRing.
The proof of its well-definedness, at least, uses the whole ring structure, not just
the power maps. The situation with q-nests and their Carlitz N-Witt vector func-
tors is different, as mentioned in Remark 2.15. Let me develop this a bit further,
although I don’t really understand where this all is headed.

Let F be the Fq-algebra Fq 〈F, T | FT = TqF〉. This F can be considered as
a skew polynomial ring Fq [T] [F; Frob] over the polynomial ring Fq [T], where
Frob : Fq [T] → Fq [T] is the Frobenius endomorphism which sends every a ∈
Fq [T] to aq.

Note that F is neither an Fq [T]-algebra nor an Fq [F]-algebra in the way I
understand these words, since the center of F is Fq. But we have well-defined
Fq-algebra homomorphisms Fq [T] → F and Fq [F] → F , which make F into a
left Fq [T]-module, a right Fq [T]-module, a left Fq [F]-module, and a right Fq [F]-
module. The left Fq [T]-module structure on F is probably the most useful one.

• As left Fq [T]-module, F is free with basis
(

Fi)
i≥0 and thus torsionfree (this

will be useful).

• As right Fq [T]-module, F is free with basis
(
T jFi)

i≥0, 0≤j<qi .

• As right Fq [F]-module, F is free with basis
(
T j)

j≥0.

• As left Fq [F]-module, F is free with basis
(
T jFi)

i=0 or q-j. As a conse-
quence, it is torsionfree (but this also follows from the isomorphism F →
Fq [T] [X]q−lin introduced below).

• As Fq [F]-Fq [T]-bimodule, F is free with basis
(
T jFi)

(i=0 or q-j) and 0≤j<qi

(that is, F =
⊕

(i,j)∈N2;
(i=0 or q-j) and 0≤j<qi

Fq [F] ·
(
T jFi) · Fq [T], and each Fq [F] ·

(
T jFi) ·Fq [T] is isomorphic to Fq [F]⊗Fq [T] as an Fq [F]-Fq [T]-bimodule).

These freeness statements actually have little to do with Fq or the fact that q
is a prime power. They are combinatorial consequences of the fact that F is the
monoid algebra (over Fq) of the monoid 〈F, T | FT = TqF〉, which monoid is
cancellative and whose elements can be uniquely written in the form T jFi with
(i, j) ∈ N2. Actually, this monoid is J -trivial. Finite J -trivial monoids have a
very nice representation theory [4]; does ours?6

Every commutative Fq [T]-algebra is canonically an F -module, by letting T
act as left multiplication with T, and letting F act as taking the q-th power in the
algebra.

6I wouldn’t hope for much; the representation theory of 〈F, T | FT = TF〉 is supposedly ugly.
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Let us notice that FP = PqF in F for every P ∈ Fq [T]. This is rather important;
it yields that F · P · F ⊆ P · F for every P ∈ Fq [T].

By the universal property of the polynomial ring, there exists a unique Fq-
algebra homomorphism Carl : Fq [T] → F which sends T to F + T. This Carl is
a very important homomorphism.

There is another interesting, and important, map around here. Let Fq [T] [X]q−lin
be the Fq [T]-submodule of the polynomial ring Fq [T] [X] consisting of all q-
polynomials, i. e., polynomials in which only the monomials Xq0

, Xq1
, Xq2

, ...
appear (we consider T as a constant here). Then, Fq [T] [X]q−lin is not an algebra
under usual multiplication, but a (noncommutative) algebra under composition
(where again X is the variable and T a constant). It turns out that

F → Fq [T] [X]q−lin ,

F 7→ Xq,
T 7→ TX

yields a well-defined Fq-algebra isomorphism F → Fq [T] [X]q−lin. This is easy
to check. This isomorphism allows transferring some results from Fq [T] [X] to
F (this is, for example, how I show that F is a torsionfree right Fq [T]-module).

It can be shown that for every monic irreducible π ∈ Fq [T],

there exists a unique u (π) ∈ F such that Carl π = Fdeg π + π · u (π) . (4)

7 Indeed, this follows easily from the fact that [π] (X) ≡ Xqdeg π
mod π in Fq [T] [X]

using the isomorphism F → Fq [T] [X]q−lin.
Now, what is a left F -module? One way to see a left F -module is as a left

Fq [T]-module A with an Fq-linear map F : A → A which satisfies F (Ta) =
TqF (a) for every a ∈ A. This is easily seen to be equivalent to a left Fq [T]-
module A with an Fq-linear map F : A → A which satisfies F (λa) = λqF (a)
for every λ ∈ Fq [T] and a ∈ A. In every left F -module A, we can define the
operation of “taking the q-th power” by aq = F (a) for every a ∈ A. Hence, we
can define an operation of “taking the qi-th power” for every i ≥ 0. This allows
us to evaluate any Carlitz polynomial at elements of A; that is, for any P ∈ Fq [T]
and a ∈ A we can define [P] (a) ∈ A (in the same way as this is usually defined
for A being a commutative algebra). It is easily seen that

[P] (a) = (Carl (P)) (a) for any P ∈ Fq [T] and a ∈ A.

Now, the situation described in Remark 2.15 is simply understood as having
a left F -module A, and for every P ∈ N, an F -module endomorphism ϕP of A.

The category of left F -modules has its free objects, which simply are free
left F -modules. If Ξ is a set (to be viewed as a set of “indeterminates”), then

7The notation u (π) means that u depends on π; it is not meant to imply that u (π) is a poly-
nomial in π.
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a family of F -module endomorphisms ϕP of the free F -module FΞ satisfying
Assumptions 1’, 2 and 3 can be easily constructed (namely, ϕP is the unique F -
module homomorphism FΞ → FΞ satisfying ϕP (ξ) = [P] (ξ) for every ξ ∈ Ξ),
although it took me a while to show that they actually satisfy Assumption 2
(here I used (4)).

If I haven’t done any mistakes, all results of Subsection 2.4 carry over to the
category of F -modules; of course, WN and W̃N will then be functors from FMod
to FMod. One has to be somewhat careful in the proofs because F is noncom-
mutative and it needs to be used that every P ∈ Fq [T] satisfies F · P · F ⊆ P · F .

3. Proofs

In this (so far unfinished) Section, I am going to prove most of the statements
made in Section 2. I shall start from scratch and forget about all the notation
introduced in Section 2; this notation will be reintroduced when the need for it
arises.

In Section 2, I presented the results for the case of commutative Fq [T]-algebras
first, and then pointed out how they can be generalized to F -modules. In the
present Section 3, however, I will proceed the other way round, starting with the
properties of F . The latter properties are unlikely to be new, as they are elemen-
tary and concern a well-studied object (F is one of the most basic examples of
an Ore extension); in particular I suspect that some of them appear in [16] and
[17] (two references I regrettably have not had the time to read).

3.1. The skew polynomial ring M
Let us first show a general fact:

Proposition 3.1. Let K be a commutative ring. Let r be a positive integer. Let
M be the K-algebra K 〈F, T | FT = TrF〉. There are well-defined K-algebra
homomorphisms K [T] →M (sending T to T) and K [F] →M (sending F to
F). These homomorphisms make M into a left K [T]-module, a right K [T]-
module, a left K [F]-module, and a right K [F]-module. Any of these two
left module structures can be combined with any of these two right module
structures to form a bimodule structure on M (for example, the left K [T]-
module structure and the right K [F]-module structure onM can be combined
to form an K [T]-K [F]-bimodule structure on M). (However, in general, M
is neither a K [T]-algebra nor a K [F]-algebra.)

(a) We have FaTb = TrabFa inM for every a ∈N and b ∈N.
(b) The K-moduleM is free with basis

(
T jFi)

i≥0, j≥0.

(c) As left K [T]-module,M is free with basis
(

Fi)
i≥0.

(d) As right K [T]-module,M is free with basis
(
T jFi)

i≥0, 0≤j<ri .
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(e) As right K [F]-module,M is free with basis
(
T j)

j≥0.

(f) As left K [F]-module,M is free with basis
(
T jFi)

i=0 or r-j.

(g) As K [F]-K [T]-bimodule, M is free with basis
(
T jFi)

(i=0 or r-j) and 0≤j<ri

(that is, we haveM =
⊕

(i,j)∈N2;
(i=0 or r-j) and 0≤j<ri

K [F] ·
(
T jFi) ·K [T], and each K [F] ·

(
T jFi) ·K [T] is isomorphic to K [F]⊗K [T] as an K [F]-K [T]-bimodule, where

the tensor product is taken over K).

We notice that the K-algebra M in Proposition 3.1 is actually the monoid
algebra (over K) of the monoid with generators F, T and relation FT = TrF.
From this viewpoint, all of Proposition 3.1 is easily revealed to be a monoid-
theoretical statement (with K being merely a distraction). However, we shall
work with K-algebras rather than monoids for the whole proof, if only for the
sake of habitualness.

The only parts of Proposition 3.1 that will be used in the following are parts
(a), (b), (c) and (e). These are also the easiest ones to prove, so we advise the
reader to skip most of the following technical proof.

The following lemma will be used in our proof of Proposition 3.1 (f):

Lemma 3.2. Let S be a set. Let φ : S → S be an injective map. Let ` : S → N

be a map. Assume that

` (φ (s)) > ` (s) for every s ∈ S. (5)

Let B = S \ φ (S). Define a map ρ : B×N→ S by

ρ (s, k) = φk (s) for every (s, k) ∈ B×N.

Then, ρ is a bijection.

(If we want to interpret Lemma 3.2 constructively, then we should also require
that there is an algorithm which, given an s ∈ S, either reveals that s /∈ φ (S) or
computes a preimage of s under φ.)

Proof of Lemma 3.2. Let us first prove that the map ρ is injective.
Indeed, let (s, k) and (s′, k′) be two elements of B ×N such that ρ (s, k) =

ρ (s′, k′). We are going to prove that (s, k) = (s′, k′).
The definition of ρ yields ρ (s, k) = φk (s). Thus, φk (s) = ρ (s, k) = ρ (s′, k′) =

φk′ (s′) (by the definition of ρ).
The map φk′ is injective (since φ is injective).
We have s′ ∈ B = S \ φ (S). Thus, s′ /∈ φ (S).
Now, assume (for the sake of contradiction) that k > k′. Hence, φk (s) =

φk′+(k−k′) (s) = φk′
(

φk−k′ (s)
)

. But the map φk′ is injective. Therefore, from
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φk′
(

φk−k′ (s)
)
= φk (s) = φk′ (s′), we obtain φk−k′ (s) = s′. Hence, s′ = φk−k′ (s) ∈

φk−k′ (S) ⊆ φ (S) (since k − k′ ≥ 1 (since k > k′)). This contradicts s′ /∈ φ (S).
This contradiction proves that our assumption (that k > k′) was false. Hence,
we cannot have k > k′. In other words, we must have k ≤ k′. An analogous
argument shows that k′ ≤ k. Combining this with k ≤ k′, we obtain k = k′.
Thus, φk (s) = φk′ (s), so that φk′ (s) = φk (s) = φk′ (s′). This yields s = s′ (since
the map φk′ is injective). Combining this with k = k′, we obtain (s, k) = (s′, k′).

Let us now forget that we fixed (s, k) and (s′, k′). We thus have shown that
if (s, k) and (s′, k′) are two elements of B×N such that ρ (s, k) = ρ (s′, k′), then
(s, k) = (s′, k′). In other words, the map ρ is injective.

Let us now show that the map ρ is surjective. Indeed, we shall prove that

`−1 (n) ⊆ ρ (B×N) for every n ∈N. (6)

Proof of (6): We shall prove (6) by strong induction over n. Thus, we fix an
N ∈ N, and we assume (as the induction hypothesis) that (6) holds for every
n < N. Now we must prove that (6) holds for n = N. In other words, we must
prove that `−1 (N) ⊆ ρ (B×N).

Let x ∈ `−1 (N). Thus, x ∈ S and ` (x) = N. We shall prove that x ∈
ρ (B×N).

If x /∈ φ (S), then x ∈ ρ (B×N) holds8. Hence, for the rest of the proof
of x ⊆ ρ (B×N), we can WLOG assume that x ∈ φ (S). Assume this. Thus,
there exists an s ∈ S such that x = φ (s). Consider this s. From x = φ (s), we
obtain ` (x) = ` (φ (s)) > ` (s) (by (5)). Hence, ` (s) < ` (x) = N. Therefore,
the induction hypothesis shows that (6) holds for n = ` (s). In other words,
`−1 (` (s)) ⊆ ρ (B×N). But s ∈ `−1 (` (s)) ⊆ ρ (B×N). In other words, there
exists a (t, k) ∈ B ×N such that s = ρ (t, k). Consider this (t, k). We have

s = ρ (t, k) = φk (t) (by the definition of ρ), and x = φ

 s︸︷︷︸
=φk(t)

 = φ
(
φk (t)

)
=

φk+1 (t). Comparing this with ρ (t, k + 1) = φk+1 (t) (by the definition of ρ), we
obtain x = ρ (t, k + 1) ∈ ρ (B×N). Hence, x ∈ ρ (B×N) is proven.

Let us now forget that we fixed x. We thus have shown that x ∈ ρ (B×N)
for every x ∈ `−1 (N). In other words, `−1 (N) ⊆ ρ (B×N). In other words, (6)
holds for n = N. This completes the induction proof of (6).

Now, ` is a map S → N. Hence, S =
⋃

n∈N `−1 (n)︸ ︷︷ ︸
⊆ρ(B×N)

(by (6))

⊆ ⋃
n∈N ρ (B×N) ⊆

ρ (B×N). In other words, the map ρ is surjective. Hence, the map ρ is bijective
(since we already know that ρ is injective). This proves Lemma 3.2.

We record two corollaries of Lemma 3.2:
8Proof. Assume that x /∈ φ (S). Thus, x ∈ S \ φ (S) = B, so that (x, 0) ∈ B ×N. Clearly,

ρ (x, 0) = φ0 (x) = x, so that x = ρ (x, 0) ∈ ρ (B×N), qed.
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Corollary 3.3. Define a subset B of N2 by

B =
{
(i, j) ∈N2 | i = 0 or r - j

}
. (7)

Define a map ρ : B×N→N2 by

ρ ((i, j) , k) =
(

i + k, rk j
)

for every ((i, j) , k) ∈ B×N. (8)

Then, the map ρ is a bijection.

Proof of Corollary 3.3. Let φ : N2 →N2 be the map defined by

φ (i, j) = (i + 1, rj) for every (i, j) ∈N2.

It is clear that this map φ is injective (since r > 0). Moreover, B = N2 \φ
(
N2) 9.

Given an s ∈ S, it is easy to algorithmically check whether s /∈ φ
(
N2) (because

of the equivalence s /∈ φ
(
N2) ⇐⇒ s ∈ N2 \ φ

(
N2
)

︸ ︷︷ ︸
=B

⇐⇒ s ∈ B), and

if s ∈ φ
(
N2), then it is easy to compute a preimage of s under φ (indeed, if

s = (i, j) ∈ φ
(
N2), then φ−1 (s) = (i− 1, j/r)).

Every (i, j) ∈N2 and k ∈N satisfy

φk (i, j) =
(

i + k, rk j
)

. (9)

9Proof. We have

N2 \ φ
(

N2
)

=

(i, j) ∈N2 | there exists no (u, v) ∈N2 such that (i, j) = φ (u, v)︸ ︷︷ ︸
=(u+1,rv)

(by the definition of φ)



=


(i, j) ∈N2 | there exists no (u, v) ∈N2 such that (i, j) = (u + 1, rv)︸ ︷︷ ︸

⇐⇒ ((i−1,j/r)/∈N2)
⇐⇒ (i−1/∈N or j/r/∈N)


=

(i, j) ∈N2 | i− 1 /∈N︸ ︷︷ ︸
⇐⇒ (i=0)

or j/r /∈N︸ ︷︷ ︸
⇐⇒ (r-j)


=
{
(i, j) ∈N2 | i = 0 or r - j

}
= B,

qed.
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(Indeed, this follows easily by induction on k.) Thus,

ρ (s, k) = φk (s) for every (s, k) ∈ B×N (10)

10.
Furthermore, define a map ` : N2 →N by

` (i, j) = i for every (i, j) ∈N2.

It is easy to see that for every s ∈N2, we have ` (φ (s)) = ` (s) + 1 > ` (s). Thus,
we can apply Lemma 3.2 to S = N2 (indeed, the equality (10) shows that our
map ρ : B×N → N2 is identical with the map ρ : B×N → S in Lemma 3.2).
As a result, we conclude that ρ is a bijection. This proves Corollary 3.3.

Corollary 3.4. Define a subset C of N2 by

C =
{
(i, j) ∈N2 | (i = 0 or r - j) and 0 ≤ j < ri

}
. (11)

Define a map ζ : C×N×N→N2 by

ζ ((i, j) , `, k) =
(

i + k, rk
(

j + ri`
))

for every ((i, j) , k, `) ∈ C×N×N.
(12)

Then, the map ζ is a bijection.

Proof of Corollary 3.4. Define a subset B of N2 by (7). Clearly, C ⊆ B.
Define a map τ : C×N→ B by

τ ((i, j) , `) =
(

i, j + ri`
)

for every ((i, j) , `) ∈ C×N.

It is easy to see that this map τ is well-defined (i.e., that
(
i, j + ri`

)
∈ B for every

((i, j) , `) ∈ C×N).
For every integer u and every positive integer v, we let u%v denote the re-

mainder of u when divided by v, and we let u//v denote the quotient of u

10Proof of (10): Let (s, k) ∈ B×N. Then, s ∈ B ⊆ N2. Hence, s can be written in the form (i, j)
for some i, j ∈N. Consider these i, j. We have

φk

 s︸︷︷︸
=(i,j)

 = φk (i, j) =
(

i + k, rk j
)

(by (9))

= ρ

(i, j)︸︷︷︸
=s

, k

 (by (8))

= ρ (s, k) .

This proves (10).
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when divided by v with remainder. Thus, u//v ∈ Z, u%v ∈ {0, 1, . . . , v− 1}
and u = (u//v) v + u%v.

Define a map γ : B→ C×N by

γ (i, j) =
((

i, j%ri
)

, j//ri
)

for every (i, j) ∈ B.

Again, it is easy to see that this map γ is well-defined (i.e., that
((

i, j%ri) , j//ri) ∈
C×N for every (i, j) ∈ B).

Furthermore, it is easy to see that the maps τ and γ are mutually inverse11.
Hence, the map τ is a bijection.

We shall identify the set C ×N×N with (C×N)×N. Then, the map τ ×
idN : (C×N)×N→ B×N can be viewed as a map C×N×N→ B×N. This
map τ × idN sends every ((i, j) , `, k) ∈ C ×N×N to (τ ((i, j) , `) , k). Clearly,
the map τ × idN is a bijection (since τ is a bijection).

On the other hand, define a map ρ as in Corollary 3.3. Then, Corollary 3.3

11Proof. Let us first show that τ ◦ γ = id.
Indeed, every (i, j) ∈ B satisfies

(τ ◦ γ) (i, j) = τ

 γ (i, j)︸ ︷︷ ︸
=((i,j%ri),j//ri)

 = τ
((

i, j%ri
)

, j//ri
)
=

i, j%ri + ri
(

j//ri
)

︸ ︷︷ ︸
=j


(by the definition of τ)

= (i, j) .

Thus, τ ◦ γ = id.
On the other hand, let us prove that γ ◦ τ = id. Indeed, fix ((i, j) , `) ∈ C ×N. Then,

(i, j) ∈ C. Thus, (i = 0 or r - j) and 0 ≤ j < ri. Now,

(γ ◦ τ) ((i, j) , `) = γ

τ ((i, j) , `)︸ ︷︷ ︸
=(i,j+ri`)

 = γ
(

i, j + ri`
)

=



i,
(

j + ri`
)

%ri︸ ︷︷ ︸
=j

(since 0≤j<ri)

 ,
(

j + ri`
)

//ri︸ ︷︷ ︸
=`

(since 0≤j<ri)

 = ((i, j) , `) .

This proves that γ ◦ τ = id. Combining this with τ ◦ γ = id, we obtain that the maps τ and
γ are mutually inverse, qed.
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shows that the map ρ is a bijection. But every ((i, j) , `, k) ∈ C×N×N satisfies

(ρ ◦ (τ × idN)) ((i, j) , `, k)

= ρ

(τ × idN) ((i, j) , `, k)︸ ︷︷ ︸
=(τ((i,j),`),k)

 = ρ


τ ((i, j) , `)︸ ︷︷ ︸

=(i,j+ri`)

, k




= ρ
((

i, j + ri`
)

, k
)
=
(

i + k, rk
(

j + ri`
))

(by the definition of ρ)

= ζ ((i, j) , `, k) (by (12)) .

Hence, ρ ◦ (τ × idN) = ζ. Since the map ρ ◦ (τ × idN) is a bijection (because
both ρ and τ × idN are bijections), this shows that the map ζ is a bijection. This
proves Corollary 3.4.

Proof of Proposition 3.1. (a) First, we have the equality

FTb = TrbF (13)

in M for every b ∈ N (this can be proven by straightforward induction over
b). Using this equality, Proposition 3.1 (a) can be proven by straightforward
induction over a.

(b) Let N be the free K-module with basis
(
ai,j
)

i≥0, j≥0. We let f be the K-
linear map N → N which sends every ai,j to ai+1,rj. We let t be the K-linear
map N → N which sends every ai,j to ai,j+1. Every i, j, k ∈N satisfy

fk
(
ai,j
)
= ai+k,rk j (14)

and
tk
(
ai,j
)
= ai,j+k. (15)

(Both of these equalities are easily proven by induction over k.) Using (15), it is
easy to see that f ◦ t = tr ◦ f. Thus, we can define a K-algebra homomorphism
Φ :M→ EndN by setting

Φ (F) = f and Φ (T) = t (16)

(where EndN denotes the K-algebra of all K-module endomorphisms of N ).
Consider this Φ. For every i, j ∈N, we have

Φ
(

T jFi
)
= Φ (T)j ◦Φ (F)i = tj ◦ fi (by (16))

and thus

(
Φ
(

T jFi
))

︸ ︷︷ ︸
=tj◦fi

(a0,0) =
(
tj ◦ fi

)
(a0,0) = tj

fi (a0,0)︸ ︷︷ ︸
=ai,0

(by (14))


= tj (ai,0) = ai,j (17)
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(by (15)). Hence, the family
(
T jFi)

i≥0, j≥0 of elements of M is K-linearly inde-

pendent12.
Let us now show that this family spansM. Indeed, letM′ be the K-submodule

ofM spanned by the family
(
T jFi)

i≥0, j≥0. Then, 1 = T0F0 ∈ M′. Moreover, the

K-submoduleM′ satisfies TM′ ⊆M′ (since T · T jFi = T j+1Fi for every i, j ∈N)
and FM′ ⊆M′ (since F · T jFi = FT j︸︷︷︸

=TrjF
(by (13))

Fi = TrjFFi = TrjFi+1 for every i, j ∈N).

Hence,M′ is a leftM-submodule ofM (since the K-algebraM is generated by
F and T) 13. Therefore, M·M′ ⊆ M′. But M =M· 1︸︷︷︸

∈M′
⊆ M ·M′ ⊆ M′.

This shows that the family
(
T jFi)

i≥0, j≥0 spans the K-module M (since the K-
linear span of this family is M′). Since we already know that this family is
K-linearly independent, we can thus conclude that this family is a basis of the
K-moduleM. This proves Proposition 3.1 (b).

(c) Let (e0, e1, e2, . . .) be the standard basis of the left K [T]-module K [T](N).
Define a left K [T]-module homomorphism α : K [T](N) → M by sending each
ei to Fi. Define a K-module homomorphism β : M → K [T](N) by sending
each T jFi to T jei. (This β is well-defined, since Proposition 3.1 (b) shows that(

T jFi)
i≥0, j≥0 is a basis of the K-moduleM.) It is easy to see that β is a left K [T]-

module homomorphism. It is straightforward to see that the homomorphisms α
and β are mutually inverse. Thus, α is a left K [T]-module isomorphism. As a

consequence, the left K [T]-module M has a basis

α (ei)︸ ︷︷ ︸
=Fi


i≥0

=
(

Fi)
i≥0. This

12because any linear dependence relation ∑
i≥0, j≥0

λi,jT jFi = 0 would yield

∑
i≥0, j≥0

λi,j ai,j︸︷︷︸
=(Φ(T j Fi))(a0,0)

(by (17))

= ∑
i≥0, j≥0

λi,j

(
Φ
(

T jFi
))

(a0,0)

=

Φ

 ∑
i≥0, j≥0

λi,jT jFi

︸ ︷︷ ︸
=0


 (a0,0) = 0,

which would lead to
(
λi,j
)

i≥0, j≥0 = (0)i≥0, j≥0 since the family
(
ai,j
)

i≥0, j≥0 is linearly inde-
pendent

13This argument in more detail:
The K-algebra M is generated by F and T. From this, it is easy to derive the following

fact: If V is an K-vector subspace of some leftM-module U satisfying FV ⊆ V and TV ⊆ V ,
then V is a leftM-submodule of U . Applying this to U =M and V =M′, we conclude that
M′ is a leftM-submodule ofM (since FM′ ⊆M′ and TM′ ⊆M′).
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proves Proposition 3.1 (c).
(d) For every integer u and every positive integer v, we let u%v denote the

remainder of u when divided by v, and we let u//v denote the quotient of u
when divided by v with remainder. Thus, u//v ∈ Z, u%v ∈ {0, 1, . . . , v− 1}
and u = (u//v) v + u%v.

Let G be the free right K [T]-module with basis
(

gi,j
)

i≥0, 0≤j<ri . Define a right

K [T]-module homomorphism α : G → M by sending each gi,j to T jFi. Define
a K-module homomorphism β : M → G by sending each T jFi to gi,j%ri T j//ri

.
(This β is well-defined, since Proposition 3.1 (b) shows that

(
T jFi)

i≥0, j≥0 is a
basis of the K-module M.) It is easy to see that the homomorphisms α and β
are mutually inverse14. Thus, α is a right K [T]-module isomorphism. Since the

14Proof. We need to show that α ◦ β = id and β ◦ α = id.
To prove that α ◦ β = id, we need to show that (α ◦ β)

(
T jFi) = T jFi for every i, j ∈ N. So

let us fix i, j ∈N. Then,

(α ◦ β)
(

T jFi
)
= α

 β
(

T jFi
)

︸ ︷︷ ︸
=gi,j%ri T j//ri

 = α
(

gi,j%ri T j//ri
)
= α

(
gi,j%ri

)
︸ ︷︷ ︸
=T j%ri

Fi
(by the definition of α)

T j//ri

(since α is a right K [T] -module homomorphism)

= T j%ri
FiT j//ri︸ ︷︷ ︸

=Tri(j//ri)Fi
(by Proposition 3.1 (a),

applied to a=i and b=j//ri)

= T j%ri
Tri(j//ri)︸ ︷︷ ︸

=T j%ri+ri(j//ri)=T j

(since j%ri+ri(j//ri)=(j//ri)ri+j%ri=j)

Fi = T jFi,

which is what we wanted to prove.
Thus, α ◦ β = id is proven. It remains to prove that β ◦ α = id.
We know that G is spanned by

(
gi,j
)

i≥0, 0≤j<ri as a right K [T]-module (by the definition of

G). Hence, G is spanned by
(

gi,jTk
)

i≥0, 0≤j<ri , k≥0
as a K-module. Hence, in order to prove

that β ◦ α = id, it suffices to show that (β ◦ α)
(

gi,jTk
)
= gi,jTk for every i ≥ 0, 0 ≤ j < ri and

k ≥ 0.
So let us fix i ≥ 0, 0 ≤ j < ri and k ≥ 0. The definition of α yields α

(
gi,j
)
= T jFi. But since

α is a right K [T]-module homomorphism, we have

α
(

gi,jTk
)
= α

(
gi,j
)︸ ︷︷ ︸

=T j Fi

Tk = T j FiTk︸︷︷︸
=Trik Fi

(by Proposition 3.1 (a),
applied to a=i and b=k)

= T jTrik︸ ︷︷ ︸
=T j+rik

Fi = T j+rikFi.

Now,

(β ◦ α)
(

gi,jTk
)
= β

α
(

gi,jTk
)

︸ ︷︷ ︸
=T j+rik Fi

 = β
(

T j+rikFi
)
= gi,(j+rik)%ri T(j+rik)//ri

. (18)
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right K [T]-module G has a basis
(

gi,j
)

i≥0, 0≤j<ri , this shows that the right K [T]-

module M has a basis

α
(

gi,j
)︸ ︷︷ ︸

=T jFi


i≥0, 0≤j<ri

=
(
T jFi)

i≥0, 0≤j<ri . This proves

Proposition 3.1 (d).
(e) Let (e0, e1, e2, . . .) be the standard basis of the right K [F]-module K [F](N).

Define a right K [F]-module homomorphism α : K [F](N) → M by sending
each ej to T j. Define a K-module homomorphism β : M → K [T](N) by
sending each T jFi to ejFi. (This β is well-defined, since Proposition 3.1 (b)
shows that

(
T jFi)

i≥0, j≥0 is a basis of the K-module M.) It is easy to see that
β is a right K [F]-module homomorphism. It is straightforward to see that
the homomorphisms α and β are mutually inverse. Thus, α is a right K [F]-
module isomorphism. As a consequence, the right K [F]-moduleM has a basisα

(
ej
)︸ ︷︷ ︸

=T j


j≥0

=
(
T j)

j≥0. This proves Proposition 3.1 (e).

(f) Define a subset B of N2 by (7). Define a map ρ : B ×N → N2 by (8).
Corollary 3.3 shows that ρ is a bijection. Hence, its inverse ρ−1 : N2 → B×N is
well-defined.

Now, let H be the free left K [F]-module with basis
(

h(i,j)
)
(i,j)∈B

. Define a left

K [F]-module homomorphism α : H →M by sending each h(i,j) to T jFi. Define
a K-module homomorphism β :M→H by sending each T jFi to Fkh(u,v), where
((u, v) , k) = ρ−1 (i, j). (This β is well-defined, since Proposition 3.1 (b) shows
that

(
T jFi)

i≥0, j≥0 is a basis of the K-module M.) It is straightforward to see

that the homomorphisms α and β are mutually inverse15. Thus, α is a left K [F]-
module isomorphism. As a consequence, the left K [F]-moduleM has a basisα

(
h(i,j)

)
︸ ︷︷ ︸

=T jFi


(i,j)∈B

=
(

T jFi
)
(i,j)∈B

=
(

T jFi
)

i=0 or r-j

(since B =
{
(i, j) ∈N2 | i = 0 or r - j

}
). This proves Proposition 3.1 (f).

But 0 ≤ j < ri. Hence,
(

j + rik
)

%ri = j and
(

j + rik
)

//ri = k. In view of these two

equalities, (18) rewrites as (β ◦ α)
(

gi,jTk
)
= gi,jTk. This completes our proof of β ◦ α = id.

Thus, we have shown that α and β are mutually inverse.
15Proof. We need to show that α ◦ β = id and β ◦ α = id.

To prove that α ◦ β = id, we need to show that (α ◦ β)
(
T jFi) = T jFi for every i, j ∈ N. So

let us fix i, j ∈ N. Set ((u, v) , k) = ρ−1 (i, j). Then, (i, j) = ρ ((u, v) , k) =
(

u + k, rkv
)

(by the

definition of ρ). In other words, i = u + k and j = rkv.
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(g) Define C and ζ as in Corollary 3.4. In this proof, the ⊗ sign always shall
mean tensor products over K.

Corollary 3.4 shows that the map ζ is a bijection. In other words, the map

C×N×N→N2, ((i, j) , `, k) 7→
(

i + k, rk
(

j + ri`
))

(19)

is a bijection (since this map is the map ζ).
Proposition 3.1 (b) shows that

(
T jFi)

i≥0, j≥0 is a basis of the K-moduleM. We
can reindex this basis using the bijection (19); thus, we conclude that

The definition of β shows that β
(
T jFi) = Fkh(u,v). Now,

(α ◦ β)
(

T jFi
)
= α

β
(

T jFi
)

︸ ︷︷ ︸
=Fkh(u,v)

 = α
(

Fkh(u,v)

)
= Fk α

(
h(u,v)

)
︸ ︷︷ ︸

=Tv Fu
(by the definition of α)

(since α is a left K [F] -module homomorphism)

= FkTv︸ ︷︷ ︸
=Trkv Fk

(by Proposition 3.1 (a),
applied to a=k and b=v)

Fu = Trkv︸︷︷︸
=T j

(since rkv=j)

FkFu︸ ︷︷ ︸
=Fu+k=Fi

(since u+k=i)

= T jFi,

which is what we wanted to prove.
Thus, α ◦ β = id is proven. It thus remains to prove that β ◦ α = id.
We know that H is spanned by

(
h(i,j)

)
(i,j)∈B

as a left K [F]-module (by the definition of H).

Hence, H is spanned by
(

Fkh(i,j)
)
((i,j),k)∈B×N

as a K-module. Hence, in order to prove that

β ◦ α = id, it suffices to show that (β ◦ α)
(

Fkh(i,j)
)
= Fkh(i,j) for every ((i, j) , k) ∈ B×N.

So let us fix ((i, j) , k) ∈ B×N. The definition of α yields α
(

h(i,j)
)
= T jFi. But since α is a

left K [F]-module homomorphism, we have

α
(

Fkh(i,j)
)
= Fk α

(
h(i,j)

)
︸ ︷︷ ︸

=T j Fi

= FkT j︸︷︷︸
=Trk j Fk

(by Proposition 3.1 (a),
applied to a=k and b=j)

Fi = Trk j FkFi︸︷︷︸
=Fk+i

= Trk jFk+i.

On the other hand, the definition of ρ yields ρ ((i, j) , k) =

i + k︸︷︷︸
=k+i

, rk j

 =
(

k + i, rk j
)

, so

that ((i, j) , k) = ρ−1
(

k + i, rk j
)

. Hence, the definition of β yields β
(

Trk jFk+i
)

= Fkh(i,j).
Now,

(β ◦ α)
(

Fkh(i,j)
)
= β

α
(

Fkh(i,j)
)

︸ ︷︷ ︸
=Trk j Fk+i

 = β
(

Trk jFk+i
)
= Fkh(i,j).

This completes our proof of β ◦ α = id. Thus, we have shown that α and β are mutually
inverse.
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(
Trk(j+ri`)Fi+k

)
((i,j),`,k)∈C×N×N

is a basis of the K-moduleM.

Let R be the free K-module with basis
(

r(i,j)
)
(i,j)∈C

. Then,(
r(i,j) ⊗ Fk ⊗ T`

)
((i,j),`,k)∈C×N×N

is a basis of the K-module R ⊗K [F] ⊗K [T]

(since
(

Fk)
k∈N

is a basis of K [F], and since
(
T`
)
`∈N

is a basis of K [T]). Hence,
we can define a K-linear map η : R⊗K [F]⊗K [T]→M by

η
(

r(i,j) ⊗ Fk ⊗ T`
)
= Trk(j+ri`)Fi+k.

Consider this map η. It sends the basis
(

r(i,j) ⊗ Fk ⊗ T`
)
((i,j),`,k)∈C×N×N

of R⊗

K [F] ⊗K [T] to the basis
(

Trk(j+ri`)Fi+k
)
((i,j),`,k)∈C×N×N

of M. Thus, η is an

isomorphism of K-modules.
Now, R⊗K [F]⊗K [T] becomes a left K [F]-module (by having K [F] act on

the tensorand K [F]) and a right K [T]-module (by having K [T] act on the ten-
sorand K [T]). The map η is a left K [F]-module homomorphism16 and a right
K [T]-module homomorphism17. Thus, η is a K [F]-K [T]-bimodule homomor-
phism.

16Proof. It suffices to show that η ( f z) = f η (z) for every f ∈ K [F] and z ∈ R⊗K [F]⊗K [T].
So let us prove this.

Fix f ∈ K [F] and z ∈ R⊗K [F]⊗K [T]. We need to show the equality η ( f z) = f η (z).
Since this equality is K-linear in each of f and z, we can WLOG assume that f belongs to
the basis

(
Fk
)

k∈N
of K [F], and that z belongs to the basis

(
r(i,j) ⊗ Fk ⊗ T`

)
((i,j),`,k)∈C×N×N

of R⊗K [F]⊗K [T]. Assume this. Thus, f = Fp for some p ∈N, and z = r(i,j) ⊗ Fk ⊗ T` for
some ((i, j) , `, k) ∈ C×N×N. Consider these p and ((i, j) , `, k).

From f = Fp and z = r(i,j) ⊗ Fk ⊗ T`, we obtain f z = Fp
(

r(i,j) ⊗ Fk ⊗ T`
)

= r(i,j) ⊗
FpFk︸ ︷︷ ︸
=Fp+k

⊗T` = r(i,j) ⊗ Fp+k ⊗ T`. Hence,

η ( f z) = η
(

r(i,j) ⊗ Fp+k ⊗ T`
)
= Trp+k(j+ri`)Fi+p+k

(by the definition of η). On the other hand, from z = r(i,j) ⊗ Fk ⊗ T`, we obtain η (z) =

η
(

r(i,j) ⊗ Fk ⊗ T`
)
= Trk(j+ri`)Fi+k, so that

f︸︷︷︸
=Fp

η (z)︸︷︷︸
=Trk(j+ri`)Fi+k

= FpTrk(j+ri`)︸ ︷︷ ︸
=Trprk(j+ri`)Fp

(by Proposition 3.1 (a),
applied to a=p and b=rk(j+ri`))

Fi+k = Trprk(j+ri`)︸ ︷︷ ︸
=Trp+k(j+ri`)

FpFi+k︸ ︷︷ ︸
=Fp+i+k=Fi+p+k

= Trp+k(j+ri`)Fi+p+k.

Comparing this with η ( f z) = Trp+k(j+ri`)Fi+p+k, we obtain η ( f z) = f η (z), qed.
17Proof. It suffices to show that η (zt) = η (z) t for every t ∈ K [T] and z ∈ R⊗K [F]⊗K [T]. So

let us prove this.
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Now, recall that
(

r(i,j)
)
(i,j)∈C

is a basis of the free K-module R. Hence, R =⊕
(i,j)∈C r(i,j)K. Since direct sums commute with tensor products, this yields

R⊗K [F]⊗K [T] =
⊕

(i,j)∈C

r(i,j)K⊗K [F]⊗K [T]︸ ︷︷ ︸
=K[F]·(r(i,j)⊗F0⊗T0)·K[T]

(this follows easily from the definition of the
K[F]-K[T]-bimodule structure on R⊗K[F]⊗K[T])

=
⊕

(i,j)∈C

K [F] ·
(

r(i,j) ⊗ F0 ⊗ T0
)
·K [T] .

We can apply the map η to this equality. The left hand side becomes M (since
η is an isomorphism of K-modules), and the direct sum on the right hand side

Fix t ∈ K [T] and z ∈ R ⊗K [F] ⊗K [T]. We need to show the equality η (zt) = η (z) t.
Since this equality is K-linear in each of t and z, we can WLOG assume that t belongs to the

basis
(

T`
)
`∈N

of K [T], and that z belongs to the basis
(

r(i,j) ⊗ Fk ⊗ T`
)
((i,j),`,k)∈C×N×N

of

R⊗K [F]⊗K [T]. Assume this. Thus, t = Tp for some p ∈ N, and z = r(i,j) ⊗ Fk ⊗ T` for
some ((i, j) , `, k) ∈ C×N×N. Consider these p and ((i, j) , `, k).

