Rep#1: Deformations of a bimodule algebra

Darij Grinberg [not completed, not proofread]

The purpose of this short note is to generalize Problem 2.24 in [1]. First a couple of definitions:

Definition 1. In the following, a *ring* will always mean a (not necessarily commutative) ring with unity. Ring homomorphisms are always assumed to respect the unity. For every ring R, we denote the unity of R by 1_R .

Furthermore, if A is a ring, an A-algebra will mean a (not necessarily commutative) ring R along with a ring homomorphism $\rho: A \to R$. In the case of such an A-algebra R, we will denote the product $\rho(a)r$ by ar and the product $r\rho(a)$ by ra for any $a \in A$ and any $r \in R$.

An A-algebra R is said to be $symmetric^1$ if ar = ra for every $a \in A$ and $r \in R$.

Definition 2. Let A be a ring. An A-bimodule algebra will be defined as a ring B along with an A-left module structure on B and an A-right module structure on B which satisfy the following three axioms:

$$(ab) b' = a (bb')$$
 for any $a \in A$, $b \in B$ and $b' \in B$;
 $b (b'a) = (bb') a$ for any $a \in A$, $b \in B$ and $b' \in B$;
 $(ab) a' = a (ba')$ for any $a \in A$, $b \in B$ and $a' \in A$.

Definition 3. Let B be a ring. Then, we denote by B[[t]] the ring of formal power series over B in the indeterminate t, where t is supposed to commute with every element of B. Formally, this means that we define B[[t]] as the ring of all sequences $(b_0, b_1, b_2, ...) \in B^{\mathbb{N}}$ (where \mathbb{N} means the set $\{0, 1, 2, ...\}$), with addition defined by

$$(b_0, b_1, b_2, ...) + (b'_0, b'_1, b'_2, ...) = (b_0 + b'_0, b_1 + b'_1, b_2 + b'_2, ...)$$

and multiplication defined by

$$(b_0,b_1,b_2,\ldots)\cdot(b_0',b_1',b_2',\ldots) = \left(\sum_{\substack{(i,j)\in\mathbb{N}^2;\\i+j=0}}b_ib_j',\sum_{\substack{(i,j)\in\mathbb{N}^2;\\i+j=1}}b_ib_j',\sum_{\substack{(i,j)\in\mathbb{N}^2;\\i+j=2}}b_ib_j',\ldots\right),$$

and we denote a sequence $(b_0, b_1, b_2, ...)$ by $\sum_{i=0}^{\infty} b_i t^i$. For every $m \in \mathbb{N}$, the element $b_m \in B$ is called the *coefficient of the power series* $(b_0, b_1, b_2, ...) = \sum_{i=0}^{\infty} b_i t^i$ before t^m . The element $b_0 \in B$ is also called the *constant term* of the power series $(b_0, b_1, b_2, ...) = \sum_{i=0}^{\infty} b_i t^i$.

 $^{^1}$ What we call "symmetric A-algebra" happens to be what most authors call "A-algebra".

Definition 4. Let B be a ring, and let $(b_m, b_{m+1}, ..., b_n)$ be a sequence of elements of B. Then, we denote by $\prod_{i=m}^{n} b_i$ the product $b_n b_{n-1} ... b_m$ (this product is supposed to mean 1 if m > n).

Now comes the generalization of Problem 2.24 (a) in $[1]^2$:

Theorem 1. Let K be a commutative ring. Let A be a symmetric K-algebra. Let B be an A-bimodule algebra such that B is a symmetric K-algebra (where the K-algebra structure on B is given by the ring homomorphism $K \to B$, $k \mapsto (k \cdot 1_A) \cdot 1_B$).

Assume that

for every K-linear map
$$f: A \to B$$
 which satisfies $(f(aa') = af(a') + f(a)a' \text{ for all } a \in A \text{ and } a' \in A),$ there exists an element $s \in B$ such that $(f(a) = as - sa \text{ for all } a \in A).$ (1)

Let B[[t]] be the ring of formal power series over B in the indeterminate t, where t is supposed to commute with every element of B.

Here and in the following, let 1 denote the unity 1_B of the ring B.

