Rep#2a: Finite subgroups of multiplicative groups of fields

Darij Grinberg

[not completed, not proofread]

This note is mostly an auxiliary note for Rep#2. We are going to prove a fact which is used rather often in algebra:

Theorem 1. Let A be a field, and let G be a finite subgroup of the multiplicative group A^{\times} . Then, G is a cyclic group.

This theorem generalizes the (well-known) fact that the multiplicative group of a finite field is cyclic. Most proofs of this fact can actually be used to prove Theorem 1 in all its generality, so there is not much need to provide another proof here. But yet, let us sketch a proof of Theorem 1 that requires only basic number theory. The downside is that it is very ugly. First, an easy number-theoretical lemma:

Lemma 2. Let i, g and a be three integers such that a is positive, such that $g \mid a$, and such that i is coprime to g. Then, there exists an integer I such that $I \equiv i \mod g$ and such that I is coprime to a.

Proof of Lemma 2. For every integer n, let us denote by PF n the set of all prime divisors of n. By the unique factorization theorem, for any positive integer n, the set PF n is finite and satisfies $n = \prod_{p \in PF} p^{v_p(n)}$.

Clearly, $a \neq 0$ (since a is positive) and $g \neq 0$ (since $a \neq 0$ and $g \mid a$). Now, $g \mid a$ yields PF $g \subseteq$ PF a. We have

$$a = \prod_{p \in \operatorname{PF} a} p^{v_p(a)} = \prod_{p \in \operatorname{PF} g} p^{v_p(a)} \cdot \prod_{p \in \operatorname{PF} a \setminus \operatorname{PF} g} p^{v_p(a)} \qquad \text{(since } \operatorname{PF} g \subseteq \operatorname{PF} a).$$

In other words, $a = a_1 a_2$, where $a_1 = \prod_{p \in PF g} p^{v_p(a)}$ and $a_2 = \prod_{p \in PF a \setminus PF g} p^{v_p(a)}$.

The number g is not divisible by any prime $p \in \operatorname{PF} a \setminus \operatorname{PF} g$ (because if g is divisible by a prime p, then $p \in \operatorname{PF} g$, so that p cannot lie in $\operatorname{PF} a \setminus \operatorname{PF} g$). Hence, g is coprime to $p^{v_p(a)}$ for every $p \in \operatorname{PF} a \setminus \operatorname{PF} g$. Consequently, g is coprime to the product

 $\prod_{p \in \mathrm{PF}\, a \backslash \mathrm{PF}\, g} p^{v_p(a)}. \text{ In other words, } g \text{ is coprime to } a_2 \text{ (since } \prod_{p \in \mathrm{PF}\, a \backslash \mathrm{PF}\, g} p^{v_p(a)} = a_2). \text{ Thus,}$ by Bezout's Theorem¹, there exist integers ρ_1 and ρ_2 such that $\rho_1 g + \rho_2 a_2 = 1$. Thus, $1 - \rho_1 g = \rho_2 a_2 \equiv 0 \mod a_2$. Now, let $I = i - (i - 1) \rho_1 g$. Then, $I = i - (i - 1) \rho_1 g \equiv i \mod g$. Hence, I is coprime to g (since i is coprime to g). Hence, I is not divisible by any prime $p \in \mathrm{PF}\, g$. Thus, I is coprime to $p^{v_p(a)}$ for every $p \in \mathrm{PF}\, g$. Consequently, I is coprime to the product $\prod_{p \in \mathrm{PF}\, g} p^{v_p(a)}$. In other words, I is coprime to a_1 (since

 $\prod_{p\in \mathrm{PF}\, g} p^{v_p(a)} = a_1$). On the other hand, I is coprime to a_2 (since

$$I = i - (i - 1) \rho_1 g = i \underbrace{(1 - \rho_1 g)}_{\equiv 0 \mod a_2} + \rho_1 g \equiv \rho_1 g \equiv \rho_1 g + \rho_2 a_2 = 1 \mod a_2$$

¹Bezout's theorem states that if λ_1 and λ_2 are two coprime integers, then there exist integers ρ_1 and ρ_2 such that $\rho_1\lambda_1 + \rho_2\lambda_2 = 1$.

). Hence, I is coprime to a_1a_2 (since I is coprime to a_1 and to a_2). In other words, I is coprime to a (since $a_1a_2=a$). This proves Lemma 2.