From t = Tp and z = r(i,j) ⊗ Fk ⊗ T`, we obtain zt =
(

r(i,j) ⊗ Fk ⊗ T`
)

Tp = r(i,j) ⊗ Fk ⊗
T`Tp︸ ︷︷ ︸
=T`+p

= r(i,j) ⊗ Fk ⊗ T`+p. Hence,

η (zt) = η
(

r(i,j) ⊗ Fk ⊗ T`+p
)
= Trk(j+ri(`+p))Fi+k

(by the definition of η). On the other hand, from z = r(i,j) ⊗ Fk ⊗ T`, we obtain η (z) =

η
(

r(i,j) ⊗ Fk ⊗ T`
)
= Trk(j+ri`)Fi+k, so that

η (z)︸︷︷︸
=Trk(j+ri`)Fi+k

t︸︷︷︸
=Tp

= Trk(j+ri`) Fi+kTp︸ ︷︷ ︸
=Tri+k p Fi+k

(by Proposition 3.1 (a),
applied to a=i+k and b=p)

= Trk(j+ri`)Tri+k p︸ ︷︷ ︸
=Trk(j+ri`)+ri+k p

=Trk(j+ri(`+p))
(since

rk(j+ri`)+ri+k p=rk(j+ri(`+p)))

Fi+k

= Trk(j+ri(`+p))Fi+k.

Comparing this with η (zt) = Trk(j+ri(`+p))Fi+k, we obtain η (zt) = η (z) t, qed.
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remains direct (for the same reason). Hence, we obtain

M =
⊕

(i,j)∈C

η
(

K [F] ·
(

r(i,j) ⊗ F0 ⊗ T0
)
·K [T]

)
︸ ︷︷ ︸

=K[F]·η(r(i,j)⊗F0⊗T0)·K[T]
(since η is a K[F]-K[T]-bimodule homomorphism)

=
⊕

(i,j)∈C

K [F] · η
(

r(i,j) ⊗ F0 ⊗ T0
)

︸ ︷︷ ︸
=Tr0(j+ri0)Fi+0

(by the definition of η)

·K [T]

=
⊕

(i,j)∈C︸ ︷︷ ︸
=

⊕
(i,j)∈N2;

(i=0 or r-j) and 0≤j<ri

K [F] · Tr0(j+ri0)︸ ︷︷ ︸
=T j

Fi+0︸︷︷︸
=Fi

·K [T]

=
⊕

(i,j)∈N2;
(i=0 or r-j) and 0≤j<ri

K [F] ·
(

T jFi
)
·K [T] .

It remains to show that each K [F] ·
(
T jFi) ·K [T] is isomorphic to K [F]⊗K [T]

as an K [F]-K [T]-bimodule. This follows from η being an isomorphism (the
details are left to the reader). Thus, Proposition 3.1 (g) is proven.

3.2. The skew polynomial ring F
Now, let us return to the setup of polynomials over Fq.

We are still using the notations of Section 1. In particular, q is a (nontrivial)
power of a prime p.

For every commutative Fq-algebra A, we let FrobA : A→ A be the map which
sends every a ∈ A to aq. This map FrobA is called the Frobenius endomorphism
of A. It is well-known that FrobA is an Fq-algebra homomorphism18. We will
often denote the Fq-algebra homomorphism FrobA by Frob when no confusion
can arise from the omission of A. A rather important particular case is the
endomorphism Frob = FrobFq[T] of the commutative Fq-algebra Fq [T].

We let F be the Fq-algebra Fq 〈F, T | FT = TqF〉. We can immediately define
the following Fq-algebra homomorphisms (whose well-definedness is easy to
check using the universal properties of their domains):

• We define an Fq-algebra homomorphism FincF : Fq [F]→ F by FincF (F) =
F. Thus, FincF (p) = p (F) for every p ∈ Fq [F] (where p (F) means the
result of substituting F into the polynomial p).

18This follows from the fact that (λa)q = λq︸︷︷︸
=λ

(since λ∈Fq)

aq = λaq for every a ∈ A and λ ∈ Fq, and

the fact that (a + b)q = aq + bq for every a, b ∈ A.
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• We define an Fq-algebra homomorphism FincT : Fq [T]→ F by FincT (T) =
T. Thus, FincT (p) = p (T) for every p ∈ Fq [T] (where p (T) means the re-
sult of substituting T into the polynomial p).

• We define an Fq-algebra homomorphism Carl : Fq [T] → F by Carl (T) =
F + T. Thus, Carl (p) = p (F + T) for every p ∈ Fq [T] (where p (F + T)
means the result of substituting F + T into the polynomial p).

Furthermore, recall that F is the Fq-algebra Fq 〈F, T | FT = TqF〉. Thus, F
has the following universal property: If u and v are two elements of an Fq-
algebra U satisfying uv = vqu, then there exists a unique Fq-algebra homomor-
phism F → U sending F and T to u and v, respectively. This allows us to define
Fq-algebra homomorphisms out of F , such as the following:

• We define an Fq-algebra homomorphism FproF : F → Fq [F] by FproF (F) =
F and FproF (T) = 0. It is easy to see that FproF ◦ FincF = id. Hence, the
Fq-algebra homomorphism FincF is injective. Thus, we shall regard FincF
as an inclusion, so that Fq [F] ⊆ F . (Notice that this does not make F into
an Fq [F]-algebra, since Fq [F] is not contained in the center of F .)

• We define an Fq-algebra homomorphism FproT : F → Fq [T] by FproT (F) =
0 and FproT (T) = T. It is easy to see that FproT ◦ FincT = id. Hence, the
Fq-algebra homomorphism FincT is injective. Thus, we shall regard FincT
as an inclusion, so that Fq [T] ⊆ F . (Notice that this does not make F into
an Fq [T]-algebra, since Fq [T] is not contained in the center of F .)

• For every a ∈ Fq and b ∈ Fq, we define an Fq-algebra homomorphism
Fscala,b : F → F by Fscala,b (F) = aF and Fscala,b (T) = bT. (This is well-
defined, since (aF) (bT) = (bT)q (aF).) If a and b are nonzero, then Fscala,b
is invertible (with inverse Fscala−1,b−1).

Now, we shall derive some structural properties of F straight from Proposition
3.1:

Proposition 3.5. The homomorphisms FincT and FincF make F into a left
Fq [T]-module, a right Fq [T]-module, a left Fq [F]-module, and a right Fq [F]-
module. Any of these two left module structures can be combined with any of
these two right module structures to form a bimodule structure on F (for ex-
ample, the left Fq [T]-module structure and the right Fq [F]-module structure
on F can be combined to form an Fq [T]-Fq [F]-bimodule structure on F ).

(a) We have FaTb = TqabFa in F for every a ∈N and b ∈N.
(b) The Fq-module F is free with basis

(
T jFi)

i≥0, j≥0.

(c) As left Fq [T]-module, F is free with basis
(

Fi)
i≥0.

(d) As right Fq [T]-module, F is free with basis
(
T jFi)

i≥0, 0≤j<qi .

(e) As right Fq [F]-module, F is free with basis
(
T j)

j≥0.
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(f) As left Fq [F]-module, F is free with basis
(
T jFi)

i=0 or q-j.

(g) As Fq [F]-Fq [T]-bimodule, F is free with basis
(
T jFi)

(i=0 or q-j) and 0≤j<qi

(that is, we have F =
⊕

(i,j)∈N2;
(i=0 or q-j) and 0≤j<qi

Fq [F] ·
(
T jFi) ·Fq [T], and each Fq [F] ·

(
T jFi) · Fq [T] is isomorphic to Fq [F] ⊗ Fq [T] as an Fq [F]-Fq [T]-bimodule,

where the tensor product is taken over Fq).

Proof of Proposition 3.5. Proposition 3.5 follows immediately from Proposition 3.1
by setting K = Fq and r = q.

One simple identity in F is the following:

Proposition 3.6. Let P ∈ Fq [T]. Then, FP = PqF in F .

Proof of Proposition 3.6. We are going to prove that FP = (Frob P) F. Since both
sides of this equality are Fq-linear in P (because Frob is an Fq-linear map), we
can WLOG assume that P belongs to the basis

(
Ti)

i≥0 of the Fq-vector space
Fq [T]. Assume this. Thus, P = Ti for some i ∈ N. Consider this i. The

definition of Frob yields Frob P =

 P︸︷︷︸
=Ti

q

=
(
Ti)q

= Tqi.

Now, F︸︷︷︸
=F1

P︸︷︷︸
=Ti

= F1Ti = Tq1iF1 (by Proposition 3.5 (a)), so that FP = Tq1i︸︷︷︸
=Tqi=Frob P

F1︸︷︷︸
=F

=

(Frob P) F.
Thus, FP = (Frob P) F is proven. Hence, FP = (Frob P)︸ ︷︷ ︸

=Pq

F = PqF. This proves

Proposition 3.6.

Corollary 3.7. Let P ∈ Fq [T]. Then, F · P · F ⊆ P · F .

Proof of Corollary 3.7. We first claim that

FiP ∈ P · F for every i ∈N. (20)

Proof of (20): We shall prove (20) by induction on i.
The induction base (i.e., the case i = 0) is trivial.
For the induction step, we fix an n ∈ N, and we assume that (20) holds for

i = n. We then must prove that (20) holds for i = n + 1.
By assumption, (20) holds for i = n. In other words, FnP ∈ P · F . Now,

Fn+1︸︷︷︸
=FFn

P = F FnP︸︷︷︸
∈P·F

∈ FP︸︷︷︸
=PqF

(by Proposition 3.6)

·F = Pq︸︷︷︸
=PPq−1

F · F

= P Pq−1F · F︸ ︷︷ ︸
⊆F

⊆ P · F .
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In other words, (20) holds for i = n+ 1. This completes the induction step. Thus,
(20) is proven.

Recall that
(
T jFi)

i≥0, j≥0 is a basis of the Fq-module F (by Proposition 3.5 (b)).
Now, we shall prove that

uP ∈ P · F for every u ∈ F . (21)

Proof of (21): Let u ∈ F . We must prove the equality (21). Since this equality is
Fq-linear in u, we can WLOG assume that u belongs to the basis

(
T jFi)

i≥0, j≥0 of

the Fq-module F . Assume this. Thus, u = T jFi for some (i, j) ∈ N2. Consider
this (i, j). Now,

u︸︷︷︸
=T jFi

P = T j FiP︸︷︷︸
∈P·F

(by (20))

∈ T jP︸︷︷︸
=PT j

(since P and T j both
lie in Fq[T])

·F = P T j · F︸ ︷︷ ︸
⊆F

⊆ P · F .

This proves (21).
Now, (21) immediately yields F · P ⊆ P · F . Hence, F · P︸ ︷︷ ︸

⊆P·F
·F ⊆ P · F · F︸ ︷︷ ︸

⊆F
⊆

P · F . This proves Corollary 3.7.

3.3. q-polynomials

Next, we shall see an alternative description of the Fq-algebra F . We begin with
a general definition:

Definition 3.8. Let A be a commutative Fq-algebra. A polynomial in A [X]
is said to be a q-polynomial if it is an A-linear combination of the monomials
Xq0

, Xq1
, Xq2

, . . .. We let A [X]q−lin be the set of all q-polynomials in A [X].
Thus, A [X]q−lin is an A-submodule of A [X]; as an A-submodule, it has basis(

Xq0
, Xq1

, Xq2
, . . .

)
.

Thus, a polynomial in A [X] belongs to A [X]q−lin if and only if the only mono-

mials it contains are (some of) the monomials Xq0
, Xq1

, Xq2
, . . ..

The A-submodule A [X]q−lin of A [X] is not a subring of A [X] (unless A =

0). However, it is closed under a different operation: namely, composition of
polynomials. Let us see this in more detail:

Definition 3.9. Let A be a commutative ring. Let f ∈ A [X] and g ∈ A [X].
Then, f ◦ g denotes the polynomial f (g) ∈ A [X]. (This is the polynomial
obtained from f by substituting g for X.) This defines a binary operation ◦ on
the set A [X].
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Proposition 3.10. Let A be a commutative ring.
(a) The pair (A [X] , ◦) is a monoid with neutral element X.
(b) Assume that A is a commutative Fq-algebra. Then, A [X]q−lin is a sub-

monoid of the monoid (A [X] , ◦). Moreover,
(

A [X]q−lin ,+, ◦
)

is a (noncom-
mutative) Fq-algebra with unity X (where the Fq-module structure is the one
obtained by restricting the A [X]-module structure to Fq).

Proof of Proposition 3.10. (a) If B is any commutative A-algebra, and if b ∈ B is
any element, then there exists a unique A-algebra homomorphism ϕ : A [X]→ B
satisfying ϕ (X) = b. 19 We shall denote this homomorphism ϕ by evb. It has
the property that

evb ( f ) = f (b) for every f ∈ A [X] . (22)

Now, every f , g ∈ A [X] satisfy

evg ( f ) = f (g) (by (22), applied to B = A [X] and b = g)
= f ◦ g (since f ◦ g = f (g)) . (23)

Let f , g, h ∈ A [X]. Then, (23) yields evg ( f ) = f ◦ g. Furthermore, (23) (ap-
plied to f ◦ g and h instead of f and g) yields evh ( f ◦ g) = ( f ◦ g) ◦ h. But
(23) (applied to g and h instead of f and g) yields evh (g) = g ◦ h. Finally, (23)
(applied to g ◦ h instead of g) yields evg◦h ( f ) = f ◦ (g ◦ h).

The defining property of evg◦h yields evg◦h (X) = g ◦ h. But the defining
property of evg yields evg (X) = g. Now,

(
evh ◦ evg

)
(X) = evh

evg (X)︸ ︷︷ ︸
=g

 = evh (g) = g ◦ h.

Comparing this with evg◦h (X) = g ◦ h, we obtain
(
evh ◦ evg

)
(X) = evg◦h (X).

The two maps evh ◦ evg and evg◦h thus agree on the generator X of the A-algebra
A [X]. Since these two maps are A-algebra homomorphisms (because evh, evg
and evg◦h are A-algebra homomorphisms), this shows that these two maps are
equal. In other words, evh ◦ evg = evg◦h. Hence,

(
evh ◦ evg

)︸ ︷︷ ︸
=evg◦h

( f ) = evg◦h ( f ) =

f ◦ (g ◦ h). Thus,

f ◦ (g ◦ h) =
(
evh ◦ evg

)
( f ) = evh

evg ( f )︸ ︷︷ ︸
= f ◦g

 = evh ( f ◦ g) = ( f ◦ g) ◦ h.

19This is simply the universal property of the polynomial ring A [X].
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Now, let us forget that we fixed f , g, h. We thus have shown that f ◦ (g ◦ h) =
( f ◦ g) ◦ h for every f , g, h ∈ A [X]. Thus, (A [X] , ◦) is a semigroup. Furthermore,
X is a neutral element of this semigroup (since every f ∈ A [X] satisfies X ◦ f =
X ( f ) = f and f ◦ X = f (X) = f ). Therefore, this semigroup (A [X] , ◦) is a
monoid with neutral element X. This proves Proposition 3.10 (a).

(b) Step 1: Let End (A [X]) denote the Fq-algebra of all endomorphisms of
the Fq-vector space A [X]. It is easy to see that Frob = FrobA[X] ∈ End (A [X]).
Hence, Frobn ∈ End (A [X]) for every n ∈ N. It is straightforward to see (by
induction over n) that

Frobn ( f ) = f qn
for every f ∈ A [X] and n ∈N. (24)

It is easy to see that
Frob

(
A [X]q−lin

)
⊆ A [X]q−lin (25)

20. Using this fact, it is straightforward to see (by induction over n) that

Frobn
(

A [X]q−lin

)
⊆ A [X]q−lin for every n ∈N. (26)

Step 2: Now, let us prove that

f ◦ (λ1g1 + λ2g2) = λ1 ( f ◦ g1) + λ2 ( f ◦ g2) (27)

for every f ∈ A [X]q−lin, g1 ∈ A [X], g2 ∈ A [X], λ1 ∈ Fq and λ2 ∈ Fq.
Proof of (27): Let f ∈ A [X]q−lin.

20Proof of (25): Let g ∈ A [X]q−lin. We shall prove that Frob g ∈ A [X]q−lin.

Indeed, g ∈ A [X]q−lin. Thus, g is an A-linear combination of
(

Xq0
, Xq1

, Xq2
, . . .

)
(since the

A-module A [X]q−lin has basis
(

Xq0
, Xq1

, Xq2
, . . .

)
). In other words, there exists a sequence

(a0, a1, a2, . . .) ∈ AN of elements of A such that g = ∑
n∈N

anXqn
, and such that all but finitely

many n ∈N satisfy an = 0. Consider this sequence.
Applying the map Frob to the equality g = ∑

n∈N

anXqn
, we obtain

Frob g = Frob

(
∑

n∈N

anXqn

)
= ∑

n∈N

Frob
(

anXqn
)

︸ ︷︷ ︸
=(anXqn)

q
=aq

n(Xqn)
q

(
since the map Frob is Fq-linear

)

= ∑
n∈N

aq
n

(
Xqn

)q

︸ ︷︷ ︸
=Xqnq=Xqn+1∈A[X]q−lin

∈ ∑
n∈N

aq
n A [X]q−lin ⊆ A [X]q−lin

(since A [X]q−lin is an A-module).
Now, let us forget that we fixed g. We thus have proven that Frob g ∈ A [X]q−lin for every

g ∈ A [X]q−lin. In other words, Frob
(

A [X]q−lin

)
⊆ A [X]q−lin. This proves (25).
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We have f ∈ A [X]q−lin. Thus, f is an A-linear combination of
(

Xq0
, Xq1

, Xq2
, . . .

)
(since the A-module A [X]q−lin has basis

(
Xq0

, Xq1
, Xq2

, . . .
)

). In other words,

there exists a sequence (a0, a1, a2, . . .) ∈ AN of elements of A such that f =
∑

n∈N

anXqn
, and such that all but finitely many n ∈ N satisfy an = 0. Consider

this sequence.
Let f̂ denote the element ∑

n∈N

an Frobn of End (A [X]). (This is well-defined,

since Frobn ∈ End (A [X]) for every n ∈N.) Now, every h ∈ A [X] satisfies

f ◦ h = f̂ (h) (28)

21.
Now, let g1 ∈ A [X], g2 ∈ A [X], λ1 ∈ Fq and λ2 ∈ Fq. Applying (28) to

h = λ1g1 + λ2g2, we obtain

f ◦ (λ1g1 + λ2g2) = f̂ (λ1g1 + λ2g2) = λ1 f̂ (g1) + λ2 f̂ (g2)

(since f̂ ∈ End (A [X])). Comparing this with

λ1 ( f ◦ g1)︸ ︷︷ ︸
= f̂ (g1)
(by (28))

+λ2 ( f ◦ g2)︸ ︷︷ ︸
= f̂ (g2)
(by (28))

= λ1 f̂ (g1) + λ2 f̂ (g2) ,

we obtain f ◦ (λ1g1 + λ2g2) = λ1 ( f ◦ g1) + λ2 ( f ◦ g2). Thus, (27) is proven.
Step 3: Furthermore, we have

(λ1 f1 + λ2 f2) ◦ g = λ1 ( f1 ◦ g) + λ2 ( f2 ◦ g) (29)

for every f1 ∈ A [X], f2 ∈ A [X], g ∈ A [X], λ1 ∈ Fq and λ2 ∈ Fq.
Proof of (29): Let f1 ∈ A [X], f2 ∈ A [X], g ∈ A [X], λ1 ∈ Fq and λ2 ∈ Fq. Then,

(λ1 f1 + λ2 f2) ◦ g = (λ1 f1 + λ2 f2) (g) = λ1 f1 (g) + λ2 f2 (g) .

21Proof of (28): Let h ∈ A [X]. Then,

f ◦ h = f (h) = ∑
n∈N

anhqn

(
since f = ∑

n∈N

anXqn

)
.

Comparing this with

f̂ (h) = ∑
n∈N

an Frobn (h)︸ ︷︷ ︸
=hqn

(by (24), applied to h
instead of f )

(
since f̂ = ∑

n∈N

an Frobn

)

= ∑
n∈N

anhqn
,

this yields f ◦ h = f̂ (h), qed.
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Comparing this with λ1 ( f1 ◦ g)︸ ︷︷ ︸
= f1(g)

+λ2 ( f2 ◦ g)︸ ︷︷ ︸
= f2(g)

= λ1 f1 (g) + λ2 f2 (g), we obtain

(λ1 f1 + λ2 f2) ◦ g = λ1 ( f1 ◦ g) + λ2 ( f2 ◦ g). This proves (29).
Step 4: Now, let us show that

f ◦ g ∈ A [X]q−lin for every f , g ∈ A [X]q−lin . (30)

Proof of (30): Let f , g ∈ A [X]q−lin. Define the sequence (a0, a1, a2, . . .) ∈ AN

and the element f̂ ∈ End (A [X]) as in the proof of (27). Then, (28) holds. Ap-
plying (28) to h = g, we obtain

f ◦ g = f̂ (g) = ∑
n∈N

an Frobn

 g︸︷︷︸
∈A[X]q−lin


(

since f̂ = ∑
n∈N

an Frobn

)

∈ ∑
n∈N

an Frobn
(

A [X]q−lin

)
︸ ︷︷ ︸

⊆A[X]q−lin
(by (26))

⊆ ∑
n∈N

an A [X]q−lin ⊆ A [X]q−lin

(since A [X]q−lin is an A-module). Thus, we have proven (30).
Step 5: We have X = X1 ∈ A [X]q−lin. This, combined with (30), shows that

A [X]q−lin is a submonoid of the monoid (A [X] , ◦). Furthermore, the binary
operation ◦ on A [X]q−lin is Fq-bilinear (by (27) and (29)) and associative (since
(A [X] , ◦) is a monoid) and has neutral element X (since (A [X] , ◦) is a monoid
with neutral element X). Thus,

(
A [X]q−lin ,+, ◦

)
is a (noncommutative) Fq-

algebra with unity X. This concludes the proof of Proposition 3.10 (b).

Definition 3.11. Let A be a commutative ring. Whenever f ∈ A [X] and
n ∈ N, we shall use the notation f ◦n for the n-th power of f in the monoid
(A [X] , ◦).

Definition 3.12. Let A be a commutative Fq-algebra. The (noncommutative)

Fq-algebra
(

A [X]q−lin ,+, ◦
)

constructed in Proposition 3.10 (b) will be called
the Ore polynomial ring over A, and simply denoted by A [X]q−lin (since there
are no other Fq-algebra structures on A [X]q−lin that could be confused with
this one).

The connection between these Ore polynomial rings and our F is the follow-
ing:
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Theorem 3.13. Consider the Ore polynomial ring Fq [T] [X]q−lin over Fq [T];

recall that this is the Fq-algebra
(

Fq [T] [X]q−lin ,+, ◦
)

. (Notice that polyno-
mials in Fq [T] [X]q−lin can contain arbitrary powers of T, but the only powers

of X they can contain are Xq0
, Xq1

, Xq2
, . . ..) Define an Fq-algebra homomor-

phism Fqpol : F → Fq [T] [X]q−lin by Fqpol (F) = Xq and Fqpol (T) = TX.
(a) This homomorphism Fqpol is well-defined.
(b) This homomorphism Fqpol is an Fq-algebra isomorphism.
(c) We have Fqpol

(
T jFi) = T jXqi

for every i ∈N and j ∈N.
(d) We have Fqpol t = t · X for every t ∈ Fq [T]. (Here, we regard Fq [T] as

an Fq-subalgebra of F as before. The expression “t · X” means the product of
t ∈ Fq [T] ⊆ Fq [T] [X] with X in Fq [T] [X].)

Proof of Theorem 3.13. For every n ∈N, we have

(TX)◦n = TnX in Fq [T] [X]q−lin . (31)

(This follows by a straightforward induction on n.) Furthermore, for every n ∈
N, we have

(Xq)◦n = Xqn
in Fq [T] [X]q−lin . (32)

(Again, this is easy to prove by induction.)
(a) In Fq [T] [X]q−lin, we have Xq ◦ (TX) = (TX)◦q ◦Xq (indeed, this follows by

comparing Xq ◦ (TX) = Xq (TX) = (TX)q = TqXq and (TX)◦q︸ ︷︷ ︸
=TqX

(by (31), applied to n=q)

◦Xq =

(TqX) ◦ Xq = TqXq). Now, recall that if u and v are two elements of an Fq-
algebra U satisfying uv = vqu, then there exists a unique Fq-algebra homo-
morphism F → U sending F and T to u and v, respectively. Applying this to
U = Fq [T] [X]q−lin, u = Xq and v = TX, we thus conclude that there exists
a unique Fq-algebra homomorphism F → U sending F and T to Xq and TX,
respectively. In other words, the homomorphism Fqpol is well-defined. This
proves Theorem 3.13 (a).

(c) For every i ∈N and j ∈N, we have

Fqpol
(

T jFi
)
=

Fqpol T︸ ︷︷ ︸
=TX

◦j

◦

Fqpol F︸ ︷︷ ︸
=Xq

◦i
(
since Fqpol is an Fq-algebra homomorphism

)
= (TX)◦j︸ ︷︷ ︸

=T jX
(by (31))

◦ (Xq)◦i︸ ︷︷ ︸
=Xqi

(by (32))

=
(

T jX
)
◦ Xqi

= T jXqi
.

This proves Theorem 3.13 (c).
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(b) The Fq [T]-module Fq [T] [X]q−lin has basis
(

Xq0
, Xq1

, Xq2
, . . .

)
=
(

Xqi
)

i≥0
.

Thus, as an Fq-module, it has basis
(

T jXqi
)

i≥0, j≥0
.

On the other hand, Proposition 3.5 (b) says that the Fq-module F is free with
basis

(
T jFi)

i≥0, j≥0.

For every i ∈ N and j ∈ N, we have Fqpol
(
T jFi) = T jXqi

(by Theorem 3.13
(c)). Hence, the Fq-linear map Fqpol sends the basis

(
T jFi)

i≥0, j≥0 of the Fq-

module F to the basis
(

T jXqi
)

i≥0, j≥0
of the Fq-module Fq [T] [X]q−lin. Conse-

quently, Fqpol is an Fq-module isomorphism, thus an Fq-algebra isomorphism.
This proves Theorem 3.13 (b).

(d) Let t ∈ Fq [T]. We must prove the equality Fqpol t = t · X. Since this
equality is clearly Fq-linear in t, we can WLOG assume that t belongs to the
basis

(
T j)

j≥0 of the Fq-module Fq [T]. Assume this. Thus, t = T j for some j ∈N.

Consider this j. We have t = T j = T jF0 in F . Thus, Fqpol t = Fqpol
(
T jF0) =

T jXq0
(by Theorem 3.13 (c), applied to i = 0). Hence, Fqpol t = T j︸︷︷︸

=t

Xq0︸︷︷︸
=X1=X

=

t · X. Thus, Theorem 3.13 (d) is proven.

Theorem 3.13 (b) shows that the Fq-algebra Fq [T] [X]q−lin is isomorphic to F ;
this algebra can thus be regarded as a rather concrete manifestation of F . We
shall make more use of this later.

Let us prove one further simple property of A [X]q−lin (for general A):

Proposition 3.14. Let A be a commutative Fq-algebra. Let f ∈ A [X]q−lin. Let
B be a commutative A-algebra. Then, the map B → B, b 7→ f (b) is Fq-linear.
(It might not be A-linear.)

Proof of Proposition 3.14. Let End B denote the Fq-algebra of all endomorphisms
of the Fq-vector space B. It is easy to see that Frob = FrobB ∈ End B. Hence,
Frobn ∈ End B for every n ∈ N. It is straightforward to see (by induction over
n) that

Frobn (b) = bqn
for every b ∈ B and n ∈N. (33)

We have f ∈ A [X]q−lin. Thus, f is an A-linear combination of
(

Xq0
, Xq1

, Xq2
, . . .

)
(since the A-module A [X]q−lin has basis

(
Xq0

, Xq1
, Xq2

, . . .
)

). In other words,

there exists a sequence (a0, a1, a2, . . .) ∈ AN of elements of A such that f =
∑

n∈N

anXqn
, and such that all but finitely many n ∈ N satisfy an = 0. Consider

this sequence.
Let f̂ denote the element ∑

n∈N

an Frobn of End B. (This is well-defined, since

Frobn ∈ End B for every n ∈N.) Now, every b ∈ B satisfies

f (b) = f̂ (b) (34)
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22. Hence, the map B→ B, b 7→ f (b) equals the map B→ B, b 7→ f̂ (b). But the
latter map is simply the map f̂ ∈ End B, and thus clearly Fq-linear. Hence, the
former map is Fq-linear. Proposition 3.14 is thus proven.

Proposition 3.14 also has a partial converse:

Proposition 3.15. Let A be a commutative Fq-algebra which is an integral
domain. Let f ∈ A [X] be such that, for every commutative A-algebra B, the
map B→ B, b 7→ f (b) is Fq-linear. Then, f ∈ A [X]q−lin.

The proof of Proposition 3.15 can be found in [3, Corollary A.3]; we shall not
give it here, as we shall not use Proposition 3.15. Propositions 3.14 and 3.15 are
the reason why the q-polynomials over A (that is, the elements of A [X]q−lin)
are often called the “Fq-linear polynomials over A”, but we shall not use this
terminology (as it is mildly misleading: it sounds too much like degree-1 poly-
nomials).

3.4. q-polynomials from subspaces

We shall now see a classical way to construct q-polynomials.

Definition 3.16. Let A be a commutative Fq-algebra. For every finite subset V
of A, let fV be the polynomial ∏

v∈V
(X + v) ∈ A [X].

The following result is a consequence of [15, (7.7)] (and also appears in [3,
Theorem A.1 2)] in the particular case when A is an integral domain):

Theorem 3.17. Let A be a commutative Fq-algebra. Let V be a finite Fq-vector
subspace of A. Then, fV is a q-polynomial.

We shall prove Theorem 3.17 following an idea that appears in [15, proof of
(7.15)]; but first, let us slightly generalize it:

22Proof of (34): Let b ∈ B. From f = ∑
n∈N

anXqn
, we obtain f (b) = ∑

n∈N

anbqn
. Comparing this

with

f̂ (b) = ∑
n∈N

an Frobn (b)︸ ︷︷ ︸
=bqn

(by (33))

(
since f̂ = ∑

n∈N

an Frobn

)

= ∑
n∈N

anbqn
,

this yields f (b) = f̂ (b), qed.
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Definition 3.18. Let A be a commutative Fq-algebra. For every finite set V and
every map ϕ : V → A, we let fV,ϕ be the polynomial ∏

v∈V
(X + ϕ (v)) ∈ A [X].

Theorem 3.19. Let A be a commutative Fq-algebra. Let V be a finite Fq-vector
space, and let ϕ : V → A be an Fq-linear map. Then, fV,ϕ is a q-polynomial.

Theorem 3.19 is not significantly more general than Theorem 3.17 (it is easily
derived from the latter), but this little generality helps in proving it. The proof
will need the following lemmas:

Lemma 3.20. Let A be a commutative Fq-algebra. Let V and W be two finite
Fq-vector spaces. Let ϕ : V → A and ψ : W → A be two Fq-linear maps.
Assume that fW,ψ is a q-polynomial. Let h : A → A be an Fq-linear map such
that every a ∈ A satisfies

h (a) = fW,ψ (a) . (35)

Let χ : V ⊕W → A be the Fq-linear map which sends every (v, w) ∈ V ⊕W
to ϕ (v) + ψ (w) ∈ A. Then,

fV⊕W,χ = fV,h◦ϕ ◦ fW,ψ in A [X] .

Proof of Lemma 3.20. The definition of fW,ψ yields

fW,ψ = ∏
v∈W

(X + ψ (v)) = ∏
w∈W

(X + ψ (w)) (36)

(here, we renamed the summation index v as w).
Fix some v ∈ V. If we substitute X + ϕ (v) for X on both sides of (36), then we

obtain
fW,ψ (X + ϕ (v)) = ∏

w∈W
(X + ϕ (v) + ψ (w)) . (37)

We have assumed that fW,ψ is a q-polynomial. In other words, fW,ψ ∈ A [X]q−lin.
Hence, Proposition 3.14 (applied to B = A [X] and f = fW,ψ) shows that the map
A [X] → A [X] , b 7→ fW,ψ (b) is Fq-linear. Hence, fW,ψ (x1 + x2) = fW,ψ (x1) +
fW,ψ (x2) for every x1, x2 ∈ A [X]. Applying this to x1 = X and x2 = ϕ (v), we
obtain

fW,ψ (X + ϕ (v)) = fW,ψ (X)︸ ︷︷ ︸
= fW,ψ

+ fW,ψ (ϕ (v))︸ ︷︷ ︸
=h(ϕ(v))

(because (35) (applied to a=ϕ(v))
yields h(ϕ(v))= fW,ψ(ϕ(v)))

= fW,ψ + h (ϕ (v))︸ ︷︷ ︸
=(h◦ϕ)(v)

= fW,ψ + (h ◦ ϕ) (v) .
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Comparing this with (37), we obtain

∏
w∈W

(X + ϕ (v) + ψ (w)) = fW,ψ + (h ◦ ϕ) (v) . (38)

Let us now forget that we fixed v. We thus have shown proven the equality
(38) for all v ∈ V.

The definition of fV,h◦ϕ yields

fV,h◦ϕ = ∏
v∈V

(X + (h ◦ ϕ) (v)) .

Substituting fW,ψ for X on both sides of this equality, we obtain

fV,h◦ϕ

(
fW,ψ

)
= ∏

v∈V

(
fW,ψ + (h ◦ ϕ) (v)

)
. (39)

The definition of fV⊕W,χ yields

fV⊕W,χ = ∏
v∈V⊕W

(X + χ (v)) = ∏
(v,w)∈V⊕W︸ ︷︷ ︸
= ∏

v∈V
∏

w∈W

X + χ (v, w)︸ ︷︷ ︸
=ϕ(v)+ψ(w)

(by the definition of χ)


(here, we renamed the index v as (v, w) in the product)

= ∏
v∈V

∏
w∈W

(X + ϕ (v) + ψ (w))︸ ︷︷ ︸
= fW,ψ+(h◦ϕ)(v)

(by (38))

= ∏
v∈V

(
fW,ψ + (h ◦ ϕ) (v)

)

= fV,h◦ϕ

(
fW,ψ

)
(by (39))

= fV,h◦ϕ ◦ fW,ψ.

This proves Lemma 3.20.

Lemma 3.21. We have

∏
λ∈Fq

(X− λY) = Xq − XYq−1 (40)

in the polynomial ring Fq [X, Y].

Proof of Lemma 3.21. It is well-known that

∏
λ∈Fq

(X− λ) = Xq − X (41)
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in the polynomial ring Fq [X] 23.
Now, consider the element X/Y in the quotient field Fq (X, Y) of the ring

Fq [X, Y]. Substituting this element X/Y for X in (41), we obtain

∏
λ∈Fq

(X/Y− λ) = (X/Y)q − X/Y.

Multiplying this equality by Yq, we obtain

Yq ∏
λ∈Fq

(X/Y− λ) = Yq ((X/Y)q − X/Y
)
= Xq − XYq−1.

Hence,

Xq − XYq−1 = Yq ∏
λ∈Fq

(X/Y− λ) = ∏
λ∈Fq

(Y (X/Y− λ))︸ ︷︷ ︸
=X−λY

(
since

∣∣Fq
∣∣ = q

)
= ∏

λ∈Fq

(X− λY) .

This proves Lemma 3.21.

23Let us give a proof of (41) for the sake of completeness:
The polynomial ∏

λ∈Fq

(X− λ) is a product of
∣∣Fq
∣∣ = q monic polynomials of degree 1. Thus,

it is a monic polynomial of degree q. Hence, both polynomials ∏
λ∈Fq

(X− λ) and Xq − X

are monic polynomials of degree q. Their difference ∏
λ∈Fq

(X− λ)− (Xq − X) therefore is a

polynomial of degree < q (since the subtraction causes their leading terms to cancel).
On the other hand, every µ ∈ Fq satisfies

∏
λ∈Fq

(µ− λ)

︸ ︷︷ ︸
=0

(since one of the factors of
this product is µ−µ=0)

−

 µq︸︷︷︸
=µ

(since µ∈Fq)

−µ

 = 0− (µ− µ) = 0.

In other words, every µ ∈ Fq is a root of the polynomial ∏
λ∈Fq

(X− λ)− (Xq − X). Hence, the

polynomial ∏
λ∈Fq

(X− λ)− (Xq − X) has at least q roots (since Fq has at least q elements).

But Fq is a field. Hence, any polynomial in Fq [X] whose degree is smaller than its number
of roots must be the zero polynomial. The polynomial ∏

λ∈Fq

(X− λ) − (Xq − X) is such a

polynomial (since its degree is < q, but it has at least q roots), and thus must be the zero
polynomial. In other words, ∏

λ∈Fq

(X− λ) = (Xq − X). This proves (41).
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Lemma 3.22. Let A be a commutative Fq-algebra. Let V be a one-dimensional
Fq-vector space. Let ϕ : V → A be an Fq-linear map. Let e be a nonzero
element of V. Then, fV,ϕ = Xq − (ϕ (e))q−1 X.

Proof of Lemma 3.22. The element −e of V is nonzero (since e is nonzero).
The Fq-vector space V is one-dimensional, and thus any nonzero element of

V forms a basis of V. Thus, −e forms a basis of V (since −e is a nonzero element
of V). In other words, the map Fq → V, λ 7→ λ (−e) is a bijection. Now, the
definition of fV,ϕ yields

fV,ϕ = ∏
v∈V

(X + ϕ (v)) = ∏
λ∈Fq

X + ϕ

λ (−e)︸ ︷︷ ︸
=−λe




(
here, we have substituted λ (−e) for v in the product,

since the map Fq → V, λ 7→ λ (−e) is a bijection

)

= ∏
λ∈Fq

X + ϕ (−λe)︸ ︷︷ ︸
=−λϕ(e)

(since ϕ is Fq-linear)

 = ∏
λ∈Fq

(X− λϕ (e))

= Xq − X (ϕ (e))q−1 (this follows by substituting ϕ (e) for Y in (40))

= Xq − (ϕ (e))q−1 X.

This proves Lemma 3.22.

Proof of Theorem 3.19. We shall prove Theorem 3.19 by induction over dim V:
Induction base: Theorem 3.19 holds in the case when dim V = 0 24. This

completes the induction base.
Induction step: Let N ∈N. Assume (as the induction hypothesis) that Theorem

3.19 holds in the case when dim V = N. We need to show that Theorem 3.19
holds in the case when dim V = N + 1.

Consider the setting of Theorem 3.19, and assume that dim V = N + 1. Thus,
dim V = N + 1 > 0. Hence, V contains a nonzero element e. Consider this e.
Let U be the Fq-vector subspace Fqe of V; thus, dim U = 1 (since e is nonzero).

24Proof. Consider the setting of Theorem 3.19, and assume that dim V = 0. From dim V = 0, we
obtain V = 0. The definition of fV,ϕ yields

fV,ϕ = ∏
v∈V

(X + ϕ (v)) = X + ϕ (0)︸ ︷︷ ︸
=0

(since ϕ is Fq-linear)

(since V = 0)

= X.