Let $\overline{\rho}: A \to B[[t]]$ be a K-linear homomorphism such that any $a \in A$ and any $a' \in A$ satisfy $\overline{\rho}(aa') = \overline{\rho}(a) \overline{\rho}(a')$, and such that for every $a \in A$, the constant term of the power series $\overline{\rho}(a)$ equals $a \cdot 1$. (Note that $a \cdot 1$ is simply the canonical image of a in the A-algebra B).

Then, there exists a power series $b \in B[[t]]$ such that for every $a \in A$, the power series $b\overline{\rho}(a)b^{-1} \in B[[t]]$ equals the (constant) power series $a \cdot 1$.

Proof of Theorem 1. First, we endow the ring B[[t]] with the (t)-adic topology. This topology is defined in such a way that for every $p \in B[[t]]$, the family $(p+t^0B[[t]], p+t^1B[[t]], p+t^2B[[t]], ...)$ is a basis of open neighbourhoods of p. This topology makes B[[t]] a topological ring, since $t^iB[[t]]$ is a two-sided ideal of B[[t]] for every $i \in \mathbb{N}$.

For any k elements $u_1, u_2, ..., u_k$ of B, and for every $a \in A$, let us denote by $\overline{\rho}_{u_1,u_2,...,u_k}(a)$ the element

$$\prod_{i=1}^{k} \left(1 - u_i t^i\right) \cdot \overline{\rho}\left(a\right) \cdot \left(\prod_{i=1}^{k} \left(1 - u_i t^i\right)\right)^{-1} \in B\left[[t]\right].$$

Clearly, $\overline{\rho}_{u_1,u_2,...,u_k}:A\to B[[t]]$ is a K-linear map for any k elements $u_1,\ u_2,\ ...,\ u_k$ of B.

Now, we are going to recursively construct a sequence $(u_1, u_2, u_3, ...) \in B^{\{1,2,3,...\}}$ of elements of B such that every $n \in \mathbb{N}$ satisfies

$$\left(\overline{\rho}_{u_1, u_2, \dots, u_n}(a) \equiv a \cdot 1 \mod t^{n+1} B\left[[t]\right] \qquad \text{for every } a \in A\right). \tag{2}$$

Problem 2.24 in [1] is recovered from this generalization by setting B = End V.

In fact, we first notice that the equation (2) is satisfied for n=0 (note that the product $\prod_{i=1}^{n} (1-u_it^i)$ is an empty product when n=0), because in the case n=0, we have $\overline{\rho}_{u_1,u_2,\dots,u_n}(a)=(\text{empty product})\cdot\overline{\rho}(a)\cdot(\text{empty product})^{-1}=\overline{\rho}(a)\equiv a\cdot 1\mod tB[[t]]$ (since the constant term of the power series $\overline{\rho}(a)$ equals $a\cdot 1$). Now, we are going to construct our sequence $(u_1,u_2,u_3,\dots)\in B^{\{1,2,3,\dots\}}$ by induction: Let $m\in\mathbb{N}$ be such that m>0. Assume that we have constructed some elements u_1,u_2,\dots,u_{m-1} of B such that (2) holds for n=m-1. Then, we are going to construct a new element u_m of B such that (2) holds for n=m.

In fact, applying (2) to n = m - 1 (we can do this since we have assumed that (2) holds for n = m - 1), we obtain

$$\overline{\rho}_{u_{1},u_{2},\dots,u_{m-1}}\left(a\right)\equiv a\cdot1\ \mathrm{mod}\ t^{m}B\left[\left[t\right]\right]\qquad\qquad\mathrm{for\ every}\ a\in A\;.$$

In other words, every $a \in A$ satisfies

$$\overline{\rho}_{u_1,u_2,\dots,u_{m-1}}(a) - a \cdot 1 \in t^m B[[t]].$$

Denoting the power series $\overline{\rho}_{u_1,u_2,\dots,u_{m-1}}(a)-a\cdot 1$ by p(a), we thus have $p(a)\in t^mB[[t]]$. Hence, $p_0(a)=p_1(a)=\dots=p_{m-1}(a)=0$, where $p_i(a)$ denotes the coefficient of the power series p(a) before t^i for every $i\in\mathbb{N}$. Thus,

