A remark on polyhedral cones from packed words and from finite topologies

Darij Grinberg

July 10, 2020 (unfinished!)

Contents

L.	The main theorem	1
2.	The proof	4
3.	Application: an alternating sum identity	23

1. The main theorem

The purpose of this little note is to prove [2, Theorem 5.2] using the machinery of [1].

I shall use the notations of [1] (except that I write WQSym instead of **WQSym**). Here is a brief overview of these notations:

- We fix a field **K**.
- We let $\mathbb{N} = \{0, 1, 2, \ldots\}$ and $\mathbb{N}_{>0} = \{1, 2, 3, \ldots\}$.
- For each $n \in \mathbb{N}$, we let [n] denote the set $\{1, 2, ..., n\}$. In particular, $[0] = \emptyset$.
- A *word* means a *n*-tuple of positive integers for some $n \in \mathbb{N}$. In this case, the *n* is called the *length* of the word. A word $w = (w_1, w_2, ..., w_n)$ is identified with the map $[n] \to \mathbb{N}_{>0}$, $i \mapsto w_i$.
- A word $w = (w_1, w_2, ..., w_n)$ is said to be *packed* if and only if $\{w_1, w_2, ..., w_n\} = [k]$ for some $k \in \mathbb{N}$. In this case, the k is denoted by max w. (Note that k is the largest entry of w if w is nonempty.)

For example, the word (3,1,2,1,3) is packed (with max (3,1,2,1,3) = 3), and so is the empty word () (with max () = 0); but the word (3,1,3) is not packed.

• If w is any word, then the *packing* of w is the packed word Pack w obtained by replacing the smallest number that appears in w by 1 (as often as it appears), replacing the second-smallest number that appears in w by 2 (as often as it appears), and so on. More formally, it can be defined as follows: Write w as $w = (w_1, w_2, \ldots, w_n)$. Let $W = \{w_1, w_2, \ldots, w_n\}$ be the set of all entries of w, and let m = |W|. Let ϕ be the unique increasing bijection from W to [m]. Then, Pack w is defined to be the word $(\phi(w_1), \phi(w_2), \ldots, \phi(w_n))$.

For example,

Pack
$$(4,1,7,2,4,1) = (3,1,4,2,3,1)$$
 and Pack $(4,2) = (2,1)$.

Also, Pack w = w for any packed word w.

• We let WQSym denote the free \mathbb{K} -vector space with basis $(w)_{w \text{ is a packed word}}$. We define a \mathbb{K} -bilinear operation . (you're reading right: our symbol for this operation is a period) on this vector space WQSym by setting

$$f.g = \sum_{\substack{h = (h_1, h_2, \dots, h_{n+m}) \text{ is a packed word of length } n+m; \\ \text{Pack}(h_1, h_2, \dots, h_n) = f \text{ and } \text{Pack}(h_{n+1}, h_{n+2}, \dots, h_{n+m}) = g}} h$$

for any two packed words f and g, where n and m are the lengths of f and g. Equipping WQSym with this operation . as multiplication, we obtain a \mathbb{K} -algebra with unity () (the empty word). When we refer to the \mathbb{K} -algebra WQSym below, we shall always understand it to be equipped with this \mathbb{K} -algebra structure.

For example, in WQSym, we have

$$(1,1) \cdot (2,1) = (1,1,2,1) + (2,2,2,1) + (1,1,3,2) + (2,2,3,1) + (3,3,2,1)$$
.

The \mathbb{K} -algebra WQSym has various further structures – such as a Hopf algebra structure, and an embedding into the ring of noncommutative formal power series (see [2, §4.3.2], where WQSym is constructed via this embedding, and where the image of a packed word u under this embedding is denoted by \mathbf{M}_u). We won't need this extra structure.

Let me add a few more definitions.¹

¹A *set composition* of a set X means a tuple $(X_1, X_2, ..., X_k)$ of disjoint nonempty subsets of X such that $X_1 \cup X_2 \cup \cdots \cup X_k = X$.

Definition 1.1. Let $n \in \mathbb{N}$. Let u be a packed word of length n. Let $r = \max u$. Define $B_i = u^{-1}(\{i\})$ for every $i \in [r]$. (Thus, (B_1, B_2, \ldots, B_r) is a set composition of [n]; it is what is called the "set composition of [n] encoded by u" in [2].) Now, we define a polyhedral cone K_u in \mathbb{R}^n by

$$K_u = \left\{ (x_1, x_2, \dots, x_n) \in \mathbb{R}^n \mid \sum_{j=1}^k \sum_{i \in B_j} x_i \ge 0 \quad \text{for all } k = 1, 2, \dots, r \right\}.$$

