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Errata and addenda by Darij Grinberg

I will refer to the results appearing in the article “A Hyperplane arrangements
and descent algebras” by the numbers under which they appear in this article.

6. Errata

• Various places (for example, §2.1): You use the notations ⊆ and ⊂ synony-
mously. It might be better if you consistently keep to one of them, as the
appearance of both of them in your notes suggests that ⊂ means proper
inclusion (but it does not).

• Page 1, §1.1: Replace “v1 + v2 + v3 = 0” by “v1 + v2 + · · ·+ vn = 0”.

• Page 3: Replace “the nonempty intersections of the open half spaces” by
“a nonempty intersection of open half spaces”. (Maybe also add “(one for
each hyperplane)” at the end of the sentence.)

• Page 4, Figure 3: I think the “(+0−)” label is wrong, and should be a
“(−0−)” label instead.

• Page 4: Replace “and that the closure” by “and that the closures”.

• Page 5, §1.3: Your claim that “the join X ∨ Y of X and Y is X + Y” is
generally false (even when A is the braid arrangement)1. I don’t think
the join can be characterized this easily. (Of course, the existence of a join
follows from the existence of the meet using the fact that any finite meet-
semilattice having a greatest element is a lattice.)

• Page 5, §1.3: I don’t think your claim that “The rank of X ∈ L is the
dimension of the subspace X ⊂ Rd” is true.

• Page 8, Exercise 2: I think it would be useful to add the following claim
between (2) and (3): “x ≤ xy”.

• Page 9: In the formula for σHij (BC), why do you write “C (j) < C (i)”
instead of “C (i) > C (j)”? Of course, this is equivalent, but it looks out of
place.

1For a counterexample, set n = 4, X =
{
(x1, x2, x3, x4) ∈ R4 | x1 = x2 and x3 = x4

}
and Y ={

(x1, x2, x3, x4) ∈ R4 | x1 = x3 and x2 = x4
}

. Then, the join X ∨ Y is the whole space, while
the sum X +Y is the hyperplane

{
(x1, x2, x3, x4) ∈ R4 | x1 − x2 − x3 + x4 = 0

}
(which is not

an element of L).
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• Page 10, Example 4: Replace “subset of the” by “subset of”.

• Page 11, §1.6: You write: “and with (s, t)-entry the probability of moving
to the state s from the state t”. I think you want to interchange the words
“from” and “to” here, since otherwise (I believe) this definition does not
match the equations further below.

• Page 12, Theorem 1.4: Replace “left” by “let”.

• Page 12: Replace “defined in the next section” by “defined in the previous
section”.

• Page 12: Replace “ ∑
c∈F

” by “ ∑
c∈C

”.

• Page 12: Replace “Since kC” by “Since RC”.

• Page 13, §2.1: It would be good to explain how you define the descent
algebra2. You use this notion in the proof of Theorem 2.1, yet before you
show that the xJ span an algebra, and it is not immediately clear whether
you mean the span of the xJ or the subalgebra they generate or something
else.

• Page 13, §2.2: Replace “endomorphisms” by “automorphisms”.

• Page 13, §2.2: Replace “endomorphism” by “automorphism”.

• Page 13, §2.2: Replace “if a, a′ ∈ A” by “if a, a′ ∈ AG”.

• Page 14, §2.3: Since you have recalled the definition of an automorphism
previously, it would seem reasonable to also give the definition of an anti-
isomorphism and what it means for two algebras to be anti-isomorphic.

• Page 14, proof of Theorem 2.1: Replace “that w (a) = a” by “that ω (a) =
a”.

• Page 14, proof of Theorem 2.1: Replace “This gives an algebra homomor-
phism” by “Thus, a 7→ fa gives an algebra homomorphism”.

• Page 15: Replace both “EndSn”’s by “EndkSn”’s.

• Page 15: Replace each “ψ” and each “ψ−1” appearing on page 15 by “ψ−1”
and “ψ”, respectively.

2along the lines of: “We define D (Sn) to be the vector subspace of kSn spanned by the xJ with
J ⊆ [n − 1]. We call D (Sn) the descent algebra of Sn, although we do not yet know that it is an
algebra (we shall see this in the proof of Theorem 2.1).”
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• Page 15: When you introduce aB, it would be useful to point out that aB
is the sum of all set compositions of [n] having the form (C1, C2, . . . , Cm)
which satisfy |Ci| = |Bi| for each i ∈ {1, 2, . . . , m}. This alternative descrip-
tion of aB is what is used on page 16 to find aB (1, 2, . . . , n).

• Page 16, proof of Theorem 2.1: You need to WLOG apply n ≥ 1 in the last
paragraph (otherwise, the descent algebra is not of dimension 2n−1).

• Page 16, proof of Theorem 2.1: Replace “and the sum” by “and the sums”.

• Page 16, §2.3: I know this flies in the face of the underlying philosophy of
your article, but methinks it wouldn’t hurt to point out that the geometric
language you are using (i.e., the language of hyperplane arrangements,
faces and chambers) wasn’t necessary for the proof of Theorem 2.1. In
fact, Theorem 2.1 (and, with it, the fact that D (Sn) is a subalgebra of kSn)
becomes a purely elementary combinatorial statement if we just define F
as the set of all set compositions of [n] (and we define the action of Sn on
F by setting

ω ((B1, B2, . . . , Bm)) = (ω (B1) , ω (B2) , . . . , ω (Bm))

for all ω ∈ Sn and (B1, B2, . . . , Bm) ∈ F (1)

). Moreover, your proof of Theorem 2.1 becomes a purely combinatorial
proof of this combinatorial statement if we make the following changes:

– We define F as the set of all set compositions of [n].

