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[not completed, not proofread]

There is a rule of thumb that in 90% of all cases when a proof in algebra or com-
binatorics seems to use analysis, this use can be easily avoided. For example, when
a proof of a combinatorial identity uses power series, it is - in most cases - enough
to replace the words ”power series” by ”formal power series”, and there is no need
anymore to worry about issues of convergence and well-definedness1. When a proof of
an algebraic fact works in the field C, it will - in most cases - work just as well in the
algebraic closure of Q, or in any algebraically closed field of characteristic zero, and
sometimes even the ”algebraically closed” condition can be lifted, and it is enough to
consider a sufficiently large finite algebraic extension of Q. However, as always when it
comes to such rules of thumb, there are exceptions. Here is one lemma that is used in
various algebraical proofs, and which seems to be really much simpler to prove using
analytical properties of C than using pure algebra:

Lemma 1. Let A�Q be a field extension. Let n be a positive integer, and
let ζ1, ζ2, ..., ζn be n roots of unity in A (of course, these roots of unity can be
of different orders, and there can be equal roots among them). Assume that
1

n
(ζ1 + ζ2 + ...+ ζn) is an algebraic integer. Then, either ζ1+ζ2+...+ζn = 0

or ζ1 = ζ2 = ... = ζn.

Remark. An element s ∈ A is said to be an algebraic integer if it is integral
over the subring Z of Q.

This Lemma 1 appears in [1] as Lemma 4.22.
In this note, we will first discuss the standard proof of Lemma 1, which uses complex

numbers in a nontrivial way, and then a (much longer and uglier but) purely algebraic-
combinatorial one.

Both proofs begin by reducing Lemma 1 to a simpler fact:

Lemma 2. Let A�Q be a finite-dimensional field extension. Let S be a
finite set, and for every s ∈ S, let ξs be a root of unity in A. (Of course,
these roots of unity can be of different orders, and there can be equal roots

among them.) Assume that
∑
s∈S

ξs ∈ Q and

∣∣∣∣∣ ∑s∈S ξs
∣∣∣∣∣ ≥ |S|. Then, ξs = ξt

for any two elements s and t of S. (In other words, all the elements ξs for
various s ∈ S are equal.)

Let us show how to derive Lemma 1 from this Lemma 2:

1This is not entirely correct: For instance, often one needs infinite sums of formal power series, and
in this case one still has to worry about their formal convergence (i. e. that for any given monomial,
only finitely many of the summands have a nonzero coefficient in front of this monomial). However,
this is usually much easier than proving analytical convergence.
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Proof of Lemma 1. Let A be the ring of all algebraic integers in A. Then, Q∩A = Z
2.

We can WLOG assume that the field extension A�Q is finite-dimensional (in fact,
we can otherwise replace A by the field Q (ζ1, ζ2, ..., ζn), which is finite-dimensional over
Q 3) and normal (in fact, we can otherwise replace A by the normal closure of A).
Then, A�Q is a finite-dimensional Galois extension (since charQ = 0). Let G be the

Galois group of this extension A�Q. Then, the product
∏
σ∈G

σ
(

1

n
(ζ1 + ζ2 + ...+ ζn)

)
is

the norm of the element
1

n
(ζ1 + ζ2 + ...+ ζn) ∈ A, and therefore

∏
σ∈G

σ
(

1

n
(ζ1 + ζ2 + ...+ ζn)

)
∈

Q. But on the other hand,
∏
σ∈G

σ
(

1

n
(ζ1 + ζ2 + ...+ ζn)

)
∈ A 4. Thus,

∏
σ∈G

σ
(

1

n
(ζ1 + ζ2 + ...+ ζn)

)
∈

Q ∩ A = Z.
Now,

n|G|
∏
σ∈G

σ
(

1

n
(ζ1 + ζ2 + ...+ ζn)

)
︸ ︷︷ ︸

=
1

n
(σ(ζ1)+σ(ζ2)+...+σ(ζn))

(since σ is a Q-algebra homomorphism)

= n|G|
∏
σ∈G

(
1

n
(σ (ζ1) + σ (ζ2) + ...+ σ (ζn))

)
= n|G|

(
1

n

)|G|
︸ ︷︷ ︸

=1

∏
σ∈G

(σ (ζ1) + σ (ζ2) + ...+ σ (ζn))︸ ︷︷ ︸
=

n∑
k=1

σ(ζk)

=
∏
σ∈G

n∑
k=1

σ (ζk) =
∑

κ∈{1,2,...,n}G

∏
σ∈G

σ
(
ζκ(σ)

)
(by the product rule) .

2In fact, let s ∈ Q ∩ A. Then, s =
a

b
for some coprime integers a and b (because s ∈ Q ∩ A yields

s ∈ Q), and there exist some n ∈ N and integers α0, α1, ..., αn such that
n∑
k=0

αks
k = 0 and αn = 1

(because s ∈ Q ∩ A yields s ∈ A, so that s is an algebraic integer; in other words, s is integral over

Z). Hence, 0 =
n∑
k=0

αks
k =

n∑
k=0

αk

(a
b

)k
=

n∑
k=0

αk
ak

bk
. Multiplying this equation by bn, we obtain

0 =
n∑
k=0

αka
kbn−k =

n−1∑
k=0

αka
kbn−k+ αn︸︷︷︸

=1

an bn−n︸ ︷︷ ︸
=b0=1

=
n−1∑
k=0

αka
kbn−k+an, so that an = −

n−1∑
k=0

αka
kbn−k.

Hence, b | an (since b | −
n−1∑
k=0

αka
kbn−k, because b | bn−k for every k ∈ {0, 1, ..., n− 1}). Since a and

b are coprime, this yields that either b = 1 or b = −1. Hence, s =
a

b
must lie in Z. Thus, we have

proven that every s ∈ Q∩A lies in Z. Therefore, Q∩A ⊆ Z, qed. This yields Q∩A = Z (since clearly
Z ⊆ Q ∩ A).