Proof of Theorem 1. We first notice that

if
$$\alpha$$
 and β are two elements of G , then there exists $\gamma \in G$ such that $\alpha \in \langle \gamma \rangle$ and $\beta \in \langle \gamma \rangle$. (1)

Proof of (1). Let a be the order of α in G, and let b be the order of β in G. Let g be $\gcd(a,b)$. Then, $g \mid a$ and $g \mid b$. Thus, $(a/g) \mid a$ and $(b/g) \mid b$.

The order of α in G is a. Hence, the order of $\alpha^{a/g}$ in G is $\frac{a}{a/g} = g$ (since $(a/g) \mid a$). Consequently, the elements $(\alpha^{a/g})^0$, $(\alpha^{a/g})^1$, ..., $(\alpha^{a/g})^{g-1}$ are pairwise distinct, and we have $(\alpha^{a/g})^g = 1$. Now, for every $i \in \{0, 1, ..., g-1\}$, we

have $\left(\left(\alpha^{a/g}\right)^i\right)^g = \left(\underbrace{\left(\alpha^{a/g}\right)^g}_{=1}\right)^i = 1$, and thus the element $\left(\alpha^{a/g}\right)^i$ is a root of the

polynomial $X^g - 1 \in A[X]$. In other words, the elements $\left(\alpha^{a/g}\right)^0$, $\left(\alpha^{a/g}\right)^1$, ..., $\left(\alpha^{a/g}\right)^{g-1}$ are roots of the polynomial $X^g - 1 \in A[X]$. Since we know that these elements $\left(\alpha^{a/g}\right)^0$, $\left(\alpha^{a/g}\right)^1$, ..., $\left(\alpha^{a/g}\right)^{g-1}$ are pairwise distinct, we thus see that the elements $\left(\alpha^{a/g}\right)^0$, $\left(\alpha^{a/g}\right)^1$, ..., $\left(\alpha^{a/g}\right)^{g-1}$ are pairwise distinct roots of the polynomial $X^g - 1 \in A[X]$. But the polynomial $X^g - 1 \in A[X]$ can only have at most g roots (since any nonzero polynomial of degree g over a field can only have at most g roots), so these roots $\left(\alpha^{a/g}\right)^0$, $\left(\alpha^{a/g}\right)^1$, ..., $\left(\alpha^{a/g}\right)^{g-1}$ must be all the roots of the polynomial $X^g - 1 \in A[X]$. Consequently, the polynomial $X^g - 1$ equals a constant times $\left(X - \left(\alpha^{a/g}\right)^0\right) \left(X - \left(\alpha^{a/g}\right)^1\right)$... $\left(X - \left(\alpha^{a/g}\right)^{g-1}\right)$. But the constant just mentioned must be 1 (since the polynomials $X^g - 1$ and

 $\left(X - \left(\alpha^{a/g}\right)^{0}\right) \left(X - \left(\alpha^{a/g}\right)^{1}\right) \dots \left(X - \left(\alpha^{a/g}\right)^{g-1}\right)$ have the same leading term); hence, this becomes

$$X^g - 1 = \left(X - \left(\alpha^{a/g}\right)^0\right) \left(X - \left(\alpha^{a/g}\right)^1\right) \dots \left(X - \left(\alpha^{a/g}\right)^{g-1}\right).$$

In other words, $X^g - 1 = \prod_{i=0}^{g-1} \left(X - \left(\alpha^{a/g} \right)^i \right)$. Applying this identity to $X = \beta^{b/g}$, we obtain $\left(\beta^{b/g} \right)^g - 1 = \prod_{i=0}^{g-1} \left(\beta^{b/g} - \left(\alpha^{a/g} \right)^i \right)$. Since $\left(\beta^{b/g} \right)^g - 1 = \beta^b - 1 = 0$ (since b is the order of β , and thus $\beta^b = 1$), this becomes $0 = \prod_{i=0}^{g-1} \left(\beta^{b/g} - \left(\alpha^{a/g} \right)^i \right)$. Hence, there must exist some $i \in \{0, 1, ..., g-1\}$ such that $\beta^{b/g} - \left(\alpha^{a/g} \right)^i = 0$ (because if a product of elements of a field is zero, then one of the factors must be zero). Consequently, this $i \in \{0, 1, ..., g-1\}$ satisfies $\beta^{b/g} = \left(\alpha^{a/g} \right)^i$. Similarly, there exists

some
$$j \in \{0, 1, ..., g - 1\}$$
 satisfying $\alpha^{a/g} = (\beta^{b/g})^j$. Thus, $\alpha^{a/g} = (\underline{\beta^{b/g}})^j = (\underline{\beta^{b/g}})^j$