$$p\left(a\right) = \sum_{i=0}^{\infty} p_{i}\left(a\right) t^{i} = \sum_{i=0}^{m-1} \underbrace{p_{i}\left(a\right)}_{\substack{=0 \text{ (since} \\ p_{0}(a) = p_{1}(a) = \ldots = p_{m-1}(a) = 0)}} t^{i} + p_{m}\left(a\right) t^{m} + \sum_{i=m+1}^{\infty} \underbrace{p_{i}\left(a\right) t^{i}}_{\substack{\equiv 0 \text{ mod } t^{m+1}B[[t]] \\ \text{ (since } i \geq m+1 \text{ yields} \\ t^{i} \equiv 0 \text{ mod } t^{m+1}B[[t]])}}_{m-1}$$

$$\equiv \sum_{i=0}^{m-1} 0t^{i} + p_{m}(a) t^{m} + \sum_{i=m+1}^{\infty} 0 = p_{m}(a) t^{m} \mod t^{m+1} B[[t]].$$

Hence,

$$\overline{\rho}_{u_1, u_2, \dots, u_{m-1}} \left(a \right) = \underbrace{\left(\overline{\rho}_{u_1, u_2, \dots, u_{m-1}} \left(a \right) - a \cdot 1 \right)}_{= p(a) \equiv p_m(a) t^m \bmod t^{m+1} B[[t]]} + a \cdot 1 \equiv p_m \left(a \right) t^m + a \cdot 1 \bmod t^{m+1} B\left[[t]\right].$$

$$(3)$$

Let us notice that the map $p:A\to B[[t]]$ is K-linear (by its definition, since the map $\overline{p}_{u_1,u_2,\dots,u_{m-1}}:A\to B[[t]]$ is K-linear), and thus the map $p_m:A\to B$ is K-linear as well (since $p_m=\operatorname{coeff}_m\circ p$, where $\operatorname{coeff}_m:B[[t]]\to B$ is the map that takes every power series to its coefficient before t^m , and thus p_m is K-linear because both coeff_m and p are K-linear).

Now, any $a \in A$ and $a' \in A$ satisfy

$$\begin{split} & \overline{\rho}_{u_1,u_2,\dots,u_{m-1}}\left(a\right) \cdot \overline{\rho}_{u_1,u_2,\dots,u_{m-1}}\left(a'\right) \\ & = \left(\prod_{i=1}^{m-1} \left(1 - u_i t^i\right) \cdot \overline{\rho}\left(a\right) \cdot \left(\prod_{i=1}^{m-1} \left(1 - u_i t^i\right)\right)^{-1}\right) \cdot \left(\prod_{i=1}^{m-1} \left(1 - u_i t^i\right) \cdot \overline{\rho}\left(a'\right) \cdot \left(\prod_{i=1}^{m-1} \left(1 - u_i t^i\right)\right)^{-1}\right) \\ & = \prod_{i=1}^{m-1} \left(1 - u_i t^i\right) \cdot \underbrace{\overline{\rho}\left(a\right) \cdot \overline{\rho}\left(a'\right)}_{= \overline{\rho}\left(aa'\right) \text{ (by a condition of Theorem 1)}} \cdot \left(\prod_{i=1}^{m-1} \left(1 - u_i t^i\right)\right)^{-1} = \prod_{i=1}^{m-1} \left(1 - u_i t^i\right) \cdot \overline{\rho}\left(aa'\right) \cdot \left(\prod_{i=1}^{m-1} \left(1 - u_i t^i\right)\right)^{-1} \\ & = \overline{\rho}_{u_1,u_2,\dots,u_{m-1}}\left(aa'\right). \end{split}$$

Since

$$\overline{\rho}_{u_{1},u_{2},...,u_{m-1}}(a) \cdot \overline{\rho}_{u_{1},u_{2},...,u_{m-1}}(a')$$

$$\equiv p_{m}(a)t^{m} + a \cdot 1 \mod t^{m+1}B[[t]] \quad \equiv p_{m}(a')t^{m} + a' \cdot 1 \mod t^{m+1}B[[t]]$$

$$(by (3)) \quad (by (3), \text{ applied to } a' \text{ instead of } a)$$

$$\equiv (p_{m}(a)t^{m} + a \cdot 1) \cdot (p_{m}(a')t^{m} + a' \cdot 1) = \underbrace{p_{m}(a)p_{m}(a')t^{2m}}_{\text{going to } t^{m+1}B[[t]] \text{ (since } 2m \geq m+1 }_{\text{going to } t^{m+1}B[[t]])} + \underbrace{p_{m}(a)a't^{m} + ap_{m}(a')t^{m}}_{\text{going to } t^{m} + ap_{m}(a'))t^{m}} + aa' \cdot 1$$