3because ζ1, ζ2, ..., ζn are algebraic over Q (since ζ1, ζ2, ..., ζn are roots of unity)

4In fact,
1

n
(ζ1 + ζ2 + ...+ ζn) is an algebraic integer, and thus its conjugates

σ

(
1

n
(ζ1 + ζ2 + ...+ ζn)

)
are algebraic integers for all σ ∈ G, and therefore their

product
∏
σ∈G

σ

(
1

n
(ζ1 + ζ2 + ...+ ζn)

)
is an algebraic integer as well. In other words,∏

σ∈G
σ

(
1

n
(ζ1 + ζ2 + ...+ ζn)

)
∈ A, qed.
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Here, we let {1, 2, ..., n}G denote the set of all maps from the set G to {1, 2, ..., n}.
Hence, ∑

κ∈{1,2,...,n}G

∏
σ∈G

σ
(
ζκ(σ)

)
= n|G|

∏
σ∈G

σ
(

1

n
(ζ1 + ζ2 + ...+ ζn)

)
︸ ︷︷ ︸

∈Z

∈ n|G|Z.

If we denote
∏
σ∈G

σ
(
ζκ(σ)

)
by ξκ for every κ ∈ {1, 2, ..., n}G, then this becomes

∑
κ∈{1,2,...,n}G

ξκ ∈

n|G|Z.
Hence, two cases are possible:
Case 1: We have

∑
κ∈{1,2,...,n}G

ξκ = 0.

Case 2: We have

∣∣∣∣∣∣ ∑
κ∈{1,2,...,n}G

ξκ

∣∣∣∣∣∣ ≥ n|G|.

Let us first consider Case 2. In this case, we notice that for each map κ ∈
{1, 2, ..., n}G, the element ξκ =

∏
σ∈G

σ
(
ζκ(σ)

)
∈ A is a root of unity (in fact, σ

(
ζκ(σ)

)
∈ A

is a root of unity for each σ ∈ G 5, and the product of roots of unity is a root of
unity again). Also,

∑
s∈{1,2,...,n}G

ξs =
∑

κ∈{1,2,...,n}G
ξκ ∈ n|G|Z ⊆ Q and

∣∣∣∣∣∣∣
∑

s∈{1,2,...,n}G
ξs

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∑

κ∈{1,2,...,n}G
ξκ

∣∣∣∣∣∣∣ ≥ n|G| (since we are in Case 2)

=
∣∣∣{1, 2, ..., n}G∣∣∣ .

Thus, Lemma 2 (applied to S = {1, 2, ..., n}G) yields that ξs = ξt for any two elements
s and t of S. Consequently, ζα = ζβ for any two elements α and β of {1, 2, ..., n}

(because if we let s ∈ {1, 2, ..., n}G be the map defined by s (σ) =

{
α, if σ = id;
1, if σ 6= id

for

every σ ∈ G, and let t ∈ {1, 2, ..., n}G be the map defined by t (σ) =

{
β, if σ = id;
1, if σ 6= id

for every σ ∈ G, then

ξs =
∏
σ∈G

σ
(
ζs(σ)

)
=

∏
σ∈G;
σ=id

σ


ζs(σ)︸ ︷︷ ︸
=ζα

(since
σ=id )


·
∏
σ∈G;
σ 6=id

σ


ζs(σ)︸ ︷︷ ︸
=ζ1

(since
σ 6=id )


=

∏
σ∈G;
σ=id

σ (ζα)

︸ ︷︷ ︸
=id(ζα)=ζα

·
∏
σ∈G;
σ 6=id

σ (ζ1) = ζα·
∏
σ∈G;
σ 6=id

σ (ζ1)

and similarly ξt = ζβ ·
∏
σ∈G;
σ 6=id

σ (ζ1), and hence6 ξs
ξt

=

ζα ·
∏
σ∈G;
σ 6=id

σ (ζ1)

ζβ ·
∏
σ∈G;
σ 6=id

σ (ζ1)
=
ζα
ζβ

, so that ξs = ξt

5because ζκ(σ) is a root of unity, and because the map σ sends roots of unity to roots of unity
(since σ is a ring automorphism of A)

6Here, we use that ξt is invertible (since ξt is a root of unity)
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yields ζα = ζβ). In other words, ζ1 = ζ2 = ... = ζn. Thus, in Case 2, Lemma 1 is
proven.

Now let us deal with Case 1. In this case,

0 =
∑

κ∈{1,2,...,n}G
ξκ =

∑
κ∈{1,2,...,n}G

∏
σ∈G

σ
(
ζκ(σ)

)
= n|G|

∏
σ∈G

σ
(

1

n
(ζ1 + ζ2 + ...+ ζn)

)
.

Hence, 0 =
∏
σ∈G

σ
(

1

n
(ζ1 + ζ2 + ...+ ζn)

)
. Thus, there exists some σ ∈ G such that

0 = σ
(

1

n
(ζ1 + ζ2 + ...+ ζn)

)
(because A is a field, so the product of some elements of

A can only be zero if some of the factors is zero). Therefore, 0 =
1

n
(ζ1 + ζ2 + ...+ ζn)

(because σ is an automorphism of the field A and therefore injective), and thus 0 =
ζ1 + ζ2 + ...+ ζn. Thus, Lemma 1 is proven in Case 1.

Altogether, we have thus shown Lemma 1 in both Cases 1 and 2. This completes
the proof of Lemma 1 under the assumption that Lemma 2 has been proved.