Thus, fV,ϕ is a q-polynomial (since X is a q-polynomial). Thus, Theorem 3.19 is proven in the
case when dim V = 0.
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Pick any complement W to the subspace U of V (such a complement exists by
one of the basic theorems of linear algebra). Then, W is an Fq-vector subspace
of V satisfying U ⊕W = V. We shall identify V with the external direct sum
of U and W (that is, we shall identify each element v of V with the unique pair
(u, w) ∈ U ×W satisfying v = u + w). Thus, the Fq-linear map ϕ : V → A can
be regarded as an Fq-linear map ϕ : U ⊕W → A.

Define two Fq-linear maps γ : U → A and ψ : W → A by γ = ϕ |U and
ψ = ϕ |W . Then, the Fq-linear map ϕ : U ⊕W → A sends every (v, w) ∈ U ⊕W
to γ (v) + ψ (w) 25.

From V = U ⊕W, we obtain dim V = dim U + dim W, so that dim W =
dim V︸ ︷︷ ︸
=N+1

−dim U︸ ︷︷ ︸
=1

= N + 1− 1 = N. Thus, (according to the induction hypothesis)

Theorem 3.19 can be applied to W and ψ instead of V and ϕ. As a consequence,
we obtain that fW,ψ is a q-polynomial. In other words, fW,ψ ∈ A [X]q−lin. Thus,
Proposition 3.14 (applied to f = fW,ψ and B = A) shows that the map A →
A, b 7→ fW,ψ (b) is Fq-linear. Let us denote this map by h. Thus, h is the map
A→ A, b 7→ fW,ψ (b), and is Fq-linear. Every a ∈ A satisfies h (a) = fW,ψ (a) (by
the definition of h).

Now, Lemma 3.20 (applied to U, γ and ϕ instead of V, ϕ and χ) shows that
fU⊕W,ϕ = fU,h◦γ ◦ fW,ψ in A [X].

But the Fq-vector space U is one-dimensional (since dim U = 1) and contains
the nonzero vector e (since U = Fqe ⊇ e). Thus, Lemma 3.22 (applied to U and
h ◦ γ instead of V and ϕ) shows that fU,h◦γ = Xq − ((h ◦ γ) (e))q−1 X. This is
clearly a q-polynomial (since ((h ◦ γ) (e))q−1 is just a coefficient in A). In other
words, fU,h◦γ ∈ A [X]q−lin.

Proposition 3.10 (b) shows that A [X]q−lin is a submonoid of the monoid
(A [X] , ◦). Hence, A [X]q−lin is closed under the binary operation ◦. There-
fore, fU,h◦γ ◦ fW,ψ ∈ A [X]q−lin (since fU,h◦γ ∈ A [X]q−lin and fW,ψ ∈ A [X]q−lin).
But V = U ⊕W, so that fV,ϕ = fU⊕W,ϕ = fU,h◦γ ◦ fW,ψ ∈ A [X]q−lin. In other
words, fV,ϕ is a q-polynomial. Thus, Theorem 3.19 is proven in the case when
dim V = N + 1. This completes the induction step.

The proof of Theorem 3.19 is thus complete.

As a consequence of Theorem 3.19, we can remove one unneeded assumption
from Lemma 3.20:

25Proof. Let (v, w) ∈ U ⊕W. We must show that ϕ (v, w) = γ (v) + ψ (w).
We have v ∈ U, and thus γ (v) = ϕ (v) (since γ = ϕ |U). We have w ∈W, and thus ψ (w) =

ϕ (w) (since ψ = ϕ |W). The map ϕ is Fq-linear, and thus ϕ (v + w) = ϕ (v)︸ ︷︷ ︸
=γ(v)

+ ϕ (w)︸ ︷︷ ︸
=ψ(w)

=

γ (v) + ψ (w). But recall that we are identifying (v, w) ∈ U ⊕W with v + w ∈ V. Thus,
ϕ (v, w) = ϕ (v + w) = γ (v) + ψ (w), qed.
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Corollary 3.23. Let A be a commutative Fq-algebra. Let V and W be two Fq-
vector spaces. Let ϕ : V → A and ψ : W → A be two Fq-linear maps. Let
h : A→ A be an Fq-linear map such that every a ∈ A satisfies h (a) = fW,ψ (a).
Let χ : V ⊕W → A be the Fq-linear map which sends every (v, w) ∈ V ⊕W
to ϕ (v) + ψ (w) ∈ A. Then,

fV⊕W,χ = fV,h◦ϕ ◦ fW,ψ in A [X] .

Proof of Corollary 3.23. Theorem 3.19 (applied to W and ψ instead of V and ϕ)
shows that fW,ψ is a q-polynomial. Thus, Lemma 3.20 shows that fV⊕W,χ =
fV,h◦ϕ ◦ fW,ψ in A [X]. This proves Corollary 3.23.

Let us finally derive Theorem 3.17 from Theorem 3.19:

Proof of Theorem 3.17. Let ι be the canonical inclusion map V → A. Thus, ι is
an Fq-linear map. Hence, Theorem 3.19 (applied to ϕ = ι) shows that fV,ι is a
q-polynomial. But the definition of fV,ι shows that

fV,ι = ∏
v∈V

X + ι (v)︸︷︷︸
=v

(since ι is an
inclusion map)

 = ∏
v∈V

(X + v) = fV

(since this is how fV is defined). Thus, fV is a q-polynomial (since fV,ι is a
q-polynomial). This proves Theorem 3.17.

3.5. Further consequences of the Fqpol isomorphism

Let us return to F . We shall now exploit the isomorphism Fqpol to obtain
properties of F .

First, let us recall that if A is any commutative Fq-algebra, then A [X]q−lin is
an A-submodule of A [X]. Applying this to A = Fq [T], we see that

Fq [T] [X]q−lin is an Fq [T] -submodule of Fq [T] [X] . (42)

We shall write this Fq [T]-module structure on the left (i.e., we use it to make
Fq [T] [X]q−lin into a left Fq [T]-module). This left Fq [T]-module structure is
given by plain multiplication inside Fq [T] [X]. It has the following property:

Proposition 3.24. The map Fqpol : F → Fq [T] [X]q−lin is an isomorphism of
left Fq [T]-modules.

49



Function-field analogue for symmetric functions? May 11, 2018

Proof of Proposition 3.24. Proposition 3.5 (b) says that the Fq-module F is free
with basis

(
T jFi)

i≥0, j≥0.
Theorem 3.13 (b) shows that Fqpol is an Fq-algebra isomorphism. Thus, it

remains to prove that Fqpol is a homomorphism of left Fq [T]-modules. In other
words, it remains to prove that Fqpol ( f u) = f Fqpol (u) for every f ∈ Fq [T]
and u ∈ F .

So let f ∈ Fq [T] and u ∈ F . We need to prove the equality Fqpol ( f u) =
f Fqpol (u). This equality is Fq-linear in u. Hence, we can WLOG assume that
u belongs to the basis

(
T jFi)

i≥0, j≥0 of the Fq-module F . Assume this. Thus,

u = T jFi for some i ∈N and j ∈N. Consider these i and j.
We still need to prove the equality Fqpol ( f u) = f Fqpol (u). This equality is

Fq-linear in f . Hence, we can WLOG assume that f belongs to the basis
(
Tk)

k≥0
of the Fq-module Fq [T]. Assume this. Thus, f = Tk for some k ∈ N. Consider
this k.

Multiplying the equalities f = Tk and u = T jFi, we obtain f u = TkT j︸︷︷︸
=Tk+j

Fi =

Tk+jFi. Hence, Fqpol ( f u) = Fqpol
(
Tk+jFi) = Tk+jXqi

(by Theorem 3.13 (c),
applied to k + j instead of j). On the other hand, u = T jFi, so that Fqpol (u) =
Fqpol

(
T jFi) = T jXqi

(by Theorem 3.13 (c)). Multiplying the equalities f = Tk

and Fqpol (u) = T jXqi
, we obtain f Fqpol (u) = TkT j︸︷︷︸

=Tk+j

Xqi
= Tk+jXqi

. Compar-

ing this with Fqpol ( f u) = Tk+jXqi
, we obtain Fqpol ( f u) = f Fqpol (u). As

explained, this completes the proof of Proposition 3.24.

Notice that we can use Proposition 3.24 to recover Proposition 3.5 (c):

Second proof of Proposition 3.5 (c). Proposition 3.24 yields that F ∼= Fq [T] [X]q−lin
as left Fq [T]-modules, via the isomorphism Fqpol. Since the left Fq [T]-module

Fq [T] [X]q−lin has basis
(

Xq0
, Xq1

, Xq2
, . . .

)
, we can therefore conclude that the

left Fq [T]-module F has basis
(

Fqpol−1
(

Xq0
)

, Fqpol−1
(

Xq1
)

, Fqpol−1
(

Xq2
)

, . . .
)

.

Since Fqpol−1
(

Xqi
)
= Fi for every i ∈ N 26, this rewrites as follows: The left

Fq [T]-module F has basis
(

Fi)
i≥0. This proves Proposition 3.5 (c) again.

Let us make some more remarks (in less detail, since these will not be used in
the following):

Proposition 3.24 can be rewritten as follows: If we transport the left Fq [T]-
module structure on F to Fq [T] [X]q−lin via the isomorphism Fqpol : F →

26Proof. Let i ∈ N. Theorem 3.13 (c) (applied to j = 0) yields Fqpol
(
T0Fi) = T0︸︷︷︸

=1

Xqi
= Xqi

.

Thus, Fqpol−1
(

Xqi
)
= T0︸︷︷︸

=1

Fi = Fi, qed.
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Fq [T] [X]q−lin, then we obtain the left Fq [T]-module structure on Fq [T] [X]q−lin
constructed in (42). Of course, we can also use the isomorphism Fqpol to trans-
port all the other module structures from F to Fq [T] [X]q−lin along Fqpol. In
more detail:

From Proposition 3.5, we know that F is a left Fq [T]-module, a right Fq [T]-
module, a left Fq [F]-module, and a right Fq [F]-module. Thus, we have alto-
gether four module structures on F . Using the isomorphism Fqpol : F →
Fq [T] [X]q−lin, we can transport them to Fq [T] [X]q−lin; therefore, Fq [T] [X]q−lin
becomes a left Fq [T]-module, a right Fq [T]-module, a left Fq [F]-module, and
a right Fq [F]-module. As we have already said, the first of these four module
structures is precisely the left Fq [T]-module structure on F constructed in (42).
The other three structures are new. Explicitly, two of them are characterized as
follows:

• If t ∈ Fq [T], then the action of t on the right Fq [T]-module Fq [T] [X]q−lin
sends every m ∈ Fq [T] [X]q−lin to m ◦ Fqpol t︸ ︷︷ ︸

=t·X
(by Theorem 3.13 (d))

= m ◦ (t · X) =

m (t · X) (that is, the result of substituting t · X for X in m).

• If f ∈ Fq [F], then the action of f on the left Fq [F]-module Fq [T] [X]q−lin

sends every m ∈ Fq [T] [X]q−lin to Fqpol f ◦m = f
(

FrobFq[T][X]

)
◦m.

3.6. Frobenius Fq [T]-modules

In the following, “F -module” will always mean “left F -module”, unless stated
otherwise. The following fact is a simple consequence of the definition of F
(specifically, of the fact that F is generated by F and T as an Fq-algebra):

Lemma 3.25. Let M and N be two F -modules. Let f : M→ N be an Fq-linear
map. Assume that

f (Tu) = T f (u) for every u ∈ M.

Assume also that

f (Fu) = F f (u) for every u ∈ M.

Then, f is an F -module homomorphism.

This lemma shall be used tacitly further below; it is the most reasonable way
to prove that a certain map between two F -modules M and N is an F -module
homomorphism, particularly in the case when the F -module structure on at
least one of M and N is defined not explicitly but by providing the actions of F
and T.
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Part of the interest in the Fq-algebra F is due to its category of modules: it can
be described as the category of “Frobenius Fq [T]-modules”, by which we mean
Fq [T]-modules equipped with a “Frobenius map” satisfying a certain rule. Let
us define this in more detail:

Definition 3.26. (a) A Frobenius Fq [T]-module means a pair (M, f), where M is
an Fq [T]-module, and where f : M→ M is an Fq-linear map satisfying

f (Tm) = Tqf (m) for every m ∈ M. (43)

This map f is called the Frobenius map of the Frobenius Fq [T]-module (M, f).
By abuse of notation, we shall often speak of the “Frobenius Fq [T]-module
M” instead of the “Frobenius Fq [T]-module (M, f)”, leaving the Frobenius
map f implicit; in this situation, the Frobenius map f will be denoted by fM.

(b) Let M and N be two Frobenius Fq [T]-modules. Then, a map h : M→ N
is said to be a homomorphism of Frobenius Fq [T]-modules if and only if it is
Fq [T]-linear and “respects the Frobenius maps” (i.e., satisfies fN ◦ h = h ◦ fM).

(c) We let FrobModFq[T] denote the category whose objects are the Frobenius
Fq [T]-modules, and whose morphisms are the homomorphisms of Frobenius
Fq [T]-modules.

It turns out that this category FrobModFq[T] is isomorphic to the category of
F -modules:

Proposition 3.27. Let ModF be the category of all (left) F -modules.
Recall that we are regarding the Fq-algebra homomorphism FincT :

Fq [T]→ F as an inclusion. Thus, Fq [T] is an Fq-subalgebra of F .
(a) Let M be a Frobenius Fq [T]-module. Then, there exists a unique F -

module structure on M which extends the Fq [T]-module structure on M and
satisfies

F ·m = fM (m) for every m ∈ M.

(b) Let N be an F -module. Then, N becomes an Fq [T]-module (since
Fq [T] ⊆ F ). Let f be the action of F ∈ F on N (that is, the Fq-linear map
N → N, n 7→ F · n). Then, (N, f) is a Frobenius Fq [T]-module.

(c) Proposition 3.27 (a) defines a functor from FrobModFq[T] to ModF (be-
cause, to any Frobenius Fq [T]-module M, it assigns an F -module structure
on M, and this assignment can easily be extended to morphisms). Proposi-
tion 3.27 (b) defines a functor from ModF to FrobModFq[T] (because, to any
F -module N, it assigns a Frobenius Fq [T]-module (N, f), and this assignment
can easily be extended to morphisms). These two functors are mutually in-
verse. Thus, the categories FrobModFq[T] and ModF are isomorphic.

Proof of Proposition 3.27. (a) We let End M denote the Fq-algebra of all Fq-module
endomorphisms of M.
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It is clear that there exists at most one F -module structure on M which ex-
tends the Fq [T]-module structure on M and satisfies

F ·m = fM (m) for every m ∈ M (44)

27. It thus remains to prove that there exists at least one such structure. So let
us construct such a structure.

As usual, we abbreviate fM as f.
Let t be the Fq-linear map M → M, m 7→ T · m. Then, for every n ∈ N and

m ∈ M, we have
tn (m) = Tn ·m. (45)

(This is easy to prove by induction over n.)
For every m ∈ M, we have

(f ◦ t) (m) = f

 t (m)︸ ︷︷ ︸
=T·m

(by the definition of t)

 = f (T ·m) = f (Tm) = Tqf (m) (by (43))

= tq (f (m))(
because (45) (applied to q and f (m) instead of n and m)

shows that tq (f (m)) = Tq · f (m) = Tqf (m)

)
= (tq ◦ f) (m) .

Hence, f ◦ t = tq ◦ f.
Now, recall the universal property of F : If u and v are two elements of an

Fq-algebra U satisfying uv = vqu, then there exists a unique Fq-algebra homo-
morphism F → U sending F and T to u and v, respectively. Applying this to
U = End M, u = f and v = t, we conclude that there exists a unique Fq-algebra
homomorphism F → End M sending F and T to f and t, respectively. Let Φ be
this homomorphism. The definition of Φ shows that Φ (F) = f and Φ (T) = t.

We have

(Φ ( f )) (m) = f ·m for every f ∈ Fq [T] and m ∈ M (46)

28. Thus, the F -module structure on M obtained from the map Φ : F → End M
extends the Fq [T]-module structure on M.

27Indeed, the requirement that this structure extends the Fq [T]-module structure on M uniquely
determines how T acts on M. Meanwhile, the requirement (44) uniquely determines how F
acts on M. Thus, the actions of both T and F on M are uniquely determined. But therefore,
the action of any element of F on M is uniquely determined as well (since the Fq-algebra F is
generated by T and F); in other words, the F -module structure on M is uniquely determined,
qed.

28Proof of (45): Let f ∈ Fq [T] and m ∈ M. We have to prove the equality (Φ ( f )) (m) = f ·m. This
equality is Fq-linear in f ; we can therefore WLOG assume that f belongs to the basis (Tn)n≥0
of the Fq-module Fq [T]. Assume this. Hence, f = Tn for some n ∈N. Consider this n. From
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Furthermore, (Φ (F))︸ ︷︷ ︸
=f=fM

(m) = fM (m) for every m ∈ M. Thus, the F -module

structure on M obtained from the map Φ : F → End M satisfies (44).
Hence, there exists at least one F -module structure on M which extends the

Fq [T]-module structure on M and satisfies (44) (namely, the F -module structure
on M obtained from the map Φ : F → End M). This completes the proof of
Proposition 3.27 (a).

(b) We need to show that (N, f) is a Frobenius Fq [T]-module. In other words,
we need to show that N is an Fq [T]-module, that f : N → N is an Fq-linear map,
and that this map f satisfies

f (Tm) = Tqf (m) for every m ∈ N. (47)

The first two of these statements are obvious. It thus remains to prove the
third statement, i.e., to prove that the map f satisfies (47).

So let m ∈ N. The definition of f yields f (m) = Fm and f (Tm) = F · Tm =
FT︸︷︷︸
=TqF

m = Tq Fm︸︷︷︸
=f(m)

= Tqf (m). Thus, (47) is proven. As we have already explained,

this completes the proof of Proposition 3.27 (b).
(c) It is clear that if we apply the functor FrobModFq[T] → ModF first and then

the functor ModF → FrobModFq[T], then we get back to where we started. It
is somewhat less obvious, but still easy, to prove that if we apply the functor
ModF → FrobModFq[T] first and then the functor FrobModFq[T] → ModF , then
we get back to where we started29. Thus, the functors FrobModFq[T] → ModF
and ModF → FrobModFq[T] are mutually inverse. This proves Proposition 3.27
(c).

An ample supply of Frobenius Fq [T]-modules (and thus, F -module) is given
by commutative Fq [T]-algebras and their Frobenius homomorphisms:

Proposition 3.28. (a) If A is a commutative Fq [T]-algebra, then (A, FrobA) is
a Frobenius Fq [T]-module.

(b) If A and B are two commutative Fq [T]-algebras, and if f : A → B is an
Fq [T]-algebra homomorphism, then f is also a homomorphism of Frobenius
Fq [T]-modules from (A, FrobA) to (B, FrobB).

f = Tn, we obtain Φ ( f ) = Φ (Tn) = (Φ (T))n (since Φ is an Fq-algebra homomorphism).
Since Φ (T) = t, this rewrites as Φ ( f ) = tn. Therefore, (Φ ( f ))︸ ︷︷ ︸

=tn

(m) = tn (m) = Tn · m (by

(45)). Hence, (Φ ( f )) (m) = Tn︸︷︷︸
= f

·m = f ·m. This proves (45).

29In order to prove this, it suffices to observe that an F -module structure on a given Fq-vector
space is uniquely determined by the actions of F and T (because the Fq-algebra F is gener-
ated by F and T).
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(c) Proposition 3.28 (a) assigns a Frobenius Fq [T]-module (A, FrobA) to
each commutative Fq [T]-algebra A. This defines a functor from the cate-
gory of commutative Fq [T]-algebras to the category FrobModFq[T] of Frobe-
nius Fq [T]-modules (the action of this functor on morphisms just leaves mor-
phisms unchanged), and thus to the category ModF of F -modules (because
Proposition 3.27 (c) shows that FrobModFq[T]

∼= ModF ). Explicitly, this shows
that every commutative Fq [T]-algebra A canonically becomes an F -module,
and this F -module structure extends the Fq [T]-module structure on A and
has the property that

F ·m = FrobA (m) for every m ∈ A.

Proof of Proposition 3.28. (a) Let A be a commutative Fq [T]-algebra. As we know,
FrobA : A → A is an Fq-algebra homomorphism, and thus an Fq-linear map.
Furthermore, it satisfies

FrobA (Tm) = Tq FrobA (m)

for every m ∈ A 30. Hence, (A, FrobA) is a Frobenius Fq [T]-module (by the
definition of a “Frobenius Fq [T]-module”). This proves Proposition 3.28 (a).

(b) The proof of Proposition 3.28 (b) is straightforward.
(c) Proposition 3.28 (c) follows from what we have proven above. (Specifi-

cally, the statement that the F -module structure on A extends the Fq [T]-module
structure on A and has the property that

F ·m = FrobA (m) for every m ∈ A

is a consequence of Proposition 3.27 (a).)

Restricted Lie algebras (see, e.g., [14]) can be used as another source of Frobe-
nius Fq [T]-modules, provided they can be equipped with an appropriate Fq [T]-
module structure. We are not currently aware of specific examples of interest,
however.

Convention 3.29. Let A be a commutative Fq [T]-algebra. Then, (A, FrobA)
is a Frobenius Fq [T]-module (by Proposition 3.28 (a)), and thus Proposition
3.27 (a) (applied to M = A) defines an F -module structure on A. In the
following, we shall always regard a commutative Fq [T]-algebra A as equipped
with this F -module structure by default. This structure extends the Fq [T]-
module structure on A, and satisfies

F ·m = FrobA (m) = mq (by the definition of FrobA) (48)

for every m ∈ A.
30Proof. Let m ∈ A. Then, the definition of FrobA shows that FrobA (m) = mq and FrobA (Tm) =

(Tm)q = Tq mq︸︷︷︸
=FrobA(m)

= Tq FrobA (m), qed.
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Proposition 3.30. Let A be a commutative Fq [T]-algebra. Then, A is an F -
module (according to Convention 3.29). This F -module structure has the
following property: For every k ∈N and m ∈ A, we have

Fk ·m = mqk
. (49)

Proof of Proposition 3.30. Only (49) needs to be proven.
From (48), we know that

F ·m = mq for every m ∈ A. (50)

Thus,
Fk ·m = mqk

for every m ∈ A and k ∈N. (51)

(Indeed, (51) can be proven by a straightforward induction over k; the induction
step will rely on (50). The details of this proof are left to the reader.)

So we know that (51) holds. In other words, (49) holds. This proves Proposi-
tion 3.30.

Proposition 3.31. The commutative Fq [T]-algebra Fq [T] [X] becomes an F -
module (by Convention 3.29, applied to A = Fq [T] [X]). Let Fqpol denote the
map Fqpol : F → Fq [T] [X]q−lin, considered as a map F → Fq [T] [X] (this
is well-defined because Fq [T] [X]q−lin ⊆ Fq [T] [X]). Then, this map Fqpol :
F → Fq [T] [X] is an F -module homomorphism.

Proof of Proposition 3.31. Proposition 3.24 shows that the map Fqpol : F → Fq [T] [X]q−lin

is an isomorphism of left Fq [T]-modules. Thus, the map Fqpol : F → Fq [T] [X]
(which differs from Fqpol : F → Fq [T] [X]q−lin only in its target) is also a homo-
morphism of left Fq [T]-modules. In other words, Fqpol ( f u) = f Fqpol (u) for
every f ∈ Fq [T] and u ∈ F . Applying this to f = T, we obtain

Fqpol (Tu) = TFqpol (u) for every u ∈ F . (52)

On the other hand, let u ∈ F . Then,

Fqpol (Fu)

= Fqpol (Fu)
(

by the definition of Fqpol
)

= (Fqpol (F))︸ ︷︷ ︸
=Xq

◦ (Fqpol (u))

(
since Fqpol is an Fq-algebra homomorphism F →

(
Fq [T] [X]q−lin ,+, ◦

))
= Xq ◦ (Fqpol (u)) = (Fqpol (u))q .
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Comparing this with

FFqpol (u) = F · Fqpol (u) =

 Fqpol (u)︸ ︷︷ ︸
=Fqpol(u)

(by the definition of Fqpol)


q

(
by (48), applied to A = Fq [T] [X] and m = Fqpol (u)

)
= (Fqpol (u))q ,

we obtain Fqpol (Fu) = FFqpol (u). Let us now forget that we fixed u. We thus
have shown that

Fqpol (Fu) = FFqpol (u) for every u ∈ F . (53)

Now, Lemma 3.25 (applied to M = F , N = Fq [T] [X] and f = Fqpol) shows that
Fqpol is an F -module homomorphism (because of (52) and (53)). This proves
Proposition 3.31.

3.7. The Carlitz action

Now, let us recall the Carlitz polynomials [M] defined in Definition 1.1. We can
connect these polynomials to F in the following way31:

Proposition 3.32. Let A be a commutative Fq [T]-algebra. Thus, A becomes
an F -module (by Convention 3.29).

For every M ∈ Fq [T] and a ∈ A, we have [M] (a) = (Carl M) · a. (Here, the
[M] (a) on the left hand side means the result of substituting a for X in the
polynomial [M] ∈ Fq [T] [X], whereas the (Carl M) · a on the right hand side
denotes the action of Carl M ∈ F on a ∈ A.)

Proof of Proposition 3.32. We first claim that

[Tn] (a) = (F + T)n a for every n ∈N and a ∈ A. (54)

Proof of (54): We shall prove (54) by induction over n:
Induction base: We have

[
T0] = X, thus

[
T0] (a) = X (a) = a. Comparing this

with (F + T)0︸ ︷︷ ︸
=1

a = a, we obtain
[
T0] (a) = (F + T)0 a. In other words, (54) holds

for n = 0. This completes the induction base.
Induction step: Fix a positive integer N. Assume that (54) holds for n = N − 1.

We now need to show that (54) holds for n = N.

31Recall that Carl is the Fq-algebra homomorphism Fq [T]→ F sending T to F + T.
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We have assumed that (54) holds for n = N − 1. In other words, we have[
TN−1

]
(a) = (F + T)N−1 a for every a ∈ A. (55)

Now, fix a ∈ A. Applying (48) to m =
[
TN−1] (a), we obtain

F ·
[

TN−1
]
(a) =

([
TN−1

]
(a)
)q

. (56)

The recursive definition of
[
TN] yields

[
TN] = [TN−1]q

+ T
[
TN−1]. Hence,[

TN
]
(a) =

([
TN−1

]q
+ T

[
TN−1

])
(a) =

([
TN−1

]
(a)
)q

︸ ︷︷ ︸
=F·[TN−1](a)

+T
[

TN−1
]
(a)

= F ·
[

TN−1
]
(a) + T ·

[
TN−1

]
(a) = (F + T)

[
TN−1

]
(a)︸ ︷︷ ︸

=(F+T)N−1a
(by (55))

= (F + T) (F + T)N−1︸ ︷︷ ︸
=(F+T)N

a = (F + T)N a.

Now, let us forget that we fixed a. We thus have shown that
[
TN] (a) = (F + T)N a

for every a ∈ A. In other words, (54) holds for n = N. This completes the induc-
tion step, and thus (54) is proven.

Now, let M ∈ Fq [T] and a ∈ A. Write the polynomial M in the form M =

a0T0 + a1T1 + · · ·+ akTk for some k ∈N and a0, a1, . . . , ak ∈ Fq. Thus,

M = a0T0 + a1T1 + · · ·+ akTk =
k

∑
n=0

anTn.

The definition of [M] now yields

[M] = a0

[
T0
]
+ a1

[
T1
]
+ · · ·+ ak

[
Tk
]
=

k

∑
n=0

an [Tn] .

Recall that Carl is the Fq-algebra homomorphism Fq [T] → F sending T to
F + T. Thus, Carl T = F + T. The map Carl commutes with applications of
polynomials in Fq [T] (since it is an Fq-algebra homomorphism). Thus,

Carl (M (T)) = M

Carl T︸ ︷︷ ︸
=F+T

 = M (F + T) =
k

∑
n=0

an (F + T)n
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(since M =
k
∑

n=0
anTn). Since M (T) = M, this rewrites as

Carl M =
k

∑
n=0

an (F + T)n .

Hence,

(Carl M) · a =

(
k

∑
n=0

an (F + T)n

)
· a =

k

∑
n=0

an (F + T)n a︸ ︷︷ ︸
=[Tn](a)
(by (54))

=
k

∑
n=0

an [Tn] (a) =

(
k

∑
n=0

an [Tn]

)
︸ ︷︷ ︸

=[M]

(a) = [M] (a) .

This proves Proposition 3.32.

Corollary 3.33. Let M ∈ Fq [T]. Then, the homomorphism Fqpol : F →
Fq [T] [X]q−lin satisfies [M] = Fqpol (Carl M).

Corollary 3.33 yields, in particular, that every M ∈ Fq [T] satisfies [M] =
Fqpol (Carl M) ∈ FqpolF ⊆ Fq [T] [X]q−lin.

Proof of Corollary 3.33. Let M ∈ Fq [T].
Consider the map Fqpol : F → Fq [T] [X] defined in Proposition 3.31. This

map Fqpol is an F -module homomorphism (according to Proposition 3.31).
The definition of Fqpol shows that Fqpol (1) = Fqpol (1) = X (since Fqpol is

an Fq-algebra homomorphism F →
(

Fq [T] [X]q−lin ,+, ◦
)

, and since the unity

of the Fq-algebra
(

Fq [T] [X]q−lin ,+, ◦
)

is X).

But the definition of Fqpol shows that Fqpol (Carl M) = Fqpol (Carl M), so
that

Fqpol (Carl M) = Fqpol

 Carl M︸ ︷︷ ︸
=(Carl M)·1

 = Fqpol ((Carl M) · 1)

= (Carl M) · Fqpol (1)︸ ︷︷ ︸
=X(

since Fqpol is an F -module homomorphism
)

= (Carl M) · X. (57)

On the other hand, Proposition 3.32 (applied to A = Fq [T] [X] and a = X) yields
[M] (X) = (Carl M) · X. Comparing this with (57), we obtain Fqpol (Carl M) =
[M] (X) = [M]. This proves Corollary 3.33.
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3.8. “Fermat’s Little Theorem” for the Carlitz action

Let us first state a simple fact:

Lemma 3.34. Let A be an Fq [T]-algebra which is torsionfree as an Fq [T]-
module. Let f be a nonzero element of Fq [T]. Let u ∈ A [X] be such that
f u ∈ A [X]q−lin. Then, u ∈ A [X]q−lin.

Proof of Lemma 3.34. We have f u ∈ A [X]q−lin. In other words, the polynomial
f u ∈ A [X] is a q-polynomial, that is, an A-linear combination of the monomials
Xq0

, Xq1
, Xq2

, . . .. In other words, for every k ∈N \
{

q0, q1, q2, . . .
}

, we have(
the Xk-coefficient of f u

)
= 0. (58)

Now, for every k ∈N \
{

q0, q1, q2, . . .
}

, we have

f ·
(

the Xk-coefficient of u
)
=
(

the Xk-coefficient of f u
)
= 0

(by (58)), and thus
(
the Xk-coefficient of u

)
= 0 (because f 6= 0, and because

A is torsionfree as an Fq [T]-module). In other words, the polynomial u is an
A-linear combination of the monomials Xq0

, Xq1
, Xq2

, . . .. In other words, u is a
q-polynomial; that is, u ∈ A [X]q−lin. This proves Lemma 3.34.

We now shall prove a crucial fact:

Proposition 3.35. Let π be a monic irreducible polynomial in Fq [T]. Then,
there exists a unique u (π) ∈ F such that Carl π = Fdeg π + π · u (π). (The
notation u (π) means that u depends on π; it is not meant to imply that u (π)
is a polynomial in π.)

The first proof of this proposition will reveal it to be a translation of part of [3,
Theorem 2.11]:

First proof of Proposition 3.35. The left Fq [T]-module F is free (by Proposition 3.5
(c)), and thus torsionfree.

From [3, Theorem 2.11], we know that [π] (X) = Xqdeg π
, where [π] (X) denotes

the projection of [π] (X) = [π] ∈ Fq [T] [X] onto
(
Fq [T] /π

)
[X]. In other words,

[π] (X) ≡ Xqdeg π
mod K, where K is the kernel of the projection Fq [T] [X] →(

Fq [T] /π
)
[X]. Since this kernel K is simply πFq [T] [X], this rewrites as follows:

[π] (X) ≡ Xqdeg π
mod πFq [T] [X].

Thus, [π] = [π] (X) ≡ Xqdeg π
mod πFq [T] [X]. In other words, π | [π]− Xqdeg π

in the ring Fq [T] [X]. Hence,
1
π

(
[π]− Xqdeg π

)
is a well-defined polynomial in
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the ring Fq [T] [X] (since this ring is an integral domain). Let us denote this
polynomial by u.

We have

[π] = Fqpol

Carl π︸ ︷︷ ︸
∈F

 (by Corollary 3.33, applied to M = π)

∈ CarlF ⊆ Fq [T] [X]q−lin .

But u =
1
π

(
[π]− Xqdeg π

)
, so that πu = [π]− Xqdeg π ∈ Fq [T] [X]q−lin (since

both [π] and Xqdeg π
belong to Fq [T] [X]q−lin). Therefore, u ∈ Fq [T] [X]q−lin (by

Lemma 3.34, applied to A = Fq [T] and f = π).
Theorem 3.13 (c) (applied to j = 0 and i = deg π) yields Fqpol

(
T0Fdeg π

)
=

T0︸︷︷︸
=1

Xqdeg π
= Xqdeg π

, so that Xqdeg π
= Fqpol

 T0︸︷︷︸
=1

Fdeg π

 = Fqpol
(

Fdeg π
)
.

Theorem 3.13 (b) shows that the map Fqpol : F → Fq [T] [X]q−lin is an Fq-

algebra isomorphism. Thus, its inverse map Fqpol−1 is well-defined. Set ũ =

Fqpol−1 (u). Thus, ũ ∈ F and Fqpol (ũ) = u.
But Fqpol is an isomorphism of left Fq [T]-modules (according to Proposition

3.24). Hence,

Fqpol (πũ) = π Fqpol (ũ)︸ ︷︷ ︸
=u

= πu = [π]︸︷︷︸
=Fqpol(Carl π)

(by Corollary 3.33,
applied to M=π)

− Xqdeg π︸ ︷︷ ︸
=Fqpol(Fdeg π)

= Fqpol (Carl π)− Fqpol
(

Fdeg π
)
= Fqpol

(
Carl π − Fdeg π

)
(since the map Fqpol is Fq-linear). Since Fqpol is injective (because Fqpol is an
isomorphism), this yields πũ = Carl π − Fdeg π.

Hence, there exists at least one u (π) ∈ F such that π · u (π) = Carl π− Fdeg π

(namely, u (π) = ũ). Moreover, such a u (π) is clearly unique (because any
element u (π) ∈ F is uniquely determined by π · u (π) (since π 6= 0, and since
the left Fq [T]-module F is torsionfree)). Thus, there exists a unique u (π) ∈ F
such that π · u (π) = Carl π − Fdeg π. In other words, there exists a unique
u (π) ∈ F such that Carl π = Fdeg π +π · u (π). This proves Proposition 3.35.

3.9. A second proof of Proposition 3.35

Let us next give another proof of Proposition 3.35, which does not rely on Carlitz
polynomials. This proof is not directly relevant for the rest of this report, but
illustrates some techniques of working with F .

We first state a classical fact:
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Proposition 3.36. Let π be a monic irreducible polynomial in Fq [T]. Let d =
deg π.

Let Fπ denote the field Fq [T] /πFq [T]. This is a field extension of Fq. Let
α ∈ Fπ be the residue class of T ∈ Fq [T] modulo the ideal πFq [T]. Thus,
Fπ = F [α] and π (α) = 0.

(a) The Fq-vector space Fπ has basis
(
α0, α1, . . . , αd−1).

(b) The elements αq0
, αq1

, . . . , αqd−1
are pairwise distinct and are precisely the

roots of π.
(c) We have

π =
d−1

∏
k=0

(
T − αqk

)
in Fπ [T] . (59)

Proof of Proposition 3.36. (a) This is well-known (and holds for any commutative
ring instead of Fq).

(c) Recall that FrobA is an Fq-algebra endomorphism of A whenever A is a
commutative Fq-algebra. Applying this to A = Fπ, we conclude that FrobFπ is
an Fq-algebra endomorphism of Fπ. Denote this Fq-algebra endomorphism by
f . Thus, f = FrobFπ .

We have f = FrobFπ , and thus

f (a) = FrobFπ (a) = aq (by the definition of FrobFπ) (60)

for every a ∈ Fπ. Now,

f k (a) = aqk
for every k ∈N and a ∈ Fπ. (61)

(Indeed, this can be proven by a straightforward induction on k, using (60).)
But Fπ = Fq [T] /πFq [T] is an Fq-vector space of dimension deg π = d.

Hence, |Fπ| =
∣∣Fq
∣∣d = qd (since

∣∣Fq
∣∣ = q). But it is well-known that if L is

a finite field, then every a ∈ L satisfies a|L| = a. Applying this to L = Fπ, we
conclude that every a ∈ Fπ satisfies a|Fπ | = a. Hence,

f d = id (62)

32. Thus, id = f d = f d−1 ◦ f . Hence, the map f is left-invertible, and thus
injective.

32Proof of (62): We have just shown that every a ∈ Fπ satisfies a|Fπ | = a. Now, every a ∈ Fπ

satisfies

f d (a) = aqd
(by (61), applied to k = d)

= a|Fπ |
(

since qd = |Fπ |
)

= a = id (a) .

In other words, f d = id. Qed.
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Every nonzero polynomial g ∈ Fq [T] has at most deg g roots (since Fq is a
field). Applying this to g = π, we conclude that the polynomial π has at most
deg π = d roots.

Now, we notice that

π
(

αqk
)
= 0 for each k ∈ {0, 1, . . . , d− 1} (63)

33. Also,
αqk 6= α for each k ∈ {1, 2, . . . , d− 1} (64)

34. Hence,
the elements αq0

, αq1
, . . . , αqd−1

are pairwise distinct (65)

33Proof of (63): Let k ∈ {0, 1, . . . , d− 1}. Then, (61) (applied to a = α) yields f k (α) = αqk
.

Recall that f is an Fq-algebra endomorphism of Fπ . Thus, f k is an Fq-algebra endomor-
phism of Fπ as well. Hence, f k commutes with polynomials in Fq [T]. In other words,

f k (g (β)) = g
(

f k (β)
)

for every g ∈ Fq [T] and every β ∈ Fπ . Applying this to g = π and

β = α, we obtain f k (π (α)) = π

 f k (α)︸ ︷︷ ︸
=αqk

 = π
(

αqk
)

. Hence, π
(

αqk
)

= f k

π (α)︸ ︷︷ ︸
=0

 =

f k (0) = 0 (since f k is an Fq-algebra endomorphism of Fπ). This proves (63).
34Proof of (64): Let k ∈ {1, 2, . . . , d− 1}. We shall show that αqk 6= α.

Indeed, assume the contrary. Thus, αqk
= α. But (61) (applied to a = α) yields f k (α) =

αqk
= α.

Let x ∈ Fπ . We are going to show that xqk − x = 0.
Indeed, x ∈ Fπ = Fq [α]. Hence, x = h (α) for some polynomial h ∈ Fq [T]. Consider this

h.
Recall that f is an Fq-algebra endomorphism of Fπ . Thus, f k is an Fq-algebra endomor-

phism of Fπ as well. Hence, f k commutes with polynomials in Fq [T]. In other words,

f k (g (β)) = g
(

f k (β)
)

for every g ∈ Fq [T] and every β ∈ Fπ . Applying this to g = h and

β = α, we obtain f k (h (α)) = h

 f k (α)︸ ︷︷ ︸
=α

 = h (α). Since x = h (α), this rewrites as f k (x) = x.

