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1. The statement

This brief note is devoted to a simple (and well-known) result in noncommu-
tative algebra, which is not deep but nevertheless subtler than it appears. It
concerns the so-called quaternion algebras:

Definition 1.1. Let k be a commutative ring1. Let a ∈ k and b ∈ k. The
quaternion algebra Ha,b is defined to be the k-algebra with generators i and j
and relations

i2 = a, j2 = b, ij = −ji. (1)
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We notice that the well-known algebra of (Hamilton) quaternions H is a particular
case of this construction: namely, it is the quaternion algebra H−1,−1 when k =
R.

Now, the result that we will be discussing is the following:

Theorem 1.2. Let k be a commutative ring. Let a ∈ k and b ∈ k. Then,
(1, i, j, ij) is a basis of the k-module Ha,b.

The purpose of this note is to show two things:

1. that Theorem 1.2 is not obvious, and should not be taken lightly2;

2. that Theorem 1.2 is nevertheless easy to prove, and there are various ways
to do so.

Remark 1.3. Definition 1.1 is not the only possible way to define the quater-
nion algebra Ha,b. Some authors (e.g., Keith Conrad in [Conrad15, §3]) instead
define Ha,b to be a certain rank-4 free k-module with basis e, i, j, k and with
multiplication rules

e · e = e, e · i = i, e · j = j, e · k = k,
i · e = i, i · i = ae, i · j = k, i · k = aj,
j · e = j, j · i = −k, j · j = be, j · k = −bi,
k · e = k, k · i = −aj, k · j = bi, k · k = −abe.

This definition gives a k-algebra that is isomorphic to the Ha,b from our Defi-
nition 1.13; however, the proof of this isomorphism is not immediately obvious
(it is, in fact, tantamount to proving Theorem 1.2). Moreover, this definition
requires laborious verifications in order to convince oneself that it is well-
defined; in fact, the associativity of its multiplication must be checked. We
shall be using Definition 1.1 as the definition of Ha,b.

2. Isn’t it obvious?

I shall first try to explain why Theorem 1.2 is not self-evident (even in “good
weather” – e.g., when k is a field, and a and b are nonzero4).

1Some conventions: The word “ring” always means “associative ring with 1” in this note. When
k is a commutative ring, then a k-algebra is supposed to be associative and unital, and to
satisfy the axiom λ (ab) = (λa) b = a (λb) for every λ ∈ k and every two elements a and b of
the k-algebra.

2This note has been written in response to numerous incorrect proofs found in students’ home-
work.

4I am calling this “good weather” because one might intuitively expect that claims such as
Theorem 1.2 become easier to prove when k is assumed to be a field, and a and b to be
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The k-algebra Ha,b in Definition 1.1 is an example of a (noncommutative) k-
algebra with two generators. You probably are used to k-algebras with one
generator. These are noticeably simpler: they are all commutative, and they
can be written as polynomial rings modulo ideals. For example, here is a “one-
variable” analogue of Ha,b:

Example 2.1. Let k be a commutative ring, and let a ∈ k. Let Ca be the k-
algebra with generator i and relation i2 = a. I claim that (1, i) is a basis of the
k-module Ca.

Indeed, the definition of Ca shows that Ca ∼= k [X] /
(
X2 − a

)
as k-algebras

(where k [X] is the polynomial ring over k in one variable X); the isomorphism
sends i to X (where p denotes the remainder class of any p ∈ k [X] in the
quotient ring k [X] /

(
X2 − a

)
). But the polynomial X2 − a is monic, and thus

every polynomial in k [X] can be divided by X2 − a with remainder. As a
consequence of this, the k-module k [X] /

(
X2 − a

)
has basis

(
1, X

)
. Due to

our isomorphism Ca ∼= k [X] /
(
X2 − a

)
, this shows that the k-module Ca has

basis (1, i). Thus, our claim about Ca is proven.
Can we generalize this argument to the Ha,b in Theorem 1.2? It is not imme-

diately clear how. The k-algebra Ha,b is not commutative (at least we do not
see why it should be5), so we cannot identify it with a quotient of a polynomial
ring, and even if we could, it would be a polynomial ring in two variables, and
how would division with remainder work in that ring? (There is an analogue
of division with remainder for multivariate polynomials, and there is such a
thing as noncommutative polynomials; with some luck you might be able to
make these things work together nicely and possibly get an analogous proof,
but that will require some creativity to say the least.)