Now, it remains to prove Lemma 2. First, here is the analytic proof:
First proof of Lemma 2. The extension A of the field Q is finite-dimensional, and

therefore can be embedded into the algebraic closure of Q. The algebraic closure of
Q, in turn, can be embedded into C. So we can WLOG assume that A is a subfield

of C. Then, by the triangle inequality,

∣∣∣∣∣ ∑s∈S ξs
∣∣∣∣∣ ≤ ∑

s∈S
|ξs|︸︷︷︸

=1 (since ξs is a
root of unity)

=
∑
s∈S

1 = |S|. But

this inequality must be an equality (since the opposite inequality

∣∣∣∣∣ ∑s∈S ξs
∣∣∣∣∣ ≥ |S| also

holds), so we must have equality in the triangle inequality

∣∣∣∣∣ ∑s∈S ξs
∣∣∣∣∣ ≤ ∑

s∈S
|ξs|. Hence, all

the complex numbers ξs for s ∈ S must have the same argument, i. e., we must have
arg ξs = arg ξt for any two elements s and t of S. But this yields ξs = ξt for any two
elements s and t of S (because arg ξs = arg ξt and |ξs| = 1 = |ξt|). This proves Lemma
2.

This proof is short, however it uses the complex numbers in a substantial way.
Instead of just relying on their algebraic properties, like most proofs in algebra do,
it uses their geometric structure as well (modulus inequalities), and thus cannot be
directly translated into a suitably large algebraic extension of Q. But there is a different
way to proceed:

Second proof of Lemma 2. We are going to rely on the following lemma:

Lemma 3. Let A be a field. Let n be a positive integer, and for every
i ∈ {1, 2, ..., n}, let ξi be a root of unity in A. Then, there exists some root
of unity ζ in A and a sequence (k1, k2, ..., kn) of nonnegative integers such

that
(
ξi = ζki for every i ∈ {1, 2, ..., n}

)
and gcd (k1, k2, ..., kn) = 1.

The proof of this lemma can be found in [2] (where it appears as Lemma 3). Actually
it is a rather easy corollary of the known fact (Theorem 1 in [2]) that any finite subgroup
of the multiplicative group of a field is cyclic.

Another simple (but very useful, not only in this context) lemma that we need is:
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Lemma 4. Let B be a subfield of a field A. Let U ∈ Bα×β be a matrix,
where α and β are nonnegative integers. Then, dim KerA U = dim KerB U .
Here, for any field extension F�B, we denote by KerF U the kernel of the
linear map F β → Fα given by v 7→ Uv.

First proof of Lemma 4. It is known that for any field extension F�B, we have
dim KerF U = β−RankF U , where RankF U denotes the rank of the linear map F β →
Fα given by v 7→ Uv. It is also known that rankF U is the greatest integer ν such that
the matrix U has a ν×ν minor with nonzero determinant. Therefore, rankF U does not
depend on F , and therefore rankA U = rankB U . Hence, dim KerA U = β − rankA U =
β − rankB U = dim KerB U . This proves Lemma 4.

Second proof of Lemma 4. By the Gaussian elimination algorithm (over the field
B), we can transform the matrix U into a matrix V which is in row echelon form.
In other words, we can find a matrix V in row echelon form and an invertible matrix
E ∈ Bα×α such that U = EV (here, the matrix E is the product of the elementary
matrices corresponding to the elementary row operations which constitute the steps
of the Gaussian elimination algorithm). Since E is invertible, we have KerF (EV ) =
KerF V for every field extension F�B. But we know that dim KerF V = β−RankF V ,
where RankF V denotes the rank of the linear map F β → Fα given by v 7→ V v. The
rank RankF V of the matrix V is the number of all nonzero rows of the matrix V
(because the matrix V is in row echelon form). Hence, for every field extension F�B,
we have

dim KerF U = dim KerF (EV )︸ ︷︷ ︸
=KerF V

= dim KerF V = β − RankF V︸ ︷︷ ︸
=(the number of all nonzero rows of the matrix V )

= β − (the number of all nonzero rows of the matrix V ) .

Thus, dim KerF U does not depend on the field F . Hence, dim KerA U = dim KerB U ,
and thus Lemma 4 is proven.

Finally, we come to the proof of Lemma 2:
First let us WLOG assume that S 6= ∅ (otherwise, Lemma 2 is vacuously true).
The condition of Lemma 2 yields

∑
s∈S

ξs ∈ Q. We WLOG assume that
∑
s∈S

ξs ≥ 0

(because otherwise, we can enforce
∑
s∈S

ξs ≥ 0 by replacing ξs by −ξs for every s ∈ S;

in fact, this is allowed because −ξs is a root of unity for every s ∈ S 7). Denote
the sum

∑
s∈S

ξs by N . Then, N =
∑
s∈S

ξs ∈ Q. Also, N =
∑
s∈S

ξs ≥ 0 yields N = |N | =∣∣∣∣∣ ∑s∈S ξs
∣∣∣∣∣ ≥ |S| > 0.

We can also WLOG assume that S = {1, 2, ..., n} for some n ∈ N (because S is
a finite set, and we need the set S only as an index set for labeling the roots ξs of
unity). Consider this n. Then, n = |S| 6= 0 (since S 6= ∅), so that n is a positive
integer. Thus, by Lemma 3, there exists some root of unity ζ in A and a sequence
(k1, k2, ..., kn) of nonnegative integers such that

(
ξi = ζki for every i ∈ {1, 2, ..., n}

)
and

gcd (k1, k2, ..., kn) = 1. We WLOG assume that k1 is the largest of the integers k1, k2, ...,

7This is because ξs is a root of unity for every s ∈ S, and because whenever an element z ∈ A is a
root of unity, the element −z is a root of unity as well.
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kn (otherwise, we can just interchange the roots ξ1, ξ2, ..., ξn). Then, k1 ≥ ks for every
s ∈ {1, 2, ..., n}. Therefore, k1 ≥ 1 (because there exists at least one s ∈ {1, 2, ..., n}
such that ks ≥ 1 8, and therefore this s satisfies k1 ≥ ks ≥ 1).