– We define the action of Sn on F by setting (1).

– For any two set compositions (B1, B2, . . . , Bl) and (C1, C2, . . . , Cm) in
F , we define the product (B1, B2, . . . , Bl) (C1, C2, . . . , Cm) by

(B1, B2, . . . , Bl) (C1, C2, . . . , Cm)

= (B1 ∩ C1, B1 ∩ C2, . . . , B1 ∩ Cm,
B2 ∩ C1, B2 ∩ C2, . . . , B2 ∩ Cm,
. . . ,

Bl ∩ C1, Bl ∩ C2, . . . , Bl ∩ Cm)
� ,

where� means “delete empty intersections from the list”.

– We define C as the set of all set compositions of [n] into singleton
blocks. This is a subset of F .

– We replace “faces of the chamber (1, 2, . . . , n)” by “set compositions
of [n] having the form

({1, 2, . . . , i1} , {i1 + 1, i1 + 2, . . . , i2} , {i2 + 1, i2 + 2, . . . , i3} ,
. . . , {ik + 1, ik + 2, . . . , n})
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where i1, i2, . . . , ik are elements of [n − 1] satisfying i1 < i2 < · · · < ik”.
(This includes both the set composition ({1, 2, . . . , n}), which is ob-
tained for k = 0, and the set composition (1, 2, . . . , n) = ({1} , {2} , . . . , {n}),
which is obtained for k = n − 1 and ij = j.)

• Page 17: When you speak of cosets, it might be helpful to explain whether
they are left or right cosets.

• Page 17, Theorem 2.2: The definition of C should be moved from the proof
of Theorem 2.2 into the statement of Theorem 2.2.

• Page 17, proof of Theorem 2.2: Replace “any kW-endomorphism com-
muting with the action of W” by “any kW-endomorphism of kW” (or “any
endomorphism of kW commuting with the action of W”).

• Page 17, proof of Theorem 2.2: Replace “be reversing” by “by reversing”.

• Page 18, §2.5: At the beginning of §2.5, it would be good to explicitly say
that you are returning to the setting in which A is the braid arrangement.

• Page 18, §2.5: You say that the elements xλ (with λ ranging over the inte-
ger compositions of n) form a basis of (kF )Sn . At this point it is natural
to observe that we have already seen these elements xλ: namely, the ele-
ments aB defined in the proof of Theorem 2.1 satisfy aB = xλ(B) for all set
compositions B of [n].

• Page 18, proof of Proposition 2.3: Replace “The coefficient of C is exactly”
by “The coefficient of C in the left hand side is exactly”.

• Page 19, proof of Corollary 2.4: Replace “
k−1
∑

i=1
γi” by “

k−1
∑

i=1
γi + 1”.

• Page 19, proof of Corollary 2.4: After “give the integer composition γ”,
add “(when AB = C)”.

• Page 19, Exercise 5: It would be good to clarify that λ (J) is defined to be
(n) when J is the empty set. (Your definition of λ (J) is slightly unclear in
this case.)

• Page 20, Exercise 5: Replace “on n” by “of n”.

• Page 20, Exercise 5: I think this exercise is wrong as stated. For in-
stance (it would be good if you could double-check me), if K = ∅, then
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cλ(K),λ(J),λ(L) = δJ,L, whereas∣∣∣∣∣∣∣
ω ∈ X−1

J ∩ XK︸︷︷︸
={id}

: L = K︸︷︷︸
=∅

∩ω−1 (J)


∣∣∣∣∣∣∣

=
∣∣∣{ω ∈ X−1

J ∩ {id} : L = ∅∩ ω−1 (J)
}∣∣∣

= |{ω ∈ {id} : L = ∅}| = δL,∅.

Is Theorem 1 in arXiv:0706.2714v1 what you are trying to get at?

• Page 20, §3.1: Replace “if e is idempotent” by “if e is a nonzero idempo-
tent”.

• Page 20, §3.1: The claim “Moreover, if M is any A-module, then there is an
A-module decomposition of M given by the idempotents: M ∼=

⊕
i∈I Mei”

is false as stated. In truth, if M is a left A-module, then M =
⊕

i∈I ei M (not
Mei, which makes no sense), but this is only a decomposition of k-vector
spaces, not of A-modules (unless M is an (A, A)-bimodule, in which case
this is a decomposition of right A-modules).

An example for this is when A is a matrix algebra kn×n and M is the
vector space kn (with the obvious left A-action by matrix-vector multipli-
cation). The diagonal unit matrices ei := Ei,i ∈ A for i ∈ {1, 2, . . . , n} form
a complete system of primitive orthogonal idempotents for A, but M is
indecomposable as an A-module, and its subspaces ei M are only k-vector
subspaces, not A-submodules.

• Page 20, §3.1: It would be good to give references for all claims about
primitive idempotents made here (in the first two paragraphs of §3.1). One
such reference is §I.4 and Corollary I.5.17 in: Ibrahim Assem, Daniel Sim-
son, Andrzej Skowrónski, Elements of the Representation Theory of Associative
Algebras, Volume 1: Techniques of Representation Theory, Cambridge Univer-
sity Press 2006.

• Page 21, Example 5: Two of the minus signs in the computation of
(

e{13,2}

)2

should be plus signs (namely, the last minus signs on the second and on
the third line of the computation).

• Page 22, proof of Lemma 3.1: Replace “Proposition 2 (2)” by “Exercise 2
(2)”.