So it is not that simple to prove Theorem 1.2.
You might think that at least the k-linear independency of 1, i, j in Theorem

1.2 is obvious, because all of the relations in (1) are “of degree 2” (whatever this
means). But this is not a valid proof, and in fact such reasoning can completely
fail:

Example 2.2. Let S be the R-algebra with generators i and j and relations

i2 = 1, j2 = 1, ij = 2ji. (2)

(Looks similar to (1), doesn’t it?) I claim that the elements 1, i, j of S are not R-
linearly independent. Actually, I claim that S is a trivial ring (i.e., all elements
of S are equal to 0). Why is this so?

nonzero. However, this does not actually happen here; the general case of Theorem 1.2 is no
harder, and nothing is gained by making any assumptions on k, a and b. (That said, such
assumptions can be helpful in other, similar situations.)

5It is commutative when 2 = 0 in k. But this is probably not the most interesting use case of
quaternion algebras...
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Well, by repeated application of (2), we find that

1 = 1︸︷︷︸
=i2=ii

· 1︸︷︷︸
=j2=jj

= i ij︸︷︷︸
=2ji

j = 2ijij = 2

 ij︸︷︷︸
=2ji


2

= 2 (2ji)2

= 8 (ji)2 = 8j ij︸︷︷︸
=2ji

i = 16 jj︸︷︷︸
=j2=1

ii︸︷︷︸
=i2=1

= 16. (3)

Of course, this doesn’t mean that we have magically proven that the real num-
bers 1 and 16 are equal; in fact, (3) is merely an equality inside S. But this
equality shows that S is a trivial ring: In fact, subtracting 1 from (3), we obtain

0 = 15, and multiplying this by the scalar
1
15
∈ R, we obtain 0 = 1 (in S). But

every ring which satisfies 0 = 1 is a trivial ring.
Thus, the fact that the relations (2) are “of degree 2” did not prevent S from

collapsing to a trivial ring. In general, if an algebra is given by generators and
relations, it is not easy to tell how “large” it is (e.g., what dimension it has),
and even whether it is trivial.

I hope you now have an idea of where the difficulty in Theorem 1.2 lies.
Example 2.2 also hints at the importance of Theorem 1.2: You might be tempted

to prove some an equality between two elements of k by comparing their images
under the canonical homomorphism k→ Ha,b

6; but without knowing that this
canonical homomorphism is injective, such a proof would not work. Theorem
1.2 implies that the canonical homomorphism k→ Ha,b is injective (because this
homomorphism sends 1 to 1, and Theorem 1.2 shows that 1 is an entry of a basis
of Ha,b).

Results like Theorem 1.2 (that is, results which state that an algebra given
by generators and relations has a particular basis) are often called PBW-like
theorems, in honor of the PBW (Poincaré-Birkhoff-Witt) theorem which makes
such a claim about the universal enveloping algebra of a Lie algebra. Two sur-
veys about such theorems are Bergman’s [Bergma78] and Shepler’s and Wither-
spoon’s [SheWit14]; they will give you enough artillery to destroy Theorem 1.2
many times over. In this note, we will fight with bare hands instead; Theorem
1.2 is not trivial, but it is not that tough either.

6For example, the famous Euler four-square identity(
x2

1 + x2
2 + x2

3 + x2
4

) (
y2

1 + y2
2 + y2

3 + y2
4

)
= (x1y1 + x2y2 + x3y3 + x4y4)

2 + (x1y2 − x2y1 + x3y4 − x4y3)
2

+ (x1y3 − x2y4 − x3y1 + x4y2)
2 + (x1y4 + x2y3 − x3y2 − x4y1)

2

can be proven in this way.
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3. Spanning

Clearly, Theorem 1.2 will follow if we can prove the following two lemmas:

Lemma 3.1. Let k be a commutative ring. Let a ∈ k and b ∈ k. Then, the
sequence (1, i, j, ij) spans the k-module Ha,b.

Lemma 3.2. Let k be a commutative ring. Let a ∈ k and b ∈ k. Then, the
sequence (1, i, j, ij) of vectors in Ha,b is k-linearly independent.

Lemma 3.1 is easy. Let me sketch two proofs – an “uncombed” algorithmic
one, and a slick algebraic one. In truth, the two proofs are essentially equivalent,
and the second is merely a way of rewriting the first in a more streamlined way.
The first proof is more intuitive, to make up for it.