Now, N =
∑
s∈S︸︷︷︸

=
∑

s∈{1,2,...,n}

ξs︸︷︷︸
=ζks

=
∑

s∈{1,2,...,n}
ζks .

Choose a positive integer m such that ζ is a m-th root of unity. (Such m indeed
exists, since ζ is a root of unity.) Then, ζm = 1.

We need to introduce two notations:

• If A is an assertion, then we denote by [A] the truth value of A (defined by

[A] =

{
1, if A is true;
0, if A is false

).

• If U is a matrix, and u and v are two positive integers, then Uu,v denotes the
entry of the matrix U at the (u, v)-th place (if such an entry exists). If w is
a vector, and i is a positive integer, then wi denotes the i-th coordinate of the
vector w.

We notice a trivial but important fact: If a, b and q are three integers such that
a ≤ q ≤ b, and if hj is an element of A for every j ∈ {a, a+ 1, ..., b}, then

b∑
j=a

[j = q]hj = hq. (1)

9

Now, define a (k1 +m)× (k1 +m)-matrix U ∈ Q(k1+m)×(k1+m) by Ui,j =

 [j = i]− [j = i+m] , if i ≤ k1;∑
s∈{1,2,...,n}

[j = i− ks]−N [j = i] , if i > k1

for every i ∈ {1, 2, ..., k1 +m} and j ∈ {1, 2, ..., k1 +m}

 . (2)

10 Hence,

Ui,j = [j = i]− [j = i+m] for every i ∈ {1, 2, ..., k1} and j ∈ {1, 2, ..., k1 +m} (3)

8since otherwise, we would have k1 = k2 = ... = kn = 0 (because k1, k2, ..., kn are all nonnegative),
which would contradict gcd (k1, k2, ..., kn) = 1.

9This is because

b∑
j=a

[j = q]hj =
∑

j∈{a,a+1,...,b}

[j = q]hj =
∑

j∈{a,a+1,...,b};
j=q

[j = q]︸ ︷︷ ︸
=1 (since j=q is true)

hj +
∑

j∈{a,a+1,...,b};
j 6=q

[j = q]︸ ︷︷ ︸
=0 (since j=q is false)

hj

=
∑

j∈{a,a+1,...,b};
j=q

hj

︸ ︷︷ ︸
=hq (since q∈{a,a+1,...,b}
(because a≤q≤b and q∈Z))

+
∑

j∈{a,a+1,...,b};
j 6=q

0hj

︸ ︷︷ ︸
=0

= hq.

10If you know the theory of resultants, you will recognize this matrix U as the Sylvester matrix
of the two polynomials Xm − 1 and

∑
s∈{1,2,...,n}

Xks − N (or as a transposed and, possibly, row-

permuted version of this Sylvester matrix - depending on how one defines the Sylvester matrix of two
polynomials).
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(by (2), because i ∈ {1, 2, ..., k1} yields i ≤ k1) and

Ui,j =
∑

s∈{1,2,...,n}
[j = i− ks]−N [j = i] for every i ∈ {k1 + 1, k1 + 2, ..., k1 +m} and j ∈ {1, 2, ..., k1 +m}

(4)
(by (2), because i ∈ {k1 + 1, k1 + 2, ..., k1 +m} yields i > k1). Thus, for any vector
h ∈ Ak1+m and every i ∈ {1, 2, ..., k1}, we have

(Uh)i =
k1+m∑
j=1

Ui,jhj =
k1+m∑
j=1

([j = i]− [j = i+m])hj (by (3))

=
k1+m∑
j=1

[j = i]hj︸ ︷︷ ︸
=hi (by (1) (applied to a=1,

q=i and b=k1+m), since 1≤i≤k1+m)

−
k1+m∑
j=1

[j = i+m]hj︸ ︷︷ ︸
=hi+m (by (1) (applied to a=1,
q=i+m and b=k1+m), since

1≤i+m≤k1+m, because i≤k1)

= hi − hi+m. (5)

Besides, for any vector h ∈ Ak1+m and every i ∈ {k1 + 1, k1 + 2, ..., k1 +m}, we have

(Uh)i =
k1+m∑
j=1

Ui,jhj =
k1+m∑
j=1

 ∑
s∈{1,2,...,n}

[j = i− ks]−N [j = i]

hj (by (4))

=
∑

s∈{1,2,...,n}

k1+m∑
j=1

[j = i− ks]hj︸ ︷︷ ︸
=hi−ks (by (1) (applied to a=1, q=i−ks

and b=k1+m), since 1≤i−ks≤k1+m,
because i>k1≥ks yields i≥ks+1)

−N
k1+m∑
j=1

[j = i]hj︸ ︷︷ ︸
=hi (by (1) (applied to a=1,

q=i and b=k1+m), since 1≤i≤k1+m)

=
∑

s∈{1,2,...,n}
hi−ks −Nhi. (6)

Now, let ϑ be any m-th root of unity in A; for instance, this means that ϑ may be
1 but may also be ζ or any other m-th root of unity. Then, ϑm = 1.