• Page 22, proof of Lemma 3.1: Replace “W ∨ X” by “X ∨ W” twice. (Of
course, “W ∨ X” is correct, too, but it helps to keep notations consistent.)
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• Page 22, proof of Lemma 3.1: In your place, I would explain how you get
z = ∑

Y≥X∨W
zeY. (Namely, you have zeX∨W = eX∨W = z − ∑

Y>X∨W
zeY, so

that z = zeX∨W + ∑
Y>X∨W

zeY = ∑
Y≥X∨W

zeY).

• Page 22, proof of Lemma 3.1: Replace “Proposition 2 (5)” by “Exercise 2
(5)”.

• Page 22, proof of Theorem 3.2: Replace “Proposition 2 (5)” by “Exercise 2
(5)”.

• Page 22, proof of Theorem 3.2: In the “Idempotent” part of the proof,
please define x and y. (Namely, x is the element of support X that was
chosen while defining eX, and y is the element of support Y that was chosen
while defining eY.)

• Page 22, proof of Theorem 3.2: After you observe that “eYz = eY for any z
with supp (z) ≤ Y”, it would be helpful to point out that this, in particular,
shows that eYy = eY. (You use this equality a few lines later.)

• Page 23, proof of Theorem 3.2: In the “Idempotent” part of the proof, it
would help to clarify why ∑

Y>X
xeY (yeX). (Indeed, this is because every

Y > X satisfies yeX = 0 (by Lemma 3.1, applied to w = y)).

• Page 23, proof of Theorem 3.2: In the “Orthogonal” part of the proof,
please define x. (Namely, x is the element of support X that was chosen
while defining eX.)

• Page 23, proof of Theorem 3.2: In the “Orthogonal” part of the proof,
you are writing “eXeY = eXxeY”. It would be good to explain why this
holds. (Namely, it follows from the equality eX = eXx. This equality can be
proven just as the equality eY = eYy in the “Idempotent” part of the proof.
In my opinion it wouldn’t hurt to explicitly state both equalities x = eXx
and x = xeX as a lemma, given that you are applying them several times.)

• Page 23, proof of Theorem 3.2: In the “Primitive” part of the proof, you
are using some notations which, in my opinion, you should define:

– You extend the map supp : F → L to a k-linear map kF → kL, and
denote the latter map again by supp. This allows you to speak of
supp w for arbitrary w ∈ kF , not only for w ∈ F .

– You extend the binary operation ∨ : L×L → L to a k-bilinear binary
operation kL× kL → kL, and denote this latter operation again by ∨.
This operation ∨ turns kL into a commutative k-algebra. (This allows
you to speak of the EX as being idempotents.) The map supp : kF →
kL becomes a surjective k-algebra homomorphism.
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• Page 23, proof of Theorem 3.2: In the “Primitive” part of the proof, you
write: “Then the above arguments show that the elements EX are orthogo-
nal idempotents in kL summing to 1”. This looks a bit like a non-sequitur
(although I understand what you apparently want to say). In my opinion,
it would be easier to first prove that the elements eX of kF lift the elements
EX of kL (that is, supp (eX) = EX for every X ∈ L), and then conclude that
the EX are orthogonal idempotents in kL summing up to 1 (since the eX
are orthogonal idempotents in kF summing up to 1). The fact that the ele-
ments eX of kF lift the elements EX of kL is proven in the next paragraph
of your proof of Theorem 3.2.

• Page 23, proof of Theorem 3.2: In the “Primitive” part of the proof, replace
“orthognal” by “orthogonal”.

• Page 23, proof of Theorem 3.2: In the “Primitive” part of the proof, please
define x. (Namely, x is the element of support X that was chosen while
defining eX.)

• Page 23, proof of Theorem 3.2: In the “Primitive” part of the proof, replace
“ ∑

Y≥X
EX” by “ ∑

Y≥X
EY”.

• Page 23, proof of Theorem 3.2: In the “Primitive” part of the proof, replace
“X − ∑

Y>X
EY = EY” by “X − ∑

Y>X
EY = EX”.

• Page 23, proof of Theorem 3.2: In the “Primitive” part of the proof, you
claim that “This kernel is nilpotent” (speaking of the kernel of supp). This
is correct, but I don’t see any previous statement from which this would
follow easily. Let me outline my proof of this nilpotency.

Theorem 3.1a. The kernel of the k-algebra homomorphism supp : kF →
kL (which is defined by extending the map supp : F → L, as above) is
nilpotent.

Proof sketch. Let us denote this kernel by P. Let us furthermore define a
few more notations:

For every X ∈ L, we define the corank of X to be the largest ℓ ∈ N such
that there exist elements X0, X1, . . . , Xℓ ∈ L with X0 = X and X0 < X1 <
· · · < Xℓ. Notice that this is well-defined (because such an ℓ exists (namely,
ℓ = 0 fits the bill), but the finiteness of X forces any such ℓ to be < |X|).
We denote the corank of X by corank X. The following property of coranks
is obvious: If X and Y are two elements of L such that X < Y, then

corank X > corank Y. (2)

For every N ∈ Z, we define a subset LN of L by

LN = {X ∈ L | corank X < N} .

7
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Then, L0 = ∅ (since no X ∈ L has corank < 0), while L|X| = L (since each
X ∈ L has corank < |X|).
For every N ∈ Z, we define a subset FN of F by FN = supp−1 LN (where
supp here means the map supp : F → L, not the map supp : kF → kL).
Clearly, F0 = supp−1 L0︸︷︷︸

=∅

= supp−1 ∅ = ∅ and F|X| = supp−1 L|X|︸︷︷︸
=L

=

supp−1 L = F .