But (61) (applied to a = x) yields f k (x) = xqk
. Hence, xqk

= f k (x) = x, so that xqk − x = 0.
Now, forget that we fixed x. We thus have proven that every x ∈ Fπ satisfies xqk − x = 0.

In other words, every x ∈ Fπ is a root of the polynomial Tqk − T ∈ Fq [T]. Hence, the

polynomial Tqk − T has at least |Fπ | roots. Since |Fπ | = qd > qk (since d > k (because
k ∈ {1, 2, . . . , d− 1})), this shows that the polynomial Tqk − T has > qk roots.

But k > 0, so that the polynomial Tqk − T is a nonzero polynomial of degree
deg

(
Tqk − T

)
= qk. It is well-known that each nonzero polynomial w ∈ Fq [T] has at most

deg w roots (since Fq is a field). Applying this to w = Tqk − T, we conclude that the poly-

nomial Tqk − T has at most deg
(

Tqk − T
)

= qk roots. This contradicts the fact that the

polynomial Tqk − T has > qk roots. This contradiction shows that our assumption was false.
Hence, αqk 6= α is proven, qed.
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35.
Let γ be the polynomial

π −
d−1

∏
k=0

(
T − αqk

)
∈ Fπ [T] .

The polynomial π is monic and has degree deg π = d. The polynomial
d−1
∏

k=0

(
T − αqk

)
is also obviously a monic polynomial of degree d (since it is a

product of d monic polynomials of degree 1). Thus, γ is a difference of two

monic polynomials of degree d (since γ = π −
d−1
∏

k=0

(
T − αqk

)
). Consequently, γ

is a polynomial of degree < d (because the difference of two monic polynomi-
als of degree d must always be a polynomial of degree < d). In other words,
deg γ < d.

Assume (for the sake of contradiction) that γ 6= 0.
Every nonzero polynomial g ∈ Fπ [T] has at most deg g roots (since Fπ is a

field). Applying this to g = γ, we conclude that γ has at most deg γ roots (since
γ 6= 0). Thus, γ has < d roots (since deg γ < d).

But for every ` ∈ {0, 1, . . . , d− 1}, the element αq` of Fπ is a root of γ 36. In
other words, αq0

, αq1
, . . . , αqd−1

are d roots of γ. These d roots are pairwise distinct
(by (65)). Thus, the polynomial γ has at least d roots. This contradicts the fact

35Proof of (65): Assume the contrary. Thus, two of the elements αq0
, αq1

, . . . , αqd−1
are equal. In

other words, there exist two elements i and j of {0, 1, . . . , d− 1} satisfying i < j and αqi
= αqj

.
Consider these i and j.

We have j− i ∈ {1, 2, . . . , d− 1} (since i and j belong to {0, 1, . . . , d− 1} and satisfy i < j).
Hence, (64) (applied to k = j− i) yields αqj−i 6= α. But (61) (applied to a = α and k = j− i)
yields f j−i (α) = αqj−i 6= α.

Applying (61) to a = α and k = i, we obtain f i (α) = αqi
. Applying (61) to a = α and k = j,

we obtain f j (α) = αqj
. Thus, αqj

= f j︸︷︷︸
= f i◦ f j−i

(since i<j)

(α) =
(

f i ◦ f j−i) (α) = f i ( f j−i (α)
)
.

Now, f i (α) = αqi
= αqj

= f i ( f j−i (α)
)
. Since the map f i is injective (because f is injective),

this entails α = f j−i (α) 6= α. This is clearly absurd. This contradiction proves that our
assumption was false. Hence, (65) is proven.

36Proof. Let ` ∈ {0, 1, . . . , d− 1}. From γ = π −
d−1
∏

k=0

(
T − αqk

)
, we obtain

γ
(

αq`
)
= π

(
αq`
)

︸ ︷︷ ︸
=0

(by (63),
applied to k=`)

−
d−1

∏
k=0

(
αq` − αqk

)
︸ ︷︷ ︸

=0
(because one of the factors in this product is αq`−αq`

(namely, the factor for k=`), and this factor is clearly 0)

= 0− 0 = 0.

In other words, the element αq` of Fπ is a root of γ. Qed.

64



Function-field analogue for symmetric functions? May 11, 2018

that γ has < d roots. This contradiction proves that our assumption (that γ 6= 0)

was false. Hence, we have γ = 0. Thus, 0 = γ = π −
d−1
∏

k=0

(
T − αqk

)
, so that

π =
d−1
∏

k=0

(
T − αqk

)
. This proves Proposition 3.36 (c).

(b) The elements αq0
, αq1

, . . . , αqd−1
are pairwise distinct (by (65)) and are pre-

cisely the roots of π (because of (59)). This proves Proposition 3.36 (b).

Here are some more useful lemmas:

Lemma 3.37. Let K be a commutative ring. Let d ∈ N. Let π ∈ K [T] be
a polynomial of degree ≤ d. For each i ∈ N, let πi be the coefficient of Ti

in π. For each k ∈ {0, 1, . . . , d}, define a polynomial pk ∈ K [T] by pk =
d
∑

i=k+1
πiTi−1−k. Then:

(a) We have pd−1 = πd (a constant polynomial) and pd = 0.

(b) We have π (X)− π (Y) = (X−Y)
d−1
∑

i=0
pi (X)Yi in the ring K [X, Y].

Proof of Lemma 3.37. The definition of pd−1 yields

pd−1 =
d

∑
i=(d−1)+1

πiTi−1−(d−1) =
d

∑
i=d

πiTi−1−(d−1) = πd Td−1−(d−1)︸ ︷︷ ︸
=T0=1

= πd.

The definition of pd yields

pd =
d

∑
i=d+1

πiTi−1−d = (empty sum) = 0.

This proves Lemma 3.37 (a).
For every i ∈ {0, 1, . . . , d}, we have

Xi −Yi = (X−Y)
i−1

∑
k=0

XkYi−1−k

︸ ︷︷ ︸
=

i−1
∑
`=0

Xi−1−`Y`

(here, we have substituted `
for i−1−k in the sum)

(by a known formula)

= (X−Y)
i−1

∑
`=0

Xi−1−`Y`. (66)
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We have π =
d
∑

i=0
πiTi (since π is a polynomial of degree ≤ d, and since the πi

are its coefficients). Thus, π (X) =
d
∑

i=0
πiXi and π (Y) =

d
∑

i=0
πiYi. Hence,

π (X)− π (Y) =
d

∑
i=0

πiXi −
d

∑
i=0

πiYi

=
d

∑
i=0

πi

(
Xi −Yi

)
︸ ︷︷ ︸

=(X−Y)
i−1
∑
`=0

Xi−1−`Y`

(by (66))

=
d

∑
i=0

πi · (X−Y)
i−1

∑
`=0

Xi−1−`Y`

= (X−Y)
d

∑
i=0

πi

i−1

∑
`=0

Xi−1−`Y`.

Since
d

∑
i=0

πi

i−1

∑
`=0

Xi−1−`Y` =
d

∑
i=0

i−1

∑
`=0︸ ︷︷ ︸

=
d
∑
`=0

d
∑

i=`+1

πiXi−1−`Y` =
d

∑
`=0

d

∑
i=`+1

πiXi−1−`

︸ ︷︷ ︸
=p`(X)

(since p`=
d
∑

i=`+1
πiTi−1−`

(by the definition of p`) and thus

p`(X)=
d
∑

i=`+1
πiXi−1−`)

Y`

=
d

∑
`=0

p` (X)Y` =
d−1

∑
`=0

p` (X)Y` + pd (X)︸ ︷︷ ︸
=0

(since pd=0)

Yd

=
d−1

∑
`=0

p` (X)Y` =
d−1

∑
i=0

pi (X)Yi

(here, we have renamed the summation index ` as i) ,

this rewrites as π (X)− π (Y) = (X−Y)
d−1
∑

i=0
pi (X)Yi. This proves Lemma 3.37

(b).

Lemma 3.38. Let π be a monic irreducible polynomial in Fq [T]. Let d = deg π.
Let Fπ denote the field Fq [T] /πFq [T]. This is a field extension of Fq. Let

α ∈ Fπ be the residue class of T ∈ Fq [T] modulo the ideal πFq [T]. Thus,
Fπ = F [α] and π (α) = 0. Let Fπ denote the Fπ-algebra Fπ ⊗F (where Fπ

acts on the first tensorand).
Let h ∈ F be such that 1⊗ h ∈ (1⊗ T − α)Fπ. (Notice that the α here really

means the element α1Fπ
= α⊗ 1 of Fπ.) Then, h ∈ πF .
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Remark 3.39. Lemma 3.38 can be viewed as a noncommutative version of
the following known fact: If h ∈ Fq [T] is such that h ∈ (T − α)Fπ [T], then
h ∈ πFq [T]. (That is, a polynomial in Fq [T] that vanishes at α must be a
multiple of π.)

Proof of Lemma 3.38. For each i ∈ N, let πi be the coefficient of Ti in π. For

each k ∈ {0, 1, . . . , d}, define a polynomial pk ∈ Fq [T] by pk =
d
∑

i=k+1
πiTi−1−k.

Then, Lemma 3.37 (a) (applied to K = Fq) yields that pd−1 = πd (a constant
polynomial) and pd = 0. But πd = 1 (since π is a monic polynomial of degree
d). Thus, pd−1 = πd = 1.

Furthermore, Lemma 3.37 (b) (applied to K = Fq) yields

π (X)− π (Y) = (X−Y)
d−1

∑
i=0

pi (X)Yi =

(
d−1

∑
i=0

pi (X)Yi

)
(X−Y)

in the ring K [X, Y]. Since the two elements 1⊗ T and α of Fπ commute with
each other, we can substitute 1⊗ T and α for X and Y in this identity. We thus
obtain

π (1⊗ T)− π (α) =


d−1

∑
i=0

pi (1⊗ T)︸ ︷︷ ︸
=1⊗pi(T)=1⊗pi
(since pi(T)=pi)

αi︸︷︷︸
=αi⊗1

(since αi∈Fπ)

 (1⊗ T − α)

=

d−1

∑
i=0

(1⊗ pi)
(

αi ⊗ 1
)

︸ ︷︷ ︸
=αi⊗pi

 (1⊗ T − α)

=

(
d−1

∑
i=0

αi ⊗ pi

)
(1⊗ T − α)

in the ring Fπ = Fπ ⊗ F . Since π (1⊗ T)− π (α)︸ ︷︷ ︸
=0

= π (1⊗ T) = 1⊗ π (T)︸ ︷︷ ︸
=π

=

1⊗ π, this rewrites as

1⊗ π =

(
d−1

∑
i=0

αi ⊗ pi

)
(1⊗ T − α) . (67)
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Now,

d−1

∑
i=0

αi ⊗ pih︸ ︷︷ ︸
=(αi⊗pi)(1⊗h)

=
d−1

∑
i=0

(
αi ⊗ pi

)
(1⊗ h) =

(
d−1

∑
i=0

αi ⊗ pi

)
(1⊗ h)︸ ︷︷ ︸

∈(1⊗T−α)Fπ

∈
(

d−1

∑
i=0

αi ⊗ pi

)
(1⊗ T − α)︸ ︷︷ ︸

=1⊗π
(by (67))

Fπ = (1⊗ π)Fπ. (68)

But Proposition 3.36 (a) shows that the Fq-vector space Fπ has basis
(
α0, α1, . . . , αd−1).

Hence, we can define an Fq-linear map λ : Fπ → Fq by(
λ
(

αi
)
= δi,d−1 for each i ∈ {0, 1, . . . , d− 1}

)
. (69)

Consider this λ. The Fq-linear map λ : Fπ → Fq induces an Fq-linear map
λ⊗ idF : Fπ ⊗ F → Fq ⊗ F . In view of Fπ ⊗ F = Fπ and Fq ⊗ F = F , this
latter map is thus an Fq-linear map λ⊗ idF : Fπ → F . This map satisfies

(λ⊗ idF ) ((1⊗ π)Fπ) ⊆ πF (70)

37. Now, applying the map λ⊗ idF to both sides of the equality (68), we obtain

(λ⊗ idF )

(
d−1

∑
i=0

αi ⊗ pih

)
∈ (λ⊗ idF ) ((1⊗ π)Fπ) ⊆ πF

37Proof of (70): We have

(λ⊗ idF )

(1⊗ π) Fπ︸︷︷︸
=Fπ⊗F


= (λ⊗ idF ) ((1⊗ π) (Fπ ⊗F ))︸ ︷︷ ︸

=Fπ⊗πF
(seen as a subspace of Fπ⊗F )

= (λ⊗ idF ) (Fπ ⊗ πF )

= λ (Fπ)︸ ︷︷ ︸
⊆Fq

⊗ idF (πF )︸ ︷︷ ︸
=πF

(
seen as a subspace of Fq ⊗F

)
⊆ Fq ⊗ πF = πF

(
using our identification of Fq ⊗F with F

)
,

qed.
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(by (70)). Since

(λ⊗ idF )

(
d−1

∑
i=0

αi ⊗ pih

)

=
d−1

∑
i=0

λ
(

αi
)

︸ ︷︷ ︸
=δi,d−1

(by (69))

⊗ idF (pih)︸ ︷︷ ︸
=pih

=
d−1

∑
i=0

δi,d−1 ⊗ pih

=
d−1

∑
i=0

δi,d−1pih
(
using our identification of Fq ⊗F with F

)
=

d−2

∑
i=0

δi,d−1︸ ︷︷ ︸
=0

(since i 6=d−1
(since i≤d−2))

pih + δd−1,d−1︸ ︷︷ ︸
=1

pd−1︸︷︷︸
=1

h =
d−2

∑
i=0

0pih︸ ︷︷ ︸
=0

+h = h,

this rewrites as h ∈ πF . This proves Lemma 3.38.

Lemma 3.40. Let R be a ring (not necessarily commutative). If b0, b1, . . . , bd−1

are some elements of R (for some d ∈N), then the product
d−1
∏

k=0
bk shall be de-

fined as b0b1 · · · bd−1. (Thus, we have defined this product even if the elements
b0, b1, . . . , bd−1 do not commute.)

Let r ∈N. Let f , t and a be three elements of R satisfying f t = tr f , f a = a f
and ta = at. Let d ∈N. Then, every d ∈N satisfies

d−1

∏
k=0

(
f + t− ark

)
≡ f d mod (t− a) R. (71)

(Note that (t− a) R is only a right ideal of R, not necessarily an ideal of R.)

Proof of Lemma 3.40. We have

f it = tri
f i for every i ∈N. (72)

(This can be proven by a straightforward induction on i, using the relation f t =
tr f .) Also, the relation f a = a f shows that the Z-subalgebra of R generated by a
and f is commutative. Thus, every i ∈N and j ∈N satisfy

f iaj = aj f i (73)

(since both f i and aj belong to this commutative Z-subalgebra).
Moreover, every i ∈N satisfies

ti − ai ≡ 0 mod (t− a) R (74)
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38.
We shall prove (71) by induction over d:
Induction base: For d = 0, the congruence (71) is obviously true (because both

sides of this congruence equal 1). This completes the induction base.
Induction step: Let D ∈ N. Assume that (71) holds for d = D. We must prove

that (71) holds for d = D + 1.
We have assumed that (71) holds for d = D. In other words,

D−1

∏
k=0

(
f + t− ark

)
≡ f D mod (t− a) R. (75)

Now,

D

∏
k=0

(
f + t− ark

)
=

(
D−1

∏
k=0

(
f + t− ark

))
︸ ︷︷ ︸

≡ f D mod(t−a)R
(by (75))

(
f + t− arD

)

≡ f D
(

f + t− arD
)
= f D f︸︷︷︸

= f D+1

+ f Dt︸︷︷︸
=trD

f D

(by (72), applied to i=D)

− f DarD︸ ︷︷ ︸
=arD

f D

(by (73), applied to
i=D and j=rD)

= f D+1 + trD
f D − arD

f D︸ ︷︷ ︸
=
(

trD−arD
)

f D

= f D+1 +
(

trD − arD
)

︸ ︷︷ ︸
≡0 mod(t−a)R

(by (74), applied to i=rD)

f D

≡ f D+1 mod (t− a) R.

In other words, (71) holds for d = D + 1. This completes the induction step.
Hence, (71) is proven by induction. In other words, Lemma 3.40 is proven.

Now we can prove Proposition 3.35 again:

Second proof of Proposition 3.35. The left Fq [T]-module F is free (by Proposition
3.5 (c)), and thus torsionfree.

38Proof of (74): Let i ∈N. Then, a known formula shows that Xi −Yi = (X−Y)
i−1
∑

k=0
XkYi−1−k in

the polynomial ring Z [X, Y]. Since the elements t and a of R commute (because ta = at), we
can substitute t and a for X and Y in this formula. We thus obtain

ti − ai = (t− a)
i−1

∑
k=0

tkai−1−k

︸ ︷︷ ︸
∈R

∈ (t− a) R.

In other words, ti − ai ≡ 0 mod (t− a) R. This proves (74).
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Define d, Fπ, α and Fπ as in Lemma 3.38. Define h ∈ F by h = Carl π− Fdeg π.
We shall show that h ∈ πF .

Recall that Carl is the Fq-algebra homomorphism Fq [T] → F sending T to
F + T. This homomorphism sends every polynomial g ∈ Fq [T] to g (F + T)
(where g (F + T) denotes the result of substituting F + T for T in g, not the
product of g with F + T). In other words, Carl g = g (F + T) for every g ∈ Fq [T].
Applying this to g = π, we obtain Carl π = π (F + T).

Now, we can substitute 1⊗ F + 1⊗ T ∈ Fπ for T in the equality (59) (since
1⊗ F + 1⊗ T is an element of the Fπ-algebra Fπ). As a result, we obtain

π (1⊗ F + 1⊗ T) =
d−1

∏
k=0

(
1⊗ F + 1⊗ T − αqk

)
. (76)

But the elements 1⊗ F, 1⊗ T and α of Fπ satisfy

(1⊗ F) (1⊗ T) = 1⊗ FT︸︷︷︸
=TqF

= 1⊗ TqF = (1⊗ T)q (1⊗ F) ,

(1⊗ F) α = α (1⊗ F) (since α really means α⊗ 1 ∈ Fπ) ,
(1⊗ T) α = α (1⊗ T) (since α really means α⊗ 1 ∈ Fπ) .

Hence, Lemma 3.40 (applied to R = Fπ, r = q, f = 1⊗ F, t = 1⊗ T and a = α)
yields

d−1

∏
k=0

(
1⊗ F + 1⊗ T − αqk

)
≡ (1⊗ F)d = 1⊗ Fd mod (1⊗ T − α)Fπ.

Hence, (76) becomes

π (1⊗ F + 1⊗ T) =
d−1

∏
k=0

(
1⊗ F + 1⊗ T − αqk

)
≡ 1⊗ Fd mod (1⊗ T − α)Fπ.

Since

π

1⊗ F + 1⊗ T︸ ︷︷ ︸
=1⊗(F+T)

 = π (1⊗ (F + T)) = 1⊗ π (F + T) ,

this rewrites as

1⊗ π (F + T) ≡ 1⊗ Fd mod (1⊗ T − α)Fπ. (77)

Now, h = Carl π︸ ︷︷ ︸
=π(F+T)

− Fdeg π︸ ︷︷ ︸
=Fd

(since deg π=d)

= π (F + T)− Fd, so that

1⊗ h = 1⊗
(

π (F + T)− Fd
)
= 1⊗ π (F + T)− 1⊗ Fd ∈ (1⊗ T − α)Fπ
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(by (77)). Hence, Lemma 3.38 shows that h ∈ πF . Hence, there exists at least
one u (π) ∈ F such that π · u (π) = h. Moreover, such a u (π) is clearly unique
(because any element u (π) ∈ F is uniquely determined by π · u (π) (since π 6=
0, and since the left Fq [T]-module F is torsionfree)). Thus, there exists a unique
u (π) ∈ F such that π · u (π) = h. In other words, there exists a unique u (π) ∈
F such that Carl π = Fdeg π + π · u (π) (because we have the logical equivalenceπ · u (π) = h︸︷︷︸

=Carl π−Fdeg π

 ⇐⇒ (
π · u (π) = Carl π − Fdeg π

)
⇐⇒

(
Carl π = Fdeg π + π · u (π)

)
). This proves Proposition 3.35 again.

Remark 3.41. Now that we have a proof of Proposition 3.35 that is indepen-
dent of [3, Theorem 2.11], we can turn the cart around and give a new proof
of [3, Theorem 2.11, last equality] (though this proof, of course, will be rather
roundabout):

Let π be a monic irreducible polynomial in Fq [T]. Our goal is to show that
[π] (X) = Xqdeg π

, where [π] (X) denotes the projection of [π] (X) = [π] ∈
Fq [T] [X] onto

(
Fq [T] /π

)
[X].

We have Xqdeg π
= Fqpol

(
Fdeg π

)
. (This can be proven as in our first proof

of Proposition 3.35.) Also, Fqpol is an isomorphism of left Fq [T]-modules
(according to Proposition 3.24).

Proposition 3.35 shows that there exists a unique u (π) ∈ F such that
Carl π = Fdeg π + π · u (π). Consider this u (π). Corollary 3.33 (applied to
M = π) yields

[π] = Fqpol

 Carl π︸ ︷︷ ︸
=Fdeg π+π·u(π)

 = Fqpol
(

Fdeg π + π · u (π)
)

=
(

Fqpol
(

Fdeg π
))

︸ ︷︷ ︸
=Xqdeg π

+π Fqpol (u (π))︸ ︷︷ ︸
∈Fq[T][X](

since Fqpol is a homomorphism of left Fq [T] -modules
)

∈ Xqdeg π
+ πFq [T] [X] .

In other words, [π] ≡ Xqdeg π
mod πFq [T] [X]. Projecting both sides of this

congruence down to Fq [T] [X] /
(
πFq [T] [X]

)
=
(
Fq [T] /π

)
[X], we obtain

[π] = Xqdeg π
. In other words, [π] (X) = Xqdeg π

, qed.
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3.10. Corollary: Carlitz action vs. Frobenius power

Corollary 3.42. Let π be a monic irreducible polynomial in Fq [T]. Let A be
an F -module. Then, (Carl π) a ≡ Fdeg πa mod πA for every a ∈ A.

Proof of Corollary 3.42. Let a ∈ A. Proposition 3.35 shows that there exists a
unique u (π) ∈ F such that Carl π = Fdeg π + π · u (π). Consider this u (π).

Now,

(Carl π)︸ ︷︷ ︸
=Fdeg π+π·u(π)

a =
(

Fdeg π + π · u (π)
)

a = Fdeg πa+π · u (π) a︸ ︷︷ ︸
≡0 mod πA

≡ Fdeg πa mod πA.

This proves Corollary 3.42.

3.11. Exponent lifting for F-modules

Next, we shall show a series of simple propositions which will culminate (if this
can be called a culmination) in a Carlitz analogue of the classical “lifting the
exponent” theorem (see, e.g., [6, version with solutions (ancillary file), (12.68.8)]
for it).

Proposition 3.43. (a) The Fq-vector subspace FF of F is a two-sided ideal of
F .

(b) Let P ∈ Fq [T]. Then, Carl P ≡ P modFF.

Proof of Proposition 3.43. (a) First, we claim that

Fu ∈ FF for every u ∈ F . (78)

Proof of (78): Proposition 3.5 (b) shows that the Fq-module F is free with basis(
T jFi)

i≥0, j≥0.
Let u ∈ F . We must prove the relation (78). Since this relation is Fq-linear

in u (because FF is an Fq-vector subspace of F ), we can WLOG assume that
u belongs to the basis

(
T jFi)

i≥0, j≥0 of the Fq-module F . Assume this. Thus,

u = T jFi for some i ∈N and j ∈N. Consider these i and j. Now,

F u︸︷︷︸
=T jFi

= FT j︸︷︷︸
=(T j)

q
F

(by Proposition 3.6,
applied to P=T j)

Fi =
(

T j
)q

FFi︸︷︷︸
=Fi+1=FiF

=
(

T j
)q

Fi︸ ︷︷ ︸
∈F

F ∈ FF.

This proves (78).
Now,

FF = {Fu | u ∈ F} ⊆ FF (by (78)) .
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But it is clear that FF is a left ideal of F . Since we furthermore have F F · F︸ ︷︷ ︸
=FF⊆FF

⊆

FF︸︷︷︸
⊆F

F ⊆ FF, we thus conclude that FF is a two-sided ideal of F . This proves

Proposition 3.43 (a).
(b) Proposition 3.43 (a) shows that FF is a two-sided ideal of F . Hence,
F/ (FF) is a quotient ring of F , hence a quotient Fq-algebra of F . Let π de-
note the canonical projection map F → F/ (FF). Then, π is an Fq-algebra
homomorphism (since F/ (FF) is a quotient Fq-algebra of F ).

But Carl (T) = F + T ≡ T modFF (since F = 1︸︷︷︸
∈F

F ∈ FF). In other words,

π (Carl (T)) = π (T) (since π is the canonical projection map F → F/ (FF)).
Thus,

(π ◦Carl) (T) = π (Carl (T)) = π

 T︸︷︷︸
=FincT(T)

 = π (FincT (T))

= (π ◦ FincT) (T) . (79)

But the three maps π, Carl and FincT are Fq-algebra homomorphisms; hence,
π ◦ Carl and π ◦ FincT are Fq-algebra homomorphisms as well. The two Fq-
algebra homomorphisms π ◦ Carl : Fq [T] → F/ (FF) and π ◦ FincT : Fq [T] →
F/ (FF) are equal to each other on the generator T of the Fq-algebra Fq [T]
(because of (79)). Therefore, these two homomorphisms must be identical. In
other words, π ◦Carl = π ◦ FincT.

Now,

π (Carl P) = (π ◦Carl)︸ ︷︷ ︸
=π◦FincT

(P) = (π ◦ FincT) (P) = π

 FincT (P)︸ ︷︷ ︸
=P

(since we are regarding the
map FincT as an inclusion)

 = π (P) .

In other words, Carl P ≡ P modFF (since π is the canonical projection map
F → F/ (FF)). This proves Proposition 3.43 (b).

Proposition 3.44. Let A be an F -module. Let P ∈ Fq [T].
(a) We have FPA ⊆ Pq A.
(b) The Fq-vector subspace PA of A is a left F -submodule of A.
(c) Let k be a positive integer. Then, FPk A ⊆ Pk+1A.
(d) Let k be a positive integer. Then, (Carl P) Pk A ⊆ Pk+1A.

Proof of Proposition 3.44. (a) Proposition 3.6 yields FP = PqF in F . Hence, FP︸︷︷︸
=PqF

A =

Pq FA︸︷︷︸
⊆A

⊆ Pq A. Thus, Proposition 3.44 (a) is proven.
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(b) Proposition 3.44 (a) yields FPA ⊆ Pq︸︷︷︸
=PPq−1

(since q≥1)

A = P Pq−1A︸ ︷︷ ︸
⊆A

⊆ PA. Also,

TP︸︷︷︸
=PT

A = P TA︸︷︷︸
⊆A

⊆ PA.

Now, recall that the Fq-algebra F is generated by F and T. From this, it is easy
to derive the following fact: If V is an Fq-vector subspace of some left F -module
U satisfying FV ⊆ V and TV ⊆ V , then V is a left F -submodule of U . Applying
this to U = A and V = PA, we conclude that PA is a left F -submodule of A
(since FPA ⊆ PA and TPA ⊆ PA). Proposition 3.44 (b) is thus shown.

(c) Proposition 3.44 (a) (applied to Pk instead of P) yields

FPk A ⊆
(

Pk
)q

︸ ︷︷ ︸
=(Pk)

2
(Pk)

q−2

(since q≥2)

A =
(

Pk
)2 (

Pk
)q−2

A︸ ︷︷ ︸
⊆A

⊆
(

Pk
)2

A = Pk Pk︸︷︷︸
=PPk−1

(since k is a positive
integer)

A

= PkP︸︷︷︸
=Pk+1

Pk−1A︸ ︷︷ ︸
⊆A

⊆ Pk+1A.

This establishes Proposition 3.44 (c).
(d) Proposition 3.43 (b) yields Carl P ≡ P modFF. In other words, Carl P−

P ∈ FF. In other words, there exists some u ∈ F such that Carl P− P = uF.
Consider this u.

Proposition 3.44 (b) (applied to Pk+1 instead of P) shows that the Fq-vector
subspace Pk+1A of A is a left F -submodule of A. Hence, uPk+1A ⊆ Pk+1A
(since u ∈ F ).

But Carl P− P = uF shows that Carl P = P + uF. Hence,

(Carl P)︸ ︷︷ ︸
=P+uF

Pk A = (P + uF) Pk A ⊆ PPk︸︷︷︸
=Pk+1

A + u FPk A︸ ︷︷ ︸
⊆Pk+1 A

(by Proposition 3.44 (c))

⊆ Pk+1A + uPk+1A︸ ︷︷ ︸
⊆Pk+1 A

⊆ Pk+1A + Pk+1A ⊆ Pk+1A.

This proves Proposition 3.44 (d).

Proposition 3.45. Let A be an F -module. Let P ∈ Fq [T]. Let k be a positive
integer.

Let a and b be two elements of A such that a ≡ b mod Pk A.
(a) We have Fdeg Pa ≡ Fdeg Pb mod Pk+1A.
(b) We have (Carl P) a ≡ (Carl P) b mod Pk+1A.

Proof of Proposition 3.45. From a ≡ b mod Pk A, we obtain a− b ∈ Pk A.
(a) If P = 0, then the claim of Proposition 3.45 (a) is true39. Hence, we WLOG

39Proof. Assume that P = 0. Thus, Pk = 0k = 0 (since k is positive), so that Pk A = 0A = 0.
Hence, a ≡ b mod Pk A rewrites as a ≡ b mod 0. In other words, a = b. Hence, Fdeg Pa =
Fdeg Pb, so that Fdeg Pa ≡ Fdeg Pb mod Pk+1 A. In other words, the claim of Proposition 3.45 (a)
is true; qed.
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assume that P 6= 0.
If deg P = 0, then the claim of Proposition 3.45 (a) is true40. Hence, we WLOG

assume that deg P 6= 0. Thus, deg P ≥ 1.
Let d = deg P. Then, d ≥ 1, so that Fd = FFd−1.
But Proposition 3.44 (b) (applied to Pk instead of P) shows that the Fq-vector

subspace Pk A of A is a left F -submodule of A. Hence, F · Pk A ⊆ Pk A.
Now, deg P = d, so that

Fdeg Pa− Fdeg Pb = Fda− Fdb = Fd︸︷︷︸
=FFd−1

(a− b)︸ ︷︷ ︸
∈Pk A

∈ F Fd−1︸︷︷︸
∈F

Pk A ⊆ FF · Pk A︸ ︷︷ ︸
⊆Pk A

⊆ FPk A ⊆ Pk+1A (by Proposition 3.44 (c)) .

In other words, Fdeg Pa ≡ Fdeg Pb mod Pk+1A. This proves Proposition 3.45 (a).
(b) We have

(Carl P) a− (Carl P) b = (Carl P) (a− b)︸ ︷︷ ︸
∈Pk A

∈ (Carl P) Pk A ⊆ Pk+1A

(by Proposition 3.44 (d)). In other words, (Carl P) a ≡ (Carl P) b mod Pk+1A.
This proves Proposition 3.45 (b).

Corollary 3.46. Let A be an F -module. Let P ∈ Fq [T]. Let k be a positive
integer.

Let a and b be two elements of A such that a ≡ b mod Pk A.
(a) We have Fdeg(P`)a ≡ Fdeg(P`)b mod Pk+`A for every ` ∈N.
(b) We have

(
Carl

(
P`
))

a ≡
(
Carl

(
P`
))

b mod Pk+`A for every ` ∈N.

Proof of Corollary 3.46. (a) We can prove Corollary 3.46 (a) by induction over `:
Induction base: We have deg

(
P0
)

︸ ︷︷ ︸
=1

= deg 1 = 0 and thus Fdeg(P0) = F0 = 1.

Hence, Fdeg(P0)a = 1a = a and similarly Fdeg(P0)b = b. But a ≡ b mod Pk A.
Since k + 0 = k, this rewrites as a ≡ b mod Pk+0A. Now, Fdeg(P0)a = a ≡ b =

Fdeg(P0)b mod Pk+0A. In other words, Corollary 3.46 (a) holds for ` = 0. This
completes the induction base.

Induction step: Let L ∈ N. Assume that Corollary 3.46 (a) holds for ` = L. We
must now prove that Corollary 3.46 (a) holds for ` = L + 1.

We have assumed that Corollary 3.46 (a) holds for ` = L. In other words, we
have Fdeg(PL)a ≡ Fdeg(PL)b mod Pk+L A.
40Proof. Assume that deg P = 0. Thus, the polynomial P is constant. Since P 6= 0, this shows

that the polynomial P is invertible in Fq [T]. Hence, P is invertible in F . Therefore, Pk+1

is also invertible in F . Hence, Pk+1 A = A. But Fdeg Pa ≡ Fdeg Pb mod A is obviously true.
Since Pk+1 A = A, this rewrites as Fdeg Pa ≡ Fdeg Pb mod Pk+1 A. In other words, the claim of
Proposition 3.45 (a) is true; qed.
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But k is a positive integer, and hence k + L is a positive integer. Hence, Propo-
sition 3.45 (a) (applied to k + L, Fdeg(PL)a and Fdeg(PL)b instead of k, a and b)
yields

Fdeg PFdeg(PL)a ≡ Fdeg PFdeg(PL)b mod Pk+L+1A. (80)

Now, deg

PL+1︸ ︷︷ ︸
=PPL

 = deg
(

PPL) = deg P + deg
(

PL). Hence, Fdeg(PL+1) =

Fdeg P+deg(PL) = Fdeg PFdeg(PL). Therefore, (80) rewrites as follows:

Fdeg(PL+1)a ≡ Fdeg(PL+1)b mod Pk+L+1A.

In other words, Corollary 3.46 (a) holds for ` = L + 1. This completes the
induction step. The induction proof of Corollary 3.46 (a) is thus finished.

(b) We can prove Corollary 3.46 (b) by induction over `:
Induction base: We have Carl

(
P0
)

︸ ︷︷ ︸
=1

= Carl 1 = 1 (since Carl is an Fq-algebra

homomorphism). Hence,
(
Carl

(
P0)) a = 1a = a and similarly

(
Carl

(
P0)) b = b.

But a ≡ b mod Pk A. Since k + 0 = k, this rewrites as a ≡ b mod Pk+0A. Now,(
Carl

(
P0)) a = a ≡ b =

(
Carl

(
P0)) b mod Pk+0A. In other words, Corollary

3.46 (b) holds for ` = 0. This completes the induction base.
Induction step: Let L ∈ N. Assume that Corollary 3.46 (b) holds for ` = L. We

must now prove that Corollary 3.46 (b) holds for ` = L + 1.
We have assumed that Corollary 3.46 (b) holds for ` = L. In other words, we

have
(
Carl

(
PL)) a ≡

(
Carl

(
PL)) b mod Pk+L A.

But k is a positive integer, and hence k + L is a positive integer. Hence, Propo-
sition 3.45 (b) (applied to k + L,

(
Carl

(
PL)) a and

(
Carl

(
PL)) b instead of k, a

and b) yields

(Carl P)
(

Carl
(

PL
))

a ≡ (Carl P)
(

Carl
(

PL
))

b mod Pk+L+1A. (81)

Now, Carl

PL+1︸ ︷︷ ︸
=PPL

 = Carl
(

PPL) = (Carl P)
(
Carl

(
PL)) (since Carl is an Fq-

algebra homomorphism). Thus, (81) rewrites as follows:(
Carl

(
PL+1

))
a ≡

(
Carl

(
PL+1

))
b mod Pk+L+1A.

In other words, Corollary 3.46 (b) holds for ` = L + 1. This completes the
induction step. The induction proof of Corollary 3.46 (b) is thus finished.

In order to state the last corollary in this section, we need a definition:
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Definition 3.47. Let K be a field. Let π be a monic irreducible polynomial
in K [T]. Let f be any polynomial in K [T]. Then, vπ ( f ) means the largest
nonnegative integer m satisfying πm | f ; this is set to be +∞ if f = 0. Thus,
vπ ( f ) ∈N∪ {+∞} for each f .

We set P+∞ = 0 for each P ∈ K [T]. Thus, πvπ( f ) | f holds for each f ∈ K [T]
(including the case when f = 0).

Corollary 3.48. Let A be an F -module. Let N ∈ Fq [T]. Let π be a monic
irreducible polynomial in Fq [T].

Let a and b be two elements of A such that a ≡ b mod πA.
(a) We have Fdeg Na ≡ Fdeg Nb mod πvπ(N)+1A. (Here, Fdeg N is understood

to mean 0 when N = 0.)
(b) We have (Carl N) a ≡ (Carl N) b mod πvπ(N)+1A.

Proof of Corollary 3.48. We have a ≡ b mod πA. In other words, a ≡ b mod π1A
(since π = π1).

If N = 0, then Corollary 3.48 is easily seen to hold (since Fdeg N = 0 and
Carl N︸︷︷︸

=0

= Carl 0 = 0 in this case). Hence, we WLOG assume that N 6= 0. Thus,

vπ (N) ∈ N. Set ` = vπ (N). Then, π` | N. In other words, there exists some
polynomial M ∈ Fq [T] such that N = Mπ`. Consider this M.

Proposition 3.44 (b) (applied to P = π1+`) shows that the Fq-vector subspace
π1+`A of A is a left F -submodule of A. Hence, F · π1+`A ⊆ π1+`A.

(a) From N = Mπ`, we obtain deg N = deg
(

Mπ`
)
= deg M + deg

(
π`
)
, so

that Fdeg N = Fdeg M+deg(π`) = Fdeg MFdeg(π`).
Corollary 3.46 (a) (applied to P = π and k = 1) yields

Fdeg(π`)a ≡ Fdeg(π`)b mod π1+`A (since a ≡ b mod π1A). In other words, Fdeg(π`)a−
Fdeg(π`)b ∈ π1+`A. But

Fdeg Na− Fdeg Nb

= Fdeg N︸ ︷︷ ︸
=Fdeg MFdeg(π`)

(a− b) = Fdeg M︸ ︷︷ ︸
∈F

Fdeg(π`) (a− b)︸ ︷︷ ︸
=Fdeg(π`)a−Fdeg(π`)b∈π1+`A

∈ F · π1+`A ⊆ π1+`A.

In other words, Fdeg Na ≡ Fdeg Nb mod π1+`A. Since 1 + `︸︷︷︸
=vπ(N)

= 1 + vπ (N) =

vπ (N)+ 1, this rewrites as Fdeg Na ≡ Fdeg Nb mod πvπ(N)+1A. This proves Corol-
lary 3.48 (a).