Let us define a vector ϑ ∈ Ak1+m by ϑi = ϑk1+m−i for every i ∈ {1, 2, ..., k1 +m}.
Then, for every i ∈ {1, 2, ..., k1}, we have(

Uϑ
)
i

= ϑi︸︷︷︸
=ϑk1+m−i

− ϑi+m︸ ︷︷ ︸
=ϑk1+m−(i+m)

(
by (5), applied to h = ϑ

)

= ϑk1+m−i︸ ︷︷ ︸
=ϑk1−i+m=ϑk1−iϑm

−ϑk1+m−(i+m)︸ ︷︷ ︸
=ϑk1−i

= ϑk1−i

ϑm︸︷︷︸
=1

−1

 = ϑk1−i (1− 1)︸ ︷︷ ︸
=0

= 0. (7)
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Besides, for every i ∈ {k1 + 1, k1 + 2, ..., k1 +m}, we have(
Uϑ

)
i

=
∑

s∈{1,2,...,n}
ϑi−ks︸ ︷︷ ︸

=ϑk1+m−(i−ks)

=ϑk1+m−i+ks
=ϑk1+m−iϑks

−N ϑi︸︷︷︸
=ϑk1+m−i

(
by (6), applied to h = ϑ

)

=
∑

s∈{1,2,...,n}
ϑk1+m−iϑks −Nϑk1+m−i = ϑk1+m−i


∑

s∈{1,2,...,n}
ϑks

︸ ︷︷ ︸
=N

−N

 = ϑk1+m−i (N −N)︸ ︷︷ ︸
=0

= 0.

(8)

Consequently,
(
Uϑ

)
i

= 0 for every i ∈ {1, 2, ..., k1 +m} 11. In other words,

Uϑ = 0, so that ϑ ∈ KerA U . We have thus obtained the result that ϑ ∈ KerA U , where
ϑ is any m-th root of unity in A. Applying this result to ϑ = 1 yields 1 ∈ KerA U ,
while applying the same result to ϑ = ζ yields ζ ∈ KerA U .

Now, our goal is to show that dim KerA U ≤ 1. In fact, once this is shown, it will
follow from 1 ∈ KerA U and ζ ∈ KerA U that the vectors 1 and ζ are linearly dependent,
which will quickly yield ζ = 1, and Lemma 2 will be proven. In order to prove that
dim KerA U ≤ 1, we will show that dim KerQ U ≤ 1, applying Lemma 4 to see that
dim KerA U = dim KerQ U . But before we delve into the details of this argument, let
us prove that dim KerQ U ≤ 1.

In fact, let h ∈ KerQ U be a vector. Then, h ∈ Qk1+m and 0 = Uh. Consequently,
every i ∈ {1, 2, ..., k1} satisfies 0 = (Uh)i = hi − hi+m (by (5)), so that

hi = hi+m for every i ∈ {1, 2, ..., k1} . (9)

Besides, every i ∈ {k1 + 1, k1 + 2, ..., k1 +m} satisfies

0 = (Uh)i (since 0 = Uh)

=
∑

s∈{1,2,...,n}
hi−ks −Nhi (by (6)) ,

so that ∑
s∈{1,2,...,n}

hi−ks = Nhi for every i ∈ {k1 + 1, k1 + 2, ..., k1 +m} . (10)

The vector h ∈ Qk1+m has k1 + m coordinates: h1, h2, ..., hk1+m. So we have a
finite sequence (h1, h2, ..., hk1+m) of length k1 + m. We will now extend this sequence
in both directions: We define a number hi ∈ Q for every i ∈ Z \ {1, 2, ..., k1 +m} by
setting hi = hπ(i), where π : Z→ {1, 2, ..., k1 +m} is the map defined by

π (i) = (the element x of the set {1, 2, ..., k1 +m} which satisfies x ≡ imod k1 +m) .

11In fact, let i ∈ {1, 2, ..., k1 +m}. Then, either i ∈ {1, 2, ..., k1} or i ∈ {k1 + 1, k1 + 2, ..., k1 +m}
must hold. But in both cases,

(
Uϑ
)
i

= 0 (in fact, in the case i ∈ {1, 2, ..., k1}, the equation
(
Uϑ
)
i

= 0

follows from (7), and in the case i ∈ {k1 + 1, k1 + 2, ..., k1 +m}, the equation
(
Uϑ
)
i

= 0 follows from

(8)). Thus,
(
Uϑ
)
i

= 0 is proven.
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Thus, a number hi ∈ Q is defined for every i ∈ Z, and we get a two-sided infinite
sequence (..., h−2, h−1, h0, h1, h2, ...) which extends the sequence (h1, h2, ..., hk1+m) of
coordinates of the vector h. It is clear that hi = hπ(i) for every i ∈ Z 12. Consequently,

hi = hj for any two integers i and j which satisfy i ≡ jmod k1 +m (11)

(because i ≡ jmod k1 + m yields π (i) = π (j) and thus hi = hπ(i) = hπ(j) = hj). In
other words, the sequence (..., h−2, h−1, h0, h1, h2, ...) is periodic with period k1 + m.
Thus, {hi | i ∈ Z} = {h1, h2, ..., hk1+m}, so that {|hi| | i ∈ Z} = {|h1| , |h2| , ..., |hk1+m|}.

Now, let ν ∈ Z be some integer for which |hν | = max {|hi| | i ∈ Z}. (Such an integer
ν exists because the set {|hi| | i ∈ Z} = {|h1| , |h2| , ..., |hk1+m|} is finite and thus has a
maximum.) We denote the rational number hν by q. Our next goal is to prove that
hi = q for every i ∈ Z.