For every N ∈ N, the set FN is a subset of F , and thus kFN becomes a
k-vector subspace of kF . We are now going to show that

(kFN) · P ⊆ kFN−1 for every N ∈ Z. (3)

Proof of (3): Let N ∈ Z. We need to prove (3). It is clearly enough to show
that xp ∈ kFN−1 for each x ∈ kFN and p ∈ P. So fix x ∈ kFN and p ∈ P.
We need to show that xp ∈ kFN−1. Since this relation is k-linear in x, we
can WLOG assume that x ∈ FN. Assume this.

Every element u ∈ FN satisfying supp u ̸≤ supp x satisfies

xu ∈ FN−1. (4)

3

We can write p in the form p = ∑
u∈F

λuu for some family (λu)u∈F of ele-

ments of k. Consider this family (λu)u∈F . We have

∑
u∈F ;

supp u=U

λu = 0 for every U ∈ L (5)

3Proof of (4): Let u be an element of FN satisfying supp u ̸≤ supp x. Then, supp u ∨
supp x ̸= supp x (because otherwise, we would have supp u ≤ supp u ∨ supp x = supp x,
which would contradict supp u ̸≤ supp x). Combined with supp x ≤ supp u ∨ supp x,
this yields supp x < supp u ∨ supp x. Hence, (2) (applied to X = supp x and Y =
supp u∨ supp x) yields corank (supp x) > corank (supp u ∨ supp x). Since supp u∨ supp x =
supp x ∨ supp u = supp (xu), this rewrites as corank (supp x) > corank (supp (xu)). Hence,
corank (supp (xu)) < corank (supp x) and thus

corank (supp (xu)) ≤ corank (supp x)︸ ︷︷ ︸
<N

(since supp x∈LN
(since x∈FN=supp−1 LN ))

− 1 < N − 1.

In other words, supp (xu) ∈ LN−1, so that xu ∈ supp−1 LN−1 = FN−1. This proves (4).
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4. Hence,
∑

u∈F ;
supp u≤supp x

λu = ∑
U∈L;

U≤supp x

∑
u∈F ;

supp u=U

λu

︸ ︷︷ ︸
=0

(by (5))

= 0. (6)

Now, multiplying both sides of the equality p = ∑
u∈F

λuu by x from the left,

we obtain

xp = x ∑
u∈F

λuu = ∑
u∈F

λuxu

= ∑
u∈F ;

supp u≤supp x

λu xu︸︷︷︸
=x

(by Exercise 2 (5),
since supp u≤supp x)

+ ∑
u∈F ;

supp u ̸≤supp x

λu xu︸︷︷︸
∈FN−1
(by (4))

∈ ∑
u∈F ;

supp u≤supp x

λu

︸ ︷︷ ︸
=0

(by (6))

x + ∑
u∈F ;

supp u ̸≤supp x

λuFN−1

︸ ︷︷ ︸
⊆kFN−1

⊆ 0x + kFN−1 = kFN−1.

This finishes the proof of (3).

Now, for every M ∈ N and every N ∈ Z, we have

(kFN) · PM ⊆ kFN−M. (7)

(In fact, this can be proven by straightforward induction over M using (3).)
Applying (7) to N = |X| and M = |X|, we obtain(

kF|X|

)
· P|X| ⊆ k F|X|−|X|︸ ︷︷ ︸

=F0=∅

= k∅ = 0.

4Proof of (5): We have p ∈ P. In other words, p belongs to the kernel of the k-algebra ho-
momorphism supp : kF → kL (since P is the kernel of the k-algebra homomorphism
supp : kF → kL). In other words, supp p = 0. Hence,

0 = supp p︸︷︷︸
= ∑

u∈F
λuu

= supp

(
∑

u∈F
λuu

)

= ∑
u∈F

λu supp u = ∑
U∈L

∑
u∈F ;

supp u=U

λuU = ∑
U∈L

 ∑
u∈F ;

supp u=U

λu

U.

Thus, the element ∑
U∈L

 ∑
u∈F ;

supp u=U

λu

U of kL is 0. Since the elements U of L are k-linearly

independent in kL, this shows that ∑
u∈F ;

supp u=U

λu = 0 for every U ∈ L. This proves (5).

9
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Since F|X| = F , this rewrites as (kF ) · P|X| ⊆ 0. Now, P|X| = 1︸︷︷︸
∈kF

· P|X| ⊆

(kF ) · P|X| ⊆ 0, so that P|X| = 0. Thus, P is nilpotent. This proves Theorem
3.1a.

• Page 23, proof of Theorem 3.2: In the “Primitive” part of the proof, replace
“for some n ≥ 0” by “for some n ≥ 1” (since you end up using e1 = en

1 on
the next line).

• Page 24, Remark 3.3: Replace “in for” by “for”.

• Page 24, Remark 3.3: One further observation needs to be checked to en-
sure that the proofs still hold if x is replaced by x̃: Namely, it should be
checked that x̃yx̃ = x̃y for every y ∈ F . This, fortunately, is easy.5

• Page 24, Remark 3.4: I think “left regular band” should be replaced by
“finite left regular band” in the first sentence; or at least my proof of the
existence of L and supp only works in the case when S is finite.6

5Proof. Let y ∈ F . Then,

x̃yx̃ =

 ∑
x∈F ;

supp x=X

λxx

 y

 ∑
x∈F ;

supp x=X

λxx


since x̃ = ∑

x∈F ;
supp x=X

λxx



=

 ∑
x∈F ;

supp x=X

λxx

 y

 ∑
x′∈F ;

supp(x′)=X

λx′x
′


= ∑

x∈F ;
supp x=X

λx ∑
x′∈F ;

supp(x′)=X

λx′ xyx′︸︷︷︸
=xy

(by Exercise 2 (5) (applied to xy and x′ instead of x and y),
since supp(x′)=X=supp x≤supp x∨supp y=supp(xy))