$$\equiv 0 \mod t^{m+1}B[[t]] \text{ (since } 2m \geq m+1 }_{\text{going to } t^{m} + ap_{m}(a'))t^{m}} + aa' \cdot 1 \mod t^{m+1}B[[t]]$$

$$\equiv 0 + (p_{m}(a)a' + ap_{m}(a'))t^{m} + aa' \cdot 1 = (p_{m}(a)a' + ap_{m}(a'))t^{m} + aa' \cdot 1 \mod t^{m+1}B[[t]]$$

and

$$\overline{\rho}_{u_1, u_2, \dots, u_{m-1}}(aa') \equiv p_m(aa') t^m + aa' \cdot 1 \operatorname{mod} t^{m+1} B[[t]]$$
 (by (3)),

this equation yields

$$(p_m(a) a' + ap_m(a')) t^m + aa' \cdot 1 \equiv p_m(aa') t^m + aa' \cdot 1 \mod t^{m+1} B[[t]].$$

In other words,

$$(p_m(a) a' + ap_m(a')) t^m \equiv p_m(aa') t^m \operatorname{mod} t^{m+1} B[[t]].$$

Hence, for every $i \in \{0, 1, ..., m\}$, the coefficient of the power series $(p_m(a) a' + ap_m(a')) t^m$ before t^i equals the coefficient of the power series $p_m(aa') t^m$ before t^i . Applying this to i = m, we see that the coefficient of the power series $(p_m(a) a' + ap_m(a')) t^m$ before t^m equals the coefficient of the power series $p_m(aa') t^m$ before t^m . But the coefficient of the power series $(p_m(a) a' + ap_m(a')) t^m$ is $p_m(a) a' + ap_m(a')$, and the coefficient of the power series $p_m(aa') t^m$ before t^m is $p_m(aa')$. Hence, $p_m(a) a' + ap_m(a')$ equals $p_m(aa')$. In other words, $p_m(aa') = p_m(a) a' + ap_m(a') = ap_m(a') + p_m(a) a'$. Since p_m is a K-linear map, the condition (1) (applied to $f = p_m$) yields that there exists an element $s \in B$ such that

$$(p_m(a) = as - sa \text{ for all } a \in A).$$

Now, let u_m be the element -s. Then, we conclude that

$$p_m(a) = u_m a - a u_m \text{ for all } a \in A$$
 (4)

(since $u_m = -s$ yields $s = -u_m$ and thus $p_m(a) = as - sa = a(-u_m) - (-u_m)a = u_m a - au_m$). Now, we must prove that (2) holds for n = m. In fact, every $a \in A$

satisfies

$$\begin{split} & \overline{\rho}_{u_1,u_2,\dots,u_m}\left(a\right) \\ & = \prod_{i=1}^{m} \left(1 - u_i t^i\right) \cdots \overline{\rho}\left(a\right) \cdot \left(\prod_{i=1}^{m} \left(1 - u_i t^i\right) \cdots \prod_{i=1}^{m-1} \left(1 - u_i t^i\right)\right)^{-1} \\ & = \left(1 - u_m t^m\right) \cdot \prod_{i=1}^{m-1} \left(1 - u_i t^i\right) \cdot \overline{\rho}\left(a\right) \cdot \left(\prod_{i=1}^{m-1} \left(1 - u_i t^i\right)\right)^{-1} \cdot \underbrace{\left(1 - u_m t^m\right) \cdot \prod_{i=1}^{m-1} \left(1 - u_i t^i\right) \cdot \overline{\rho}\left(a\right) \cdot \left(\prod_{i=1}^{m-1} \left(1 - u_i t^i\right)\right)^{-1} \cdot \underbrace{\left(1 - u_m t^m\right) \cdot \left(1 - u$$

Hence, (2) holds for n = m.