 $\left(\left(\alpha^{a/g}\right)^i\right)^j = \left(\alpha^{a/g}\right)^{ij}$, so that $1 = \frac{\left(\alpha^{a/g}\right)^{ij}}{\alpha^{a/g}} = \left(\alpha^{a/g}\right)^{ij-1}$. Since the order of the element $\alpha^{a/g}$ is g, this yields $g \mid ij-1$, so that $ij \equiv 1 \mod g$. Hence, ij is coprime to g, so that i must also be coprime to g. Thus, by Lemma 2, there exists an integer I such that $I \equiv i \mod g$ and such that I is coprime to a. Since $I \equiv i \mod g$, we have $g \mid I-i$, and thus $\left(\alpha^{a/g}\right)^{I-i} = 1$ (since g is the order of $\alpha^{a/g}$), so that

$$\left(\alpha^{a/g}\right)^{I} = \left(\alpha^{a/g}\right)^{(I-i)+i} = \underbrace{\left(\alpha^{a/g}\right)^{I-i}}_{=1} \left(\alpha^{a/g}\right)^{i} = \left(\alpha^{a/g}\right)^{i} = \beta^{b/g}. \tag{2}$$

Now, the integers a/g and b/g are coprime (since $\gcd(a/g,b/g) = \underbrace{\gcd(a,b)}_{=a}/g = \underbrace{$

g/g=1); hence, by Bezout's Theorem, there exist integers u and v such that $u \cdot a/g + v \cdot b/g = 1$. Now, let $\gamma = \alpha^{Iv}\beta^u$. Then, $\gamma \in G$ and

$$\gamma^{b/g} = \left(\alpha^{Iv}\beta^{u}\right)^{b/g} = \underbrace{\left(\alpha^{Iv}\right)^{b/g}}_{=\alpha^{Iv \cdot b/g}} \underbrace{\left(\beta^{u}\right)^{b/g}}_{=\left(\beta^{b/g}\right)^{u}} = \alpha^{Iv \cdot b/g} \left(\underbrace{\beta^{b/g}}_{=\left(\alpha^{a/g}\right)^{I}}\right)^{u} = \alpha^{Iv \cdot b/g} \underbrace{\left(\left(\alpha^{a/g}\right)^{I}\right)^{u}}_{=\left(\alpha^{a/g}\right)^{Iu} = \alpha^{Iu \cdot a/g}} = \alpha^{Iv \cdot b/g} \alpha^{Iu \cdot a/g} = \alpha^{Iv \cdot b/g + Iu \cdot a/g} = \alpha^{I}$$

(since $Iv \cdot b/g + Iu \cdot a/g = I\underbrace{(u \cdot a/g + v \cdot b/g)}_{=1} = I$). Since I is coprime to a, there exist integers x and y such that xI + ya = 1 (according to Bezout's theorem). Thus,

$$a = \alpha^{1} = \alpha^{Ix+ay} \qquad \text{(since } 1 = xI + ya = Ix + ay)$$

$$= \underbrace{\alpha^{Ix}}_{=(\alpha^{I})^{x}} \underbrace{\alpha^{ay}}_{=(\alpha^{a})^{y}} = \underbrace{\left(\underbrace{\alpha^{I}}_{=\gamma^{b/g}}\right)^{x}}_{x} \underbrace{\left(\underbrace{\alpha^{a}}_{\substack{=1 \text{ (since } a \text{ is the order of } \alpha)}}\right)^{y}}_{y} = \left(\gamma^{b/g}\right)^{x} 1^{y} = \left(\gamma^{b/g}\right)^{x} \in \langle \gamma \rangle.$$