First proof of Lemma 3.1 (sketched). The k-algebra Ha,b is generated by i and j.
Thus, the k-module Ha,b is spanned by all finite products of i’s and j’s (in arbi-
trary order, and including the empty product). It therefore suffices to show that
each such product is a k-linear combination of 1, i, j, ij.

But this is easy: We can first reduce any product of i’s and j’s to a product of
the form in jm (by repeatedly replacing ji factors by −ij, because the relations (1)
imply ji = −ij), and then repeatedly apply i2 = a and j2 = b until neither i nor
j appears in any power greater than 1. For example, the product ijiiijjijj is thus
simplified as follows:

i ji︸︷︷︸
=−ij

iij ji︸︷︷︸
=−ij

j = ii ji︸︷︷︸
=−ij

i ji︸︷︷︸
=−ij

jj = iii ji︸︷︷︸
=−ij

ijjj = −iiii ji︸︷︷︸
=−ij

jjj

= − ii︸︷︷︸
=i2=a

ii︸︷︷︸
=i2=a

i jj︸︷︷︸
=j2=b

jj︸︷︷︸
=j2=b

= −a2b2i.

Second proof of Lemma 3.1. Let U be the k-submodule of Ha,b spanned by 1, i, j, ij.
Our goal is then to prove that U = Ha,b.

Notice that ji = −ij in Ha,b (since ij = −ji). Hence, ji︸︷︷︸
=−ij

j = −i jj︸︷︷︸
=j2=b

= −bi.

We shall use the following notation: If p1, p2, . . . , pk are some vectors in a
k-module V, then 〈p1, p2, . . . , pk〉 shall denote the k-submodule of V spanned
by p1, p2, . . . , pk. Using this notation, the definition of U rewrites as follows:
U = 〈1, i, j, ij〉. Thus,

iU = i 〈1, i, j, ij〉 =
〈

i1︸︷︷︸
=i

, ii︸︷︷︸
=i2=a

, ij, ii︸︷︷︸
=i2=a

j

〉
= 〈i, a, ij, aj〉 ⊆ U

5
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(since all of i, a, ij, aj belong to U). Also, from U = 〈1, i, j, ij〉, we obtain

jU = j 〈1, i, j, ij〉 =
〈

j1︸︷︷︸
=j

, ji︸︷︷︸
=−ij

, jj︸︷︷︸
=j2=b

, jij︸︷︷︸
=−bi

〉
= 〈j,−ij, b,−bi〉 ⊆ U

(since all of j,−ij, b,−bi belong to U). Now, recall that the k-algebra Ha,b is
generated by i and j. Therefore, from iU ⊆ U and jU ⊆ U, we obtain Ha,bU ⊆ U
7.

But 1 ∈ U, and thus Ha,b = Ha,b 1︸︷︷︸
∈U

⊆ Ha,bU ⊆ U. Combining this with

U ⊆ Ha,b (which is obvious), we obtain U = Ha,b. As we have explained, this
completes the proof of Lemma 3.1.

4. Linear independency: a not-quite-proof

Now that Lemma 3.1 is proven, it remains to verify Lemma 3.2. This is harder.
Here is an “almost-proof” of a particular case, which is insufficient, but which I
shall show because it demonstrates a rather enticing trap to fall into:

Incomplete proof of a particular case of Lemma 3.2. Let us try to prove Lemma 3.2 in
the particular case when k = R and a = −1 and b = −1.

So let us assume that k = R, a = −1 and b = −1. (Thus, of course,
Ha,b = H−1,−1 is the ring H of quaternions over R.) We need to show that
the sequence (1, i, j, ij) of vectors in H−1,−1 is k-linearly independent. Thus, as-
sume that α, β, γ, δ are four elements of k satisfying α1 + βi + γj + δij = 0 in
H−1,−1. We must prove that α = β = γ = δ = 0.

We have ii = i2 = a = −1, jj = j2 = b = −1 and ji = −ij (since ij = −ji).
Multiplying the equation α1 + βi + γj + δij = 0 by i from the right, we obtain

αi + βii + γji + δiji = 0. Since ii = −1, ji = −ij and i ji︸︷︷︸
=−ij

= − ii︸︷︷︸
=−1

j = j, this

rewrites as αi− β1− γij + δj = 0. In other words, −β1 + αi + δj− γij = 0.
Multiplying the equation α1 + βi + γj + δij = 0 by j from the right, we obtain

αj + βij + γjj + δijj = 0. Since jj = −1 and i jj︸︷︷︸
=−1

= −i, this rewrites as αj +

βij− γ1− δi = 0. In other words, −γ1− δi + αj + βij = 0.