(b) From N = Mπ`, we obtain Carl N = Carl
(

Mπ`
)
= (Carl M)

(
Carl

(
π`
))

(since Carl is an Fq-algebra homomorphism).
Corollary 3.46 (b) (applied to P = π and k = 1) yields

(
Carl

(
π`
))

a ≡(
Carl

(
π`
))

b mod π1+`A (since a ≡ b mod π1A). In other words,
(
Carl

(
π`
))

a−

78



Function-field analogue for symmetric functions? May 11, 2018

(
Carl

(
π`
))

b ∈ π1+`A. But

(Carl N) a− (Carl N) b

= (Carl N)︸ ︷︷ ︸
=(Carl M)(Carl(π`))

(a− b) = (Carl M)︸ ︷︷ ︸
∈F

(
Carl

(
π`
))

(a− b)︸ ︷︷ ︸
=(Carl(π`))a−(Carl(π`))b∈π1+`A

∈ F · π1+`A ⊆ π1+`A.

In other words, (Carl N) a ≡ (Carl N) b mod π1+`A. Since 1 + `︸︷︷︸
=vπ(N)

= 1 +

vπ (N) = vπ (N) + 1, this rewrites as (Carl N) a ≡ (Carl N) b mod πvπ(N)+1A.
This proves Corollary 3.48 (b).

Each of the two parts of Corollary 3.48 can be viewed as an analogue of
the classical “exponent lifting lemma” [6, version with solutions (ancillary file),
(12.68.8)].

3.12. The Chinese Remainder Theorem

Next, we recall one of the many versions of the Chinese Remainder Theorem:

Theorem 3.49. Let A be a commutative ring. Let M be an A-module. Let
N ∈ N. Let I1, I2, . . . , IN be N ideals of A. Assume that Ii + Ij = A for any
two elements i and j of {1, 2, . . . , N} satisfying i < j.

(a) We have I1 I2 · · · IN ·M = I1M ∩ I2M ∩ · · · ∩ IN M.
(b) The canonical A-module homomorphism

M/ (I1 I2 · · · IN ·M)→
N

∏
k=1

(M/Ik M) ,

m + I1 I2 · · · IN ·M 7→ (m + I1M, m + I2M, . . . , m + IN M)

is well-defined and an A-module isomorphism.

Theorem 3.49 is precisely [8, Theorem 1 (a) and (b)]; thus, we are not giving a
proof of it here.

For us, the following restatement of Theorem 3.49 will be more useful:

Theorem 3.50. Let A be a commutative ring. Let M be an A-module. Let S
be a finite set. For every s ∈ S, let Is be an ideal of A. Assume that the ideals
Is of A are comaximal; this means that every two distinct elements s and t of S
satisfy Is + It = A. Then:

(a) We have (
∏
s∈S

Is

)
·M =

⋂
s∈S

(IsM) .
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(b) The canonical A-module homomorphism

M/

((
∏
s∈S

Is

)
·M
)
→∏

s∈S
(M/IsM) ,

m +

(
∏
s∈S

Is

)
·M 7→ (m + IsM)s∈S

is well-defined and an A-module isomorphism.

Proof of Theorem 3.50. We can freely relabel the elements of S. Thus, we can
WLOG assume that S = {1, 2, . . . , N} for some N ∈ N. Assume this, and
consider this N. Then, the claim of Theorem 3.50 becomes identical with the
claim of Theorem 3.49. But since we already know that Theorem 3.49 holds, we
thus conclude that Theorem 3.50 holds as well.

We shall only use part (a) of Theorem 3.50.
As a consequence of Theorem 3.50 (a), we have the following:

Corollary 3.51. Let A be an Fq [T]-module. Let P be a monic polynomial in
Fq [T]. Then, ⋂

π∈PF P
πvπ(P)A = PA.

Before we can prove Corollary 3.51, we need a simple lemma:

Lemma 3.52. Let F be a field. Let s and t be two distinct monic irreducible
polynomials in F [T]. Let n ∈ N and m ∈ N. Let R be the ring F [T]. Then,
snR + tmR = R.

Proof of Lemma 3.52. The polynomials s and t are two distinct monic irreducible
polynomials in F [T]. Hence, s and t are coprime. Consequently, sn and tm are
coprime as well (since F [T] is a principal ideal domain). By Bezout’s theorem,
we thus conclude that there exist polynomials a and b in F [T] satisfying asn +
btm = 1. Consider these a and b.

The unity 1 of the ring R = F [T] satisfies

1 = asn + btm = sn a︸︷︷︸
∈F[T]=R

+tm b︸︷︷︸
∈F[T]=R

∈ snR + tmR.

But snR + tmR is an ideal of R (since snR and tmR are ideals of R). This ideal
snR + tmR contains 1 (since 1 ∈ snR + tmR), and thus must equal the whole ring
R (because if an ideal of some ring contains 1, then this ideal must equal the
whole ring). In other words, snR + tmR = R. This proves Lemma 3.52.

80



Function-field analogue for symmetric functions? May 11, 2018

Proof of Corollary 3.51. For each s ∈ PF P, define an ideal Is of Fq [T] by Is =

svs(P)Fq [T]. Notice that Fq [T] is a principal ideal domain.
For each s ∈ PF P, we have

Is A = svs(P)A (82)

41.
On the other hand, P is a monic polynomial in Fq [T]. Hence, the prime

factorization of P in the principal ideal domain Fq [T] is P = ∏
s∈PF P

svs(P) (indeed,

for each s ∈ PF P, the multiplicity of s in the prime factorization of P is vs (P)).
Now,

∏
s∈PF P

Is︸︷︷︸
=svs(P)Fq[T]

(by the
definition of Is)

= ∏
s∈PF P

(
svs(P)Fq [T]

)
=

(
∏

s∈PF P
svs(P)

)
︸ ︷︷ ︸

=P

Fq [T]

= P ·Fq [T] . (83)

If s and t are two distinct elements of PF P, then Is + It = Fq [T] 42. Hence,
Theorem 3.50 (a) (applied to Fq [T], A and PF P instead of A, M and S) shows
that (

∏
s∈PF P

Is

)
· A =

⋂
s∈PF P

(Is A)︸ ︷︷ ︸
=svs(P)A
(by (82))

=
⋂

s∈PF P
svs(P)A =

⋂
π∈PF P

πvπ(P)A

(here, we have renamed the index s as π in the intersection). Thus,

⋂
π∈PF P

πvπ(P)A =

(
∏

s∈PF P
Is

)
︸ ︷︷ ︸

=P·Fq[T]
(by (83))

·A = P ·Fq [T] · A︸ ︷︷ ︸
=A

= PA.

41Proof of (82): Let s ∈ PF P. Then, the definition of Is yields Is = svs(P)Fq [T]. Now,

Is︸︷︷︸
=svs(P)Fq [T]

A = svs(P) Fq [T] · A︸ ︷︷ ︸
=A

= svs(P)A.

This proves (82).
42Proof. Let s and t be two distinct elements of PF P. Thus, s and t are two distinct monic

irreducible polynomials in Fq [T]. Hence, Lemma 3.52 (applied to F = Fq, n = vs (P),
m = vt (P) and R = Fq [T]) yields svs(P)Fq [T] + tvt(P)Fq [T] = Fq [T].

The definition of Is yields Is = svs(P)Fq [T]. The definition of It shows that It = tvt(P)Fq [T].
Hence,

Is︸︷︷︸
=svs(P)Fq [T]

+ It︸︷︷︸
=tvt(P)Fq [T]

= svs(P)Fq [T] + tvt(P)Fq [T] = Fq [T] .

Qed.
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This proves Corollary 3.51.

Let me also state the “ring version” of the Chinese Remainder theorem:

Theorem 3.53. Let A be a commutative ring. Let S be a finite set. For every
s ∈ S, let Is be an ideal of A. Assume that the ideals Is of A are comaximal; this
means that every two distinct elements s and t of S satisfy Is + It = A. Then:

(a) We have
∏
s∈S

Is =
⋂
s∈S

Is.

(b) The canonical A-algebra homomorphism

A/

(
∏
s∈S

Is

)
→∏

s∈S
(A/Is) , a + ∏

s∈S
Is 7→ (a + Is)s∈S

is well-defined and an A-algebra isomorphism.

Theorem 3.53 can easily be derived by applying Theorem 3.50 to M = A.
(The extra claim that the homomorphism in Theorem 3.53 (b) is an A-algebra
homomorphism is straightforward to check.) But Theorem 3.53 is also a classical
fact that appears in many textbooks on algebra (it is probably easier to find than
Theorem 3.50).

Let me continue with another simple lemma about divisibility of polynomials:

Lemma 3.54. Let P be a polynomial in Fq [T]. Let π be a monic irreducible
divisor of P. Let D be a divisor of P satisfying D - P/π. Then, πvπ(P) | D.

Proof of Lemma 3.54. From D - P/π, we obtain P/π 6= 0, hence P 6= 0.

We have D - P/π. In other words,
P/π

D
/∈ Fq [T]. This rewrites as

P/D
π

/∈

Fq [T] (since
P/π

D
=

P/D
π

). Equivalently, π - P/D (since P/D ∈ Fq [T] (because

D is a divisor of P)). In other words, vπ (P/D) = 0. Hence, 0 = vπ (P/D) =
vπ (P)− vπ (D), so that vπ (P) = vπ (D).

But πvπ(D) | D (obviously). Since vπ (P) = vπ (D), we now have πvπ(P) =

πvπ(D) | D. This proves Lemma 3.54.

Here is a well-known fact about quotients of polynomial rings over fields:

Proposition 3.55. Let F be a field. Let s ∈ F [T] be a monic irreducible poly-
nomial. Let n be a positive integer. Let B be the ring F [T] /snF [T]. Then:

(a) We have B× = B \ sB. (Here, B× denotes the group of units of the ring
B.)

(b) We have sB ∼= F [T] /sn−1F [T] as F-vector spaces.

82



Function-field analogue for symmetric functions? May 11, 2018

Proof of Proposition 3.55. For every a ∈ F [T], we let a denote the canonical pro-
jection of a on F [T] /snF [T] = B.

(a) We shall prove the inclusions B× ⊆ B \ sB and B \ sB ⊆ B× separately:
Proof of B× ⊆ B \ sB: Let b ∈ B×.
We have b ∈ B×. In other words, the element b of B is invertible. In other

words, there exists some d ∈ B such that bd = 1. Consider this d.
We have d ∈ B. Thus, d = c for some c ∈ F [T]. Consider this c.
Now, assume (for the sake of contradiction) that b ∈ sB. In other words, b = s f

for some f ∈ B. Consider this f .
We have f ∈ B. Thus, f = e for some e ∈ F [T]. Consider this e. Multiplying

the equalities f = e and d = c, we obtain f d = e · c = ec = ce.
Now, bd = 1, so that 1 = b︸︷︷︸

=s f

d = s f d︸︷︷︸
=ce

= sce = sce. In other words, 1 ≡

sce mod snF [T]. In other words, sn | 1− sce. But since n is positive, we have s |
sn | 1− sce. Thus, the polynomial 1− sce is divisible by s. Also, the polynomial
sce is divisible by s (clearly). Hence, the sum of these two polynomials 1− sce
and sce must also divisible by s. In other words, (1− sce) + sce is divisible by
s. In other words, 1 is divisible by s (since (1− sce) + sce = 1). This is clearly
absurd (since s is irreducible). Thus, we have found a contradiction. This shows
that our assumption (that b ∈ sB) was false.

Hence, b /∈ sB. Combining this with b ∈ B, we obtain b ∈ B \ sB.
Now, forget that we fixed b. We thus have proven that b ∈ B \ sB for each

b ∈ B×. In other words, B× ⊆ B \ sB.
Proof of B \ sB ⊆ B×: Let b ∈ B \ sB. Then, b ∈ B \ sB ⊆ B. Hence, b = a for

some a ∈ F [T]. Consider this a.
We have s - a 43. Hence, the polynomials a and s are coprime (since s is irre-

ducible, and since F [T] is a principal ideal domain). Therefore, the polynomials
a and sn are coprime (since F [T] is a principal ideal domain). By Bezout’s the-
orem, we thus conclude that there exist polynomials α and β in F [T] satisfying
αa + βsn = 1. Consider these α and β.

The unity 1 of the ring F [T] satisfies 1 = αa + βsn︸︷︷︸
≡0 mod snF[T]
(since sn|βsn)

≡ αa mod snF [T].

In other words, 1 = αa. Comparing this with α b︸︷︷︸
=a

= α · a = αa, we obtain

αb = 1 = 1. Hence, the element b of B is invertible. In other words, b ∈ B×.
Now, forget that we fixed b. We thus have proven that b ∈ B× for each

b ∈ B \ sB. In other words, B \ sB ⊆ B×.

43Proof. Assume the contrary. Thus, s | a. In other words, a = cs for some c ∈ F [T]. Consider
this c. From a = cs = sc, we obtain a = cs = sc = s c︸︷︷︸

∈B

∈ sB. But a = b ∈ B \ sB and thus

a /∈ sB. This contradicts a ∈ sB. This contradiction shows that our assumption was wrong;
qed.
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Combining the two relations B× ⊆ B \ sB and B \ sB ⊆ B×, we obtain B× =
B \ sB. Thus, Proposition 3.55 (a) is proven.

(b) Let ρ be the map F [T] → sB, f 7→ s f . It is straightforward to see that
this map ρ is well-defined and F-linear. Moreover, Ker ρ ⊆ sn−1F [T] 44 and
sn−1F [T] ⊆ Ker ρ 45. Combining these two inclusions, we obtain Ker ρ =
sn−1F [T]. Moreover, the map ρ is surjective46. Hence, ρ (F [T]) = sB.

Now, the first isomorphism theorem (applied to the F-linear map ρ : F [T] →
sB) yields ρ (F [T]) ∼= F [T] / Ker ρ︸ ︷︷ ︸

=sn−1F[T]

= F [T] /sn−1F [T] as F-vector spaces. In

light of ρ (F [T]) = sB, this rewrites as sB ∼= F [T] /sn−1F [T]. Thus, Proposition
3.55 (b) is proven.

3.13. Ghost-Witt integrality: a general equivalence

Recall the notion of a “q-nest” defined in Definition 2.11. Recall also Definition
2.12. Furthermore, recall the following convention:

44Proof. Let a ∈ Ker ρ. Thus, a ∈ F [T] and ρ (a) = 0. Now, the definition of ρ yields ρ (a) = sa =
sa. Hence, sa = ρ (a) = 0. In other words, sa ∈ snF [T]. In other words, sn | sa in F [T]. In
other words, there exists some g ∈ F [T] satisfying sa = sng. Consider this g.

The polynomial s is irreducible and thus nonzero. Hence, we can cancel s from the equation
sa = sn︸︷︷︸

=ssn−1

g = ssn−1g (since F [T] is an integral domain). We thus obtain a = sn−1 g︸︷︷︸
∈F[T]

∈

sn−1F [T].
Now, forget that we fixed a. We thus have shown that a ∈ sn−1F [T] for each a ∈ Ker ρ. In

other words, Ker ρ ⊆ sn−1F [T]. Qed.
45Proof. Let f ∈ sn−1F [T]. Thus, there exists some g ∈ F [T] satisfying f = sn−1g. Consider this

g. Now, the definition of ρ yields

ρ ( f ) = s f = ssn−1g
(

since f = sn−1g
)

= ssn−1g = 0

since ssn−1︸ ︷︷ ︸
=sn

g = sn g︸︷︷︸
∈F[T]

∈ snF [T]

 .

In other words, f ∈ Ker ρ.
Now, forget that we fixed f . We thus have proven that f ∈ Ker ρ for each f ∈ sn−1F [T]. In

other words, sn−1F [T] ⊆ Ker ρ. Qed.
46Proof. Let a ∈ sB. Thus, there exists some b ∈ B such that a = sb. Consider this b. Now, we

have b ∈ B. Hence, b = f for some f ∈ F [T]. Consider this f . The definition of ρ yields

ρ ( f ) = s f = sb (since f = b). Compared with a = sb, this yields a = ρ

 f︸︷︷︸
∈F[T]

 ∈ ρ (F [T]).

Now, forget that we fixed a. We thus have proven that a ∈ ρ (F [T]) for each a ∈ sB. In
other words, sB ⊆ ρ (F [T]). In other words, the map ρ is surjective. Qed.
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Definition 3.56. Let P be a monic polynomial in Fq [T]. Then, the summation
sign ∑

D|P
means a sum over all monic polynomials D dividing P.

We shall now prove a very general fact that encompasses some of the claims
of Theorem 2.13:

Theorem 3.57. Let N be a q-nest. Let A be an F -module. For every P ∈ N, let
ϕP and ψP be two endomorphisms of the Fq-vector space A. Let us make the
following five assumptions:

Assumption 1: For every P ∈ N, the map ϕP is an endomorphism of the
F -module A.

Assumption 2: We have ϕπ (a) ≡ (Carl π) a mod πA for every a ∈ A and
every monic irreducible π ∈ N.

Assumption 3: We have ϕ1 = id. Furthermore, ϕP ◦ ϕQ = ϕPQ for every
P ∈ N and every Q ∈ N satisfying PQ ∈ N.

Assumption 4: We have ψP (a) ≡ ϕπ (ψP/π (a))mod πvπ(P)A for every a ∈ A,
every P ∈ N and every π ∈ PF P.

Assumption 5: We have ψ1 = id.
Let (bP)P∈N ∈ AN be a family of elements of A. Then, the following asser-

tions C1 and Eψ are equivalent:
Assertion C1: Every P ∈ N and every π ∈ PF P satisfy

ϕπ (bP/π) ≡ bP mod πvπ(P)A.

Assertion Eψ: There exists a family (zP)P∈N ∈ AN of elements of A such thatbP = ∑
D|P

DψP/D (zD) for every P ∈ N

 .

Before we prove this theorem, let us make a few comments.

Remark 3.58. Let N be a q-nest. Let A be an F -module. For every P ∈ N,
let ϕP be an endomorphism of the Fq-vector space A. Then, Assumption 2
in Theorem 3.57 is equivalent to the following statement: We have ϕπ (a) ≡
Fdeg πa mod πA for every a ∈ A and every monic irreducible π ∈ N.

Proof of Remark 3.58. It is clearly enough to show that (Carl π) a ≡ Fdeg πa mod πA
for every a ∈ A and every monic irreducible π ∈ N. But this follows from Corol-
lary 3.42. Thus, Remark 3.58 is proven.

Next, let us show examples of endomorphisms ψP satisfying the Assumption
4 of Theorem 3.57:
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Proposition 3.59. Let N be a q-nest. Let A be an F -module. For every P ∈
N, let ϕP be an endomorphism of the Fq-vector space A. Assume that the
Assumptions 1 and 2 of Theorem 3.57 are satisfied.

For every P ∈ N, define an endomorphism ψP of the Fq-vector space A by

(ψP (a) = (Carl P) a for every a ∈ A) .

Then, Assumptions 4 and 5 of Theorem 3.57 are satisfied.

Proposition 3.60. Let N be a q-nest. Let A be an F -module. For every P ∈
N, let ϕP be an endomorphism of the Fq-vector space A. Assume that the
Assumption 1 and 2 of Theorem 3.57 are satisfied.

For every P ∈ N, define an endomorphism ψP of the Fq-vector space A by(
ψP (a) = Fdeg Pa for every a ∈ A

)
.

Then, Assumptions 4 and 5 of Theorem 3.57 are satisfied.

Proposition 3.61. Let N be a q-nest. Let A be an F -module. For every P ∈
N, let ϕP be an endomorphism of the Fq-vector space A. Assume that the
Assumption 3 of Theorem 3.57 is satisfied.

For every P ∈ N, define an endomorphism ψP of the Fq-vector space A by

ψP = ϕP.

Then, Assumptions 4 and 5 of Theorem 3.57 are satisfied.

Proof of Proposition 3.59. Assumption 5 of Theorem 3.57 is satisfied47. Hence,
it remains to show that Assumption 4 of Theorem 3.57 is satisfied. In other
words, we must prove that we have ψP (a) ≡ ϕπ (ψP/π (a))mod πvπ(P)A for
every a ∈ A, every P ∈ N and every π ∈ PF P.

So let us fix a ∈ A, P ∈ N and π ∈ PF P. Clearly, π | P (since π ∈ PF P), and
π is a monic irreducible polynomial in Fq [T] (since π ∈ PF P). From these two
facts, we obtain π ∈ N (since N is a q-nest). Thus, Assumption 2 of Theorem
3.57 yields ϕπ (a) ≡ (Carl π) (a)mod πA.

Also, P/π ∈ Fq [T] (since π | P). Hence, ψP/π (a) = (Carl (P/π)) (a) (by the
definition of ψP/π).

47Proof. We have Carl 1 = 1 (since Carl is an Fq-algebra homomorphism). Now, every a ∈ A
satisfies

ψ1 (a) = (Carl 1)︸ ︷︷ ︸
=1

a (by the definition of ψ1)

= 1a = a = id (a) .

In other words, ψ1 = 1. In other words, Assumption 5 of Theorem 3.57 is satisfied, qed.
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Corollary 3.48 (b) (applied to P/π, ϕπ (a) and (Carl π) a instead of N, a and
b) shows that

(Carl (P/π)) (ϕπ (a)) ≡ (Carl (P/π)) ((Carl π) a)mod πvπ(P/π)+1A.

In view of

vπ (P/π) + 1︸︷︷︸
=vπ(π)

= vπ (P/π) + vπ (π) = vπ

(P/π)π︸ ︷︷ ︸
=P

 = vπ (P) ,

this rewrites as

(Carl (P/π)) (ϕπ (a)) ≡ (Carl (P/π)) ((Carl π) a)mod πvπ(P)A. (84)

But ϕπ is an endomorphism of the F -module A (by Assumption 1 of Theorem
3.57, applied to π instead of P). Hence,

(Carl (P/π)) (ϕπ (a)) = ϕπ

(Carl (P/π)) (a)︸ ︷︷ ︸
=ψP/π(a)

 = ϕπ (ψP/π (a)) .

Thus,

ϕπ (ψP/π (a)) = (Carl (P/π)) (ϕπ (a)) ≡ (Carl (P/π)) ((Carl π) a) (by (84))
= (Carl (P/π) ·Carl π)︸ ︷︷ ︸

=Carl((P/π)π)
(since Carl is an Fq-algebra

homomorphism)

a

=

Carl ((P/π)π)︸ ︷︷ ︸
=P

 a = (Carl P) a

= ψP (a)mod πvπ(P)A

(since ψP (a) = (Carl P) a (by the definition of ψP)). In other words, ψP (a) ≡
ϕπ (ψP/π (a))mod πvπ(P)A. Thus, Assumption 4 of Theorem 3.57 is satisfied.
This proves Proposition 3.59.

Proof of Proposition 3.60. Assumption 5 of Theorem 3.57 is satisfied48. Hence,
it remains to show that Assumption 4 of Theorem 3.57 is satisfied. In other

48Proof. Every a ∈ A satisfies

ψ1 (a) = Fdeg 1a (by the definition of ψ1)

= 1a
(

since deg 1 = 0 and thus Fdeg 1 = F0 = 1
)

= a = id (a) .

In other words, ψ1 = 1. In other words, Assumption 5 of Theorem 3.57 is satisfied, qed.
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words, we must prove that we have ψP (a) ≡ ϕπ (ψP/π (a))mod πvπ(P)A for
every a ∈ A, every P ∈ N and every π ∈ PF P.

So let us fix a ∈ A, P ∈ N and π ∈ PF P. Clearly, π | P (since π ∈ PF P), and
π is a monic irreducible polynomial in Fq [T] (since π ∈ PF P). From these two
facts, we obtain π ∈ N (since N is a q-nest). Thus, Assumption 2 of Theorem
3.57 yields ϕπ (a) ≡ (Carl π) (a)mod πA. Thus,

ϕπ (a) ≡ (Carl π) (a) ≡ Fdeg πa mod πA (85)

(by Corollary 3.42).
Also, P/π ∈ Fq [T] (since π | P). Hence, ψP/π (a) = Fdeg(P/π) (a) (by the

definition of ψP/π).
Corollary 3.48 (a) (applied to P/π, ϕπ (a) and Fdeg πa instead of N, a and b)

shows that

Fdeg(P/π) (ϕπ (a)) ≡ Fdeg(P/π)
(

Fdeg πa
)

mod πvπ(P/π)+1A.

In view of

vπ (P/π) + 1︸︷︷︸
=vπ(π)

= vπ (P/π) + vπ (π) = vπ

(P/π)π︸ ︷︷ ︸
=P

 = vπ (P) ,

this rewrites as

Fdeg(P/π) (ϕπ (a)) ≡ Fdeg(P/π)
(

Fdeg πa
)

mod πvπ(P)A. (86)

But ϕπ is an endomorphism of the F -module A (by Assumption 1 of Theorem
3.57, applied to π instead of P). Hence,

Fdeg(P/π) (ϕπ (a)) = ϕπ

Fdeg(P/π) (a)︸ ︷︷ ︸
=ψP/π(a)

 = ϕπ (ψP/π (a)) .

Thus,

ϕπ (ψP/π (a)) = Fdeg(P/π) (ϕπ (a)) ≡ Fdeg(P/π)
(

Fdeg πa
)

(by (86))

=
(

Fdeg(P/π)Fdeg π
)

︸ ︷︷ ︸
=Fdeg(P/π)+deg π=Fdeg P

(since deg(P/π)+deg π=deg P
(since deg(P/π)=deg P−deg π))

a = Fdeg Pa

= ψP (a)mod πvπ(P)A

(since ψP (a) = Fdeg Pa (by the definition of ψP)). In other words, ψP (a) ≡
ϕπ (ψP/π (a))mod πvπ(P)A. Thus, Assumption 4 of Theorem 3.57 is satisfied.
This proves Proposition 3.60.
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Proof of Proposition 3.61. Assumption 5 of Theorem 3.57 is satisfied49. Hence,
it remains to show that Assumption 4 of Theorem 3.57 is satisfied. In other
words, we must prove that we have ψP (a) ≡ ϕπ (ψP/π (a))mod πvπ(P)A for
every a ∈ A, every P ∈ N and every π ∈ PF P.

So let us fix a ∈ A, P ∈ N and π ∈ PF P. Clearly, π | P (since π ∈ PF P), and
π is a monic irreducible polynomial in Fq [T] (since π ∈ PF P). From these two
facts, we obtain π ∈ N (since N is a q-nest). Also, P/π is a monic polynomial
in Fq [T] (since P and π are monic and since π | P), and divides P. Therefore,
P/π ∈ N (since P ∈ N). Now, the second sentence of Assumption 3 of Theorem
3.57 (applied to π and P/π instead of P and Q) shows that ϕπ ◦ ϕP/π = ϕπ·(P/π)

(since π · (P/π) = P ∈ N). Since π · (P/π) = P, this rewrites as ϕπ ◦ ϕP/π = ϕP.
But the definition of ψP yields ψP = ϕP. Hence, ψP = ϕP = ϕπ ◦ ϕP/π, so that

ψP︸︷︷︸
=ϕπ◦ϕP/π

(a) = (ϕπ ◦ ϕP/π) (a) = ϕπ (ϕP/π (a)) . (87)

On the other hand, the definition of ψP/π yields ψP/π = ϕP/π. Thus, (87)
rewrites as ψP (a) = ϕπ (ψP/π (a)). Therefore, ψP (a) ≡ ϕπ (ψP/π (a))mod πvπ(P)A.
Thus, Assumption 4 of Theorem 3.57 is satisfied. This proves Proposition 3.61.

Let us now turn to the proof of Theorem 3.5750:

Proof of Theorem 3.57. We shall prove the two implications C1 =⇒ Eψ and Eψ =⇒
C1 separately:

Proof of the implication Eψ =⇒ C1: Assume that Assertion Eψ holds. That is,
there exists a family (zP)P∈N ∈ AN of elements of A such thatbP = ∑

D|P
DψP/D (zD) for every P ∈ N

 . (88)

Consider this family (zP)P∈N.
We need to prove that Assertion C1 holds, i.e., that every P ∈ N and every

π ∈ PF P satisfy
ϕπ (bP/π) ≡ bP mod πvπ(P)A. (89)

So let us fix a P ∈ N and a π ∈ PF P. We need to prove (89).
The polynomial P is monic (since P ∈ N). We have π ∈ PF P. Thus, π is

a monic irreducible divisor of P. Hence, P/π is a monic polynomial in Fq [T]
(since P and π are monic). Since N is a q-nest, we obtain P/π ∈ N (since P ∈ N,
and since P/π is a monic divisor of N). Since N is a q-nest, we also obtain π ∈ N
(since P ∈ N, and since π is a monic divisor of N).
49Proof. Assumption 3 of Theorem 3.57 shows that ϕ1 = 1. Now, the definition of ψ1 yields

ψ1 = ϕ1 = 1. In other words, Assumption 5 of Theorem 3.57 is satisfied, qed.
50Our proof imitates [6, solution to Exercise 2.9.6].
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Assumption 1 (applied to π instead of P) shows that ϕπ is an endomorphism
of the F -module A.

Applying (88) to P/π instead of P, we obtain bP/π = ∑
D|P/π

Dψ(P/π)/D (zD).

Applying the map ϕπ to both sides of this equality, we obtain

ϕπ (bP/π) = ϕπ

 ∑
D|P/π

Dψ(P/π)/D (zD)

 = ∑
D|P/π

Dϕπ

(
ψ(P/π)/D (zD)

)
(90)

(since ϕπ is an endomorphism of the F -module A). On the other hand, every
monic divisor D of P/π satisfies

DψP/D (zD) ≡ Dϕπ

(
ψ(P/π)/D (zD)

)
mod πvπ(P)A (91)
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51. Now,

∑
D|P

DψP/D (zD)

= ∑
D|P;

D|P/π︸ ︷︷ ︸
= ∑

D|P/π

DψP/D (zD) + ∑
D|P;

D-P/π

DψP/D (zD)︸ ︷︷ ︸
≡0 mod πvπ(P)A

(since Lemma 3.54 shows that
πvπ(P)|D)

≡ ∑
D|P/π

DψP/D (zD) + ∑
D|P;

D-P/π

0

︸ ︷︷ ︸
=0

= ∑
D|P/π

DψP/D (zD)︸ ︷︷ ︸
≡Dϕπ(ψ(P/π)/D(zD))mod πvπ(P)A

(by (91))

(92)

≡ ∑
D|P/π

Dϕπ

(
ψ(P/π)/D (zD)

)
(93)

= ϕπ (bP/π)mod πvπ(P)A (94)

51Proof of (91): Let D be a monic divisor of P/π. Thus, D | P/π, so that D | P/π | P and
therefore P/D ∈ Fq [T].

Also,
P/D

π
=

P/π

D
∈ Fq [T] (since D | P/π). In other words, π | P/D (since P/D ∈

Fq [T]). Hence, π ∈ PF (P/D) (since π is monic irreducible). Also, P/D is a monic divisor of
P (since P and D are monic, and since D | P); thus, P/D ∈ N (since P ∈ N and since N is a
q-nest). Hence, Assumption 4 (applied to zD and P/D instead of a and P) yields

ψP/D (zD) ≡ ϕπ

(
ψ(P/D)/π (zD)

)
mod πvπ(P/D)A.

In other words, ψP/D (zD)− ϕπ

(
ψ(P/D)/π (zD)

)
∈ πvπ(P/D)A. Since (P/D) /π = (P/π) /D,

this rewrites as ψP/D (zD)− ϕπ

(
ψ(P/π)/D (zD)

)
∈ πvπ(P/D)A.

Now,

DψP/D (zD)− Dϕπ

(
ψ(P/π)/D (zD)

)
= D

(
ψP/D (zD)− ϕπ

(
ψ(P/π)/D (zD)

))
︸ ︷︷ ︸

∈πvπ (P/D)A

∈ Dπvπ(P/D)A = πvπ(P/D) DA︸︷︷︸
⊆πvπ (D)A

(since πvπ (D) |D)

⊆ πvπ(P/D)πvπ(D)︸ ︷︷ ︸
=πvπ (P/D)+vπ (D)

A

= πvπ(P/D)+vπ(D)A = πvπ(P)A

(since vπ (P/D) + vπ (D) = vπ

(P/D) D︸ ︷︷ ︸
=P

 = vπ (P)). In other words, DψP/D (zD) ≡

Dϕπ

(
ψ(P/π)/D (zD)

)
mod πvπ(P)A. This proves (91).
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(by (90)). But (88) yields

bP = ∑
D|P

DψP/D (zD) ≡ ϕπ (bP/π)mod πvπ(P)A

(by (94)). Thus, (89) is proven. In other words, Assertion C1 holds. This com-
pletes the proof of the implication Eψ =⇒ C1.

Proof of the implication C1 =⇒ Eψ: Assume that Assertion C1 holds. In other
words, every P ∈ N and every π ∈ PF P satisfy

ϕπ (bP/π) ≡ bP mod πvπ(P)A. (95)

We now need to prove that Assertion Eψ holds as well. In other words, we
need to show that there exists a family (zP)P∈N ∈ AN of elements of A such thatbP = ∑

D|P
DψP/D (zD) for every P ∈ N

 .

In other words (renaming P as Q), we need to show that there exists a family(
zQ
)

Q∈N ∈ AN of elements of A such thatbQ = ∑
D|Q

DψQ/D (zD) for every Q ∈ N

 .

We construct this family
(
zQ
)

Q∈N recursively, by induction over deg Q. So we
fix some P ∈ N, and assume that an element zQ of A is already constructed for
every Q ∈ N satisfying deg Q < deg P; we furthermore assume that these zQ
satisfy

bQ = ∑
D|Q

DψQ/D (zD) (96)

for every Q ∈ N satisfying deg Q < deg P. We now need to construct a zP ∈ A
such that (96) is satisfied for Q = P. In other words, we need to construct a
zP ∈ A satisfying bP = ∑

D|P
DψP/D (zD).

Let us first choose zP arbitrarily (with the intention to tweak it later). Let
π ∈ PF P be arbitrary. Thus, π is a monic irreducible divisor of P. Then, the
polynomial P/π is monic (since P and π are monic), and is a divisor of P;
hence, P/π ∈ N (since P ∈ N, and since N is a q-nest). Moreover, it satisfies
deg (P/π) = deg P− deg π︸ ︷︷ ︸

>0

< deg P. Hence, (96) (applied to Q = P/π) shows

that
bP/π = ∑

D|P/π

Dψ(P/π)/D (zD) .
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Thus, (94) holds (indeed, this can be proven precisely as in our proof of the
implication Eψ =⇒ C1 above). Hence,

∑
D|P

DψP/D (zD) ≡ ϕπ (bP/π) ≡ bP mod πvπ(P)A

(by (95)). In other words, bP ≡ ∑
D|P

DψP/D (zD)mod πvπ(P)A. In other words,

bP − ∑
D|P

DψP/D (zD) ∈ πvπ(P)A.

Now, let us forget that we fixed π. We thus have shown (for our arbitrarily
chosen zP) that

bP − ∑
D|P

DψP/D (zD) ∈ πvπ(P)A for each π ∈ PF P.

As a consequence,

bP − ∑
D|P

DψP/D (zD) ∈
⋂

π∈PF P
πvπ(P)A = PA

(by Corollary 3.51). In other words, there exists a γ ∈ A such that

bP − ∑
D|P

DψP/D (zD) = Pγ.

Consider this γ.
We have assumed that Assumption 5 of Theorem 3.57 is satisfied. In other

words, ψ1 = id. Hence,

PψP/P (zP + γ)− PψP/P (zP)

= P id (zP + γ)− P id (zP) (since ψP/P = ψ1 = id)
= P · (zP + γ)− P · zP = Pγ

= bP − ∑
D|P

DψP/D (zD) .

In other words,

∑
D|P

DψP/D (zD) + (PψP/P (zP + γ)− PψP/P (zP))

= bP. (97)

Now, if we replace zP by zP + γ, then the sum ∑
D|P

DψP/D (zD) increases by

PψP/P (zP + γ)− PψP/P (zP) (because the only addend of the sum that changes
is the addend for D = P), and thus the new value of this sum is bP (by (97)).
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Hence, by replacing zP by zP + γ, we achieve that bP = ∑
D|P

DψP/D (zD) holds.

Thus, we have found the zP we were searching for, and the recursive construc-
tion of the family

(
zQ
)

Q∈N has proceeded by one more step. The proof of the
implication C1 =⇒ Eψ is thus complete.

We have now proven both implications C1 =⇒ Eψ and Eψ =⇒ C1. Combining
them, we obtain the equivalence C1 ⇐⇒ Eψ. Thus, Theorem 3.57 is proven.

3.14. Fq [T]+-analogues of the Möbius and Euler totient
functions

Next, we shall discuss the functions µ, ϕ and ϕC introduced in Section 1. Let me
first repeat their definitions:

Definition 3.62. Define a function µ : Fq [T]+ → {−1, 0, 1} by

µ (M) =

{
(−1)|PF M| , if M is squarefree;
0, if M is not squarefree

for all M ∈ Fq [T]+ .

(Recall that a monic polynomial M ∈ Fq [T]+ is said to be squarefree if it
satisfies the following three equivalent conditions:

• No nonconstant polynomial P ∈ Fq [T] satisfies P2 | M.

• Every monic irreducible polynomial π ∈ Fq [T] satisfies vπ (M) ≤ 1.

• The polynomial M is a product of pairwise distinct monic irreducible
polynomials.

) The function µ is called the Möbius function on Fq [T]+.

Definition 3.63. Define a function ϕC : Fq [T]+ → Fq [T] by

ϕC (M) = ∑
D|M

µ (D)
M
D

for all M ∈ Fq [T]+ .

Definition 3.64. Define a function ϕ : Fq [T]+ → Z by

ϕ (M) = ∑
D|M

µ (D) qdeg(M/D) for all M ∈ Fq [T]+ .

The function µ is an analogue of the number-theoretical Möbius function,
whereas the functions ϕC and ϕ are two distinct analogues of the Euler totient
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function. These functions have a number of properties (some well-known) that
often imitate analogous properties of the number-theoretical Möbius function
and the Euler totient function. See [3, Theorem 4.5] for some properties of ϕC,
and see [3, Section 6] for the function ϕ. We shall prove a number of their prop-
erties, many of which will be used below. We begin by citing a well-known
combinatorial fact:

Lemma 3.65. Let Z be a finite set.
(a) We have

∑
I⊆Z

(−1)|I| = [Z = ∅] .

(b) Let R be a commutative ring. Let ri be an element of R for each i ∈ Z.
Then,

∑
I⊆Z

∏
i∈I

ri = ∏
i∈Z

(1 + ri) .

Proof of Lemma 3.65. Lemma 3.65 (b) can be proven by induction over |Z| (or, less
rigorously, just by expanding the product ∏

i∈Z
(1 + ri)). Lemma 3.65 (a) can be

proven in many ways (e.g., it can be obtained by setting R = Z and ri = −1 in
Lemma 3.65 (b)).

Proposition 3.66. Let M ∈ Fq [T]+. Then, ∑
D|M

µ (D) = [M = 1]. Here, we are

using the Iverson bracket notation: If A is any logical statement, then [A] stands

for the integer

{
1, if A is true;
0, if A is false

.

Proof of Proposition 3.66. (This proof is a carbon copy of [6, proof of (12.68.3)],
with minor changes.)