= ∑
x∈F ;

supp x=X

λx ∑
x′∈F ;

supp(x′)=X

λx′

︸ ︷︷ ︸
=1

xy = ∑
x∈F ;

supp x=X

λxx

︸ ︷︷ ︸
=x̃

y = x̃y,

qed.
6Here is a rough sketch of my proof (but I expect it is the same as yours):

We define a binary relation ≡ on the set S by setting

(x ≡ y) ⇐⇒ (xy = x and yx = y)

for any x ∈ S and y ∈ S. It is easy to see that this relation ≡ is transitive, reflexive and
symmetric (the transitivity follows from arguing that if x ≡ y and y ≡ z, then x︸︷︷︸

=xy

z =

x yz︸︷︷︸
=y

= xy = x and z︸︷︷︸
=zy

x = z yx︸︷︷︸
=y

= zy = z). Thus, ≡ is an equivalence relation. Also,

if x, y, x′ and y′ are four elements of S satisfying x ≡ y and x′ ≡ y′, then xx′ ≡ yy′

10
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• Page 24, proof of Corollary 3.5: The letter “x” is used in two different
meanings here: Up until “supp (yx) = supp (y) ∨ supp (x) = X”, it means
the element of support X that was chosen while defining eX; but from “the
face y” on, it means an arbitrary element of F .

• Page 24, proof of Corollary 3.5: You write: “xeX lifts the primitive idem-
potent EX”. It might be helpful to justify why this is the case. (In fact, it is
because

supp (xeX) = supp x︸ ︷︷ ︸
=X

∨ supp (eX)︸ ︷︷ ︸
=EX

= X ∨ EX = X ∨ ∑
Y≥X

µ (X, Y)Y

= ∑
Y≥X

µ (X, Y) X ∨ Y︸ ︷︷ ︸
=Y

(since Y≥X)

= ∑
Y≥X

µ (X, Y)Y = EX.

)

• Page 24, proof of Corollary 3.5: Replace “Corollary 3.2” by “Theorem 3.2”.

• Page 24, §3.2: At some point here you should require that the field k have
characteristic 0.

• Page 25: Once you have defined the new family (eX)X∈L of idempotents
(the one that relies on the normalized sums X̂), it would be good to show
an example. Here is one possible example: For the braid arrangement for

(because xy︸︷︷︸
=xyx

x′y′ = xy xx′︸︷︷︸
=x

y′ = xyx︸︷︷︸
=xy

y′ = x yy′︸︷︷︸
=y

= xy and similarly x′y′xy ≡ x′y′). In

other words, the relation ≡ respects the multiplication of S. Hence, the quotient set S/ ≡
(which is well-defined since ≡ is an equivalence relation) is a semigroup. We denote this
semigroup by L, and we denote the canonical projection S → L by supp. The semigroup L
is clearly a left regular band and therefore, in particular, idempotent. Moreover, any x ∈ S
and y ∈ S satisfy xy ≡ yx (because x yy︸︷︷︸

=y

x = xyx = xy and similarly yxxy = yx). Thus, the

semigroup L = S/ ≡ is commutative. We regard this semigroup L as a join-semilattice, with
join operation ∨ defined to be a product. (This is a well-defined semilattice because S is a
commutative idempotent semigroup.) Then, L is a lattice (since every finite join-semilattice
is a lattice). Moreover, it is clear that supp (xy) = supp x ∨ supp y for all x ∈ S and y ∈ S
(since supp is the canonical projection S → L, and since ∨ is the multiplication in L). Finally,
for all x, y ∈ S, we have xy = x if and only if supp (y) ≤ supp (x) (this is easy to check).

11
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n = 3, we have

e{1,2,3} =
̂{1, 2, 3}

=
1
6
((1, 2, 3) + (1, 3, 2) + (2, 1, 3) + (2, 3, 1) + (3, 1, 2) + (3, 2, 1)) ;

e{12,3} =
1
2
((12, 3) + (3, 12))− 1

2
((12, 3) + (3, 12)) e{1,2,3}(

since {̂12, 3} =
1
2
((12, 3) + (3, 12))

)
=

1
2

(
(12, 3) + (3, 12)− 1

2
((1, 2, 3) + (2, 1, 3) + (3, 1, 2) + (3, 2, 1))

)
;

e{13,2} =
1
2

(
(13, 2) + (2, 13)− 1

2
((1, 3, 2) + (3, 1, 2) + (2, 1, 3) + (2, 3, 1))

)
;

e{1,23} =
1
2

(
(1, 23) + (23, 1)− 1

2
((1, 2, 3) + (1, 3, 2) + (2, 3, 1) + (3, 2, 1))

)
;

e{123} = (123)− e{12,3} − e{13,2} − e{1,23} − e{1,2,3}

= (123)− 1
2
((12, 3) + (3, 12) + (13, 2) + (2, 13) + (1, 23) + (23, 1))

+
1
3
((1, 2, 3) + (1, 3, 2) + (2, 1, 3) + (2, 3, 1) + (3, 1, 2) + (3, 2, 1)) .

