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[not completed, not proofread]

This note is mostly an auxiliary note for Rep#2. We are going to prove a fact
which is used rather often in algebra:

Theorem 1. Let A be a field, and let G be a finite subgroup of the
multiplicative group A*. Then, G is a cyclic group.

This theorem generalizes the (well-known) fact that the multiplicative group of a
finite field is cyclic. Most proofs of this fact can actually be used to prove Theorem
1 in all its generality, so there is not much need to provide another proof here. But
yet, let us sketch a proof of Theorem 1 that requires only basic number theory. The
downside is that it is very ugly. First, an easy number-theoretical lemma:

Lemma 2. Let i, g and a be three integers such that a is positive, such
that g | a, and such that i is coprime to g. Then, there exists an integer [
such that I =imod g and such that [ is coprime to a.

Proof of Lemma 2. For every integer n, let us denote by PF n the set of all prime
divisors of n. By the unique factorization theorem, for any positive integer n, the set

PF n is finite and satisfies n = [ pU™.
pePFn
Clearly, a # 0 (since a is positive) and g # 0 (since a # 0 and ¢ | a). Now, g | a

yields PF g C PF a. We have

a = H pr = H pr@ H por(@ (since PF g C PFa).
peEPFa pEPFg pEPFa\PF g
In other words, a = ajas, where a; = ] p”P(“) and ay = I pvp(a).
pePF g pePF a\PF g

The number g is not divisible by any prime p € PFa \ PF g (because if g is divis-
ible by a prime p, then p € PF g, so that p cannot lie in PFa \ PFg). Hence, g is
coprime to pU(@ for every p € PFa \ PF g. Consequently, g is coprime to the product

[T  p»@. In other words, ¢ is coprime to ay (since [T  p»@ =ay). Thus,
peEPFa\PFg peEPFa\PFg

by Bezout’s Theorem!, there exist integers p; and p, such that p;g + psas = 1. Thus,
1 — p1g = pas = 0moday. Now, let [ =i — (i —1)p1g. Then, [ =i — (i —1)p1g =
imod g. Hence, I is coprime to ¢ (since ¢ is coprime to g). Hence, I is not divisible
by any prime p € PF g. Thus, I is coprime to p*»(® for every p € PF g. Consequently,

I is coprime to the product [] p“@. In other words, I is coprime to a; (since
pePFg

[1 p*@ =a;). On the other hand, I is coprime to ay (since
pePF g

I'=i—(i=1)pig=1i(1l—p1g)+p1g = p1g = p1g + paas = 1 mod ay
—_——

=0mod a2

IBezout’s theorem states that if \; and Ay are two coprime integers, then there exist integers
p1 and po such that p1A; + p2 g = 1.



). Hence, I is coprime to ajas (since I is coprime to a; and to az). In other words, I
is coprime to a (since ajas = a). This proves Lemma 2.
Proof of Theorem 1. We first notice that

if & and [ are two elements of GG, then there exists v € G such that
a € () and B € (7). (1)
Proof of (1). Let a be the order of o in G, and let b be the order of 5 in G. Let g
be ged (a,b). Then, g | a and g | b. Thus, (a,/g) | @ and (bg) | b.

The order of a in G is a. Hence, the order of a«®9 in G is g (since

o/ g

0 1 1
(a,/g) | a). Consequently, the elements (oﬂ/g) , (a“/g) R <aa/g)g are pair-
wise distinct, and we have (oza/g)g = 1. Now, for every i € {0,1,...,9 — 1}, we

i\ 9 i
have ((oﬂ/g> ) = (oz“/g>g = 1, and thus the element (oza/g) is a root of the
' - 0 1

polynomial X9 — 1 € A[X]. In other words, the elements (aa/g) , (a“/9> N

-1
(a“/ 9)9 are roots of the polynomial X9 — 1 € A[X]. Since we know that these

0 1 —1

elements (oﬂ/ 9) , (oﬂ/ 9) ) e (Oz“/ g)g are pairwise distinct, we thus see that the
0 1 —1

elements (a“/ 9) , (a“/ 9) N (oﬂ/ 9)g are pairwise distinct roots of the polynomial

X9 —1 € A[X]. But the polynomial X9 — 1 € A[X] can only have at most g roots
(since any nonzero polynomial of degree g over a field can only have at most g roots),
so these roots (aa/9>0, (aa/g)l s e (oza/g)g_l must be all the roots of the polyno-
mial X9 — 1 € A[X]. Consequently, the polynomial X9 — 1 equals a constant times