Let M = Pa1
1 Pa2

2 · · · P
ak
k be the factorization of M into monic irreducible poly-

nomials, with all of a1, a2, . . . , ak being positive integers (and with P1, P2, . . . , Pk
being distinct).52 Then, the squarefree monic divisors D of M all have the form
∏
i∈I

Pi for some subset I of {1, 2, . . . , k}. More precisely, there exists a bijection

{I ⊆ {1, 2, . . . , k}} → (the set of all squarefree monic divisors of M) ,

I 7→∏
i∈I

Pi. (98)

Moreover, every subset I of {1, 2, . . . , k} satisfies PF
(

∏
i∈I

Pi

)
= {Pi | i ∈ I} and

thus ∣∣∣∣∣PF

(
∏
i∈I

Pi

)∣∣∣∣∣ = |{Pi | i ∈ I}| = |I| (99)

52This is well-defined, since M is monic and since Fq [T] is a principal ideal domain. Of course,
k can be 0 (when M = 1).
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(since P1, P2, . . . , Pk are distinct) and therefore

µ

(
∏
i∈I

Pi

)
= (−1)

∣∣∣∣PF
(

∏
i∈I

Pi

)∣∣∣∣ (
since ∏

i∈I
Pi is squarefree

)
= (−1)|I| (by (99)) . (100)

Now,

∑
D|M

µ (D) = ∑
D|M;

D is squarefree

µ (D) + ∑
D|M;

D is not squarefree

µ (D)︸ ︷︷ ︸
=0

(by the definition
of µ, since D

is not squarefree)

= ∑
D|M;

D is squarefree

µ (D) + ∑
D|M;

D is not squarefree

0

︸ ︷︷ ︸
=0

= ∑
D|M;

D is squarefree

µ (D)

= ∑
I⊆{1,2,...,k}

µ

(
∏
i∈I

Pi

)
︸ ︷︷ ︸

=(−1)|I|

(by (100))

(
here, we have substituted ∏

i∈I
Pi for D

due to the bijection (98)

)

= ∑
I⊆{1,2,...,k}

(−1)|I| =

 {1, 2, . . . , k} = ∅︸ ︷︷ ︸
This is equivalent to k=0


(by Lemma 3.65 (a), applied to Z = {1, 2, . . . , k})

= [k = 0] = [M is constant](
since k is the number of monic irreducible divisors of M,

and thus we have k = 0 if and only if M is constant

)
= [M = 1] (since M is monic) .

This proves Proposition 3.66.

Let us explicitly state a simple consequence of Proposition 3.66 for the sake of
convenience:

Corollary 3.67. Let M ∈ Fq [T]+. Let E be a monic divisor of M. Then,

∑
B|M;
BE|M

µ (B) = [E = M] .
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Proof of Corollary 3.67. We have
M
E
∈ Fq [T] (since E is a divisor of M). Moreover,

the polynomial
M
E

is monic (since M and E are monic). Hence,
M
E
∈ Fq [T]+.

Proposition 3.66 (applied to
M
E

instead of M) thus shows that ∑

D|
M
E

µ (D) =

 M
E

= 1︸ ︷︷ ︸
This is equivalent to

E=M

 = [E = M].

But E | M. Hence, the monic divisors B of M satisfying BE | M are exactly the

monic divisors B of
M
E

. Therefore, ∑
B|M;
BE|M

= ∑

B|
M
E

. Thus,

∑
B|M;
BE|M︸︷︷︸
= ∑

B|
M
E

µ (B) = ∑
B|

M
E

µ (B) = ∑
D|

M
E

µ (D)

(here, we renamed the summation index B as D)

= [E = M] .

Corollary 3.67 is therefore proven.

Next come some simple properties of ϕC:

Proposition 3.68. Let M ∈ Fq [T]+.
(a) We have ϕC (M) ∈ Fq [T]+.

(b) We have ϕC (M) = M ∏
π∈PF M

(
1− 1

π

)
.

(c) We have ϕC (M) = ∑
D|M

Dµ

(
M
D

)
.

Proof of Proposition 3.68. (a) Let d = deg M. Then, the polynomial M is monic of
degree d.

Now, let Vd be the Fq-vector subspace of Fq [T] consisting of all polynomials
of degree ≤ d − 1. (This subspace is spanned by T0, T1, . . . , Td−1.) Then, the
monic polynomials in Fq [T] of degree d are precisely the polynomials in Fq [T]
that are congruent to Td modulo Vd. Thus, the polynomial M is congruent to Td

modulo Vd (since M is monic of degree d). In other words, M ≡ Td mod Vd.
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If D is a monic divisor of M satisfying D 6= 1, then

µ (D)
M
D
≡ 0 mod Vd (101)

53. Now, the definition of ϕC yields

ϕC (M) = ∑
D|M

µ (D)
M
D

= µ (1)︸ ︷︷ ︸
=1

M
1︸︷︷︸

=M≡Td mod Vd

+ ∑
D|M;
D 6=1

µ (D)
M
D︸ ︷︷ ︸

≡0 mod Vd
(by (101))

(here, we have split off the addend for D = 1 from the sum)

≡ Td + ∑
D|M;
D 6=1

0

︸ ︷︷ ︸
=0

= Td mod Vd.

In other words, the polynomial ϕC (M) is congruent to Td modulo Vd. In other
words, the polynomial ϕC (M) is monic of degree d (since the monic polynomials
in Fq [T] of degree d are precisely the polynomials in Fq [T] that are congruent
to Td modulo Vd). Hence, ϕC (M) ∈ Fq [T]+. This proves Proposition 3.68 (a).

(b) Let M = Pa1
1 Pa2

2 · · · P
ak
k be the factorization of M into monic irreducible

polynomials, with all of a1, a2, . . . , ak being positive integers (and with P1, P2, . . . , Pk
being distinct).54 Then, the squarefree monic divisors D of M all have the form
∏
i∈I

Pi for some subset I of {1, 2, . . . , k}. More precisely, there exists a bijection

{I ⊆ {1, 2, . . . , k}} → (the set of all squarefree monic divisors of M) ,

I 7→∏
i∈I

Pi. (102)

53Proof of (101): Let D be a monic divisor of M satisfying D 6= 1.

We have
M
D
∈ Fq [T] (since D is a divisor of M). If we had deg D = 0, then we would

have D = 1 (because D is monic), which would contradict D 6= 1. Thus, we cannot have
deg D = 0. Hence, we must have deg D ≥ 1 (since D ∈ Fq [T]). Thus, the polynomial
M
D
∈ Fq [T] satisfies deg

M
D

= deg M︸ ︷︷ ︸
=d

−deg D︸ ︷︷ ︸
≥1

≤ d− 1. Hence,
M
D

is a polynomial of degree

≤ d− 1. In other words,
M
D
∈ Vd (since Vd is the Fq-vector subspace of Fq [T] consisting of all

polynomials of degree ≤ d− 1). In other words,
M
D
≡ 0 mod Vd. Hence, µ (D)

M
D
≡ 0 mod Vd

as well (since µ (D) ∈ {−1, 0, 1} ⊆ Z). This proves (101).
54This is well-defined, since M is monic and since Fq [T] is a principal ideal domain. Of course,

k can be 0 (when M = 1).
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Moreover, every subset I of {1, 2, . . . , k} satisfies (100). (This is proven as in
our proof of Proposition 3.66.)

The definition of P1, P2, . . . , Pk shows that (P1, P2, . . . , Pk) is a list of all prime
factors of M, with no repetitions. Thus, the map {1, 2, . . . , k} → PF M, i 7→ Pi is
a bijection.
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The definition of ϕC yields

ϕC (M) = ∑
D|M

µ (D)
M
D

= ∑
D|M;

D is squarefree

µ (D)
M
D

+ ∑
D|M;

D is not squarefree

µ (D)︸ ︷︷ ︸
=0

(by the definition
of µ, since D

is not squarefree)

M
D

= ∑
D|M;

D is squarefree

µ (D)
M
D

+ ∑
D|M;

D is not squarefree

0
M
D

︸ ︷︷ ︸
=0

= ∑
D|M;

D is squarefree

µ (D)
M
D

= ∑
I⊆{1,2,...,k}

µ

(
∏
i∈I

Pi

)
︸ ︷︷ ︸

=(−1)|I|

(by (100))

M
∏
i∈I

Pi

(
here, we have substituted ∏

i∈I
Pi for D

due to the bijection (98)

)

= ∑
I⊆{1,2,...,k}

(−1)|I|︸ ︷︷ ︸
=∏

i∈I
(−1)

M
∏
i∈I

Pi
= ∑

I⊆{1,2,...,k}

(
∏
i∈I

(−1)

)
M

∏
i∈I

Pi

= M ∑
I⊆{1,2,...,k}

∏
i∈I

(−1)

∏
i∈I

Pi︸ ︷︷ ︸
=∏

i∈I

−1
Pi

= M ∑
I⊆{1,2,...,k}

∏
i∈I

−1
Pi︸ ︷︷ ︸

= ∏
i∈{1,2,...,k}

(
1+
−1
Pi

)
(by Lemma 3.65 (b), applied to R=Fq[T],

Z={1,2,...,k} and ri=
−1
Pi

)

= M ∏
i∈{1,2,...,k}

(
1 +
−1
Pi

)
= M ∏

π∈PF M

(
1 +
−1
π

)
︸ ︷︷ ︸

=1−
1
π(

here, we have substituted π for Pi in the product,
since the map {1, 2, . . . , k} → PF M, i 7→ Pi is a bijection

)
= M ∏

π∈PF M

(
1− 1

π

)
.

This proves Proposition 3.68 (b).
(c) Let A be the set of all monic divisors of M. Thus, ∑

D∈A
= ∑

D|M
.
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But M itself is monic. Hence, the map A→ A, D 7→ M
D

is well-defined and a

bijection. Thus, we can substitute
M
D

for D in the sum ∑
D∈A

µ (D)
M
D

. As a result,

we obtain

∑
D∈A

µ (D)
M
D

= ∑
D∈A︸︷︷︸
= ∑

D|M

µ

(
M
D

)
M(
M
D

)
︸ ︷︷ ︸

=D

= ∑
D|M

µ

(
M
D

)
D = ∑

D|M
Dµ

(
M
D

)
.

Comparing this with

∑
D∈A︸︷︷︸
= ∑

D|M

µ (D)
M
D

= ∑
D|M

µ (D)
M
D

= ϕC (M)

 since ϕC (M) is defined

to be ∑
D|M

µ (D)
M
D

 ,

we obtain ϕC (M) = ∑
D|M

Dµ

(
M
D

)
. This proves Proposition 3.68 (c).

Proposition 3.69. Let M ∈ Fq [T]+. Then, M = ∑
D|M

ϕC (D).

Proposition 3.69 is [3, Theorem 4.5 (2)], but let me nevertheless give an inde-
pendent proof of it:

Proof of Proposition 3.69. We shall use the notation of Proposition 3.66.
Every E ∈ Fq [T]+ satisfies

ϕC (E) = ∑
D|E

µ (D)
E
D

(by the definition of ϕC)

= ∑
B|E

µ (B)
E
B

(103)

(here, we have renamed the summation index D as B).
For any monic divisor B of M, we have

∑
D|M;
B|D

D
B

= ∑
E|

M
B

E (104)

55.
55Proof of (104): Let B be a monic divisor of M. Then, the map

{D is a monic divisor of M such that B | D} →
{

E is a monic divisor of
M
B

}
,

D 7→ D
B
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Now,

∑
D|M

ϕC (D)︸ ︷︷ ︸
= ∑

B|D
µ(B)

D
B

(by (103), applied to E=D)

= ∑
D|M

∑
B|D︸︷︷︸

= ∑
B|M;
B|D

(since D|M)

µ (B)
D
B

= ∑
D|M

∑
B|M;
B|D︸ ︷︷ ︸

= ∑
B|M

∑
D|M;
B|D

µ (B)
D
B

= ∑
B|M

∑
D|M;
B|D

µ (B)
D
B

= ∑
B|M

µ (B) ∑
D|M;
B|D

D
B

︸ ︷︷ ︸
= ∑

E|
M
B

E

(by (104))

= ∑
B|M

µ (B) ∑
E|

M
B︸︷︷︸

= ∑
E|M;
BE|M

(since the monic divisors E of
M
B

are precisely

the monic divisors E of M satisfying BE|M)

E

= ∑
B|M

µ (B) ∑
E|M;
BE|M

E = ∑
B|M

∑
E|M;
BE|M︸ ︷︷ ︸

= ∑
E|M

∑
B|M;
BE|M

µ (B) E = ∑
E|M

∑
B|M;
BE|M

µ (B)

︸ ︷︷ ︸
=[E=M]

(by Corollary 3.67)

E

= ∑
E|M

[E = M] E = [M = M]︸ ︷︷ ︸
=1

M + ∑
E|M;
E 6=M

[E = M]︸ ︷︷ ︸
=0

(since E 6=M)

E

(here, we have split off the addend for E = M from the sum)

= M + ∑
E|M;
E 6=M

0E

︸ ︷︷ ︸
=0

= M.

This proves Proposition 3.69.

Next, let us study the function ϕ:

(where the symbol “|” means “divides”, not “such that”) is well-defined and a bijection.

Hence, we can substitute E for
D
B

in the sum ∑
D|M;
B|D

D
B

. We thus obtain ∑
D|M;
B|D

D
B

= ∑

E|
M
B

E. This

proves (104).
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Proposition 3.70. Let M ∈ Fq [T]+.
(a) We have ϕ (M) ∈N+.

(b) We have ϕ (M) = qdeg M ∏
π∈PF M

(
1− 1

qdeg π

)
.

(c) We have ϕ (M) ≡ µ (M)mod p.
(d) We have ϕ (M) = µ (M) in Fq.
(e) Let A be the ring Fq [T]. For any ring B, we let B× denote the group of

units of B. Then, ϕ (M) =
∣∣∣(A/MA)×

∣∣∣.
Proposition 3.70 (e) is used as a definition of ϕ (M) in [3, §6].

Proof of Proposition 3.70. (b) Let M = Pa1
1 Pa2

2 · · · P
ak
k be the factorization of M into

monic irreducible polynomials, with all of a1, a2, . . . , ak being positive integers
(and with P1, P2, . . . , Pk being distinct).56 Then, the squarefree monic divisors D
of M all have the form ∏

i∈I
Pi for some subset I of {1, 2, . . . , k}. More precisely,

there exists a bijection

{I ⊆ {1, 2, . . . , k}} → (the set of all squarefree monic divisors of M) ,

I 7→∏
i∈I

Pi. (105)

Moreover, every subset I of {1, 2, . . . , k} satisfies (100). (This is proven as in
our proof of Proposition 3.66.)

Furthermore, every subset I of {1, 2, . . . , k} satisfies

q
deg

(
M/ ∏

i∈I
Pi

)
= q

deg M−∑
i∈I

deg(Pi)
(

since deg

(
M/ ∏

i∈I
Pi

)
= deg M−∑

i∈I
deg (Pi)

)

=
qdeg M

∏
i∈I

qdeg(Pi)
. (106)

The definition of P1, P2, . . . , Pk shows that (P1, P2, . . . , Pk) is a list of all prime
factors of M, with no repetitions. Thus, the map {1, 2, . . . , k} → PF M, i 7→ Pi is
a bijection.

56This is well-defined, since M is monic and since Fq [T] is a principal ideal domain. Of course,
k can be 0 (when M = 1).
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The definition of ϕ yields

ϕ (M) = ∑
D|M

µ (D) qdeg(M/D)

= ∑
D|M;

D is squarefree

µ (D) qdeg(M/D) + ∑
D|M;

D is not squarefree

µ (D)︸ ︷︷ ︸
=0

(by the definition
of µ, since D

is not squarefree)

qdeg(M/D)

= ∑
D|M;

D is squarefree

µ (D) qdeg(M/D) + ∑
D|M;

D is not squarefree

0qdeg(M/D)

︸ ︷︷ ︸
=0

= ∑
D|M;

D is squarefree

µ (D) qdeg(M/D) = ∑
I⊆{1,2,...,k}

µ

(
∏
i∈I

Pi

)
︸ ︷︷ ︸

=(−1)|I|

(by (100))

q
deg

(
M/ ∏

i∈I
Pi

)
︸ ︷︷ ︸
=

qdeg M

∏
i∈I

qdeg(Pi)

(by (106))(
here, we have substituted ∏

i∈I
Pi for D

due to the bijection (98)

)

= ∑
I⊆{1,2,...,k}

(−1)|I|︸ ︷︷ ︸
=∏

i∈I
(−1)

qdeg M

∏
i∈I

qdeg(Pi)
= ∑

I⊆{1,2,...,k}

(
∏
i∈I

(−1)

)
qdeg M

∏
i∈I

qdeg(Pi)

= qdeg M ∑
I⊆{1,2,...,k}

∏
i∈I

(−1)

∏
i∈I

qdeg(Pi)︸ ︷︷ ︸
=∏

i∈I

−1
qdeg(Pi)

= qdeg M ∑
I⊆{1,2,...,k}

∏
i∈I

−1
qdeg(Pi)︸ ︷︷ ︸

= ∏
i∈{1,2,...,k}

1+
−1

qdeg(Pi)


(by Lemma 3.65 (b), applied to R=Q,

Z={1,2,...,k} and ri=
−1

qdeg(Pi)
)

= qdeg M ∏
i∈{1,2,...,k}

(
1 +

−1
qdeg(Pi)

)
= qdeg M ∏

π∈PF M

(
1 +

−1
qdeg π

)
︸ ︷︷ ︸

=1−
1

qdeg π(
here, we have substituted π for Pi in the product,

since the map {1, 2, . . . , k} → PF M, i 7→ Pi is a bijection

)
= qdeg M ∏

π∈PF M

(
1− 1

qdeg π

)
.
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This proves Proposition 3.70 (b).
(a) The definition of ϕ yields ϕ (M) = ∑

D|M
µ (D) qdeg(M/D) ∈ Z (since µ (D)

and qdeg(M/D) are integers for all D | M). But every π ∈ PF M satisfies deg π > 0
(since π is irreducible) and thus qdeg π > 1 (since q > 1) and therefore

1 >
1

qdeg π
. (107)

Proposition 3.70 (b) yields

ϕ (M) = qdeg M︸ ︷︷ ︸
>0

∏
π∈PF M

(
1− 1

qdeg π

)
︸ ︷︷ ︸

>0
(by (107))

> 0.

Combining this with ϕ (M) ∈ Z, we find that ϕ (M) ∈ N+. This proves Propo-
sition 3.70 (a).

(c) If D is a monic divisor of M satisfying D 6= M, then

µ (D) qdeg(M/D) ≡ 0 mod p (108)
57. Now, the definition of ϕ yields

ϕ (M) = ∑
D|M

µ (D) qdeg(M/D) = µ (M) qdeg(M/M)︸ ︷︷ ︸
=q0

(since deg(M/M)=deg 1=0)

+ ∑
D|M;
D 6=M

µ (D) qdeg(M/D)︸ ︷︷ ︸
≡0 mod p
(by (108))

(here, we have split off the addend for D = M from the sum)

≡ µ (M) q0︸︷︷︸
=1

+ ∑
D|M;
D 6=M

0

︸ ︷︷ ︸
=0

= µ (M)mod p.

This proves Proposition 3.70 (c).
(d) Proposition 3.70 (c) shows that ϕ (M) ≡ µ (M)mod p. Hence, ϕ (M) =

µ (M) holds in any field of characteristic p. In particular, ϕ (M) = µ (M) holds
in Fq (since Fq is a field of characteristic p).

(e) Let us first observe two general facts:
57Proof of (108): Let D be a monic divisor of M satisfying D 6= M. From M 6= D, we obtain

M/D 6= 1.
We have M/D ∈ Fq [T] (since D is a divisor of M). Also, the polynomial M/D is

monic (since M and D are monic). If we had deg (M/D) = 0, then we would have
M/D = 1 (because M/D is monic), which would contradict M/D 6= 1. Thus, we can-
not have deg (M/D) = 0. Hence, we must have deg (M/D) ≥ 1 (since M/D ∈ Fq [T]).
Hence, qdeg(M/D) is divisible by q, and thus also divisible by p (since p | q). In other words,
qdeg(M/D) ≡ 0 mod p. Hence, µ (D) qdeg(M/D)︸ ︷︷ ︸

≡0 mod p

≡ 0 mod p (since µ (D) ∈ {−1, 0, 1} ⊆ Z). This

proves (108).
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• If s ∈ Fq [T] is a nonzero polynomial, then

|A/sA| = qdeg s (109)

58.

• If s ∈ Fq [T] is a monic irreducible polynomial, and if n is a positive integer,
then ∣∣∣(A/sn A)×

∣∣∣ = qn deg s − q(n−1)deg s (110)

59.

The polynomial M is monic. Hence, the factorization of M into monic irre-
ducible polynomials is M = ∏

s∈PF M
svs(M). Notice that vs (M) is a positive integer

for each s ∈ PF M.
From M = ∏

s∈PF M
svs(M), we conclude that

deg M = deg ∏
s∈PF M

svs(M) = ∑
s∈PF M

deg
(

svs(M)
)

,

and thus

qdeg M = q
∑

s∈PF M
deg(svs(M))

= ∏
s∈PF M

qdeg(svs(M)). (111)

58Proof of (109): Let s ∈ Fq [T] be a nonzero polynomial. Then, it is well-known that A/sA is

an deg s-dimensional Fq-vector space (since A = Fq [T]). Hence, |A/sA| =
∣∣Fq
∣∣deg s. Since∣∣Fq

∣∣ = q, this rewrites as |A/sA| = qdeg s. This proves (109).
59Proof of (110): Let s ∈ Fq [T] be a monic irreducible polynomial, and let n be a positive integer.

Applying (109) to sn−1 instead of s, we obtain
∣∣A/sn−1 A

∣∣ = qdeg(sn−1) = q(n−1)deg s (since
deg

(
sn−1) = (n− 1)deg s).

Applying (109) to sn instead of s, we obtain |A/sn A| = qdeg(sn) = qn deg s (since deg (sn) =
n deg s).

Let B be the ring A/sn A. Then, B = A︸︷︷︸
=Fq [T]

/sn A︸︷︷︸
=Fq [T]

= Fq [T] /snFq [T]. Hence, Propo-

sition 3.55 (b) (applied to F = Fq) shows that sB ∼= Fq [T] /sn−1Fq [T] as Fq-vector spaces.
Thus, sB ∼= Fq [T]︸ ︷︷ ︸

=A

/sn−1 Fq [T]︸ ︷︷ ︸
=A

= A/sn−1 A as Fq-vector spaces. Hence, |sB| =
∣∣A/sn−1 A

∣∣ =
q(n−1)deg s. Also, from B = A/sn A, we obtain |B| = |A/sn A| = qn deg s.

But Proposition 3.55 (a) (applied to F = Fq) yields B× = B \ sB. Hence,∣∣B×∣∣ = |B \ sB| = |B|︸︷︷︸
=qn deg s

− |sB|︸︷︷︸
=q(n−1)deg s

(since sB ⊆ B)

= qn deg s − q(n−1)deg s.

Since B = A/sn A, this rewrites as
∣∣∣(A/sn A)×

∣∣∣ = qn deg s − q(n−1)deg s. Hence, (110) is proven.
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For each s ∈ PF M, define an ideal Is of A by Is = svs(M)A. Notice that A is a
principal ideal domain (since A = Fq [T]). We have∣∣∣(A/Is)

×
∣∣∣ = qdeg(svs(M))

(
1− 1

qdeg s

)
(112)

for each s ∈ PF M 60.
Every two distinct elements s and t of PF M satisfy Is + It = A 61. Hence,

Theorem 3.53 (b) (applied to S = PF M) shows that the canonical A-algebra
homomorphism

A/

(
∏

s∈PF M
Is

)
→ ∏

s∈PF M
(A/Is) , a + ∏

s∈PF M
Is 7→ (a + Is)s∈PF M

is well-defined and an A-algebra isomorphism. Hence, A/
(

∏
s∈PF M

Is

)
∼= ∏

s∈PF M
(A/Is)

as A-algebras.
But

∏
s∈PF M

Is︸︷︷︸
=svs(M)A

= ∏
s∈PF M

(
svs(M)A

)
=

(
∏

s∈PF M
svs(M)

)
︸ ︷︷ ︸

=M

A = MA.

60Proof of (112): Let s ∈ PF M. Thus, s is a monic irreducible polynomial dividing M.
Let n = vs (M). Then, n = vs (M) is a positive integer (since s divides M). Hence, (110)

yields∣∣∣(A/sn A)×
∣∣∣ = qn deg s − q(n−1)deg s︸ ︷︷ ︸

=qn deg s−deg s

(since (n−1)deg s=n deg s−deg s)

= qn deg s − qn deg s−deg s︸ ︷︷ ︸
=

qn deg s

qdeg s

= qn deg s − qn deg s

qdeg s = qn deg s︸ ︷︷ ︸
=qdeg(sn)

(since n deg s=deg(sn))

(
1− 1

qdeg s

)
= qdeg(sn)

(
1− 1

qdeg s

)

= qdeg(svs(M))
(

1− 1
qdeg s

)
(since n = vs (M)) .

Also, Is = svs(M)A = sn A (since vs (M) = n). Hence,
∣∣∣(A/Is)

×
∣∣∣ =

∣∣∣(A/sn A)×
∣∣∣ =

qdeg(svs(M))
(

1− 1
qdeg s

)
. This proves (112).

61Proof. Let s and t be two distinct elements of PF M. Thus, s and t are two distinct monic
irreducible polynomials in Fq [T]. Hence, Lemma 3.52 (applied to F = Fq, n = vs (M), m =

vt (M) and R = A) yields svs(M)A + tvt(M)A = A.
On the other hand, Is = svs(M)A (by the definition of Is) and It = tvt(M)A (by the definition

of It). Adding these two equalities, we obtain Is + It = svs(M)A + tvt(M)A = A. Qed.
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Thus, A/

(
∏

s∈PF M
Is

)
︸ ︷︷ ︸

=MA

= A/MA. Hence, A/MA = A/
(

∏
s∈PF M

Is

)
∼= ∏

s∈PF M
(A/Is)

as A-algebras. Therefore,

(A/MA)× ∼=
(

∏
s∈PF M

(A/Is)

)×
∼= ∏

s∈PF M
(A/Is)

×

as groups. Hence,∣∣∣(A/MA)×
∣∣∣ = ∣∣∣∣∣ ∏

s∈PF M
(A/Is)

×
∣∣∣∣∣ = ∏

s∈PF M

∣∣∣(A/Is)
×
∣∣∣︸ ︷︷ ︸

=qdeg(svs(M))
(

1−
1

qdeg s

)
(by (112))

= ∏
s∈PF M

(
qdeg(svs(M))

(
1− 1

qdeg s

))

=

(
∏

s∈PF M
qdeg(svs(M))

)
︸ ︷︷ ︸

=qdeg M

(by (111))

∏
s∈PF M

(
1− 1

qdeg s

)
︸ ︷︷ ︸
= ∏

π∈PF M

(
1−

1
qdeg π

)
(here, we have renamed the
index s as π in the product)

= qdeg M ∏
π∈PF M

(
1− 1

qdeg π

)
= ϕ (M)

(by Proposition 3.70 (b)). This proves Proposition 3.70 (e).

Finally, here is an identity that connects the functions µ and ϕC (an analogue
of [6, (12.68.6)]):

Proposition 3.71. Let M ∈ Fq [T]+. Then,

∑
D|M

Dµ (D) ϕC

(
M
D

)
= µ (M) in Fq [T] .

Proof of Proposition 3.71. We shall use the notation of Proposition 3.66.
Every E ∈ Fq [T]+ satisfies (103). (This can be proven as in our proof of

Proposition 3.69 above.) Now, every monic divisor D of M satisfies

ϕC

(
M
D

)
= ∑

B|M;
BD|M

µ (B)
M

BD
(113)
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62. Also, every monic divisor B of M satisfies

∑
D|M;
BD|M

µ (D) = [B = M] (114)

63.

62Proof of (113): Let D be a monic divisor of M. Thus, M/D ∈ Fq [T]. Also, the polynomial
M/D is monic (since M and D are monic). Hence, M/D ∈ Fq [T]+. Thus, (103) (applied to
E = M/D) yields

ϕC (M/D) = ∑
B|M/D︸ ︷︷ ︸
= ∑

B|M;
BD|M

(since the monic divisors B of M/D
are exactly the monic divisors B of M

that satisfy BD|M)

µ (B)
M/D

B︸ ︷︷ ︸
=

M
BD

= ∑
B|M;

BD|M

µ (B)
M

BD
.

Thus, ϕC

(
M
D

)
= ϕC (M/D) = ∑

B|M;
BD|M

µ (B)
M

BD
. This proves (113).

63Proof of (114): We can rename the variables E and B as B and D in Corollary 3.67. As a result,
we conclude that ∑

D|M;
DB|M

µ (D) = [B = M]. Hence, [B = M] = ∑
D|M;
DB|M

µ (D) = ∑
D|M;
BD|M

µ (D). This

proves (114).
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Now,

∑
D|M

Dµ (D) ϕC

(
M
D

)
︸ ︷︷ ︸

= ∑
B|M;

BD|M

µ(B)
M

BD

(by (113))

= ∑
D|M

Dµ (D) ∑
B|M;

BD|M

µ (B)
M

BD
= ∑

D|M
∑

B|M;
BD|M︸ ︷︷ ︸

= ∑
B|M

∑
D|M;
BD|M

Dµ (D) µ (B)
M

BD︸ ︷︷ ︸
=

M
B

µ(B)µ(D)

= ∑
B|M

∑
D|M;
BD|M

M
B

µ (B) µ (D) = ∑
B|M

M
B

µ (B) ∑
D|M;
BD|M

µ (D)

︸ ︷︷ ︸
=[B=M]
(by (114))

= ∑
B|M

M
B

µ (B) [B = M] =
M
M︸︷︷︸
=1

µ (M) [M = M]︸ ︷︷ ︸
=1

+ ∑
B|M;
B 6=M

M
B

µ (B) [B = M]︸ ︷︷ ︸
=0

(since B 6=M)

(here, we have split off the addend for B = M from the sum)

= µ (M) + ∑
B|M;
B 6=M

M
B

µ (B) 0

︸ ︷︷ ︸
=0

= µ (M)

in Fq [T]. This proves Proposition 3.71.

3.15. The Carlitz ghost-Witt equivalence

We are now ready to prove a generalization of Theorem 2.13:

Theorem 3.72. Let N be a q-nest. Let A be an F -module. For every P ∈ N,
let ϕP be an endomorphism of the Fq-vector space A. (The notation ϕP for
these endomorphisms should not be confused with the notation ϕC defined
in Definition 3.63; we shall ensure this by never using the notation C for a
polynomial in this context.) Let us make the following three assumptions:

Assumption 1: For every P ∈ N, the map ϕP is an endomorphism of the
F -module A.

Assumption 2: We have ϕπ (a) ≡ (Carl π) a mod πA for every a ∈ A and
every monic irreducible π ∈ N.
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Assumption 3: We have ϕ1 = id. Furthermore, ϕP ◦ ϕQ = ϕPQ for every
P ∈ N and every Q ∈ N satisfying PQ ∈ N.

Let (bP)P∈N ∈ AN be a family of elements of A. Then, the following asser-
tions C1, D1, D2, E1, F1, G1, and G2 are equivalent:

Assertion C1: Every P ∈ N and every π ∈ PF P satisfy

ϕπ (bP/π) ≡ bP mod πvπ(P)A.

Assertion D1: There exists a family (xP)P∈N ∈ AN of elements of A such
that bP = ∑

D|P
D ·
(

Carl
P
D

)
xD for every P ∈ N

 .

Assertion D2: There exists a family (x̃P)P∈N ∈ AN of elements of A such
that bP = ∑

D|P
DFdeg(P/D) x̃D for every P ∈ N

 .

Assertion E1: There exists a family (yP)P∈N ∈ AN of elements of A such thatbP = ∑
D|P

DϕP/D (yD) for every P ∈ N

 .

Assertion F1: Every P ∈ N satisfies

∑
D|P

µ (D) ϕD (bP/D) ∈ PA.

Assertion G1: Every P ∈ N satisfies

∑
D|P

ϕC (D) ϕD (bP/D) ∈ PA.

Assertion G2: Every P ∈ N satisfies

∑
D|P

ϕ (D) ϕD (bP/D) ∈ PA.

Theorem 3.72 is a generalization of Theorem 2.13 – namely, it is precisely the
generalization outlined in Remark 2.15. In order to see this, the reader should
recall Proposition 3.27, which says that (roughly speaking) F -modules are the
same as Frobenius Fq [T]-modules (which are precisely Fq [T]-modules A with
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an Fq-linear Frobenius map F : A→ A which satisfies (2)64).
Before we prove Theorem 3.72, let us show two more general facts:

Lemma 3.73. Let N be a q-nest. Let A be an Fq [T]-module. For every P ∈ N
and every monic divisor D of P, let gP,D be an element of A. Let α, β and γ
are three maps from N to Fq [T].

Assume that

β (P) = ∑
D|P

Dγ (D) α

(
P
D

)
for every P ∈ N. (115)

Furthermore, assume that every P ∈ N and every monic divisor E of P
satisfy

E ∑
D|P;
DE|P

α (D) gP,DE ∈ PA. (116)

Then, every P ∈ N and every monic divisor E of P satisfy

E ∑
D|P;
DE|P

β (D) gP,DE ∈ PA. (117)

Proof of Lemma 3.73. Let P ∈ N. Let E be a monic divisor of P. Then, every
monic divisor F of P satisfies

F ∑
M|P;
MF|P

α (M) gP,MF ∈ PA (118)

65. Furthermore, every monic divisor D of P satisfies

∑
M|P;

ME|P;
D|M

α

(
M
D

)
gP,ME = ∑

M|P;
MDE|P

α (M) gP,MDE (119)

64This is slightly nontrivial, because the equalities (2) and (43) are not obviously equivalent.
Nevertheless, the equivalence of the equalities (2) and (43) is easy to show.

65Proof of (118): Let F be a monic divisor of P. Then,

F ∑
M|P;
MF|P

α (M) gP,MF = F ∑
D|P;
DF|P

α (D) gP,DF (here, we have renamed the summation index M as D)

∈ PA

(by (116) (applied to E = F)). This proves (118).
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66. Finally, every monic divisor D of P satisfies

DE ∑
M|P;

MDE|P

α (M) gP,MDE ∈ PA (122)

66Proof of (119): Let D be a monic divisor of P.
Let A be the set of all monic divisors M of P satisfying ME | P and D | M. Thus,

∑
M∈A

= ∑
M|P;

ME|P;
D|M

.

Let B be the set of all monic divisors M of P satisfying MDE | P. Thus, ∑
M∈B

= ∑
M|P;

MDE|P

.

We have
M/D ∈ B for each M ∈ A. (120)

[Proof of (120): Let M ∈ A. In other words, M is a monic divisor of P satisfying ME | P and
D | M (by the definition of A). Now, D | M, so that M/D ∈ Fq [T]+. The polynomial M/D is
monic (since M and D are monic), and is a divisor of P (since M/D | M | P). It furthermore
satisfies (M/D) DE = ME | P. Thus, M/D is a monic divisor of P satisfying (M/D) DE | P.
In other words, M/D ∈ B (by the definition of B). This proves (120).]

Furthermore, we have
MD ∈ A for each M ∈ B. (121)

[Proof of (121): Let M ∈ B. In other words, M is a monic divisor of P satisfying MDE | P
(by the definition of B). Now, the polynomial MD is monic (since M and D are monic), and
is a divisor of P (since MD | MDE | P). Furthermore, it satisfies (MD) E = MDE | P and
D | MD. Thus, MD is a monic divisor of P satisfying (MD) E | P and D | MD. In other
words, MD ∈ A (by the definition of A). This proves (121).]

Now, the map
A→ B, M 7→ M/D

is well-defined (according to (120)). Furthermore, the map

B→ A, M 7→ MD

is well-defined (according to (121)). These two maps are mutually inverse (because one of
them divides input by D, whereas the other multiplies its input by D). Hence, they are both
invertible. In particular, the map

A→ B, M 7→ M/D

is invertible, i.e., is a bijection. Thus, we can substitute M/D for M in the sum
∑

M∈B
α (M) gP,MDE. We thus obtain

∑
M∈B

α (M) gP,MDE = ∑
M∈A︸︷︷︸

= ∑
M|P;

ME|P;
D|M

α

M/D︸ ︷︷ ︸
=

M
D

 gP,(M/D)DE︸ ︷︷ ︸
=gP,ME

= ∑
M|P;

ME|P;
D|M

α

(
M
D

)
gP,ME.

113



Function-field analogue for symmetric functions? May 11, 2018

67.

Thus,

∑
M|P;

ME|P;
D|M

α

(
M
D

)
gP,ME = ∑

M∈B︸︷︷︸
= ∑

M|P;
MDE|P

α (M) gP,MDE = ∑
M|P;

MDE|P

α (M) gP,MDE.

This proves (119).
67Proof of (122): Let D be a monic divisor of P. We must prove (122).

We are in one of the following two cases:
Case 1: We have DE | P.
Case 2: We have DE - P.
Let us consider Case 1 first. In this case, we have DE | P. Also, the polynomial DE is

monic (since D and E are monic). Hence, DE is a monic divisor of P. Thus, (118) (applied to
F = DE) yields DE ∑

M|P;
MDE|P

α (M) gP,MDE ∈ PA. Thus, (122) is proven in Case 1.

Let us now consider Case 2. In this case, we have DE - P. Thus, there exists no M | P
satisfying MDE | P (because if such an M would exist, then it would satisfy DE | MDE | P,
which would contradict DE - P). Hence, the sum ∑

M|P;
MDE|P

α (M) gP,MDE is empty, and thus

equals 0. In other words, ∑
M|P;

MDE|P

α (M) gP,MDE = 0. Now, DE ∑
M|P;

MDE|P

α (M) gP,MDE

︸ ︷︷ ︸
=0

= 0 ∈ PA.

Thus, (122) is proven in Case 2.
We have now proven (122) in both Cases 1 and 2. Thus, (122) always holds.
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Now,

∑
D|P;
DE|P

β (D) gP,DE

= ∑
M|P;
ME|P

β (M)︸ ︷︷ ︸
= ∑

D|M
Dγ(D)α

(M
D

)
(by (115) (applied

to M instead of P))

gP,ME (here, we have renamed the summation index D as M)

= ∑
M|P;
ME|P

∑
D|M︸︷︷︸
= ∑

D|P;
D|M

(since every monic divisor D of M
is also a monic divisor of P (since M|P))

Dγ (D) α

(
M
D

)
gP,ME

= ∑
M|P;
ME|P

∑
D|P;
D|M︸ ︷︷ ︸

= ∑
D|P

∑
M|P;

ME|P;
D|M

Dγ (D) α

(
M
D

)
gP,ME = ∑

D|P
∑

M|P;
ME|P;
D|M

Dγ (D) α

(
M
D

)
gP,ME

= ∑
D|P

Dγ (D) ∑
M|P;

ME|P;
D|M

α

(
M
D

)
gP,ME

︸ ︷︷ ︸
= ∑

M|P;
MDE|P

α(M)gP,MDE

(by (119))

= ∑
D|P

Dγ (D) ∑
M|P;

MDE|P

α (M) gP,MDE.

Multiplying both sides of this equality by E, we find

E ∑
D|P;
DE|P

β (D) gP,DE

= E ∑
D|P

Dγ (D) ∑
M|P;

MDE|P

α (M) gP,MDE = ∑
D|P

DEγ (D) ∑
M|P;

MDE|P

α (M) gP,MDE

= ∑
D|P

γ (D) DE ∑
M|P;

MDE|P

α (M) gP,MDE

︸ ︷︷ ︸
∈PA

(by (122))

∈ ∑
D|P

γ (D) PA ⊆ PA.