• Page 25: You say that “it is not difficult to show that these are also primi-
tive”. I didn’t find it too easy either; let me sketch my argument:

The surjective k-algebra homomorphism supp : kF → kL restricts to a
k-algebra homomorphism supp : (kF )W → (kL)W (which is also surjec-
tive, even though we will not use this). With respect to this latter homo-
morphism, the idempotent εX = ∑

Y∈[X]
eY of (kF )W lifts the idempotent

∑
Y∈[X]

EY of (kL)W (since each eY lifts the corresponding EY with respect

to supp : kF → kL). Hence, in order to prove that the idempotent εX

of (kF )W is primitive, it is enough to show that the idempotent ∑
Y∈[X]

EY of

(kL)W is primitive (since, at the end of the proof of Theorem 3.2, we argued
that a lift of a primitive idempotent with respect to a k-algebra homomor-
phism with nilpotent kernel must always be primitive). But the latter can
be proven similarly to how we showed the primitivity of the EY: The ele-
ments ∑

Y∈[X]
EY of (kL)W of kL (with [X] ranging over all the W-orbits on

L, with each orbit only counting once) are orthogonal idempotents and
sum to 1 (because they are the images of the elements εX under supp, and
we know that this holds for the elements εX). But their number is the
number of all W-orbits on L; this is the same as the dimension of (kL)W .

12
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Hence, these elements ∑
Y∈[X]

EY form a basis of the k-module (kL)W , and

each W-orbit [X] on L satisfies (kL)W

(
∑

Y∈[X]
EY

)
= spank

(
∑

Y∈[X]
EY

)
∼= k,

which is an indecomposable (kL)W-module. Hence, each of the idempo-
tents ∑

Y∈[X]
EY is primitive, and this completes our proof.

• Page 26: Replace “elements εX sum to 1” by “elements εX (with [X] ranging
over all the W-orbits on L, with each orbit only counting once)”.

• Page 26, Corollary 3.8: This is not quite correct: The elements mentioned
here are not idempotent, but rather quasi-idempotent7. Also, in order
for them to form a basis of (kF )W , you need to remove repetitions (that

is, not the whole family
(

∑
w∈W

w
(

xesupp(x)

))
x∈F

, but only its subfamily(
∑

w∈W
w
(

xesupp(x)

))
x∈T

forms a basis of (kF )W , where T is any system of

distinct representatives for the W-orbits on F ) 8.

Let me sketch a proof of the quasi-idempotency of the elements described
in Corollary 3.8:

Corollary 3.8a. (a) We have εX ∈ (kF )W for every X ∈ L.

(b) We have ∑
w∈W

w
(

xesupp(x)

)
=

(
∑

w∈W
w (x)

)
ε [supp(x)] for every x ∈ F .

(c) For every X ∈ L, let StabW X denote the stabilizer of X with respect to
the W-action on L. (This is the subset {w ∈ W | w (X) = X} of W.) Let
x ∈ F . Let Ex denote the element ∑

w∈W
w
(

xesupp(x)

)
of kF . Then,

Exxesupp(x) = ∑
w∈StabW(supp(x))

w
(

xesupp(x)

)
(8)

and
E2

x = |StabW (supp (x))|Ex. (9)

Before we prove Corollary 3.8a, let us first show three very simple lemmas:

Lemma 3.8b. Let w ∈ F , p ∈ kF and X ∈ L be such that supp (w) ̸≤ X.
Then, wpeX = 0.

7For example, for x = 1 = 0̂, the element ∑
w∈W

w
(

xesupp(x)

)
equals |W| = n!.

8Indeed, the element ∑
w∈W

w
(

xesupp(x)

)
only depends on the W-orbit on x, not on x itself, and

so should only be picked once per W-orbit.

13
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Proof of Lemma 3.8b. The equality that we want to prove (namely, wpeX = 0)
is k-linear in p. Thus, we can WLOG assume that p ∈ F (since F is a
basis of the k-vector space kF ). Assume this. Exercise 2 (6) (applied to w
and p instead of x and y) yields that supp (wp) = supp (w) ∨ supp (p) ≥
supp (w), so that supp (w) ≤ supp (wp). Hence, if we had supp (wp) ≤ X,
then we would have supp (w) ≤ supp (wp) ≤ X, which would contradict
supp (w) ̸≤ X. Thus, we cannot have supp (wp) ≤ X. In other words,
we have supp (wp) ̸≤ X. Hence, Lemma 3.1 (applied to wp instead of w)
yields wpeX = 0. This proves Lemma 3.8b.

Lemma 3.8c. Let X and Y be two distinct elements of L which belong to
one and the same W-orbit. Then, Y ̸≤ X.

Proof of Lemma 3.8c. Assume the contrary. Thus, Y ≤ X. In other words, the
set partition Y is obtained from X by repeated merging of blocks. There-
fore, either the number of blocks of Y is smaller than the number of blocks
of X, or we have Y = X. Since we cannot have Y = X (because X and Y
are distinct), this shows that the number of blocks of Y is smaller than the
number of blocks of X.

But X and Y belong to one and the same W-orbit. Thus, Y = w (X) for
some w ∈ W. Consequently, the blocks of Y are obtained by applying w
(pointwise) to the blocks of X. Hence, the number of blocks of Y equals the
number of blocks of X. This contradicts the fact that the number of blocks
of Y is smaller than the number of blocks of X. This contradiction shows
that our assumption was wrong. Lemma 3.8c is thus proven.

Lemma 3.8d. Let w ∈ F , p ∈ kF and t ∈ F be such that supp (t) ≤
supp (w). Then, wpt = wp.