First, we note that

if an integer µ satisfies π (µ) ∈ {1, 2, ..., k1} and hµ = q, then hµ+m = q. (12)

Proof of (12). In fact, if an integer µ satisfies π (µ) ∈ {1, 2, ..., k1} and hµ = q, then

hµ+m = hπ(µ)+m

(
by (11) (applied to µ+m and π (µ) +m instead of i and j),

because µ+m ≡ π (µ) +mmod k1 +m (since µ ≡ π (µ) mod k1 +m)

)
= hπ(µ) (by (9), applied to i = π (µ))

= hµ = q,

so that (12) is proven.
Besides, we note that

if an integer µ satisfies π (µ) ∈ {k1 + 1, k1 + 2, ..., k1 +m} and hµ = q, then

hµ−ks = q for every s ∈ {1, 2, ..., n} . (13)

Proof of (13). In fact, let an integer µ satisfy π (µ) ∈ {k1 + 1, k1 + 2, ..., k1 +m} and
hµ = q. Then, (10) (applied to i = π (µ)) yields

∑
s∈{1,2,...,n}

hπ(µ)−ks = Nhπ(µ). But on

the other hand,

∣∣∣∣∣∣∣∣hπ(µ)︸ ︷︷ ︸
=hµ

∣∣∣∣∣∣∣∣ = |hµ| = |q| = |hν | = max {|hi| | i ∈ Z} ≥
∣∣∣hπ(µ)−ks

∣∣∣ for every

s ∈ {1, 2, ..., n}, so that

n
∣∣∣hπ(µ)

∣∣∣ =
∑

s∈{1,2,...,n}

∣∣∣hπ(µ)

∣∣∣︸ ︷︷ ︸
≥|hπ(µ)−ks |

≥
∑

s∈{1,2,...,n}

∣∣∣hπ(µ)−ks

∣∣∣ ≥
∣∣∣∣∣∣∣∣∣∣∣∣

∑
s∈{1,2,...,n}

hπ(µ)−ks︸ ︷︷ ︸
=Nhπ(µ)

∣∣∣∣∣∣∣∣∣∣∣∣
(by the triangle inequality)

=
∣∣∣Nhπ(µ)

∣∣∣ = |N |︸︷︷︸
≥n (since N≥n)

∣∣∣hπ(µ)

∣∣∣ ≥ n
∣∣∣hπ(µ)

∣∣∣ .
12In fact, two cases are possible: either i ∈ Z \ {1, 2, ..., k1 +m} or i ∈ {1, 2, ..., k1 +m}. But in

both cases, we have hi = hπ(i) (in fact, in the case i ∈ Z \ {1, 2, ..., k1 +m}, we have hi = hπ(i) by
the definition of hi; on the other hand, in the case i ∈ {1, 2, ..., k1 +m}, we have hi = hπ(i) because
of i = π (i)).
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This chain of inequalities must be an equality (since the leftmost and the rightmost
sides of this chain are equal), so that all inequalities inbetween must be equalities. In

particular, the inequality
∣∣∣hπ(µ)

∣∣∣ ≥ ∣∣∣hπ(µ)−ks

∣∣∣ for every s ∈ {1, 2, ..., n} must become

an equality, and the triangle inequality
∑

s∈{1,2,...,n}

∣∣∣hπ(µ)−ks

∣∣∣ ≥ ∣∣∣∣∣ ∑
s∈{1,2,...,n}

hπ(µ)−ks

∣∣∣∣∣ must

become an equality.
Since the inequality

∣∣∣hπ(µ)

∣∣∣ ≥ ∣∣∣hπ(µ)−ks

∣∣∣ for every s ∈ {1, 2, ..., n} must become an

equality, we must have
∣∣∣hπ(µ)

∣∣∣ =
∣∣∣hπ(µ)−ks

∣∣∣ for every s ∈ {1, 2, ..., n}. Thus,
∣∣∣hπ(µ)−ks

∣∣∣ =∣∣∣hπ(µ)

∣∣∣ = |hµ| = |q| for every s ∈ {1, 2, ..., n}. Since the triangle inequality
∑

s∈{1,2,...,n}

∣∣∣hπ(µ)−ks

∣∣∣ ≥∣∣∣∣∣ ∑
s∈{1,2,...,n}

hπ(µ)−ks

∣∣∣∣∣ must become an equality, the rational numbers hπ(µ)−k1 , hπ(µ)−k2 ,

..., hπ(µ)−kn must all have the same sign. Hence, of course, the sum
∑

s∈{1,2,...,n}
hπ(µ)−ks

of these numbers hπ(µ)−k1 , hπ(µ)−k2 , ..., hπ(µ)−kn must also have the same sign as each
of these numbers hπ(µ)−k1 , hπ(µ)−k2 , ..., hπ(µ)−kn . But on the other hand, the sum∑
s∈{1,2,...,n}

hπ(µ)−ks = N hπ(µ)︸ ︷︷ ︸
=hµ=q

= Nq has the same sign as q (because N > 0). Hence,

each of the numbers hπ(µ)−k1 , hπ(µ)−k2 , ..., hπ(µ)−kn has the same sign as q. But we also
know that each of the numbers hπ(µ)−k1 , hπ(µ)−k2 , ..., hπ(µ)−kn has the same absolute

value as q (because
∣∣∣hπ(µ)−ks

∣∣∣ = |q| for every s ∈ {1, 2, ..., n}). Thus, each of the num-

bers hπ(µ)−k1 , hπ(µ)−k2 , ..., hπ(µ)−kn is equal to q (because if two numbers have the same
sign and the same absolute value, then they are equal). In other words, hπ(µ)−ks = q
for every s ∈ {1, 2, ..., n}. Since hπ(µ)−ks = hµ−ks (because π (µ) ≡ µmod k1 + m
yields π (µ) − ks ≡ µ − ks mod k1 + m, and therefore (11) (applied to π (µ) − ks and
µ− ks instead of i and j) yields hπ(µ)−ks = hµ−ks), this rewrites as hµ−ks = q for every
s ∈ {1, 2, ..., n}. Thus, (13) is proven.