Thus we have shown that, if we have constructed some elements $u_1, u_2, ..., u_{m-1}$ of B such that (2) holds for n=m-1, then we can define a new element u_m of B in a way such that (2) holds for n=m. This way, we can recursively construct elements $u_1, u_2, u_3, ...$ of B which satisfy the equation (2) for every $n \in \mathbb{N}$. Now, define a power series $b \in B[[t]]$ by $b = \lim_{n \to \infty} \prod_{i=1}^{n} (1 - u_i t^i)$ (this power series b is well-defined since the sequence $\left(\prod_{i=1}^{n} (1 - u_i t^i)\right)_{n \in \mathbb{N}}$ is a Cauchy sequence with respect to the (t)-adic topology

on the ring B[[t]] and therefore converges). Then, every $a \in A$ satisfies

$$b\overline{\rho}(a) b^{-1} = \lim_{n \to \infty} \prod_{i=1}^{n} \left(1 - u_i t^i \right) \cdot \overline{\rho}(a) \cdot \left(\lim_{n \to \infty} \prod_{i=1}^{n} \left(1 - u_i t^i \right) \right)^{-1}$$

$$= \lim_{n \to \infty} \left(\prod_{i=1}^{n} \left(1 - u_i t^i \right) \cdot \overline{\rho}(a) \cdot \left(\prod_{i=1}^{n} \left(1 - u_i t^i \right) \right)^{-1} \right) = \lim_{n \to \infty} \overline{\rho}_{u_1, u_2, \dots, u_n}(a) = a \cdot 1$$

(because of (2) ⁴). This proves Theorem 1.

References

[1] Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwendner, Elena Udovina and Dmitry Vaintrob, *Introduction to representation theory*, July 13, 2010.

http://math.mit.edu/~etingof/replect.pdf

$$\left(\prod_{i=1}^{m} \left(1 - u_i t^i\right) \equiv \prod_{i=1}^{m} \left(1 - u_i t^i\right) \bmod t^k B\left[[t]\right] \text{ for every } n \in \mathbb{N} \text{ and } m \in \mathbb{N} \text{ satisfying } n \geq j \text{ and } m \geq j\right)$$

(namely, take j = k; then, any $n \ge j$ satisfies

$$\prod_{i=1}^{n} \left(1 - u_i t^i\right) = \prod_{i=j+1}^{n} \underbrace{\left(1 - u_i t^i\right)}_{\substack{\equiv 1 \bmod t^k B[[t]], \\ \text{since } i \geq j+1=k+1>k \\ \text{yields } t^i \equiv 0 \bmod t^k B[[t]]}} \cdot \prod_{i=1}^{\leftarrow} \left(1 - u_i t^i\right) \equiv \prod_{i=j+1}^{n} 1 \cdot \prod_{i=1}^{j} \left(1 - u_i t^i\right) = \prod_{i=1}^{j} \left(1 - u_i t^i\right) \bmod t^k B[[t]],$$

and similarly any $m \geq j$ satisfies

$$\prod_{i=1}^{\leftarrow} (1 - u_i t^i) \equiv \prod_{i=1}^{\leftarrow} (1 - u_i t^i) \bmod t^k B[[t]],$$

so that any $n \geq j$ and $m \geq j$ satisfy $\prod_{i=1}^{m} (1 - u_i t^i) \equiv \prod_{i=1}^{m} (1 - u_i t^i) \mod t^k B[[t]]$.

⁴In fact, for every $i \in \mathbb{N}$, then

⁴In fact, for every $i \in \mathbb{N}$, there exists some $k \in \mathbb{N}$ such that every $n \in \mathbb{N}$ satisfying $n \geq k$ satisfies $\overline{\rho}_{u_1,u_2,\dots,u_n}(a) \equiv a \cdot 1 \mod t^i B$ [[t]] (namely, set k = i - 1; then, (2) yields $\overline{\rho}_{u_1,u_2,\dots,u_n}(a) \equiv a \cdot 1 \mod t^{n+1} B$ [[t]] and thus also $\overline{\rho}_{u_1,u_2,\dots,u_n}(a) \equiv a \cdot 1 \mod t^i B$ [[t]] because $t^{n+1} B$ [[t]] $\subseteq t^i B$ [[t]] (since $n \geq k$ yields $n + 1 \geq k + 1 = (i - 1) + 1 = i$).

³This is because for every $k \in \mathbb{N}$, there exists some $j \in \mathbb{N}$ such that