0 1
(X - (oﬂ/g) ) <X - (oﬂ/g>1> (X - (a“/g)g ) But the constant just mentioned
must be 1 (since the polynomials X9 — 1 and
(X — (a“/g)()) <X — (aa/v")l) (X — (oﬂ/9>g_l> have the same leading term); hence,

X9 1= (X _ (aa/g)O) (x _ (aw)l) (X _ (aw)g—l) .

g—1 i

In other words, X9 — 1 = [] (X — (oﬂ/g> ) Applying this identity to X = 8*79, we

i=0
-1 i

obtain (Bb/g)g —-1= gH (ﬁb/g — (a“/g> ) Since (Bb/g)g —1=p3"—1=0 (since b

1=0

-1 i
is the order of 3, and thus 8° = 1), this becomes 0 = gH (Bb/g — (a“/g) ) Hence,

i=0 ,
there must exist some i € {0,1,...,g — 1} such that 8> — (oﬂ/g)Z = 0 (because
if a product of elements of a field is zero, then one of the factors must be 7Z€ero).
Consequently, this i € {0,1,...,g — 1} satisfies f%9 = (oﬂ/ g)l. Similarly, there exists
J
1 — isfvi a/g — b/g)’ a/9g — b/ g
some j € {0,1,...,9g — 1} satisfying « = (6 ) . Thus, « =1 B

.
:(a‘l/g)l



i\J ij (Oé“/g)ij ij—1
((aa/f’) ) = (oz“/g) ,s0that 1 = ~—~+~— = (oﬂ/g) . Since the order of the
aa/g
element %9 is g, this yields g | ij — 1, so that ij = 1 mod g. Hence, ij is coprime to g,
so that ¢ must also be coprime to g. Thus, by Lemma 2, there exists an integer I such
that / =imod g and such that [ is coprime to a. Since I =imod g, we have g | I —1,

I—i
and thus <a“/ 9) =1 (since g is the order of a®’9), so that

) = o) ) ) ) =
=1

Now, the integers a,/¢g and b,/g are coprime (since ged (a,/g,b,g) = ged (a,b) /g =
—_———

=9
g/9 = 1); hence, by Bezout’s Theorem, there exist integers u and v such that
u-a,/q9g+v-b/qg=1. Now, let v = af?3%. Then, v € G and

u

b b Y
,yb/g _ (Oélvﬁu) /g _ (alv) /g (Bu)b/g _ alv-b/g ﬁb/g _ a]v-b/g <(aa/g) )
A/_,u —— .
—qlvb/g :(ﬁb/g) :(aa/g) :(aa/g)fu:alu-a/g

(by (2))
— OéIv-b/gOéIu-a/g — alvb/g—i—lu'a/g — OéI

(since [v-b/ g+ 1u-a/g=1(u-a/g+v-b/g) =1I). Since I is coprime to a, there

=1
exist integers x and y such that xI + ya = 1 (according to Bezout’s theorem). Thus,

a=a ="t (since 1 =zl + ya = Ix + ay)
y
_ Iz ay I a _ b/g\* _ b/g\”
ol e =lal | o | = ()= () e )
=(a1)® =(a®)Y =~b/9 =1 (since a is
the order of )
On the other hand, since v = aV3%, we have
a, vV QU a/g v a/g u\a, a I u-(a
’y/g:(afﬁ) _ (aI> ‘(3)/92 (a/g) ,B(/g)
NI ———
—qlva/9—q(a/9)Iv =gu(a/9) =pb/9
:(aa/g)h’:<(aa/g)l)v (by (2))
_ (5b/g)” Bulase) = gub/9) . gula/e) = gv(b/9)+u(a/9)
——
=B/ 9)-v=pv-(b/9)
=g (since v- (b/g) +u-(a,/9) =u-a/g+v-b/g=1)

=B,

and therefore 3 = %9 € (7).



Altogether, we have proven that v € G, that a € () and that 5 € (). This proves

(1).

Now, let us finally prove Theorem 1: Clearly, there exists a subset P of the group
G such that G = (P) (in fact, the whole group G is an example of such a subset P).
Let U be such a subset with the smallest number of elements.? Then, U is a subset of
the group G such that G = (U), but there is no subset U’ of G with less elements than
U that satisfies G = (U’).