Next let us prove that

if an integer µ satisfies hµ = q, then hµ+m = q. (14)

Proof of (14). In fact, let an integer µ satisfy hµ = q. Then, either π (µ) ∈ {1, 2, ..., k1}
or π (µ) ∈ {k1 + 1, k1 + 2, ..., k1 +m} (because π (µ) ∈ {1, 2, ..., k1 +m}). But in both
of these cases, hµ+m = q holds (in fact, in the case when π (µ) ∈ {1, 2, ..., k1}, we have
hµ+m = q by (12), and in the case when π (µ) ∈ {k1 + 1, k1 + 2, ..., k1 +m}, we have

hµ+m = hµ−k1

(
by (11) (applied to µ+m and µ− k1 instead of i and j),

since µ+m ≡ µ− k1 mod k1 +m

)
= q (by (13), applied to s = 1)

). Thus, hµ+m = q must hold, and (14) is proven.
We note that, obviously, (14) is a generalization of (12). But now we will generalize

(14) even further (albeit trivially): We will show that

if two integers δ and ε satisfy hδ = q and δ ≡ εmodm, then hε = q. (15)

Proof of (15). In fact, let an integer δ satisfy hδ = q. We will first show that hδ+ρm = q
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for every nonnegative integer ρ. In fact, this is clear by induction13. Now, for any
integer ε satisfying δ ≡ εmodm, there exists a nonnegative integer ρ satisfying ε ≡
δ + ρmmod k1 +m 14, and thus

hε = hδ+ρm

(
by (11) (applied to ε and δ + ρm instead of i and j),

since ε ≡ δ + ρmmod k1 +m

)
= q

(because we have proven hδ+ρm = q above). This completes the proof of (15).
Next, let us generalize (13): Namely, let us show that

if an integer µ satisfies hµ = q, then hµ−ks = q for every s ∈ {1, 2, ..., n} . (16)

Proof of (16). In fact, let an integer µ satisfy hµ = q, and let s ∈ {1, 2, ..., n}. Then,
there exists some λ ∈ {k1 + 1, k1 + 2, ..., k1 +m} such that λ ≡ µmodm 15. Hence,
hλ = q (by (15), applied to δ = µ and ε = λ). But λ ∈ {k1 + 1, k1 + 2, ..., k1 +m} ⊆
{1, 2, ..., k1 +m} yields

π (λ) = (the element x of the set {1, 2, ..., k1 +m} which satisfies x ≡ λmod k1 +m) = λ

(because λ itself is an element of the set {1, 2, ..., k1 +m} and satisfies λ ≡ λmod k1 +
m). Hence, λ ∈ {k1 + 1, k1 + 2, ..., k1 +m} rewrites as π (λ) ∈ {k1 + 1, k1 + 2, ..., k1 +m}.
Thus (13) (applied to λ instead of µ) yields hλ−ks = q. Thus, hµ−ks = q (by (15), ap-
plied to δ = λ−ks and ε = µ−ks) because λ−ks ≡ µ−ks modm (since λ ≡ µmodm).
This proves (16).

We record a trivial generalization of (16): Let us prove that

if some s ∈ {1, 2, ..., n} and two integers δ and ε satisfy hδ = q and δ ≡ εmod ks, then hε = q.
(17)

Proof of (17). In fact, let some s ∈ {1, 2, ..., n} and an integer δ satisfy hδ = q. We
will first show that hδ−ρks = q for every nonnegative integer ρ. In fact, this is clear by
induction16. Now, for any integer ε satisfying δ ≡ εmod ks, there exists a nonnegative

13Induction base: For ρ = 0, we have hδ+ρm = hδ+0m = hδ = q, and thus hδ+ρm = q is proven for
ρ = 0.
Induction step: Let φ be a nonnegative integer. Assume that hδ+ρm = q holds for ρ = φ. Then,

hδ+ρm = q holds for ρ = φ + 1 as well (because hδ+(φ+1)m = h(δ+φm)+m = q (by (14), applied to
µ = δ + φm), because hδ+φm = q, since hδ+ρm = q holds for ρ = φ). This completes the induction
step.

Thus, the induction proof of hδ+ρm = q is complete.

14In fact,
ε− δ
m
∈ Z (since δ ≡ εmodm). Now, let ρ be the residue of

ε− δ
m

modulo k1 +m. Then,

ρ ≥ 0 and ρ ≡ ε− δ
m

mod k1 +m, so that ρm ≡ ε− δmod k1 +m and thus ε ≡ δ + ρmmod k1 +m.
15In fact, the m integers k1 + 1, k1 + 2, ..., k1 + m are m consecutive integers, and therefore they

leave all possible residues modulo m. Therefore, in particular, one of these m integers leaves the same
residue modulo m as µ; in other words, one of these m integers is congruent to µ modulo m. In other
words, there exists some λ ∈ {k1 + 1, k1 + 2, ..., k1 +m} such that λ ≡ µmodm.

16Induction base: For ρ = 0, we have hδ−ρks = hδ−0ks = hδ = q, and thus hδ−ρks = q is proven for
ρ = 0.
Induction step: Let φ be a nonnegative integer. Assume that hδ−ρks = q holds for ρ = φ. Then,

hδ−ρks = q holds for ρ = φ + 1 as well (because hδ−(φ+1)ks = h(δ−φks)−ks = q (by (16), applied to
µ = δ − φks), because hδ−φks = q, since hδ−ρks = q holds for ρ = φ). This completes the induction
step.

Thus, the induction proof of hδ−ρks = q is complete.
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integer ρ satisfying ε ≡ δ − ρks mod k1 +m 17, and thus

hε = hδ−ρks

(
by (11) (applied to ε and δ − ρks instead of i and j),

since ε ≡ δ − ρks mod k1 +m

)
= q

(because we have proven hδ−ρks = q above). This completes the proof of (17).
Our next goal is to show that

if some λ ∈ {1, 2, ..., n} and two integers δ and ε satisfy hδ = q and

δ ≡ εmod gcd (k1, k2, ..., kλ) , then hε = q. (18)

Proof of (18). In fact, let us prove (18) by induction over λ.
Induction base: If λ = 1, then (18) follows from (17), applied to s = 1 (because

λ = 1 yields gcd (k1, k2, ..., kλ) = gcd (k1) = k1 = ks due to s = 1). Hence, (18) is
proven for λ = 1, so that the induction base is complete.