7The same argument, in a bit more detail: Let G be the subset
{

x ∈ Ha,b | xU ⊆ U
}

of Ha,b.
It is straightforward to see that G is closed under addition, multiplication and scaling (by
elements of k), and that G contains 0 and 1. Thus, G is a k-subalgebra of Ha,b. Moreover,
this k-subalgebra G contains i (since iU ⊆ U) and j (since jU ⊆ U). Thus, this k-subalgebra
G must be the whole Ha,b (because the k-algebra Ha,b is generated by i and j, and therefore
any k-subalgebra of Ha,b that contains i and j must be the whole Ha,b). In other words, every
x ∈ Ha,b belongs to G. In other words, every x ∈ Ha,b satisfies xU ⊆ U (since this is what it
means for x to belong to G). In other words, Ha,bU ⊆ U, qed.

6
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Multiplying the equation α1+ βi + γj + δij = 0 by ij from the right, we obtain
αij + βiij + γjij + δijij = 0. Since ii︸︷︷︸

=−1

j = −j, ji︸︷︷︸
=−ij

j = −i jj︸︷︷︸
=−1

= i and i ji︸︷︷︸
=−ij

j =

− ii︸︷︷︸
=−1

jj︸︷︷︸
=−1

= −1, this rewrites as αij− βj + γi− δ1 = 0. In other words, −δ1 +

γi− βj + αij = 0.
Thus, we have found the four equations

α1 + βi + γj + δij = 0;
−β1 + αi + δj− γij = 0;
−γ1− δi + αj + βij = 0;
−δ1 + γi− βj + αij = 0

.

These equations are linear in α, β, γ, δ, and so we can solve them by a sort of
Gaussian elimination8. For example, if we add together the first equation, i
times the second equation, j times the third equation, and ji times the fourth
equation, then we obtain 4δij = 0 (after some simplifications); multiplying this
with ij from the right again, we obtain −4δ = 0. Since k = R, we can divide
this by −4, and obtain δ = 0. This suggests that we have achieved at least part
of our goal (of proving that α = β = γ = δ = 0). However, we have not! The
equality δ = 0 we have proven is an equality inside Ha,b, whereas the equality
α = β = γ = δ = 0 that we want to prove is an equality in k. We cannot
derive the equality δ = 0 in k from the equality δ = 0 inside Ha,b, because (at
the current stage) we cannot even be sure that Ha,b is not the trivial ring. So this
approach is not particularly hopeful.

5. Linear independency: proof by construction

Now, we need to prove Lemma 3.2. The first proof that I will show is based
upon the following idea: Theorem 1.2 shows that Ha,b is a free k-module of rank
4; thus, the k-algebra structure of Ha,b can be regarded as a k-algebra structure
on k4, once Theorem 1.2 is proven. We are going to reverse this cart, and first
construct a k-algebra structure on k4, and then prove that it is isomorphic to
Ha,b, and use this to prove Theorem 1.2. Before we give this proof, we state two
obvious facts:

Lemma 5.1. Let k be a commutative ring. Let P and Q be two k-modules. Let
f : P→ Q be a k-linear map. Let v1, v2, . . . , vn be some vectors in a k-module
P. If the vectors f (v1) , f (v2) , . . . , f (vn) are k-linearly independent, then the
vectors v1, v2, . . . , vn are also k-linearly independent.

8Be careful, since the coefficients are elements of the noncommutative algebra H−1,−1 (and you
do not know H−1,−1 well yet; you cannot tell whether some element of H−1,−1 is zero or not);
but tricks such as adding a multiple of one equation to another still work, of course.
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Lemma 5.1 is a simple linear-algebraic fact9.
The next lemma is a universal property of Ha,b. Indeed, recall that Ha,b is

the k-algebra with generators i and j and relations (1). In other words, Ha,b
is the quotient of the free k-algebra with generators I and J (here I am using
uppercase letters in order to tell them apart from the i and j in Ha,b) modulo the
ideal generated by I2 − a, J2 − b and I J + J I. Combining the universal property
of a free k-algebra and that of a quotient algebra, we thus obtain the following
universal property of Ha,b:

Lemma 5.2. Let k be a commutative ring. Let a ∈ k and b ∈ k. Let A be any
k-algebra. Let i and j be any two elements of A satisfying

i2 = a, j2 = b, ij = −ji. (4)

Then, there exists a unique k-algebra homomorphism Φ : Ha,b → A satisfying
Φ (i) = i and Φ (j) = j.