This proves Lemma 3.73.
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Lemma 3.74. Let N be a q-nest. Let A be an Fq [T]-module. For every P ∈ N
and every monic divisor D of P, let gP,D be an element of A. Then, the
following two assertions are equivalent:

Assertion L: Every P ∈ N and every monic divisor E of P satisfy

E ∑
D|P;
DE|P

µ (D) gP,DE ∈ PA.

AssertionM: Every P ∈ N and every monic divisor E of P satisfy

E ∑
D|P;
DE|P

ϕC (D) gP,DE ∈ PA.

Proof of Lemma 3.74. We shall consider ϕC : Fq [T]+ → Fq [T] as a map N →
Fq [T] (by restricting it to the subset N of Fq [T]+). We shall also consider µ :
Fq [T]+ → {−1, 0, 1} as a map N → Fq [T] (by restricting it to the subset N of
Fq [T]+, and by composing it with the canonical map {−1, 0, 1} → Z→ Fq [T]).

We shall prove the implications L =⇒M andM =⇒ L separately:
Proof of the implication L =⇒ M: Assume that Assertion L holds. We must

show that AssertionM holds.
Define a map γ : N → Fq [T] by (γ (P) = 1 for every P ∈ N).
For every P ∈ N, we have

ϕC (P) = ∑
D|P

D︸︷︷︸
=D1

µ

(
P
D

)
(by Proposition 3.68 (c), applied to M = P)

= ∑
D|P

D 1︸︷︷︸
=γ(D)

(since γ(D)=1
(by the definition of γ))

µ

(
P
D

)
= ∑

D|P
Dγ (D) µ

(
P
D

)
.

Furthermore, every P ∈ N and every monic divisor E of P satisfy

E ∑
D|P;
DE|P

µ (D) gP,DE ∈ PA

(because Assertion L holds). Thus, Lemma 3.73 (applied to α = µ and β = ϕC)
shows that every P ∈ N and every monic divisor E of P satisfy

E ∑
D|P;
DE|P

ϕC (D) gP,DE ∈ PA.

In other words, AssertionM holds. Thus, we have proven the implication L =⇒
M.
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Proof of the implication M =⇒ L: Assume that Assertion M holds. We must
show that Assertion L holds.

For every P ∈ N, we have

∑
D|P

Dµ (D) ϕC

(
P
D

)
= µ (P)

(by Proposition 3.71, applied to M = P) and thus

µ (P) = ∑
D|P

Dµ (D) ϕC

(
P
D

)
.

Furthermore, every P ∈ N and every monic divisor E of P satisfy

E ∑
D|P;
DE|P

ϕC (D) gP,DE ∈ PA

(because AssertionM holds). Thus, Lemma 3.73 (applied to α = ϕC, β = µ and
γ = µ) shows that every P ∈ N and every monic divisor E of P satisfy

E ∑
D|P;
DE|P

µ (D) gP,DE ∈ PA.

In other words, Assertion L holds. Thus, we have proven the implicationM =⇒
L.

We have now proven the two implications L =⇒M andM =⇒ L. Combin-
ing them, we obtain the equivalence L ⇐⇒M. Thus, Lemma 3.74 is proven.

Proof of Theorem 3.72. Let us observe a few simple facts:

• If D and E are two monic polynomials in Fq [T] satisfying DE ∈ N, then

ϕD ◦ ϕE = ϕDE (123)
68.

• Every P ∈ N and every monic divisor D of P satisfy

ϕD ◦ ϕP/D = ϕP (124)
69.

68Proof of (123): Let D and E be two monic polynomials in Fq [T] satisfying DE ∈ N.
The polynomial D is a monic divisor of DE (since D is monic and D | DE). Since DE ∈ N,

this entails D ∈ N (because N is a q-nest). Similarly, E ∈ N.
But Assumption 3 shows that ϕP ◦ ϕQ = ϕPQ for every P ∈ N and every Q ∈ N satisfying

PQ ∈ N. Applying this to P = D and Q = E, we obtain ϕD ◦ ϕE = ϕDE. This proves (123).
69Proof of (124): Let P ∈ N, and let D be a monic divisor of P. Then, P/D ∈ Fq [T] (since D is a

divisor of P). The polynomial P/D is monic (since P and D are monic). Also, D · (P/D) =
P ∈ N. Hence, (123) (applied to E = P/D) yields ϕD ◦ ϕP/D = ϕD·(P/D) = ϕP. This proves
(124).
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• Assumption 3 furthermore shows that ϕ1 = id.

Assumption 1 shows that, for every P ∈ N, the map ϕP is an endomorphism
of the F -module A. In other words, for every P ∈ N,

the map ϕP is F -linear. (125)

Notice that Assertion C1 of Theorem 3.72 is identical with Assertion C1 of
Theorem 3.57.

Let us now prove the equivalences C1 ⇐⇒ D1, C1 ⇐⇒ D2 and C1 ⇐⇒ E1.
These three equivalences will be derived from Theorem 3.57.

Proof of the equivalence C1 ⇐⇒ D1: For every P ∈ N, define an endomorphism
ψP of the Fq-vector space A by

(ψP (a) = (Carl P) a for every a ∈ A) .

The Assumptions 1, 2 and 3 of Theorem 3.57 are satisfied (because they are
precisely the Assumptions 1, 2 and 3 of Theorem 3.72). Hence, Proposition 3.59
shows that Assumptions 4 and 5 of Theorem 3.57 are satisfied. Hence, Theorem
3.57 shows that the assertions C1 and Eψ of Theorem 3.57 are equivalent. In other
words, C1 ⇐⇒ Eψ.

But Assertion D1 can be rewritten as follows:

Assertion D′1: There exists a family (zP)P∈N ∈ AN of elements of A
such that bP = ∑

D|P
D ·
(

Carl
P
D

)
zD for every P ∈ N

 .

Assertion D′1 is obtained from Assertion D1 by renaming the family (xP)P∈N
as (zP)P∈N. Hence, we have the equivalence D1 ⇐⇒ D′1.

But every P ∈ N and every monic divisor D of P satisfy

ψP/D (zD) = (Carl (P/D)) zD (by the definition of ψP/D)

=

(
Carl

P
D

)
zD.

Thus, Assertion Eψ of Theorem 3.57 is equivalent to our Assertion D′1. In other
words, we have the equivalence Eψ ⇐⇒ D′1. Thus, we have the chain of equiva-
lences D1 ⇐⇒ D′1 ⇐⇒ Eψ ⇐⇒ C1. This proves the equivalence C1 ⇐⇒ D1.

Proof of the equivalence C1 ⇐⇒ D2: For every P ∈ N, define an endomorphism
ψP of the Fq-vector space A by(

ψP (a) = Fdeg Pa for every a ∈ A
)

.
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The Assumptions 1, 2 and 3 of Theorem 3.57 are satisfied (because they are
precisely the Assumptions 1, 2 and 3 of Theorem 3.72). Hence, Proposition 3.60
shows that Assumptions 4 and 5 of Theorem 3.57 are satisfied. Hence, Theorem
3.57 shows that the assertions C1 and Eψ of Theorem 3.57 are equivalent. In other
words, C1 ⇐⇒ Eψ.

But Assertion D2 can be rewritten as follows:

Assertion D′2: There exists a family (zP)P∈N ∈ AN of elements of A
such that bP = ∑

D|P
DFdeg(P/D)zD for every P ∈ N

 .

Assertion D′2 is obtained from Assertion D2 by renaming the family (xP)P∈N
as (zP)P∈N. Hence, we have the equivalence D2 ⇐⇒ D′2.

But every P ∈ N and every monic divisor D of P satisfy

ψP/D (zD) = Fdeg(P/D)zD (by the definition of ψP/D) .

Thus, Assertion Eψ of Theorem 3.57 is equivalent to our Assertion D′2. In other
words, we have the equivalence Eψ ⇐⇒ D′2. Thus, we have the chain of equiva-
lences D2 ⇐⇒ D′2 ⇐⇒ Eψ ⇐⇒ C1. This proves the equivalence C1 ⇐⇒ D2.

Proof of the equivalence C1 ⇐⇒ E1: For every P ∈ N, define an endomorphism
ψP of the Fq-vector space A by ψP = ϕP. The Assumptions 1, 2 and 3 of The-
orem 3.57 are satisfied (because they are precisely the Assumptions 1, 2 and 3
of Theorem 3.72). Hence, Proposition 3.61 shows that Assumptions 4 and 5 of
Theorem 3.57 are satisfied. Hence, Theorem 3.57 shows that the assertions C1
and Eψ of Theorem 3.57 are equivalent. In other words, C1 ⇐⇒ Eψ.

But Assertion E1 can be rewritten as follows:

Assertion E ′1: There exists a family (zP)P∈N ∈ AN of elements of A
such that bP = ∑

D|P
DϕP/D (zD) for every P ∈ N

 .

Assertion E ′1 is obtained from Assertion E1 by renaming the family (yP)P∈N as
(zP)P∈N. Hence, we have the equivalence E1 ⇐⇒ E ′1.

But every P ∈ N and every monic divisor D of P satisfy ψP/D = ϕP/D (by
the definition of ψP/D). Thus, Assertion Eψ of Theorem 3.57 is equivalent to
our Assertion E ′1. In other words, we have the equivalence Eψ ⇐⇒ E ′1. Thus,
we have the chain of equivalences E1 ⇐⇒ E ′1 ⇐⇒ Eψ ⇐⇒ C1. This proves the
equivalence C1 ⇐⇒ E1.
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Combining the equivalences C1 ⇐⇒ D1, C1 ⇐⇒ D2 and C1 ⇐⇒ E1, we obtain
the chain of equivalences C1 ⇐⇒ D1 ⇐⇒ D2 ⇐⇒ E1. Let us now show some
further logical implications. We shall use the notations of Proposition 3.66.

Proof of the implication E1 =⇒ F1: Assume that Assertion E1 holds. That is,
there exists a family (yP)P∈N ∈ AN of elements of A such thatbP = ∑

D|P
DϕP/D (yD) for every P ∈ N

 . (126)

Consider this family (yP)P∈N. We need to prove that Assertion F1 holds, i.e.,
that every P ∈ N satisfies

∑
D|P

µ (D) ϕD (bP/D) ∈ PA.

Fix P ∈ N. Then, every monic divisor D of P satisfies

bP/D = ∑
E|P;

DE|P

Eϕ(P/E)/D (yE) (127)

70. Moreover, if D and E are two monic divisors of P satisfying DE | P, then

ϕD

(
ϕ(P/E)/D (yE)

)
= ϕP/E (yE) (128)

70Proof of (127): Let B be a monic divisor of P. Thus, P/B ∈ Fq [T]+. Moreover, the polynomial
P/B is monic (since P and B are monic), and is a divisor of P. Hence, P/B ∈ N (since N is a
q-nest, and since P ∈ N). Thus, (126) (applied to P/B instead of P) yields

bP/B = ∑
D|P/B︸ ︷︷ ︸
= ∑

D|P;
BD|P

(since the monic divisors D of P/B
are precisely the monic divisors D of P

satisfying BD|P)

D ϕ(P/B)/D︸ ︷︷ ︸
=ϕ(P/D)/B

(since (P/B)/D=(P/D)/B)

(yD) = ∑
D|P;
BD|P

Dϕ(P/D)/B (yD)

= ∑
E|P;
BE|P

Eϕ(P/E)/B (yE)

(
here, we have renamed the
summation index D as E

)
.

Now, forget that we fixed B. We thus have shown that every monic divisor B of P satisfies
bP/B = ∑

E|P;
BE|P

Eϕ(P/E)/B (yE). Renaming B as D in this result, we obtain the following: Every

monic divisor D of P satisfies bP/D = ∑
E|P;

DE|P

Eϕ(P/E)/D (yE). This proves (127).
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71.
Hence, every monic divisor D of P satisfies

ϕD


bP/D︸︷︷︸

= ∑
E|P;

DE|P

Eϕ(P/E)/D(yE)

(by (127))


= ϕD

 ∑
E|P;

DE|P

Eϕ(P/E)/D (yE)

 = ∑
E|P;

DE|P

E ϕD

(
ϕ(P/E)/D (yE)

)
︸ ︷︷ ︸

=ϕP/E(yE)
(by (128))

(
since the map ϕD is F -linear

(by (125), applied to D instead of P)

)
= ∑

E|P;
DE|P

EϕP/E (yE) . (129)

71Proof of (128): Let D and E be two monic divisors of P satisfying DE | P. We have E | DE | P.
Thus, P/E ∈ Fq [T]. Moreover, the polynomial P/E is monic (since P and E are monic).
Hence, P/E is a monic divisor of P ∈ N. Thus, P/E ∈ N (since N is a q-nest). Moreover,

D | P/E (since
P/E

D
=

P
DE
∈ Fq [T] (since DE | P)). Hence, D is a monic divisor of P/E.

Thus, (124) (applied to P/E instead of P) yields ϕD ◦ ϕ(P/E)/D = ϕP/E.

Now, ϕD

(
ϕ(P/E)/D (yE)

)
=
(

ϕD ◦ ϕ(P/E)/D

)
︸ ︷︷ ︸

=ϕP/E

(yE) = ϕP/E (yE). This proves (128).
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Hence,

∑
D|P

µ (D) ϕD (bP/D)︸ ︷︷ ︸
= ∑

E|P;
DE|P

EϕP/E(yE)

(by (129))

= ∑
D|P

µ (D) ∑
E|P;

DE|P

EϕP/E (yE) = ∑
B|P

µ (B) ∑
E|P;
BE|P

EϕP/E (yE)

(
here, we have renamed the summation

index D as B in the outer sum

)
= ∑

B|P
∑
E|P;
BE|P︸ ︷︷ ︸

= ∑
E|P

∑
B|P;
BE|P

µ (B) EϕP/E (yE) = ∑
E|P

∑
B|P;
BE|P

µ (B)

︸ ︷︷ ︸
=[E=P]

(by Corollary 3.67,
applied to M=P)

EϕP/E (yE)

= ∑
E|P

[E = P] EϕP/E (yE)

= [P = P]︸ ︷︷ ︸
=1

P ϕP/P︸ ︷︷ ︸
=id

(by Assumption 1)

(yP) + ∑
E|P;
E 6=P

[E = P]︸ ︷︷ ︸
=0

(since E 6=P)

EϕP/E (yE)

(here, we have split off the addend for E = P from the sum)

= P id (yP)︸ ︷︷ ︸
=yP

+ ∑
E|P;
E 6=P

0EϕP/E (yE)

︸ ︷︷ ︸
=0

= P yP︸︷︷︸
∈A

∈ PA.

Thus, Assertion F1 holds. We have thus proven the implication E1 =⇒ F1.
Proof of the implication F1 =⇒ E1: Assume that Assertion F1 holds. That is,

every P ∈ N satisfies
∑
D|P

µ (D) ϕD (bP/D) ∈ PA. (130)

Now we need to prove that Assertion E1 holds, i.e., that there exists a family
(yP)P∈N ∈ AN of elements of A such that every P ∈ N satisfiesbP = ∑

D|P
DϕP/D (yD) for every P ∈ N

 . (131)

We shall construct such a family (yP)P∈N recursively, by induction over deg P.
That is, we fix some Q ∈ N, and we assume that we already have constructed a
yP ∈ A for every P ∈ N satisfying deg P < deg Q; we furthermore assume that
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these yP satisfy
bP = ∑

D|P
DϕP/D (yD) (132)

for every P ∈ N satisfying deg P < deg Q. We now need to construct a yQ ∈ A
such that (132) is satisfied for P = Q. In other words, we need to construct a
yQ ∈ A satisfying bQ = ∑

D|Q
DϕQ/D (yD).

From (130) (applied to P = Q), we obtain ∑
D|Q

µ (D) ϕD
(
bQ/D

)
∈ QA. Thus,

there exists a t ∈ A such that ∑
D|Q

µ (D) ϕD
(
bQ/D

)
= Qt. Consider this t. Set

yQ = t.
For every monic divisor E of Q satisfying E 6= 1, we have

bQ/E = ∑
D|Q;
DE|Q

Dϕ(Q/D)/E (yD) (133)

72. If D and E are two monic divisors of Q satisfying DE | Q, then

ϕE

(
ϕ(Q/D)/E (yD)

)
= ϕQ/D (yD) (134)

72Proof of (133): Let E be a monic divisor of Q satisfying E 6= 1. We have E | Q and thus
Q/E ∈ Fq [T]. The polynomial Q/E is monic (since Q and E are monic) and thus is a monic
divisor of Q ∈ N. Hence, Q/E ∈ N (since N is a q-nest). Also, E is a monic polynomial
satisfying E 6= 1; therefore, deg E > 0. Hence, deg (Q/E) = deg Q− deg E︸ ︷︷ ︸

>0

< deg Q. Thus,

we can apply (132) to P = Q/E (since we have assumed that (132) holds for every P ∈ N
satisfying deg P < deg Q). As a result, we obtain

bQ/E = ∑
D|Q/E︸ ︷︷ ︸
= ∑

D|Q;
DE|Q

(since the monic divisors D of Q/E
are precisely the monic divisors D of Q

satisfying DE|Q (since E|Q))

D ϕ(Q/E)/D︸ ︷︷ ︸
=ϕ(Q/D)/E

(since (Q/E)/D=(Q/D)/E)

(yD) = ∑
D|Q;
DE|Q

Dϕ(Q/D)/E (yD) .

This proves (133).
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73. If D is a monic divisor of Q, then

∑
E|Q;

DE|Q;
E 6=1

µ (E) = [D = Q]− 1 (135)

74.

73Proof of (134): Let D and E be two monic divisors of Q satisfying DE | Q. We have D | Q
and thus Q/D ∈ Fq [T]. The polynomial Q/D is monic (since Q and D are monic), and thus
is a monic divisor of Q ∈ N. Hence, Q/D ∈ N (since N is a q-nest). Moreover, DE | Q,

and thus
Q

DE
∈ Fq [T]. Hence,

Q/D
E

=
Q

DE
∈ Fq [T]. Thus, E is a divisor of Q/D (since

Q/D ∈ Fq [T]). Hence, (124) (applied to Q/D and E instead of P and D) shows that

ϕE ◦ ϕ(Q/D)/E = ϕQ/D.

Now, ϕE

(
ϕ(Q/D)/E (yD)

)
=
(

ϕE ◦ ϕ(Q/D)/E

)
︸ ︷︷ ︸

=ϕQ/D

(yD) = ϕQ/D (yD). This proves (134).

74Proof of (135): Let D be a monic divisor of Q. We must prove (135).
The polynomial 1 is a monic divisor of Q satisfying D · 1 | Q (since D · 1 = D | Q). Hence,

we can split off the addend for E = 1 from the sum ∑
E|Q;

DE|Q

µ (E). As a result, we obtain

∑
E|Q;

DE|Q

µ (E) = ∑
E|Q;

DE|Q;
E 6=1

µ (E) + µ (1)︸ ︷︷ ︸
=1

= ∑
E|Q;

DE|Q;
E 6=1

µ (E) + 1.

Comparing this with

∑
E|Q;

DE|Q

µ (E) = ∑
B|Q;

DB|Q︸︷︷︸
= ∑

B|Q;
BD|Q

(since DB=BD
for every B|Q)

µ (B) (here, we have renamed the summation index E as B)

= ∑
B|Q;

BD|Q

µ (B) = [D = Q]

(
by Corollary 3.67, applied to Q and D

instead of M and E

)
,

we obtain ∑
E|Q;

DE|Q;
E 6=1

µ (E) + 1 = [D = Q]. In other words, ∑
E|Q;

DE|Q;
E 6=1

µ (E) = [D = Q]− 1. This proves

(135).
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Now,

Qt = ∑
D|Q

µ (D) ϕD
(
bQ/D

)
= ∑

E|Q
µ (E) ϕE

(
bQ/E

)
(here, we have renamed the summation index D as E)

= µ (1)︸ ︷︷ ︸
=1

ϕ1︸︷︷︸
=id

bQ/1︸︷︷︸
=bQ

+ ∑
E|Q;
E 6=1

µ (E) ϕE


bQ/E︸︷︷︸

= ∑
D|Q;
DE|Q

Dϕ(Q/D)/E(yD)

(by (133))


(here, we have split off the addend for E = 1 from the sum)

= id
(
bQ
)︸ ︷︷ ︸

=bQ

+ ∑
E|Q;
E 6=1

µ (E) ϕE

 ∑
D|Q;
DE|Q

Dϕ(Q/D)/E (yD)


︸ ︷︷ ︸

= ∑
D|Q;
DE|Q

DϕE(ϕ(Q/D)/E(yD))

(since the map ϕE is F -linear
(by (125), applied to E instead of P))

= bQ + ∑
E|Q;
E 6=1

µ (E) ∑
D|Q;
DE|Q

D ϕE

(
ϕ(Q/D)/E (yD)

)
︸ ︷︷ ︸

=ϕQ/D(yD)
(by (134))

= bQ + ∑
E|Q;
E 6=1

µ (E) ∑
D|Q;
DE|Q

DϕQ/D (yD) .
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Subtracting bQ from both sides of this equality, we obtain

Qt− bQ = ∑
E|Q;
E 6=1

µ (E) ∑
D|Q;
DE|Q

DϕQ/D (yD) = ∑
E|Q;
E 6=1

∑
D|Q;
DE|Q︸ ︷︷ ︸

= ∑
D|Q

∑
E|Q;

DE|Q;
E 6=1

µ (E) DϕQ/D (yD)

= ∑
D|Q

∑
E|Q;

DE|Q;
E 6=1

µ (E)

︸ ︷︷ ︸
=[D=Q]−1

(by (135))

DϕQ/D (yD) = ∑
D|Q

([D = Q]− 1) DϕQ/D (yD)

= ∑
D|Q

[D = Q] DϕQ/D (yD)︸ ︷︷ ︸
=[Q=Q]QϕQ/Q(yQ)+ ∑

D|Q;
D 6=Q

[D=Q]DϕQ/D(yD)

(here, we have split off the addend for D=Q from the sum)

− ∑
D|Q

1D︸︷︷︸
=D

ϕQ/D (yD)

= [Q = Q]︸ ︷︷ ︸
=1

Q ϕQ/Q︸ ︷︷ ︸
=ϕ1=id

(
yQ
)
+ ∑

D|Q;
D 6=Q

[D = Q]︸ ︷︷ ︸
=0

(since D 6=Q)

DϕQ/D (yD)− ∑
D|Q

DϕQ/D (yD)

= Q id
(
yQ
)︸ ︷︷ ︸

=yQ=t

+ ∑
D|Q;
D 6=Q

0DϕQ/D (yD)

︸ ︷︷ ︸
=0

− ∑
D|Q

DϕQ/D (yD)

= Qt− ∑
D|Q

DϕQ/D (yD) .

Subtracting Qt from both sides of this equality, we obtain

−bQ = − ∑
D|Q

DϕQ/D (yD) .

In other words, bQ = ∑
D|Q

DϕQ/D (yD). In other words, (132) is satisfied for

P = Q.
Thus, we have constructed a yQ ∈ A such that (132) is satisfied for P = Q.

This completes a step of our recursive construction of the family (yP)P∈N. This
family therefore exists. In other words, Assertion E1 holds. Thus, the implication
F1 =⇒ E1 is proven.

We have now proven the two implications E1 =⇒ F1 and F1 =⇒ E1. Combin-
ing them, we obtain the equivalence E1 ⇐⇒ F1.

Let us define one more notation: For every P ∈ N and every monic divisor
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D of P, we define an element gP,D of A by gP,D = ϕD (bP/D). (This is well-
defined75.)

Next, let us introduce two more assertions:

Assertion L: Every P ∈ N and every monic divisor E of P satisfy

E ∑
D|P;
DE|P

µ (D) gP,DE ∈ PA.

AssertionM: Every P ∈ N and every monic divisor E of P satisfy

E ∑
D|P;
DE|P

ϕC (D) gP,DE ∈ PA.

Lemma 3.74 shows that these two Assertions L and M are equivalent. In
other words, we have the equivalence L ⇐⇒M.

We shall now prove the implications F1 =⇒ L, L =⇒ F1, G1 =⇒ M and
M =⇒ G1:

Proof of the implication F1 =⇒ L: Assume that Assertion F1 holds. That is,
every P ∈ N satisfies

∑
D|P

µ (D) ϕD (bP/D) ∈ PA. (136)

Now we need to prove that Assertion L holds, i.e., that every P ∈ N and every
monic divisor E of P satisfy

E ∑
D|P;
DE|P

µ (D) gP,DE ∈ PA. (137)

Let P ∈ N. Let E be a monic divisor of P. Thus, E | P, so that P/E ∈ Fq [T].
Moreover, the polynomial P/E is monic (since P and E are monic). Hence, P/E
is a monic divisor of P ∈ N. Thus, P/E ∈ N (since N is a q-nest). Hence, (136)
(applied to P/E instead of P) yields

∑
D|P/E

µ (D) ϕD

(
b(P/E)/D

)
∈ (P/E) A. (138)

But the map ϕE is F -linear (by (125), applied to E instead of P). Furthermore,
we have

ϕE ◦ ϕD = ϕDE for every monic divisor D of P/E (139)

75Proof. Let P ∈ N, and let D be a monic divisor of P. Since D is a monic divisor of P ∈ N,
we have D ∈ N (since N is a q-nest). Hence, ϕD is well-defined. Also, P/D ∈ Fq [T] (since
D | P). The polynomial P/D is monic (since P and D are monic), and thus is a monic divisor
of P ∈ N. Hence, P/D ∈ N (since N is a q-nest). Thus, bP/D is well-defined. Therefore,
ϕD (bP/D) is well-defined (since ϕD is well-defined). Qed.
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76.
Applying the map ϕE to both sides of the relation (138), we obtain

ϕE

 ∑
D|P/E

µ (D) ϕD

(
b(P/E)/D

) ∈ ϕE ((P/E) A) ⊆ (P/E) ϕE (A)

(since the map ϕE is F -linear). In view of

ϕE

 ∑
D|P/E

µ (D) ϕD

(
b(P/E)/D

)
= ∑

D|P/E
µ (D) ϕE

(
ϕD

(
b(P/E)/D

))
︸ ︷︷ ︸

=(ϕE◦ϕD)(b(P/E)/D)

(since the map ϕE is F -linear)

= ∑
D|P/E

µ (D) (ϕE ◦ ϕD)︸ ︷︷ ︸
=ϕDE

(by (139))

 b(P/E)/D︸ ︷︷ ︸
=bP/(DE)

(since (P/E)/D=P/(DE))


= ∑

D|P/E︸ ︷︷ ︸
= ∑

D|P;
DE|P

(since the monic divisors D of P/E
are exactly the monic divisors D of P

satisfying DE|P (since E|P))

µ (D) ϕDE

(
bP/(DE)

)
︸ ︷︷ ︸

=gP,DE
(since gP,DE=ϕDE(bP/(DE))
(by the definition of gP,DE))

= ∑
D|P;
DE|P

µ (D) gP,DE,

this rewrites as ∑
D|P;
DE|P

µ (D) gP,DE ∈ (P/E) ϕE (A). Hence,

E ∑
D|P;
DE|P

µ (D) gP,DE

︸ ︷︷ ︸
∈(P/E)ϕE(A)

∈ E (P/E)︸ ︷︷ ︸
=P

ϕE (A)︸ ︷︷ ︸
⊆A

⊆ PA.

76Proof of (139): Let D be a monic divisor of P/E.

We have D | P/E, thus
P/E

D
∈ Fq [T]. Also, the polynomial DE is monic (since D and E

are monic) and divides P (since
P

DE
=

P/E
D
∈ Fq [T]). Thus, DE is a monic divisor of P ∈ N.

Hence, DE ∈ N (since N is a q-nest). Thus, (123) (applied to E and D instead of D and E)
shows that ϕE ◦ ϕD = ϕED = ϕDE. This proves (139).
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In other words, (137) holds. Thus, Assertion L holds. We have thus proven the
implication F1 =⇒ L.

Proof of the implication F1 =⇒ L: Assume that Assertion L holds. That is,
every P ∈ N and every monic divisor E of P satisfy

E ∑
D|P;
DE|P

µ (D) gP,DE ∈ PA. (140)

Now we need to prove that Assertion F1 holds, i.e., that every P ∈ N satisfies

∑
D|P

µ (D) ϕD (bP/D) ∈ PA. (141)

Let P ∈ N. Then, 1 is a monic divisor of P. Hence, (140) (applied to E = 1)
yields

1 ∑
D|P;

D·1|P

µ (D) gP,D·1 ∈ PA.

In view of

1 ∑
D|P;

D·1|P︸︷︷︸
= ∑

D|P;
D|P

= ∑
D|P

µ (D) gP,D·1︸ ︷︷ ︸
=gP,D=ϕD(bP/D)

(by the definition of gP,D)

= 1 ∑
D|P

µ (D) ϕD (bP/D) = ∑
D|P

µ (D) ϕD (bP/D) ,

this rewrites as ∑
D|P

µ (D) ϕD (bP/D) ∈ PA. In other words, (141) holds. Thus,

Assertion F1 holds. We have thus proven the implication L =⇒ F1.
Proof of the implication G1 =⇒M: The implication G1 =⇒M can be proven in

exactly the same way as the implication F1 =⇒ L (except that every appearance
of “µ” must be replaced by “ϕC”).

Proof of the implicationM =⇒ G1: The implicationM =⇒ G1 can be proven in
exactly the same way as the implication L =⇒ F1 (except that every appearance
of “µ” must be replaced by “ϕC”).

We now have proven the four implications F1 =⇒ L, L =⇒ F1, G1 =⇒ M
and M =⇒ G1. Combining them, we obtain the two equivalences F1 ⇐⇒ L
and G1 ⇐⇒M.

Finally, let us prove the equivalence F1 ⇐⇒ G2:
Proof of the equivalence F1 ⇐⇒ G2: For every P ∈ N and D ∈ Fq [T]+, we have

ϕ (D)︸ ︷︷ ︸
=µ(D) in Fq

(by Proposition 3.70 (d),
applied to M=D)

ϕD (bP/D) = µ (D) ϕD (bP/D) .
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Therefore, Assertion G2 is equivalent to F1. In other words, we obtain the equiv-
alence F1 ⇐⇒ G2.

We now have obtained the following equivalences:

C1 ⇐⇒ D1 ⇐⇒ D2 ⇐⇒ E1, E1 ⇐⇒ F1, L ⇐⇒M,
F1 ⇐⇒ L, G1 ⇐⇒M, F1 ⇐⇒ G2.

Combining them all, we obtain the chain of equivalences

C1 ⇐⇒ D1 ⇐⇒ D2 ⇐⇒ E1 ⇐⇒ F1 ⇐⇒ L ⇐⇒M⇐⇒ G1 ⇐⇒ G2.

In particular, the assertions C1, D1, D2, E1, F1, G1, and G2 are equivalent. This
proves Theorem 3.72.

3.16. Examples: “Necklace congruences” for Fq [T]

Theorem 3.72 shows the equivalence of several assertions, but we have yet to
see a situation in which these assertions hold. Let us now explore a few such
situations. We begin with the simplest ones:

Proposition 3.75. Let N be the q-nest Fq [T]+. Let A = Fq [T]. Notice that A is
a commutative Fq [T]-algebra, and thus an F -module (according to Conven-
tion 3.29).

For every P ∈ N, define an endomorphism ϕP of the Fq-vector space A by
ϕP = id.

Fix a polynomial Q ∈ Fq [T].
(a) The three Assumptions 1, 2 and 3 of Theorem 3.72 are satisfied.
(b) The assertions C1, D1, D2, E1, F1, G1, and G2 of Theorem 3.72 are satisfied

for the family (bP)P∈N =
(

Fdeg PQ
)

P∈N ∈ AN.
(c) The assertions C1, D1, D2, E1, F1, G1, and G2 of Theorem 3.72 are satisfied

for the family (bP)P∈N = ((Carl P) Q)P∈N ∈ AN.
(d) The assertions C1, D1, D2, E1, F1, G1, and G2 of Theorem 3.72 are satisfied

for the family (bP)P∈N = (Q)P∈N ∈ AN.

Before we prove this proposition, let us get two simple lemmas out of our way:

Lemma 3.76. Let π be a monic irreducible polynomial in Fq [T]. Set d = deg π.
Let P ∈ Fq [T]. Then, Pqd ≡ P mod πFq [T].

Proof of Lemma 3.76. Let Fπ denote the field Fq [T] /πFq [T]. This is a field ex-
tension of Fq. Furthermore, it is well-known that Fπ = Fq [T] /πFq [T] is an

Fq-vector space of dimension deg π = d. Hence, |Fπ| =
∣∣Fq
∣∣d = qd (since∣∣Fq

∣∣ = q). In particular, Fπ is a finite field.
If Q is any element of Fq [T], then we let Q denote the residue class of Q ∈

Fq [T] modulo the ideal πFq [T]. This residue class Q lies in Fq [T] /πFq [T] =
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Fπ. Applying this to Q = P, we conclude that P lies in Fπ. In other words,
P ∈ Fπ.

But another known fact says that if L is a finite field, then every a ∈ L satisfies

a|L| = a. Applying this to L = Fπ and a = P, we obtain P|Fπ | = P. Since qd =

|Fπ|, we have Pqd
= P|Fπ | = P|Fπ | = P. In other words, Pqd ≡ P mod πFq [T]

(because if Q is any element of Fq [T], then Q denotes the residue class of Q ∈
Fq [T] modulo the ideal πFq [T]). This proves Lemma 3.76.

Lemma 3.77. Let A = Fq [T]. Notice that A is a commutative Fq [T]-algebra,
and thus an F -module (according to Convention 3.29). Let π be a monic
irreducible polynomial in Fq [T]. Let P ∈ A.

(a) We have (Carl π) P ≡ P mod πA. Here, (Carl π) P denotes the image of
P under the action of Carl π ∈ F on the F -module A.

(b) We have Fdeg πP ≡ P mod πA.

Proof of Lemma 3.77. (b) Set d = deg π. Observe that P ∈ A = Fq [T]. Thus,
Lemma 3.76 yields Pqd ≡ P mod πFq [T]. In other words, Pqd ≡ P mod πA
(because Fq [T] = A).

Now, (49) (applied to k = d and m = P) yields Fd · P = Pqd ≡ P mod πA. Since
d = deg π, this rewrites as Fdeg π · P ≡ P mod πA. In other words, Fdeg πP ≡
P mod πA. This proves Lemma 3.77 (b).

(a) Corollary 3.42 (applied to a = P) yields (Carl π) P ≡ Fdeg πP ≡ P mod πA
(by Lemma 3.77 (b)). Lemma 3.77 (a) is thus proven.

Proof of Proposition 3.75. (a) Assumptions 1 and 3 of Theorem 3.72 are clearly sat-
isfied (since ϕP = id for each P ∈ N). It thus remains to prove that Assumption
2 of Theorem 3.72 is satisfied.

Proof of Assumption 2 of Theorem 3.72: Let a ∈ A. Let π ∈ N be monic ir-
reducible. We must prove that ϕπ (a) ≡ (Carl π) a mod πA. Here, (Carl π) a
denotes the image of a under the action of Carl π ∈ F on the F -module A.

Proposition 3.35 shows that there exists a unique u (π) ∈ F such that Carl π =
Fdeg π + π · u (π). Consider this u (π). We have

(Carl π)︸ ︷︷ ︸
=Fdeg π+π·u(π)

a =
(

Fdeg π + π · u (π)
)

a = Fdeg πa + π · u (π) a︸ ︷︷ ︸
∈A

∈ Fdeg πa + πA.

In other words, (Carl π) a ≡ Fdeg πa mod πA. Thus,

(Carl π) a ≡ Fdeg πa ≡ a mod πA (142)

(by Lemma 3.77 (b), applied to P = a).
But ϕπ = id (by the definition of ϕπ), and thus ϕπ (a) = id (a) = a ≡

(Carl π) a mod πA (by (142)). This completes our proof of Assumption 2 of The-
orem 3.72.
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Thus, all three Assumptions 1, 2 and 3 of Theorem 3.72 are satisfied. This
proves Proposition 3.75 (a).

(b) Define a family (bP)P∈N ∈ AN by (bP)P∈N =
(

Fdeg PQ
)

P∈N. Thus,

bP = Fdeg PQ for every P ∈ N. (143)

We now must prove that the assertions C1, D1, D2, E1, F1, G1, and G2 of Theorem
3.72 are satisfied for this family.

We shall first show that Assertion C1 is satisfied:
Proof of Assertion C1: Let P ∈ N and π ∈ PF P. We must prove that ϕπ (bP/π) ≡

bP mod πvπ(P)A.
We have π ∈ PF P, thus P/π ∈ Fq [T]. The polynomial P/π is monic (since P

and π are monic), and thus belongs to Fq [T]+ = N. Hence, the equality (143)
(applied to P/π instead of P) yields bP/π = Fdeg(P/π)Q. But ϕπ = id (by the
definition of ϕπ), and thus

ϕπ (bP/π) = id (bP/π) = bP/π = Fdeg(P/π)Q. (144)

Lemma 3.77 (b) (applied to Q instead of P) yields Fdeg πQ ≡ Q mod πA. Thus,
Corollary 3.48 (a) (applied to P/π, Fdeg πQ and Q instead of N, a and b) yields

Fdeg(P/π)Fdeg πQ ≡ Fdeg(P/π)Q mod πvπ(P/π)+1A.

Since

Fdeg(P/π)Fdeg π = Fdeg(P/π)+deg π = Fdeg Psince deg (P/π) + deg π = deg ((P/π)π)︸ ︷︷ ︸
=P

= deg P


and

vπ (P/π)︸ ︷︷ ︸
=vπ(P)−vπ(π)

+1 = vπ (P)− vπ (π)︸ ︷︷ ︸
=1

+1 = vπ (P)− 1 + 1 = vπ (P) ,

this rewrites as
Fdeg PQ ≡ Fdeg(P/π)Q mod πvπ(P)A.

Now, (143) becomes

bP = Fdeg PQ ≡ Fdeg(P/π)Q = ϕπ (bP/π)mod πvπ(P)A

(by (144)). In other words, ϕπ (bP/π) ≡ bP mod πvπ(P)A. Thus, Assertion C1 is
proven.

We now have shown that Assertion C1 is satisfied. Thus, all the assertions C1,
D1, D2, E1, F1, G1, and G2 of Theorem 3.72 are satisfied (since Theorem 3.72 says
that these assertions are equivalent). This proves Proposition 3.75 (b).
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(c) Define a family (bP)P∈N ∈ AN by (bP)P∈N = ((Carl P) Q)P∈N. Thus,

bP = (Carl P) Q for every P ∈ N. (145)

We now must prove that the assertions C1, D1, D2, E1, F1, G1, and G2 of Theorem
3.72 are satisfied for this family.

We shall first show that Assertion C1 is satisfied:
Proof of Assertion C1: Let P ∈ N and π ∈ PF P. We must prove that ϕπ (bP/π) ≡

bP mod πvπ(P)A.
We have π ∈ PF P, thus P/π ∈ Fq [T]. The polynomial P/π is monic (since P

and π are monic), and thus belongs to Fq [T]+ = N. Hence, the equality (145)
(applied to P/π instead of P) yields bP/π = (Carl (P/π)) Q. But ϕπ = id (by
the definition of ϕπ), and thus

ϕπ (bP/π) = id (bP/π) = bP/π = (Carl (P/π)) Q. (146)

Lemma 3.77 (a) (applied to Q instead of P) yields (Carl π) Q ≡ Q mod πA.
Thus, Corollary 3.48 (b) (applied to P/π, (Carl π) Q and Q instead of N, a and
b) yields

(Carl (P/π)) (Carl π) Q ≡ (Carl (P/π)) Q mod πvπ(P/π)+1A.