Induction step: Let s ∈ {1, 2, ..., n} be such that s > 1. Assume that (18) holds for
λ = s− 1. Our aim is then to prove that (18) holds for λ = s.

In fact, since (18) holds for λ = s− 1, we have:

if two integers δ and ε satisfy hδ = q and δ ≡ εmod gcd (k1, k2, ..., ks−1) , then hε = q.
(19)

Our goal is to prove that (18) holds for λ = s; in other words, our goal is to prove that

if two integers δ and ε satisfy hδ = q and δ ≡ εmod gcd (k1, k2, ..., ks) , then hε = q.
(20)

In fact, let δ and ε be two integers satisfying hδ = q and δ ≡ εmod gcd (k1, k2, ..., ks).

LetD = gcd (k1, k2, ..., ks−1). Then, gcd (k1, k2, ..., ks) = gcd

gcd (k1, k2, ..., ks−1)︸ ︷︷ ︸
=D

, ks

 =

gcd (D, ks). Hence, δ ≡ εmod gcd (k1, k2, ..., ks) rewrites as δ ≡ εmod gcd (D, ks).
Thus, gcd (D, ks) | δ−ε. Hence, there exists an integer Φ such that δ−ε = Φ gcd (D, ks).

Now, the two integers
D

gcd (D, ks)
and

ks
gcd (D, ks)

are coprime, so that by Bezout’s

Theorem, there exist integers u and v such that u
D

gcd (D, ks)
+ v

ks
gcd (D, ks)

= 1. In

other words, 1 = u
D

gcd (D, ks)
+ v

ks
gcd (D, ks)

=
uD + vks

gcd (D, ks)
, so that uD + vks =

gcd (D, ks). Hence, δ − ε = Φ gcd (D, ks)︸ ︷︷ ︸
=uD+vks

= Φ (uD + vks) = ΦuD + Φvks. Hence,

δ − ΦuD = ε+ Φvks ≡ εmod ks.
Now, applying (19) to δ − ΦuD instead of ε, we obtain hδ−ΦuD = q (because

δ ≡ δ − ΦuDmod gcd (k1, k2, ..., ks−1), since gcd (k1, k2, ..., ks−1) = D). Therefore,
applying (17) to δ−ΦuD instead of δ, we obtain hε = q (because δ−ΦuD ≡ εmod ks).

17In fact,
δ − ε
ks
∈ Z (since δ ≡ εmod ks). Now, let ρ be the residue of

δ − ε
ks

modulo k1 +m. Then,

ρ ≥ 0 and ρ ≡ δ − ε
ks

mod k1 +m, so that ρks ≡ δ − εmod k1 +m and thus ε ≡ δ − ρks mod k1 +m.
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This proves (20). Since (20) is precisely the assertion of (18) for λ = s, this yields that
(18) holds for λ = s. This completes the induction step, and thus the assertion (18) is
proven.

Now, we finally claim that

any integer ε satisfies hε = q. (21)

Proof of (21). In fact, we have hν = q (by the definition of q) and ν ≡ εmod gcd (k1, k2, ..., kn)
(because gcd (k1, k2, ..., kn) = 1). Hence, (18) (applied to λ = n and δ = ν) yields
hε = q, and thus (21) is proven.

Now, (21) leads to h = q · 1 18 (because for every i ∈ {1, 2, ..., k1 +m}, the

assertion (21) (applied to ε = i) yields hi = q = q · 1k1+m−i︸ ︷︷ ︸
=1i

= q · 1i =
(
q · 1

)
i
), so

that h ∈ span
{

1
}

. Thus we have proven that every h ∈ KerQ U satisfies h ∈ span
{

1
}

.

Consequently, KerQ U ⊆ span
{

1
}

, and thus dim KerQ U ≤ dim span
{

1
}

= 1 (because

1 is not the zero vector, since 1i = 1k1+m−i 6= 0 for every i ∈ {1, 2, ..., k1 +m}). Now,
Lemma 4 (applied to B = Q) yields dim KerA U = dim KerQ U , so that dim KerQ U ≤ 1
yields dim KerA U ≤ 1. Hence, any two vectors in KerA U are linearly dependent. Since
we know that 1 ∈ KerA U and ζ ∈ KerA U , this yields that the vectors 1 and ζ are
linearly dependent. Thus, there exist elements u and v of U such that (u, v) 6= (0, 0)
and u1 + vζ = 0. Now, every i ∈ {1, 2, ..., k1 +m} satisfies(

u1 + vζ
)
i

= u 1i︸︷︷︸
=1k1+m−i=1

+v ζ i︸︷︷︸
=ζk1+m−i

= u+ vζk1+m−i,

so that

u1 + vζ︸ ︷︷ ︸
=0


i

= 0 becomes u+ vζk1+m−i = 0, and therefore

u = −vζk1+m−i for every i ∈ {1, 2, ..., k1 +m} . (22)

Applying this to i = k1 +m, we obtain u = −vζk1+m−(k1+m) = −vζ0 = −v. Thus, v 6= 0
(because if v were 0, then we would have u = −v = −0 = 0, and thus (u, v) = (0, 0),
contradicting (u, v) 6= (0, 0)). On the other hand, applying (22) to i = k1 +m− 1 19,
we obtain u = −vζk1+m−(k1+m−1) = −vζ1 = −vζ. Comparing u = −v with u = −vζ,
we obtain −v = −vζ, which yields 1 = ζ (since v 6= 0). Hence, for any two elements s
and t of S we have ξs = ζks = 1ks = 1 and ξt = ζkt = 1kt = 1, so that ξs = ξt. This
completes the proof of Lemma 2.
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