Now, we can prove Lemma 3.2:

First proof of Lemma 3.2. Consider the free k-module k4 of all vectors (x1, x2, x3, x4)
T

(with x1, x2, x3, x4 ∈ k). Define a multiplication on k4 as follows:

(x1, x2, x3, x4)
T · (y1, y2, y3, y4)

T

= (x1y1 + ax2y2 + bx3y3 − abx4y4, x1y2 + x2y1 − bx3y4 + bx4y3,

x1y3 + ax2y4 + x3y1 − ax4y2, x1y4 + x2y3 − x3y2 + x4y1)
T (5)

for every (x1, x2, x3, x4)
T , (y1, y2, y3, y4)

T ∈ k4. Straightforward computations re-
veal that this multiplication is k-bilinear10 and associative, and that (1, 0, 0, 0)T ∈
k4 is a neutral element of this multiplication. Thus, k4 becomes a k-algebra with
unity (1, 0, 0, 0)T.

Set i = (0, 1, 0, 0)T and j = (0, 0, 1, 0)T. Thus, i and j are two elements of the
k-algebra k4. They satisfy the relations (4) (this is checked by straightforward
computation). Hence, Lemma 5.2 (applied to A = k4) shows that there exists

9It follows by observing that if λ1v1 + λ2v2 + · · ·+ λnvn = 0, then λ1 f (v1) + λ2 f (v2) + · · ·+

λn f (vn) = f

λ1v1 + λ2v2 + · · ·+ λnvn︸ ︷︷ ︸
=0

 = f (0) = 0.

10I.e., we have

(u + v)w = uw + vw for all u, v, w ∈ k4;

(λu)w = λ (uw) for all u, w ∈ k4 and λ ∈ k;

u (v + w) = uv + uw for all u, v, w ∈ k4;

u (λw) = λ (uw) for all u, w ∈ k4 and λ ∈ k.

8
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a unique k-algebra homomorphism Φ : Ha,b → k4 satisfying Φ (i) = i and
Φ (j) = j. Consider this Φ.

Now, Φ is a k-algebra homomorphism. Hence, it sends 1 to the unity of
k4, which is (1, 0, 0, 0)T. In other words, Φ (1) = (1, 0, 0, 0)T. Also, Φ (i) =

i = (0, 1, 0, 0)T and Φ (j) = j = (0, 0, 1, 0)T. Finally, since Φ is a k-algebra
homomorphism, we have

Φ (ij) = Φ (i)︸ ︷︷ ︸
=(0,1,0,0)T

Φ (j)︸ ︷︷ ︸
=(0,0,1,0)T

= (0, 1, 0, 0)T (0, 0, 1, 0)T = (0, 0, 0, 1)T

(this results from another straightforward computation inside k4). Hence, the
map Φ sends the elements 1, i, j, ij of Ha,b to the elements
(1, 0, 0, 0)T , (0, 1, 0, 0)T , (0, 0, 1, 0)T , (0, 0, 0, 1)T of k4. The latter four elements
are k-linearly independent (since they form the standard basis of k4); thus, the
former four elements are also k-linearly independent (according to Lemma 5.1,
applied to P = Ha,b, Q = k4, f = Φ and (v1, v2, . . . , vn) = (1, i, j, ij)). This proves
Lemma 3.2.

Let me make a few remarks about the proof just given.

1. Our definition of the multiplication on k4 was no stroke of genius; it was
tailored to our goal in a straightforward way. In fact, our goal (to prove
Lemma 3.2 and thus Theorem 1.2) was to prove that the k-module Ha,b has
basis (1, i, j, ij). If we assume (for a moment) that this holds, then it be-
comes possible to identify the elements of Ha,b with vectors in k4 (namely,
by identifying every element x1 + x2i + x3 j + x4ij ∈ Ha,b with the vector
(x1, x2, x3, x4)

T ∈ k4). This identification makes k4 into a k-algebra, and
the multiplication on this k-algebra is given by (5) (because the multiplica-
tion on Ha,b is given by