Proof of Lemma 3.8d. The equality that we want to prove (namely, wpt = wp)
is k-linear in p. Thus, we can WLOG assume that p ∈ F (since F is a
basis of the k-vector space kF ). Assume this. Exercise 2 (6) (applied to w
and p instead of x and y) yields that supp (wp) = supp (w) ∨ supp (p) ≥
supp (w), so that supp (w) ≤ supp (wp). Thus, supp (t) ≤ supp (w) ≤
supp (wp). But Exercise 2 (5) (applied to wp and t instead of x and y) yields
that wpt = wp if and only if supp (t) ≤ supp (wp). Hence, wpt = wp (since
supp (t) ≤ supp (wp)). This proves Lemma 3.8d.

Proof of Corollary 3.8a. (a) Let X ∈ L. Let w ∈ W. The set [X] is a W-
orbit. Hence, the action of w on L restricts to a permutation of this set
[X]. Consequently, we can substitute w (Y) for Y in the sum ∑

Y∈[X]
eY. As a

14
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result, we obtain

∑
Y∈[X]

eY = ∑
Y∈[X]

ew(Y)︸ ︷︷ ︸
=w(eY)

(since Lemma 3.6
(applied to Y instead of
X) yields w(eY)=ew(Y))

= ∑
Y∈[X]

w (eY) = w

 ∑
Y∈[X]

eY

 .

In other words, ε [X] = w
(

ε [X]

)
(since ε [X] = ∑

Y∈[X]
eY).

Let us now forget that we fixed w. We thus have shown that ε [X] = w
(

ε [X]

)
for every w ∈ W. In other words, ε [X] ∈ (kF )W . This proves Corollary 3.8a
(a).

(b) We have xε [supp(x)] = xesupp(x)
9. Hence, every w ∈ W satisfies

9Proof. Let Y ∈ [supp (x)] be such that Y ̸= supp (x). Then, the elements Y and supp (x) of
L are distinct (since Y ̸= supp (x)) and belong to one and the same W-orbit (namely, to the
W-orbit [supp (x)]). Hence, supp (x) ̸≤ Y (by Lemma 3.8c, applied to Y and supp (x) instead
of X and Y). Therefore, xeY = 0 (by Lemma 3.1, applied to x and Y instead of w and X).

Let us now forget that we fixed Y. We thus have shown that every Y ∈ [supp (x)] satisfying
Y ̸= supp (x) satisfies xeY = 0. Thus, ∑

Y∈[supp(x)];
Y ̸=supp(x)

xeY︸︷︷︸
=0

= ∑
Y∈[supp(x)];
Y ̸=supp(x)

0 = 0.

Now, the definition of ε [supp(x)] yields ε [supp(x)] = ∑
Y∈[supp(x)]

eY. Hence,

x ε [supp(x)]︸ ︷︷ ︸
= ∑

Y∈[supp(x)]
eY

= x ∑
Y∈[supp(x)]

eY = ∑
Y∈[supp(x)]

xeY

= ∑
Y∈[supp(x)];
Y=supp(x)

x eY︸︷︷︸
=esupp(x)

(since Y=supp(x))

+ ∑
Y∈[supp(x)];
Y ̸=supp(x)

xeY︸︷︷︸
=0

= ∑
Y∈[supp(x)];
Y=supp(x)

xesupp(x) + ∑
Y∈[supp(x)];
Y ̸=supp(x)

0

︸ ︷︷ ︸
=0

= ∑
Y∈[supp(x)];
Y=supp(x)

xesupp(x) = xesupp(x) (since supp (x) ∈ [supp (x)]) ,

qed.

15



Errata to “Hyperplane arrangements and descent algebras” January 31, 2025

w (x) ε [supp(x)] = w
(

xesupp(x)

)
10. Now,(

∑
w∈W

w (x)

)
ε [supp(x)] = ∑

w∈W
w (x) ε [supp(x)]︸ ︷︷ ︸
=w(xesupp(x))

= ∑
w∈W

w
(

xesupp(x)

)
.

This proves Corollary 3.8a (b).

(c) Let us first fix some w ∈ W such that w (supp (x)) = supp (x). Now,
supp (wx) = w (supp (x)). Hence, supp (wx) = w (supp (x)) = supp (x),
so that supp (x) = supp (wx) ≤ supp (wx). Therefore, Lemma 3.8d (ap-
plied to wx, wesupp(x) and x instead of w, p and t) yields (wx)

(
wesupp(x)

)
x =

(wx)
(

wesupp(x)

)
.

But Lemma 3.6 (applied to X = supp (x)) yields wesupp(x) = ew(supp(x)) =
esupp(x) (since w (supp (x)) = supp (x)). Thus,

(wx)
(

wesupp(x)

)
x = (wx)

(
wesupp(x)

)
︸ ︷︷ ︸

=esupp(x)

= (wx) esupp(x).

Since (wx)
(

wesupp(x)

)
= w

(
xesupp(x)

)
(because w ∈ W acts on kF by an

algebra homomorphism), this rewrites as w
(

xesupp(x)

)
x = (wx) esupp(x).

Thus,

w
(

xesupp(x)

)
x︸ ︷︷ ︸

=(wx)esupp(x)

esupp(x) = (wx) esupp(x)esupp(x)︸ ︷︷ ︸
=esupp(x)

(since esupp(x) is an idempotent)

= wx esupp(x)︸ ︷︷ ︸
=wesupp(x)

(since wesupp(x)=esupp(x))

= (wx)
(

wesupp(x)

)
= w

(
xesupp(x)

)
.

Let us now forget that we fixed w. We thus have proven that

w
(

xesupp(x)

)
xesupp(x) = w

(
xesupp(x)

)
(10)

10Proof. Let w ∈ W. Then, w
(

ε [supp(x)]

)
= ε [supp(x)] (since ε [supp(x)] ∈ (kF )W (by Corollary 3.8a

(a), applied to X = supp (x))). But w ∈ W acts on kF by an algebra homomorphism, and
therefore we have

w
(

xε [supp(x)]

)
= w (x)w

(
ε [supp(x)]

)
︸ ︷︷ ︸

=ε[supp(x)]

= w (x) ε [supp(x)].