On the other hand, since $\gamma = \alpha^{Iv}\beta^u$, we have

$$\gamma^{a/g} = \left(\alpha^{Iv}\beta^{u}\right)^{a/g} = \underbrace{\left(\alpha^{Iv}\right)^{a/g}}_{=\alpha^{Iv\cdot\alpha/g} = \alpha^{(a/g)\cdot Iv}} \cdot \underbrace{\left(\beta^{u}\right)^{a/g}}_{=\beta^{u\cdot(a/g)}} = \underbrace{\left(\alpha^{a/g}\right)^{I}}_{=\beta^{b/g}} \cdot \beta^{u\cdot(a/g)}$$

$$= \underbrace{\left(\alpha^{a/g}\right)^{Iv}}_{=(\alpha^{a/g})^{Iv} = \left(\alpha^{a/g}\right)^{I}}^{v} \cdot \beta^{u\cdot(a/g)} = \beta^{v\cdot(b/g)} \cdot \beta^{u\cdot(a/g)} = \beta^{v\cdot(b/g)+u\cdot(a/g)}$$

$$= \underbrace{\beta^{b/g}}_{=\beta^{(b/g)\cdot v} = \beta^{v\cdot(b/g)}} \cdot \beta^{u\cdot(a/g)} = \beta^{v\cdot(b/g)+u\cdot(a/g)}$$

$$= \beta^{1} \quad \text{(since } v\cdot(b/g) + u\cdot(a/g) = u\cdot a/g + v\cdot b/g = 1$$

$$= \beta,$$

and therefore $\beta = \gamma^{a/g} \in \langle \gamma \rangle$.

Altogether, we have proven that $\gamma \in G$, that $\alpha \in \langle \gamma \rangle$ and that $\beta \in \langle \gamma \rangle$. This proves (1).

Now, let us finally prove Theorem 1: Clearly, there exists a subset P of the group G such that $G = \langle P \rangle$ (in fact, the whole group G is an example of such a subset P). Let U be such a subset with the smallest number of elements. Then, U is a subset of the group G such that $G = \langle U \rangle$, but there is no subset U' of G with less elements than U that satisfies $G = \langle U' \rangle$.

We let k = |U|, and we write the set U as $U = \{u_1, u_2, ..., u_k\}$, where $u_1, u_2, ..., u_k$ are the k (pairwise distinct) elements of U. Assume now that k > 1. Then, u_1 and u_2 are well-defined. Now, there exists an element $\gamma \in G$ such that $u_1 \in \langle \gamma \rangle$ and $u_2 \in \langle \gamma \rangle$ (by (1), applied to $\alpha = u_1$ and $\beta = u_2$), and therefore $u_i \in \langle \gamma, u_3, u_4, ..., u_k \rangle$ for every $i \in \{1, 2, ..., k\}$ 3. Hence, $\langle u_1, u_2, ..., u_k \rangle \subseteq \langle \gamma, u_3, u_4, ..., u_k \rangle$, so that

$$G = \langle U \rangle = \langle \{u_1, u_2, ..., u_k\} \rangle = \langle u_1, u_2, ..., u_k \rangle \subseteq \langle \gamma, u_3, u_4, ..., u_k \rangle = \langle \{\gamma, u_3, u_4, ..., u_k\} \rangle = \langle U' \rangle$$

where U' denotes the subset $\{\gamma, u_3, u_4, ..., u_k\}$ of G. But clearly, also $G \supseteq \langle U' \rangle$. Thus, $G = \langle U' \rangle$. Besides, the subset U' of G has less elements than U (because $U' = \{\gamma, u_3, u_4, ..., u_k\}$ has at most k-1 elements, while U has |U| = k elements). This contradicts to the fact that there is no subset U' of G with less elements than U that satisfies $G = \langle U' \rangle$. This contradiction shows that our assumption k > 1 was wrong. Hence, $k \le 1$, so that k = 1 or k = 0. If k = 0, then |U| = k = 0 and thus $U = \emptyset$, which leads to $G = \langle \emptyset \rangle = 1$, so that G is a cyclic group. If k = 1, then |U| = k = 1, so that $U = \{u\}$ for some $u \in G$, and therefore $G = \langle U \rangle = \langle \{u\} \rangle = \langle u \rangle$ is a cyclic group. Hence, in both cases, G is a cyclic group. This proves Theorem 1.