(x1 + x2i + x3 j + x4ij) (y1 + y2i + y3 j + y4ij)
= (x1y1 + ax2y2 + bx3y3 − abx4y4) + (x1y2 + x2y1 − bx3y4 + bx4y3) i

+ (x1y3 + ax2y4 + x3y1 − ax4y2) j + (x1y4 + x2y3 − x3y2 + x4y1) ij,

as a straightforward computation shows). Now, of course, this is “wishful
thinking”, because when we are proving the claim that the k-module Ha,b
has basis (1, i, j, ij), we cannot assume that very same claim to hold; thus,
we were not able to identify the elements of Ha,b with vectors in k4 in
our proof. But we nevertheless were able to define the k-algebra structure
on k4 that would result from such an identification (because this structure
is simply given by the explicit equation (5), which makes no reference to
the alleged identification), and then we have used Lemma 5.2 to define a
homomorphism Φ from Ha,b to this k-algebra k4. It is easy to see that this

9
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Φ is a k-algebra isomorphism; that said, all that we have actually used is
the existence of Φ.

From this point of view, the above proof of Lemma 3.2 looks like a magic
trick: In a sense, we have created the k-algebra k4 out of thin air by re-
quiring the multiplication to be the one we wanted Ha,b to have. But it is
a valid proof, as long as one actually does make all the straightforward
verifications that I have left to the reader. The most important of these
verifications is that of associativity; this is the point at which a failure of
Lemma 3.2 (if this lemma were to fail) would have probably revealed itself.
For example, if we tried to similarly prove the (false) statement that the
R-algebra S from Example 2.2 has basis (1, i, j, ij), then we would have to
prove that the multiplication on R4 defined by

(x1, x2, x3, x4)
T · (y1, y2, y3, y4)

T

=

(
x1y1 + x2y2 + x3y3 +

1
2

x4y4, x1y2 + x2y1 +
1
2

x3y4 + x4y3,

x1y3 + x2y4 + x3y1 +
1
2

x4y2, x1y4 + x2y3 +
1
2

x3y2 + x4y1

)T

for every (x1, x2, x3, x4)
T , (y1, y2, y3, y4)

T ∈ R4 is associative. But it is not
(for example, we have (uv)w 6= u (vw) for u = (0, 0, 0, 1)T, v = (0, 0, 1, 0)T

and w = (0, 0, 0, 1)T). This lack of associativity shows that S cannot have
basis (1, i, j, ij) (although it does not show that S is the trivial ring; that is a
stronger statement).

2. In the proof of Lemma 3.2, we left to the reader the annoying chore of
checking that the multiplication on k4 is associative.11 This is a somewhat
lengthy computation, and one might wonder whether it can be simplified.
Indeed, it can; here is a way to reduce the amount of work necessary:

Let (e1, e2, e3, e4) be the standard basis of the k-module k4 (so each ei is a
vector whose i-th coordinate is 1 and whose all other coordinates are 0).
We want to check the equality (uv)w = u (vw) for any u, v, w ∈ k4. This
equality is k-linear in each of u, v, w (because the multiplication on k4 is k-
bilinear12). Thus, we can WLOG assume that each of u, v, w belongs to the
basis (e1, e2, e3, e4) of k4. This leaves us 4 possibilities for each of u, v, w, and
therefore 43 = 64 possibilities for the triple (u, v, w); we have to check the
equality (uv)w = u (vw) for each of these 64 possible triples. To simplify
our life, we can create a multiplication table for the basis (e1, e2, e3, e4). To
simplify our life yet further, we can notice that the equality (uv)w = u (vw)
is obviously true when at least one of u, v, w equals e1 (because e1 is the

11We also left some other chores to the reader, but those are far easier.
12This is clear from a look at its definition.
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neutral element of the multiplication on k4 13). Thus, we can WLOG
assume that none of u, v, w equals e1; this leaves only 3 possibilities for each
of u, v, w, and therefore only 33 = 27 possibilities for the triple (u, v, w).
Still, this argument requires some manual labor. We will see a nicer proof
in the next section.

6. Linear independency: proof by representation

Now, we shall see another proof of Lemma 3.2, which is less straightforward
but also requires less computation. The general philosophy behind this proof is
that algebras are often best understood by studying their representations; more
specifically, if we want to prove that some elements of a k-algebra A are linearly
independent, it helps to show that their actions on some representation of A
are linearly independent (as endomorphisms of this representation). We shall
thus prove Lemma 3.2 by constructing a representation of Ha,b such that the
actions of 1, i, j, ij on this representation are linearly independent. For the sake of
simplicity, we shall use a matrix representation, i.e., a k-algebra homomorphism
from Ha,b into a matrix ring; so the actions of 1, i, j, ij will be matrices.