We let k = |U|, and we write the set U as U = {uy, ug, ..., ug }, where uy, ug, ..., ug
are the k (pairwise distinct) elements of U. Assume now that & > 1. Then, u; and us
are well-defined. Now, there exists an element v € G such that u; € (y) and us € (7)
(by (1), applied to o« = uy and 8 = uy), and therefore u; € (v, us, uy, ..., ug) for every
ie{1,2,...k} 3. Hence, (ui,us,...,ux) C (v, us3, Ug, ..., us), so that

G =(U) = {uy,ug,...;ur}) = (ug, us, ...;u) C (v, u3, g, ..o, ug) = v, us, gy ..oy ug }) = (U’

where U’ denotes the subset {~, us, uy,...,ux} of G. But clearly, also G D (U’). Thus,
G = (U’). Besides, the subset U’ of G has less elements than U (because U’ =
{7, us, s, ...,u} has at most k — 1 elements, while U has |U| = k elements). This
contradicts to the fact that there is no subset U’ of G with less elements than U that
satisfies G = (U’). This contradiction shows that our assumption & > 1 was wrong.
Hence, k < 1, so that k =1 or k = 0. If k =0, then |U| = k = 0 and thus U = &,
which leads to G = (@) = 1, so that G is a cyclic group. If k = 1, then |U| =k =1, so
that U = {u} for some u € G, and therefore G = (U) = ({u}) = (u) is a cyclic group.
Hence, in both cases, G is a cyclic group. This proves Theorem 1.
Here is an easy consequence of Theorem 1:

Lemma 3. Let A be a field. Let n be a positive integer, and for every
i€{l1,2,...,n}, let & be a root of unity in A. Then, there exists some root
of unity ¢ of A and a sequence (kq, ko, ..., k,) of nonnegative integers such
that (51- = (% for every i € {1, 2, ,n}) and ged (ky, ko, .oy k) = 1.

Proof of Lemma 3. Let G be the subgroup (&1, &, ..., &,) of the multiplicative group
A*. Then, the map

D . <§1> X <52> X ..o X <€n> — <€17£27---7£n> defined by

(T1, X9, oy Tp) > T1To... Ty,

n
is surjective (because every element of (€1, &,, ..., &,) has the form [] & for some n-tuple
i=1

(f1, f2y .y fn) of integer, and thus is @ (f{l, 2, ,f{;")), and the set (£1) x (&2) X ... x (&)
is finite (since the set (§;) is finite for every ¢ € {1,2,...,n}, because §; is a root of unity).
Hence, the set (&1,&,...,&,) is finite. Thus, G = (£, &, ..., &) is a finite subgroup of

2Indeed, such a U exists, because the set of all subsets of the group G is finite (since G itself is
finite).

3In fact, three cases are possible: eitheri = 1, 0ori =2, ori > 3. If i = 1, then u; € {7, u3, 4, ..., ur)
follows from uy € (v) C (v, u3, uq, ..., u). If i =2, then u; € (v, us, ug, ..., ug) follows from uy € () C
(v, u3,uq, ..., ur). Finally, if ¢ > 3, then u; € (v, us, uyq, ..., ux) is trivial. Thus, u; € (v, us, ug, ..., u)
holds in all cases.



A*. Hence, by Theorem 1, this group G is cyclic, so that there exists some 7 € GG such
that G = (7). Now, if u is the order of 7 in the group G, then (7) = {7° 7! ... 7%71}.
Hence, for every i € {1,2,...,n}, there exists some nonnegative integer ¢; such that
& = 18 (since & € G = (1) = {70 7L, .., 77 1}). Now, let £ = ged ({1, 0y, ..., 0,).
Let ¢ = 7% and let k; = ¢;/¢ for every i € {1,2,....n}. Then, {; = (k; for every
ie{l,2,...,n}.

Now we know that ¢ is a root of unity (since ( € G, and thus Lagrange’s theorem

—
=
Finally, recall that k; = ¢; /¢ for every i € {1,2,...,n}. Thus, ged (ky, ko, ..., k) =
ged (010,00, ... 0,/ 0) = ged (U1, 4s, ..., Ly,) /€ = 1. Thus, Lemma 3 is proven.

=/

k;
yields ¢!¢! = 1), and for every i € {1,2,...,n} we have & = 7% = 7% = ( ¢ ) = (ki