Since

(Carl (P/π)) (Carl π) = Carl

(P/π)π︸ ︷︷ ︸
=P

 (
since Carl is an Fq-algebra

homomorphism

)
= Carl P

and

vπ (P/π)︸ ︷︷ ︸
=vπ(P)−vπ(π)

+1 = vπ (P)− vπ (π)︸ ︷︷ ︸
=1

+1 = vπ (P)− 1 + 1 = vπ (P) ,

this rewrites as

(Carl P) Q ≡ (Carl (P/π)) Q mod πvπ(P)A.

Now, (145) becomes

bP = (Carl P) Q ≡ (Carl (P/π)) Q = ϕπ (bP/π)mod πvπ(P)A

(by (146)). In other words, ϕπ (bP/π) ≡ bP mod πvπ(P)A. Thus, Assertion C1 is
proven.

We now have shown that Assertion C1 is satisfied. Thus, all the assertions C1,
D1, D2, E1, F1, G1, and G2 of Theorem 3.72 are satisfied (since Theorem 3.72 says
that these assertions are equivalent). This proves Proposition 3.75 (c).
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(d) Define a family (bP)P∈N ∈ AN by (bP)P∈N = (Q)P∈N. Thus,

bP = Q for every P ∈ N. (147)

We now must prove that the assertions C1, D1, D2, E1, F1, G1, and G2 of Theorem
3.72 are satisfied for this family.

We shall first show that Assertion C1 is satisfied:
Proof of Assertion C1: Let P ∈ N and π ∈ PF P. We must prove that ϕπ (bP/π) ≡

bP mod πvπ(P)A.
We have π ∈ PF P, thus P/π ∈ Fq [T]. The polynomial P/π is monic (since P

and π are monic), and thus belongs to Fq [T]+ = N. Hence, the equality (143)
(applied to P/π instead of P) yields bP/π = Q. But ϕπ = id (by the definition of
ϕπ), and thus

ϕπ (bP/π) = id (bP/π) = bP/π = Q. (148)

Now, (143) becomes bP = Q = ϕπ (bP/π) (by (148)). Hence,

bP ≡ ϕπ (bP/π)mod πvπ(P)A.

In other words, ϕπ (bP/π) ≡ bP mod πvπ(P)A. Thus, Assertion C1 is proven.
We now have shown that Assertion C1 is satisfied. Thus, all the assertions C1,
D1, D2, E1, F1, G1, and G2 of Theorem 3.72 are satisfied (since Theorem 3.72 says
that these assertions are equivalent). This proves Proposition 3.75 (d).

Spelling out the claims of Theorem 3.72 in basic terms provides a plethora of
congruences between polynomials in Fq [T]. We will not list of all them, but only
give one example, conjectured by the math.stackexchange user “Levent” in [13]:

Corollary 3.78. Let Q ∈ Fq [T]. Then,

P | ∑
D|P

ϕ

(
P
D

)
Qqdeg D

for every P ∈ Fq [T]+ .

First proof of Corollary 3.78. Define N, A and ϕP (for all P ∈ N) as in Proposition
3.75. Define a family (bP)P∈N ∈ AN by (bP)P∈N =

(
Fdeg PQ

)
P∈N. Then, every

P ∈ N satisfies
bP = Fdeg PQ = Fdeg P ·Q = Qqdeg P

(149)

(by (49), applied to k = deg P and m = Q).
Proposition 3.75 (b) shows that the assertions C1, D1, D2, E1, F1, G1, and G2 of

Theorem 3.72 are satisfied for this family (bP)P∈N =
(

Fdeg PQ
)

P∈N. In particular,
Assertion G2 is satisfied. In other words, every P ∈ N satisfies

∑
D|P

ϕ (D) ϕD (bP/D) ∈ PA. (150)
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Now, let P ∈ Fq [T]+. Thus, P ∈ Fq [T]+ = N (since N was defined to be
Fq [T]+).

But the polynomial P is monic. Hence, the map

(the set of all monic divisors of P)→ (the set of all monic divisors of P) ,
D 7→ P/D

is well-defined and a bijection (actually, it is an involution). Thus, we can sub-
stitute P/D for D in the sum ∑

D|P
ϕ (D) ϕD (bP/D). We thus obtain

∑
D|P

ϕ (D) ϕD (bP/D)

= ∑
D|P

ϕ

P/D︸ ︷︷︸
=

P
D

 ϕP/D︸ ︷︷ ︸
=id

(by the definition of ϕP/D)


bP/(P/D)︸ ︷︷ ︸

=bD=Qqdeg D

(by (149), applied
to D instead of P)


= ∑

D|P
ϕ

(
P
D

)
id
(

Qqdeg D
)

︸ ︷︷ ︸
=Qqdeg D

= ∑
D|P

ϕ

(
P
D

)
Qqdeg D

.

Hence,

∑
D|P

ϕ

(
P
D

)
Qqdeg D

= ∑
D|P

ϕ (D) ϕD (bP/D) ∈ PA

(by (150)). In other words, P | ∑
D|P

ϕ

(
P
D

)
Qqdeg D

. This proves Corollary 3.78.

This said, it is not much harder to prove Corollary 3.78 without any reference
to Theorem 3.72, using just the results of Subsection 3.14:

Second proof of Corollary 3.78. Let Frob denote the Frobenius endomorphism of
the Fq-algebra Fq [T]. This is the map Fq [T]→ Fq [T] that sends each P ∈ Fq [T]
to Pq. It is well-known that Frob is an Fq-algebra endomorphism of Fq [T].

We make a few auxiliary observations:

Observation 1: Let u ∈N, a ∈ Fq [T] and b ∈ Fq [T]. Then, aqu − bqu
=

(a− b)qu
.

[Proof of Observation 1: We have

Frobk c = cqk
for every k ∈N and c ∈ Fq [T] . (151)
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(Indeed, this is easy to prove by induction over k, using the definition of Frob.)
Now, recall that Frob is an Fq-algebra endomorphism of Fq [T]. Hence, so is

its u-th power Frobu. Thus,

Frobu (a− b) = Frobu a︸ ︷︷ ︸
=aqu

(by (151), applied to c=a)

− Frobu b︸ ︷︷ ︸
=bqu

(by (151), applied to c=b)

= aqu − bqu
.

Thus,
aqu − bqu

= Frobu (a− b) = (a− b)qu

(by (151), applied to c = a− b). This proves Observation 1.]

Observation 2: Let π be a monic irreducible polynomial in Fq [T]. Let
a and b be two elements of Fq [T] such that a ≡ b mod πFq [T]. Let
N ∈ Fq [T] be nonzero. Then, aqdeg N ≡ bqdeg N

mod πvπ(N)+1Fq [T].

[Proof of Observation 2: We can regard Observation 2 as a particular case of
Corollary 3.48 (a) (applied to A = Fq [T]). But let us give a self-contained proof
instead.

We have a− b ∈ πFq [T] (since a ≡ b mod πFq [T]). In other words, a− b = πc
for some c ∈ Fq [T]. Consider this c. Now, define u ∈N by u = deg N.

But every nonnegative integer m satisfies 2m ≥ m + 1 (this is easy to prove).
Applying this to m = u, we find 2u ≥ u+ 1. But πvπ(N) | N and thus deg

(
πvπ(N)

)
≤

deg N = u. Hence, u ≥ deg
(

πvπ(N)
)
= vπ (N)deg π︸ ︷︷ ︸

≥1

≥ vπ (N). But q ≥ 2 and

thus qu ≥ 2u ≥ u︸︷︷︸
≥vπ(N)

+1 ≥ vπ (N) + 1.

But Observation 1 yields aqu − bqu
=

(
a− b︸ ︷︷ ︸
=πc

)qu

= (πc)qu
= πqu

cqu
. Hence,

πqu | aqu − bqu
in Fq [T]. But qu ≥ vπ (N) + 1, and thus πvπ(N)+1 | πqu | aqu − bqu

.
In other words, aqu ≡ bqu

mod πvπ(N)+1Fq [T]. Since u = deg N, this rewrites as
aqdeg N ≡ bqdeg N

mod πvπ(N)+1Fq [T]. Thus, Observation 2 is proven.]
Next, fix P ∈ Fq [T]+. Let S be the set of all squarefree monic divisors of P.

Observation 3: We have

∑
D|P

ϕ

(
P
D

)
Qqdeg D

= ∑
D∈S

µ (D) Qqdeg(P/D)
.

[Proof of Observation 3: Let D be the set of all monic divisors of P. Then, the
map

D→ D, D 7→ P/D
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is well-defined (since P itself is monic) and invertible (since it is its own inverse).
Thus, this map is a bijection. Hence, we can substitute P/D for D in the sum

∑
D∈D

ϕ

(
P
D

)
Qqdeg D

. We thus obtain

∑
D∈D

ϕ

(
P
D

)
Qqdeg D

= ∑
D∈D

ϕ

 P
P/D︸ ︷︷ ︸
=D

Qqdeg(P/D)
= ∑

D∈D
ϕ (D)︸ ︷︷ ︸

=µ(D) in Fq
(by Proposition 3.70 (d)

(applied to D instead of M))

Qqdeg(P/D)

= ∑
D∈D︸︷︷︸
= ∑

D|P
(since D is the set of all

monic divisors of P)

µ (D) Qqdeg(P/D)
= ∑

D|P
µ (D) Qqdeg(P/D)

= ∑
D|P;

D is squarefree︸ ︷︷ ︸
= ∑

D∈S
(since S is the set
of all squarefree

monic divisors of P)

µ (D) Qqdeg(P/D)
+ ∑

D|P;
D is not squarefree

µ (D)︸ ︷︷ ︸
=0

(by the definition
of µ, since D

is not squarefree)

Qqdeg(P/D)

= ∑
D∈S

µ (D) Qqdeg(P/D)
+ ∑

D|P;
D is not squarefree

0Qqdeg(P/D)

︸ ︷︷ ︸
=0

= ∑
D∈S

µ (D) Qqdeg(P/D)
.

Comparing this with

∑
D∈D︸︷︷︸
= ∑

D|P
(since D is the set of all

monic divisors of P)

ϕ

(
P
D

)
Qqdeg D

= ∑
D|P

ϕ

(
P
D

)
Qqdeg D

,

this yields

∑
D|P

ϕ

(
P
D

)
Qqdeg D

= ∑
D∈S

µ (D) Qqdeg(P/D)
.

This proves Observation 3.]
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Observation 4: Let P ∈ Fq [T]+. Let π ∈ PF P. Let D be a monic
divisor of P such that π - D. Then,

Qqdeg(P/D) ≡ Qqdeg(P/(πD))
mod πvπ(P)Fq [T] .

[Proof of Observation 4: Observe that P/D ∈ Fq [T] (since D is a divisor of
P). Also, π - D and thus vπ (D) = 0. But π ∈ PF P, so that π | P and thus
vπ (P) > 0. Now, vπ (P/D) = vπ (P)− vπ (D)︸ ︷︷ ︸

=0

= vπ (P) > 0. In other words,

π | P/D. Hence, (P/D) /π ∈ Fq [T].
Set d = deg π. Lemma 3.76 (applied to Q instead of P) yields

Qqd ≡ Q mod πFq [T] .

Hence, Observation 2 (applied to a = Qqd
, b = Q and N = (P/D) /π) yields(

Qqd
)qdeg((P/D)/π)

≡ Qqdeg((P/D)/π)
mod πvπ((P/D)/π)+1Fq [T] .

Since (
Qqd
)qdeg((P/D)/π)

= Qqdqdeg((P/D)/π)
= Qqd+deg((P/D)/π)(

since qdqdeg((P/D)/π) = qd+deg((P/D)/π)
)

and

vπ ((P/D) /π)︸ ︷︷ ︸
=vπ(P/D)−vπ(π)

+1 = vπ (P/D)︸ ︷︷ ︸
=vπ(P)

− vπ (π)︸ ︷︷ ︸
=1

+1 = vπ (P)− 1 + 1 = vπ (P) ,

this rewrites as

Qqd+deg((P/D)/π) ≡ Qqdeg((P/D)/π)
mod πvπ(P)Fq [T] .

Since

d︸︷︷︸
=deg π

+deg ((P/D) /π) = deg π + deg ((P/D) /π)

= deg

π · ((P/D) /π)︸ ︷︷ ︸
=P/D

 = deg (P/D)

and

deg

(P/D) /π︸ ︷︷ ︸
=P/(πD)

 = deg (P/ (πD)) ,
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this rewrites as

Qqdeg(P/D) ≡ Qqdeg(P/(πD))
mod πvπ(P)Fq [T] .

This proves Observation 4.]
Recall that S is the set of all squarefree monic divisors of P. Each of these

squarefree monic divisors has the form ∏
η∈I

η for some subset I of PF P. More

precisely, the map

{I ⊆ PF P} → S,

I 7→∏
η∈I

η (152)

is a bijection. Moreover, every subset I of PF P satisfies

µ

(
∏
η∈I

η

)
= (−1)

∣∣∣∣∣PF

(
∏

η∈I
η

)∣∣∣∣∣ (
since ∏

η∈I
η is squarefree

)

= (−1)|I|
(

since PF

(
∏
η∈I

η

)
= I

)
. (153)

Now, we claim the following:

Observation 5: Let π ∈ PF P. Let I ⊆ PF P be such that π /∈ I. Then,

Qq
deg

P/ ∏
η∈I

η


≡ Qq

deg

P/

 ∏
η∈I∪{π}

η


mod πvπ(P)Fq [T] .

[Proof of Observation 5: From π /∈ I, we obtain

∏
η∈I∪{π}

η = π ∏
η∈I

η. (154)

We have I ⊆ PF P. Thus, the elements of I are monic irreducible divisors of
P. In particular, the elements of I are monic irreducible polynomials in Fq [T].
These monic irreducible polynomials are all distinct from π (since π /∈ I), and
therefore coprime to π (since π is irreducible). Hence, the elements of I are
polynomials coprime to π. Therefore, ∏

η∈I
η is a product of polynomials coprime

to π. Thus, ∏
η∈I

η itself is coprime to π. Consequently, π - ∏
η∈I

η.

But ∏
η∈I

η ∈ S (since ∏
η∈I

η is the image of I under the bijection (152)). In other

words, ∏
η∈I

η is a squarefree monic divisor of P. Hence, Observation 4 (applied
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to D = ∏
η∈I

η) yields

Qq
deg

P/ ∏
η∈I

η


≡ Qq

deg

P/

π ∏
η∈I

η


mod πvπ(P)Fq [T] .

In view of (154), this rewrites as

Qq
deg

P/ ∏
η∈I

η


≡ Qq

deg

P/

 ∏
η∈I∪{π}

η


mod πvπ(P)Fq [T] .

This proves Observation 5.]

Observation 6: Let π ∈ PF P. Then,

∑
D∈S

µ (D) Qqdeg(P/D) ≡ 0 mod πvπ(P)Fq [T] .

[Proof of Observation 6: Recall that (152) is a bijection. Thus, we can substitute
∏

η∈I
η for D in the sum ∑

D∈S
µ (D) Qqdeg(P/D)

. Thus, we obtain

∑
D∈S

µ (D) Qqdeg(P/D)

= ∑
I⊆PF P

µ

(
∏
η∈I

η

)
︸ ︷︷ ︸
=(−1)|I|

(by (153))

Qq
deg

P/ ∏
η∈I

η


= ∑

I⊆PF P
(−1)|I| Qq

deg

P/ ∏
η∈I

η



= ∑
I⊆PF P;

π∈I

(−1)|I| Qq
deg

P/ ∏
η∈I

η


+ ∑

I⊆PF P;
π/∈I

(−1)|I| Qq
deg

P/ ∏
η∈I

η


(155)

(since every I ⊆ PF P satisfies either π ∈ I or π /∈ I (but not both)).
But we have π ∈ PF P. Hence, the map

{I ⊆ PF P | π /∈ I} → {I ⊆ PF P | π ∈ I} ,
J 7→ J ∪ {π}

is well-defined and a bijection77. Hence, we can substitute J ∪ {π} for I in the

77This is a particular case (obtained by setting G = PF P and g = π) of the following fact:
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sum ∑
I⊆PF P;

π∈I

(−1)|I| Qq
deg

P/ ∏
η∈I

η


. We thus obtain

∑
I⊆PF P;

π∈I

(−1)|I| Qq
deg

P/ ∏
η∈I

η



= ∑
J⊆PF P;

π/∈J

(−1)|J∪{π}|︸ ︷︷ ︸
=−(−1)|J|

(since |J∪{π}|=|J|+1
(since π/∈J))

Qq
deg

P/ ∏
η∈J∪{π}

η


= − ∑

J⊆PF P;
π/∈J

(−1)|J| Qq
deg

P/ ∏
η∈J∪{π}

η



= − ∑
I⊆PF P;

π/∈I

(−1)|I| Qq
deg

P/ ∏
η∈I∪{π}

η


(156)

(here, we have renamed the summation index J as I).

Let G be a set. Let g ∈ G. Then, the map

{I ⊆ G | g /∈ I} → {I ⊆ G | g ∈ I} ,
J 7→ J ∪ {g}

is well-defined and a bijection. (Its inverse is the map

{I ⊆ G | g ∈ I} → {I ⊆ G | g /∈ I} ,
J 7→ J \ {g} .

This is all straightforward to check.)
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Now, (155) becomes

∑
D∈S

µ (D) Qqdeg(P/D)

= ∑
I⊆PF P;

π∈I

(−1)|I| Qq
deg

P/ ∏
η∈I

η



︸ ︷︷ ︸
=− ∑

I⊆PF P;
π/∈I

(−1)|I|Qq

deg

P/ ∏
η∈I∪{π}

η



(by (156))

+ ∑
I⊆PF P;

π/∈I

(−1)|I| Qq
deg

P/ ∏
η∈I

η


︸ ︷︷ ︸

≡Qq

deg

P/

 ∏
η∈I∪{π}

η


mod πvπ(P)Fq[T]

(by Observation 5)

≡ − ∑
I⊆PF P;

π/∈I

(−1)|I| Qq
deg

P/ ∏
η∈I∪{π}

η


+ ∑

I⊆PF P;
π/∈I

(−1)|I| Qq
deg

P/

 ∏
η∈I∪{π}

η



= 0 mod πvπ(P)Fq [T] .

Thus, Observation 6 is proven.]
Recall that P is a monic polynomial. Hence, ∏

π∈PF P
πvπ(P) is the factorization

of P into monic irreducible factors. Thus, ∏
π∈PF P

πvπ(P) = P.

But the polynomials πvπ(P) for distinct π ∈ PF P are mutually coprime. Hence,
their least common multiple is their product. In other words, the least common
multiple of the polynomials πvπ(P) (where π ranges over PF P) is ∏

π∈PF P
πvπ(P) =

P.
Now, define a polynomial Z ∈ Fq [T] by

Z = ∑
D|P

ϕ

(
P
D

)
Qqdeg D

.

Then, for every π ∈ PF P, we have

Z = ∑
D|P

ϕ

(
P
D

)
Qqdeg D

= ∑
D∈S

µ (D) Qqdeg(P/D)
(by Observation 3)

≡ 0 mod πvπ(P)Fq [T] (by Observation 6) ,

and thus πvπ(P) | Z. Therefore, the least common multiple of the polynomials
πvπ(P) (where π ranges over PF P) divides Z. In other words, P divides Z (since
the least common multiple of the polynomials πvπ(P) (where π ranges over PF P)
is P). Thus,

P | Z = ∑
D|P

ϕ

(
P
D

)
Qqdeg D

.

This proves Corollary 3.78 again.
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3.17. (More sections to be added here!)

[...]
XTODO: Conclude torsionfreeness in two ways.
XTODO: polynomial ring example.
[...]

4. Speculations

4.1. So what is ΛCarl ?

So what is the Carlitz analogue of the ring of symmetric functions?
I’m still groping in the dark here. But at least I’m seeing some hints of why this

isn’t as simple as in the classical case (although I guess the theory of symmetric
functions can only be called “simple” with the wisdom of hindsight anyway).
After Subsection 2.5 it appears to me that the multiplication isn’t crucial to the
functor WN, but rather an extra structure that gets carried along (whatever this
means).78 This suggests that I shouldn’t be looking at the representing object of
the functor WN : CRingFq[T] → CRingFq[T], but at the representing object of the
functor WN : FMod → FMod , or at least that the latter is more fundamental
than the former. To begin with, it’s smaller.

A representing object of a functor FMod → FMod is the same as an F -F -
bimodule79. The F -F -bimodule which represents the functor WN : FMod →
FMod is the free left F -module ΛF with basis (xP)P∈N, and with right F -

module structure defined as follows: Let pP = ∑
D|P

D
[

P
D

]
(xD) for every P ∈ N.

(The intuition is that xP are analogues of the “Witt vector coordinates” of Λ 80

and pP are “power sum symmetric functions”.) Then, set pP f = f pP for every
P ∈ N and f ∈ F . This uniquely determines a right F -module structure (since
it has to commute with the left one), although its existence is not really obvious.
Thus ΛF is defined.

When N is the whole set Fq [T]+, the F -F -bimodule ΛF has some claims to
be the Carlitz analogue of the ring of symmetric functions, although it is an F -
F -bimodule rather than a ring. Nevertheless, I don’t feel able to realize it as an
actual set of symmetric power series. The Carlitz structure is way too additive
for that. In some sense, what made the power sums algebraically independent
over the integers was the fact that (x + y)2 6= x2 + y2 etc.; but in the Carlitz

78What about Lie algebras? What properties should a Lie algebra structure on an F -module A
satisfy so that WN (A) also is a Lie algebra? Will WN (A) then also share these properties?

79This is a particular case of the following general fact: If A and B are two algebras, then any
A-B-bimodule M gives rise to a representable functor HomAMod (A M,−) : AMod → BMod .

80These are the symmetric functions wn in [6, Exercise 2.9.3]. Their name stems from their
relation to the Witt vectors; from a combinatorial viewpoint, they are a rather exotic family.
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case, [P] is additive and even Fq-linear for every P ∈ Fq [T], so that if we would
define the “P-th power sum polynomial” in some variables ξi to mean ∑

i
[P] (ξi),

then all these polynomials would be linearly dependent over F simply because

∑
i
[P] (ξi) = [P]

(
∑
i

ξi

)
= (Carl (P))

(
∑
i

ξi

)
.

The absence of multiplicative structure makes it hard to even guess what
“elementary symmetric functions” or “complete homogeneous symmetric func-
tions” would be in the Carlitz situation. But Carlitz exponential and Carlitz
logarithm are well-defined on every left F -module on which Fq [T] acts invert-
ibly (i. e., whose Fq [T]-module structure extends to an Fq (T)-module structure)
and which has appropriate closure properties. We might try to use them to con-
struct the “elementary symmetric functions” by some analogue of the classical

∑
n∈N

(−1)n enTn = exp

(
− ∑

n≥1

1
n

pnTn

)
formula from the theory of symmetric

functions.81 The problem is that this is an identity in power series, and we
would first have to find out what the right analogue of power series is in this
context.

There is other stuff to do as well. One can look for explicit formulas for
the right F -action on the xP in ΛF . And one can try to define the analogue
of plethysm (which, as far as I understand, should be an F -F -bilinear map
from ΛF ⊗F ΛF to ΛF making ΛF into what would be an F -algebra if it were
commutative?).

4.2. Some computations in ΛF
Let me see if I’m able to get something concrete out of the above reveries. How
about computing the right F -action on concrete basis elements of ΛF ?

Assume that N is the whole Fq [T]+.
By definition, p1 = x1, so that x1 f = f x1 for every f ∈ F (since p1 f = f p1

for every f ∈ F ). That is, x1 is central with respect to the two F -actions. Nothing
to see here.

By definition, pT = [T] (x1)︸ ︷︷ ︸
=(F+T)x1

+TxT = (F + T) x1 + TxT. Now, pT f = f pT for

every f ∈ F . Apply this to f = T and substitute pT = (F + T) x1 + TxT; you
obtain

((F + T) x1 + TxT) T = T ((F + T) x1 + TxT) .

81Another suggestion by James Borger.
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Since

((F + T) x1 + TxT) T = (F + T) x1T︸︷︷︸
=Tx1

(since x1 is central)

+TxTT = (F + T) Tx1︸ ︷︷ ︸
=T(Tq−1F+T)x1

+TxTT

= T
((

Tq−1F + T
)

x1 + xTT
)

,

this rewrites as T
((

Tq−1F + T
)

x1 + xTT
)
= T ((F + T) x1 + TxT). Since T is a

left non-zero-divisor in F and thus also in ΛF (as ΛF is a free left F -module),
we can cancel the T out of this, and obtain

(
Tq−1F + T

)
x1 + xTT = (F + T) x1 +

TxT. Hence, xTT = (F + T) x1 + TxT −
(
Tq−1F + T

)
x1. This simplifies to

xTT = TxT −
(
Tq−1 − 1

)
Fx1 .

Let’s do xTF. Apply pT f = f pT to f = F, and substitute pT = (F + T) x1 +
TxT again; the result is

((F + T) x1 + TxT) F = F ((F + T) x1 + TxT) .

Subtraction of (F + T) x1F turns this into

TxTF = F ((F + T) x1 + TxT)− (F + T) x1F
= FFx1 + FT︸︷︷︸

=TqF

x1 + FT︸︷︷︸
=TqF

xT − F x1T︸︷︷︸
=Fx1

(since x1 is central)

−Tx1F

= FFx1 + TqFx1 + TqFxT − FFx1 − Tx1F = TqFx1 + TqFxT − Tx1F

= T
(

Tq−1Fx1 + Tq−1FxT − x1F
)

.

Cancelling T, we obtain

xTF = Tq−1Fx1 + Tq−1FxT − x1F︸︷︷︸
=Fx1

(since x1 is central)

Tq−1Fx1 + Tq−1FxT − Fx1.

This simplifies to xTF =
(
Tq−1 − 1

)
Fx1 + Tq−1FxT .

Let’s be more bold and try a general irreducible polynomial, just to see how
far we can simplify. Let π ∈ Fq [T]+ be irreducible. What is xπT ? As usual,
pπ = (Carl π) x1 + πxπ satisfies pπ f = f pπ for every f ∈ F . Applying this to
f = T and substituting pπ = (Carl π) x1 + πxπ, we get

((Carl π) x1 + πxπ) T = T ((Carl π) x1 + πxπ) .
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Subtracting (Carl π) x1T from here, we get

πxπT = T ((Carl π) x1 + πxπ)− (Carl π) x1T
= T (Carl π) x1 + Tπxπ − (Carl π) x1T︸︷︷︸

=Tx1
(since x1 is central)

= T (Carl π) x1 + Tπxπ − (Carl π) Tx1

= Tπxπ + [T, Carl π] x1.

Thus, [T, Carl π] must lie in πF , and an explicit formula for the quotient would
be very useful. Well, the fact that [T, Carl π] lies in πF is easily derived from
(4), but there seems to be no way to write the quotient in finite terms. Let
us rather introduce a notation for it: Let ðT (π) denote the (unique) f ∈ F
satisfying [T, Carl π] = π f (for π irreducible monic). In more elementary (and

commutative) terms, ðT (π) =
T [π] (X)− [π] (TX)

π
. Now,

πxπT = Tπ︸︷︷︸
=πT

xπ + [T, Carl π]︸ ︷︷ ︸
=πðT(π)

x1 = πTxπ + πðT (π) x1.

Cancelling π, we obtain xπT = Txπ + ðT (π) x1 .
The question is: Do we get xπF explicitly using ðT (π), or will we have to

introduce another new operator? Apply pπ f = f pπ to f = F and substitute
pπ = (Carl π) x1 + πxπ. The result is

((Carl π) x1 + πxπ) F = F ((Carl π) x1 + πxπ) .

Subtracting (Carl π) x1F from here, we get

πxπF = F ((Carl π) x1 + πxπ)− (Carl π) x1F
= F (Carl π) x1 + Fπxπ − (Carl π) x1F︸︷︷︸

=Fx1
(since x1 is central)

= F (Carl π) x1 + Fπxπ − (Carl π) Fx1

= Fπxπ + [F, Carl π] x1.

Oh, but [F, Carl π]+ [T, Carl π] =

F + T︸ ︷︷ ︸
=Carl T

, Carl π

 = [Carl T, Carl π] = Carl [T, π]︸ ︷︷ ︸
=0

=

0, so that [F, Carl π] = − [T, Carl π]︸ ︷︷ ︸
=πðT(π)

= −πðT (π). Hence,

πxπF = Fπxπ + [F, Carl π]︸ ︷︷ ︸
=−πðT(π)

x1 = Fπ︸︷︷︸
=πqF

xπ − πðT (π) x1 = πqFxπ − πðT (π) x1.

Cancelling π, we obtain xπF = πq−1Fxπ − ðT (π) x1 .
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5. The logarithm series

Here is my result on the logarithm series, which so far has not found any appli-
cation.

Theorem 5.1. Let q be a prime power. Consider the Carlitz logarithm logC ∈
Fq (T) [[X]] defined in [3, Section 7] (but with q instead of p). Then, in the
power series ring Fq (T) [[X, S]], we have

logC (SX) = ∑
N∈Fq[T]+

(−1)deg N Sqdeg N [N] (X)

N
. (157)

(The right hand side of this converges in the usual topology on Fq [[X, S]].)

Let us recall the definition of logC for the sake of completeness: For every

j ∈ N, let Lj be the polynomial
(

Tqj − T
) (

Tqj−1 − T
)

...
(

Tq1 − T
)
∈ Fq [T].

Then, logC ∈ Fq (T) [[X]] is defined by

logC (X) = ∑
j∈N

(−1)j Xqj

Lj
. (158)

It should be noticed that it is possible to specialize S to 1 in (157), but then
the right hand side will only be convergent in a rather weak sense (it will only
converge if all terms with N having a given degree are first added up, and then
the sums are being summed over the degree rather than the single terms).

In contrast to the preceding results, Theorem 5.1 seems to be neither straight-
forward nor provable by translating some classical argument. So let me sketch a
proof (which is rather roundabout and hopefully simplifiable). First, I need an
auxiliary result which itself seems rather interesting:

Proposition 5.2. Let q be a prime power. Let A be a commutative Fq-algebra.
Let n ∈N. Let P ∈ A [X] be a polynomial such that deg P < qn − 1. Let e1, e2,
..., en be n elements of A. Then,

∑
(λ1,λ2,...,λn)∈Fn

q

P (λ1e1 + λ2e2 + ... + λnen) = 0.

Proof of Proposition 5.2 (sketch). We can WLOG assume that P = Xk for some
k ∈ {0, 1, ..., qn − 2}. Assume this and consider this k. Since k < qn − 1, we can
write k in the form k = kn−1qn−1 + kn−2qn−2 + ... + k0q0 with ki < q and with
k0 + k1 + ... + kn−1 ≤ n (q− 1)− 1. Thus,

P = Xk = Xkn−1qn−1+kn−2qn−2+...+k0q0
=

n−1

∏
i=0

Xkiqi
=

n−1

∏
i=0

(
Xqi
)ki

.
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Hence,

∑
(λ1,λ2,...,λn)∈Fn

q

P (λ1e1 + λ2e2 + ... + λnen)

= ∑
(λ1,λ2,...,λn)∈Fn

q

n−1

∏
i=0

(λ1e1 + λ2e2 + ... + λnen)
qi︸ ︷︷ ︸

=λ1eqi
1 +λ2eqi

2 +...+λneqi
n

(since we are over Fq)



ki

= ∑
(λ1,λ2,...,λn)∈Fn

q

n−1

∏
i=0

(
λ1eqi

1 + λ2eqi

2 + ... + λneqi

n

)ki
.

Now, consider the product
n−1
∏
i=0

(
λ1eqi

1 + λ2eqi

2 + ... + λneqi

n

)ki
as a polynomial

(over A) in the variables λ1, λ2, ..., λn. Then, it is a polynomial of degree
k0 + k1 + ... + kn−1 ≤ n (q− 1)− 1. It is well-known (e. g., from the proof of the
Chevalley-Warning theorem) that any such polynomial yields 0 when summed
over all (λ1, λ2, ..., λn) ∈ Fn

q (because each of its monomials has at least one ex-
ponent < q− 1, and then summing the variable which has this exponent over Fq
already gives 0 with all other variables remaining fixed). This proves Proposition
5.2.

Another auxiliary result:

Proposition 5.3. Let q be a prime power. Let L be a field extension of Fq. Let
V be a finite Fq-vector subspace of L. Let t ∈ L \V. Then,

∑
v∈V

1
t + v

=

(
∏
v∈V

1
t + v

)
·

 ∏
v∈V\0

v

 .

Proof of Proposition 5.3 (sketched). Let W be the polynomial ∏
v∈V

(X + v) ∈ L [X].

This polynomial is a q-polynomial (indeed, Theorem 3.17 (applied to L = A)
shows that fV is a q-polynomial, but clearly fV = W); hence, its derivative
equals its coefficient in front of X1 (because the derivative of any q-polynomial
in characteristic p | q equals its coefficient in front of X1). But this coefficient is

∏
v∈V\0

v. Thus, we know that the derivative of W equals ∏
v∈V\0

v. Hence, W ′ (t) =

∏
v∈V\0

v.
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On the other hand, since W = ∏
v∈V

(X + v), the Leibniz formula yields

W ′ = ∑
w∈V

(X + w)′︸ ︷︷ ︸
=1

· ∏
v∈V;
v 6=w

(X + v) = ∑
w∈V

∏
v∈V;
v 6=w

(X + v) = ∑
w∈V

∏
v∈V

(X + v)

X + w

=

(
∏
v∈V

(X + v)

)
·
(

∑
w∈V

1
X + w

)
.

Applying this to X = t, we obtain

W ′ (t) =

(
∏
v∈V

(t + v)

)
·
(

∑
w∈V

1
t + w

)
,

so that

∑
w∈V

1
t + w

=
1

∏
v∈V

(t + v)
· W ′ (t)︸ ︷︷ ︸
= ∏

v∈V\0
v

=
1

∏
v∈V

(t + v)
·

 ∏
v∈V\0

v



=

(
∏
v∈V

1
t + v

)
·

 ∏
v∈V\0

v

 .

Rename the index w as v and obtain the claim of Proposition 5.3.
Proof of Theorem 5.1 (sketched). By (158), we have

logC (SX) = ∑
j∈N

(−1)j (SX)qj

Lj
= ∑

j∈N

(−1)j Sqj Xqj

Lj
.

Hence, it is clearly enough to show that every m ∈N satisfies

Xqm

Lm
= ∑

N∈Fq[T]+;
deg N=m

[N] (X)

N
. (159)

So let m ∈ N. Introduce the polynomials Ej (Y) ∈ Fq (T) [Y] for all j ∈ N as
in [3, Section 7], but with q instead of p. Let’s spell out their definition: With eC
denoting the Carlitz exponential, the power series eC

(
Y logC X

)
∈ Fq (T) [[X, Y]]

is a q-power series, i. e., its coefficient before XαYβ can only be nonzero if
both α and β are powers of q. Now, for every j ∈ N, define Ej (Y) to be the
coefficient of this power series eC

(
Y logC X

)
, regarded as a power series in X

over Fq (T) [Y], before Xqj
. Of course, this Ej (Y) is a q-polynomial in Fq (T) [Y].

Moreover, deg
(
Ej
)
= qj and Ej (0) = 0 for all j ∈ N. Furthermore, Ej (M) = 0
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for every M ∈ Fq [T] satisfying deg M < j. Finally, Ej (M) = 1 for every M ∈
Fq [T] satisfying deg M = j. But most importantly, [M] (X) = ∑

j∈N

Ej (M) Xqj
in

Fq (T) [X] for every M ∈ Fq [T]. Hence, for every nonzero M ∈ Fq (T) [X], we
have

[M] (X)

M
=

∑
j∈N

Ej (M) Xqj

M
= ∑

j∈N

Ej (M)

M
Xqj

=
deg M

∑
j=0

Ej (M)

M
Xqj

(
since Ej (M) = 0 whenever deg M < j

)
=

deg M−1

∑
j=0

Ej (M)

M
Xqj

+
Edeg M (M)

M︸ ︷︷ ︸
=

1
M

(since Ej(M)=1 whenever deg M=j)

Xqdeg M

=
deg M−1

∑
j=0

Ej (M)

M
Xqj

+
1
M

Xqdeg M
(160)

But since Ej (0) = 0 for all j ∈N, we know that for every j ∈N, the polynomial

Ej (Y) is divisible by Y. Thus,
Ej (Y)

Y
is a polynomial of degree qj − 1 for every

j ∈N (since deg
(
Ej
)
= qj). Renaming Y as X, we see that

Ej (X)

X
is a polynomial

of degree qj − 1 for every j ∈ N. Hence,
Ej (X + Tm)

X + Tm ∈ Fq (T) [X] also is a

polynomial of degree qj− 1 for every j ∈N. Hence, for every j ∈ {0, 1, ..., m− 1},

we can apply Proposition 5.2 to A = Fq (T), n = m, P =
Ej (X + Tm)

X + Tm and

ei = Ti−1, and conclude that

∑
(λ1,λ2,...,λm)∈Fq

Ej
(
λ1T0 + λ2T1 + ... + λmTm−1 + Tm)

λ1T0 + λ2T1 + ... + λmTm−1 + Tm = 0

(since j < m and thus qj− 1 < qm− 1). Since the sums of the form λ1T0 +λ2T1 +
...+ λmTm−1 + Tm with (λ1, λ2, ..., λm) ∈ Fq are precisely the monic polynomials
in Fq [T] with degree m (each appearing exactly once), this rewrites as

∑
N∈Fq[T]+;
deg N=m

Ej (N)

N
= 0 for every j ∈ {0, 1, ..., m− 1} . (161)
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Now,

∑
N∈Fq[T]+;
deg N=m

[N] (X)

N

= ∑
N∈Fq[T]+;
deg N=m

(
deg N−1

∑
j=0

Ej (N)

N
Xqj

+
1
N

Xqdeg N

)

(here we applied (160) to M = N)

=
m−1

∑
j=0

∑
N∈Fq[T]+;
deg N=m

Ej (N)

N

︸ ︷︷ ︸
=0

(by (161))

Xqj
+ ∑

N∈Fq[T]+;
deg N=m

1
N

Xqm

= ∑
N∈Fq[T]+;
deg N=m

1
N

Xqm
= ∑

v∈Fq[T];
deg v<m

1
Tm + v

Xqm

 since the monic polynomials in Fq [T] of degree m are exactly
the sums of the form Tm + v with v being a polynomial in

Fq [T] of degree < m



=

 ∏
v∈Fq[T];
deg v<m

1
Tm + v

 ·
 ∏

v∈Fq[T];
deg v<m;

v 6=0

v

Xqm

(
by Proposition 5.3, applied to L = Fq (T) , t = Tm

and V =
{

v ∈ Fq [T] | deg v < m
} )

=

 ∏
N∈Fq[T]+;
deg N=m

1
N

 ·
 ∏

v∈Fq[T];
deg v<m;

v 6=0

v


︸ ︷︷ ︸

=
1

Lm
(this is relatively straightforward to prove

using standard results on finite fields)

Xqm
=

Xqm

Lm
.

This proves (159) and thus Theorem 5.1.
I hope there is a better proof.
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