Second proof of Lemma 3.2. Consider the k-algebra k4×4 of all 4× 4-matrices over
k. Let I4 denote the identity matrix in k4×4; this is the unity of the k-algebra
k4×4. Define two elements i and j of k4×4 by

i =


0 a 0 0
1 0 0 0
0 0 0 a
0 0 1 0

 and j =


0 0 b 0
0 0 0 −b
1 0 0 0
0 −1 0 0

 . (6)

Then, straightforward computations show that i2 = aI4, j2 = bI4 and ij = −ji.
Hence, Lemma 5.2 (applied to A = k4×4) shows that there exists a unique k-
algebra homomorphism Φ : Ha,b → k4×4 satisfying Φ (i) = i and Φ (j) = j.
Consider this Φ.

Now, Φ is a k-algebra homomorphism. Hence, it sends 1 to the unity of k4×4,
which is I4. In other words, Φ (1) = I4. Also, Φ (i) = i and Φ (j) = j. Finally,
since Φ is a k-algebra homomorphism, we have Φ (ij) = Φ (i)︸ ︷︷ ︸

=i

Φ (j)︸ ︷︷ ︸
=j

= ij. Hence,

the map Φ sends the elements 1, i, j, ij of Ha,b to the elements I4, i, j, ij of k4×4.

13This, of course, has to be checked, but we need to check this anyway, and it is quite easy to
check.
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The latter four elements are k-linearly independent14. Hence, the former four
elements are also k-linearly independent (according to Lemma 5.1, applied to
P = Ha,b, Q = k4×4, f = Φ and (v1, v2, . . . , vn) = (1, i, j, ij)). This proves Lemma
3.2.

Let me discuss this proof a little bit:

1. It is similar to the first proof of Lemma 3.2, but it differs in one important
fact: Instead of constructing a k-algebra structure on k4 (as we did in
the first proof), we have now used an already existing k-algebra structure
on k4×4 (namely, the one given by matrix multiplication). This has the
advantage that we did not have to prove associativity. That said, we still
had to make some computations (in order to prove i2 = aI4, j2 = bI4 and
ij = −ji); but these are much shorter than what was needed in the first
proof.

2. You might wonder how I have guessed the correct matrices i and j in (6)
which make the proof work. The answer is that I have used a similar
kind of “wishful thinking” that helped me guess the multiplication rule
(5) in the first proof. Namely, if we assume for a moment that Theorem
1.2 is proven, then it becomes possible to identify the elements of Ha,b
with vectors in k4 (namely, by identifying every element x1 + x2i + x3 j +
x4ij ∈ Ha,b with the vector (x1, x2, x3, x4)

T ∈ k4), and consequently the k-
algebra Ha,b acts on the k-module k4. The matrices i and j defined in (6)
are precisely the actions of i and j on this module (written as matrices).
Now, of course, we can define these two matrices explicitly (as in (6)) even
if we do not assume that Theorem 1.2 is proven; so the proof does not

14This can be checked as follows: We have

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , i =


0 a 0 0
1 0 0 0
0 0 0 a
0 0 1 0

 ,

j =


0 0 b 0
0 0 0 −b
1 0 0 0
0 −1 0 0

 , ij =


0 0 0 −ab
0 0 b 0
0 −a 0 0
1 0 0 0

 .

Hence, if α, β, γ, δ ∈ k are scalars, then the first column of the matrix αI4 + βi+ γj+ δij is
a
b
c
d

. Consequently, if α, β, γ, δ ∈ k are scalars satisfying αI4 + βi + γj + δij = 0, then


a
b
c
d

 = 0. In other words, the matrices I4, i, j, ij are linearly independent, qed.
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actually rely on our wishful thinking, but the wishful thinking was crucial
in finding it.

7. to be continued

[To be continued, eventually:

• proof by base change to an extension where ax2 + by2 = 1 is solvable
(works only under certain circumstances).

• proof using the Clifford-PBW theorem (basis theorem for Clifford algebra
of quadratic form).

• proof of Clifford-PBW theorem.

• reference to diamond lemma.

• conclusion, and k→ Ha,b is an injection.

• proof using Cayley-Dickson process.

]
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