Definition 1.2. For any two sets X and Y, let Map (X,Y) denote the set of all maps from X to Y. Define a \mathbb{K} -vector space \mathfrak{M} by $\mathfrak{M} = \bigoplus_{n>0} \operatorname{Map}(\mathbb{R}^n,\mathbb{K})$

(where each Map (\mathbb{R}^n , \mathbb{K}) becomes a \mathbb{K} -vector space by pointwise addition and multiplication with scalars). We make \mathfrak{M} into a \mathbb{K} -algebra, whose multiplication is defined as follows: For any $n \in \mathbb{N}$, any $m \in \mathbb{N}$, any $f \in \operatorname{Map}(\mathbb{R}^n, \mathbb{K})$ and $g \in \operatorname{Map}(\mathbb{R}^m, \mathbb{K})$, we define fg to be the element of $\operatorname{Map}(\mathbb{R}^{n+m}, \mathbb{K})$ which sends every $(x_1, x_2, \ldots, x_{n+m}) \in \mathbb{R}^{n+m}$ to $f(x_1, x_2, \ldots, x_n) g(x_{n+1}, x_{n+2}, \ldots, x_{n+m})$.

Definition 1.3. For every $n \in \mathbb{N}$ and any subset S of \mathbb{R}^n , we define a map $\underline{1}_S \in \operatorname{Map}(\mathbb{R}^n, \mathbb{K}) \subseteq \mathfrak{M}$ as the indicator function of S (that is, the map which sends every $s \in S$ to 1 and every $s \in \mathbb{R}^n \setminus S$ to 0).

Our goal is to show:

Theorem 1.4. The map

$$\alpha: \mathsf{WQSym} \to \mathfrak{M},$$

$$u \mapsto (-1)^{\mathsf{max}\,u}\,\underline{1}_{K_u}$$

is a K-algebra homomorphism.

This is a stronger version of $[2, Theorem 5.2]^2$, and a particular case of $[2, Theorem 8.1]^3$.

²Notice that [2, Theorem 5.2] talks not about our map α : WQSym $\rightarrow \mathfrak{M}$, but rather about a map $\mathcal{P} \rightarrow$ WQSym where \mathcal{P} is a certain subquotient of \mathfrak{M} (namely, the subalgebra of \mathfrak{M} generated by 1_{K_u} , taken modulo functions with measure-zero support). These two maps are "in some sense" inverse (allowing us to derive [2, Theorem 5.2] from Theorem 1.4). I find Theorem 1.4 the more natural statement.

Notice that [2] denotes by $(\mathbf{M}_u)_{u \text{ is a packed word}}$ the basis of WQSym that we call $(u)_{u \text{ is a packed word}}$.

³At least, I suspect so – I have not checked all the details. I also suspect that the whole [2, Theorem 8.1] can be obtained in a similar way as we prove Theorem 1.4 below.

2. The proof

We shall prove Theorem 1.4 using a detour via the algebra H_T defined in [1, Chapter 2]. We shall use the following notations from [1, Chapter 2]:

- If X is a set, then a *topology* on X is defined to be a family \mathcal{T} of subsets of X that satisfies the following three properties:
 - **-** We have \emptyset ∈ \mathcal{T} and X ∈ \mathcal{T} .
 - The union of any number of sets in \mathcal{T} is again a set in \mathcal{T} .
 - The intersection of any finite number of sets in \mathcal{T} is again a set in \mathcal{T} .

We will only use this concept in the case when X is finite; in this case, the difference between "any number of sets in \mathcal{T} " and "any finite number of sets in \mathcal{T} " is immaterial (since \mathcal{T} itself must be finite), and therefore unions and intersections play symmetric roles in the notion of a topology on X.

- If \mathcal{T} is a topology on X, then the sets belonging to \mathcal{T} are called the *open sets* of \mathcal{T} . The complements of these open sets (inside X) are called the *closed sets* of \mathcal{T} .
- If *X* is a set, then a *preorder* on *X* is defined to be a binary relation ≼ on *X* that is reflexive and transitive (but, unlike a partial order, doesn't need to be antisymmetric). Both partial orders and equivalence relations are preorders.
- If X is a set, and if \leq is a preorder on X, then an *ideal* of (X, \leq) means a subset I of X that has the following property:
 - If $i \in I$ and $j \in X$ satisfy i ≤ j, then $j \in I$.
- If *X* is a finite set, then there is a canonical bijection between {topologies on *X*} and {preorders on *X*}. This bijection (sometimes called the *Alexandrov correspondence*) proceeds as follows:
 - If \preccurlyeq is a preorder on *X*, then we can define a topology $\mathcal{T}_{\preccurlyeq}$ on *X* by

$$\mathcal{T}_{\preccurlyeq} = \{ \text{ideals of } (X, \preccurlyeq) \}.$$

We shall denote this topology $\mathcal{T}_{\preccurlyeq}$ as the *topology corresponding to* \preccurlyeq .