Here is an easy consequence of Theorem 1:

Lemma 3. Let A be a field. Let n be a positive integer, and for every $i \in \{1, 2, ..., n\}$, let ξ_i be a root of unity in A. Then, there exists some root of unity ζ of A and a sequence $(k_1, k_2, ..., k_n)$ of nonnegative integers such that $(\xi_i = \zeta^{k_i})$ for every $i \in \{1, 2, ..., n\}$ and $\gcd(k_1, k_2, ..., k_n) = 1$.

Proof of Lemma 3. Let G be the subgroup $\langle \xi_1, \xi_2, ..., \xi_n \rangle$ of the multiplicative group A^{\times} . Then, the map

$$\Phi: \langle \xi_1 \rangle \times \langle \xi_2 \rangle \times ... \times \langle \xi_n \rangle \to \langle \xi_1, \xi_2, ..., \xi_n \rangle$$
 defined by
$$(x_1, x_2, ..., x_n) \mapsto x_1 x_2 ... x_n$$

is surjective (because every element of $\langle \xi_1, \xi_2, ..., \xi_n \rangle$ has the form $\prod\limits_{i=1}^n \xi_i^{f_i}$ for some n-tuple $(f_1, f_2, ..., f_n)$ of integer, and thus is $\Phi\left(\xi_1^{f_1}, \xi_2^{f_2}, ..., \xi_n^{f_n}\right)$), and the set $\langle \xi_1 \rangle \times \langle \xi_2 \rangle \times ... \times \langle \xi_n \rangle$ is finite (since the set $\langle \xi_i \rangle$ is finite for every $i \in \{1, 2, ..., n\}$, because ξ_i is a root of unity). Hence, the set $\langle \xi_1, \xi_2, ..., \xi_n \rangle$ is finite. Thus, $G = \langle \xi_1, \xi_2, ..., \xi_n \rangle$ is a finite subgroup of

²Indeed, such a U exists, because the set of all subsets of the group G is finite (since G itself is finite).

³In fact, three cases are possible: either i=1, or i=2, or $i\geq 3$. If i=1, then $u_i\in \langle \gamma,u_3,u_4,...,u_k\rangle$ follows from $u_1\in \langle \gamma\rangle\subseteq \langle \gamma,u_3,u_4,...,u_k\rangle$. If i=2, then $u_i\in \langle \gamma,u_3,u_4,...,u_k\rangle$ follows from $u_2\in \langle \gamma\rangle\subseteq \langle \gamma,u_3,u_4,...,u_k\rangle$. Finally, if $i\geq 3$, then $u_i\in \langle \gamma,u_3,u_4,...,u_k\rangle$ is trivial. Thus, $u_i\in \langle \gamma,u_3,u_4,...,u_k\rangle$ holds in all cases.

 A^{\times} . Hence, by Theorem 1, this group G is cyclic, so that there exists some $\tau \in G$ such that $G = \langle \tau \rangle$. Now, if u is the order of τ in the group G, then $\langle \tau \rangle = \{\tau^0, \tau^1, ..., \tau^{u-1}\}$. Hence, for every $i \in \{1, 2, ..., n\}$, there exists some nonnegative integer ℓ_i such that $\xi_i = \tau^{\ell_i}$ (since $\xi_i \in G = \langle \tau \rangle = \{\tau^0, \tau^1, ..., \tau^{u-1}\}$). Now, let $\ell = \gcd(\ell_1, \ell_2, ..., \ell_n)$. Let $\zeta = \tau^{\ell}$, and let $k_i = \ell_i / \ell$ for every $i \in \{1, 2, ..., n\}$. Then, $\ell_i = \ell k_i$ for every $i \in \{1, 2, ..., n\}$.

Now we know that ζ is a root of unity (since $\zeta \in G$, and thus Lagrange's theorem yields $\zeta^{|G|} = 1$), and for every $i \in \{1, 2, ..., n\}$ we have $\xi_i = \tau^{\ell_i} = \left(\underbrace{\tau^\ell}_{=\zeta}\right)^{k_i} = \zeta^{k_i}$. Finally, recall that $k_i = \ell_i / \ell$ for every $i \in \{1, 2, ..., n\}$. Thus, $\gcd(k_1, k_2, ..., k_n) = \gcd(\ell_1 / \ell, \ell_2 / \ell, ..., \ell_n / \ell) = \gcd(\ell_1, \ell_2, ..., \ell_n) / \ell = 1$. Thus, Lemma 3 is proven.