Hence, w (x) ε [supp(x)] = w

xε [supp(x)]︸ ︷︷ ︸
=xesupp(x)

 = w
(

xesupp(x)

)
, qed.

16



Errata to “Hyperplane arrangements and descent algebras” January 31, 2025

for every w ∈ W such that w (supp (x)) = supp (x).

On the other hand, let us fix some w ∈ W such that w (supp (x)) ̸=
supp (x). Thus, supp (x) and w (supp (x)) are two distinct elements of
L which belong to one and the same W-orbit. Thus, Lemma 3.8c (applied
to X = supp (x) and Y = w (supp (x))) yields w (supp (x)) ̸≤ supp (x).
Thus, supp (wx) = w (supp (x)) ̸≤ supp (x). Hence, Lemma 3.8b (ap-
plied to wx,

(
wesupp(x)

)
x and supp (x) instead of w, p and X) yields

(wx)
(

wesupp(x)

)
xesupp(x) = 0. Since (wx)

(
wesupp(x)

)
= w

(
xesupp(x)

)
(be-

cause w ∈ W acts on kF by an algebra homomorphism), this rewrites as
w
(

xesupp(x)

)
xesupp(x) = 0.

Let us now forget that we fixed w. We thus have proven that

w
(

xesupp(x)

)
xesupp(x) = 0 (11)

for every w ∈ W such that w (supp (x)) ̸= supp (x).

But recall that Ex = ∑
w∈W

w
(

xesupp(x)

)
. Multiplying both sides of this

equality with xesupp(x) from the right, we obtain

Exxesupp(x) =

(
∑

w∈W
w
(

xesupp(x)

))
xesupp(x) = ∑

w∈W
w
(

xesupp(x)

)
xesupp(x)

= ∑
w∈W;

w(supp(x))=supp(x)︸ ︷︷ ︸
= ∑

w∈StabW (supp(x))

(since StabW(supp(x))
={w∈W | w(supp(x))=supp(x)}

(by the definition of StabW(supp(x))))

w
(

xesupp(x)

)
xesupp(x)︸ ︷︷ ︸

=w(xesupp(x))
(by (10))

+ ∑
w∈W;

w(supp(x)) ̸=supp(x)

w
(

xesupp(x)

)
xesupp(x)︸ ︷︷ ︸

=0
(by (11))

= ∑
w∈StabW(supp(x))

w
(

xesupp(x)

)
+ ∑

w∈W;
w(supp(x)) ̸=supp(x)

0

︸ ︷︷ ︸
=0

= ∑
w∈StabW(supp(x))

w
(

xesupp(x)

)
.

This proves (8).
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Now, recall that Ex = ∑
w∈W

w
(

xesupp(x)

)
= ∑

p∈W
p
(

xesupp(x)

)
(here, we

renamed the summation index w as p). But every p ∈ W satisfies

p

 Ex︸︷︷︸
= ∑

w∈W
w(xesupp(x))

 = p

(
∑

w∈W
w
(

xesupp(x)

))
= ∑

w∈W
p
(

w
(

xesupp(x)

))
︸ ︷︷ ︸

=(pw)(xesupp(x))

= ∑
w∈W

(pw)
(

xesupp(x)

)
= ∑

w∈W
w
(

xesupp(x)

)
 here, we have substituted w for pw in the sum,

since the map W → W, w 7→ pw is a bijection
(because W is a group)


= Ex. (12)

18
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Now,

E2
x = Ex Ex︸︷︷︸

= ∑
p∈W

p(xesupp(x))

= Ex ∑
p∈W

p
(

xesupp(x)

)

= ∑
p∈W

Ex︸︷︷︸
=p(Ex)
(by (12))

p
(

xesupp(x)

)
= ∑

p∈W
p (Ex) p

(
xesupp(x)

)
︸ ︷︷ ︸

=p(Exxesupp(x))
(since p∈W acts on kF by

a k-algebra homomorphism)

= ∑
p∈W

p


Exxesupp(x)︸ ︷︷ ︸

= ∑
w∈StabW (supp(x))

w(xesupp(x))

(by (8))


= ∑

p∈W
p

 ∑
w∈StabW(supp(x))

w
(

xesupp(x)

)

= ∑
p∈W

∑
w∈StabW(supp(x))︸ ︷︷ ︸

= ∑
w∈StabW (supp(x))

∑
p∈W

p
(

w
(

xesupp(x)

))
︸ ︷︷ ︸

=(pw)(xesupp(x))

= ∑
w∈StabW(supp(x))

∑
p∈W

(pw)
(

xesupp(x)

)
= ∑

w∈StabW(supp(x))
∑

p∈W
p
(

xesupp(x)

)
︸ ︷︷ ︸

=Ex here, we have substituted p for pw in the second sum,
since the map W → W, p 7→ pw is a bijection

(because W is a group)


= ∑

w∈StabW(supp(x))
Ex = |StabW (supp (x))|Ex.

This proves (9).

• Page 26, Exercise 6: Replace “an equivalence class” by “an equivalence
relation”.

• Page 26, Exercise 6: I haven’t been reading the things pertaining to the
general Coxeter-group case anywhere near carefully, but shouldn’t xJ be
wJ to match your notations in §2.4?

• Page 26, Exercise 6: Replace “as recursively” by “recursively”.
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