- If \mathcal{T} is a topology on X, then we can define five binary relations $\leq_{\mathcal{T}}$, $\geq_{\mathcal{T}}$ and $\sim_{\mathcal{T}}$ on X by setting

```
(a \leq_{\mathcal{T}} b) \iff (\text{each } I \in \mathcal{T} \text{ satisfying } a \in I \text{ satisfies } b \in I);
(a \geq_{\mathcal{T}} b) \iff (\text{each } I \in \mathcal{T} \text{ satisfying } b \in I \text{ satisfies } a \in I);
(a \sim_{\mathcal{T}} b) \iff (\text{each } I \in \mathcal{T} \text{ satisfies the equivalence } (a \in I) \iff (b \in I));
```

$$(a <_{\mathcal{T}} b) \iff (a \leq_{\mathcal{T}} b \text{ but not } a \geq_{\mathcal{T}} b) \iff (a \leq_{\mathcal{T}} b \text{ but not } a \sim_{\mathcal{T}} b);$$

 $(a >_{\mathcal{T}} b) \iff (a \geq_{\mathcal{T}} b \text{ but not } a \leq_{\mathcal{T}} b) \iff (a \geq_{\mathcal{T}} b \text{ but not } a \sim_{\mathcal{T}} b).$

The three binary relations $\leq_{\mathcal{T}}$, $\geq_{\mathcal{T}}$ and $\sim_{\mathcal{T}}$ are preorders on X, and the relation $\sim_{\mathcal{T}}$ is an equivalence relation (whence the quotient set $X/\sim_{\mathcal{T}}$ is well-defined). The relations $<_{\mathcal{T}}$ and $>_{\mathcal{T}}$ are strict partial orders. We shall refer to the relation $\leq_{\mathcal{T}}$ as the *preorder corresponding to* \mathcal{T} .

These assignments of a topology to a preorder and vice versa are mutually inverse: If \preccurlyeq is a preorder on X, then $\leq_{\mathcal{T}_{\preccurlyeq}}$ is precisely \preccurlyeq . Conversely, if \mathcal{T} is a topology on X, then $\mathcal{T}_{\leq_{\mathcal{T}}}$ is precisely \mathcal{T} .

- For each $n \in \mathbb{N}$, we let \mathbf{T}_n denote the set of all topologies on the set $[n] = \{1, 2, ..., n\}$.
- We let **T** denote the set $\bigsqcup_{n\in\mathbb{N}} \mathbf{T}_n$.
- If f is a packed word of length $n \in \mathbb{N}$, then we define a preorder \leq_f on the set [n] by setting

$$(a \leq_f b) \iff (f(a) \leq f(b)).$$

Furthermore, if f is a packed word of length $n \in \mathbb{N}$, then we let \mathcal{T}_f be the topology \mathcal{T}_{\leq_f} corresponding to this preorder \leq_f . The closed sets of this topology \mathcal{T}_f are the sets $f^{-1}(\{1,2,\ldots,i\})$ for $i \in \{0,1,\ldots,\max f\}$.

- If $P \subseteq \mathbb{N}$ and $n \in \mathbb{N}$, then P(+n) shall denote the set $\{k + n \mid k \in P\}$. (In other words, P(+n) is the set P shifted right by n units on the number line.)
- If $\mathcal{T} \in \mathbf{T}_n$ and $\mathcal{S} \in \mathbf{T}_m$ are two topologies (on the sets [n] and [m], respectively) for some $n \in \mathbb{N}$ and $m \in \mathbb{N}$, then we define a topology $\mathcal{T}.\mathcal{S} \in \mathbf{T}_{n+m}$ on the set [n+m] by

$$\mathcal{T}.\mathcal{S} = \{O \cup (P(+n)) \mid O \in \mathcal{T} \text{ and } P \in \mathcal{S}\}.$$

Thus, we have defined a binary operation . on **T**. This binary operation . is associative (by [1, Proposition 3]), and the topology $\{\varnothing\} \in \mathbf{T}_0$ is its neutral element.

• We let H_T be the free \mathbb{K} -vector space with basis T. We equip H_T with a multiplication . that linearly extends the operation . on T (that is, the restriction of the multiplication H_T to the basis T should be the operation . on T). Thus, H_T becomes a \mathbb{K} -algebra with unity $\{\varnothing\} \in T_0$.

The \mathbb{K} -algebra H_T also has the structure of a Hopf algebra, but we shall not need it, so we don't define it here.

We shall also use the following notation from [1, Chapter 4]:

• If X is a set, and if \mathcal{T} is a topology on X, then we set

$$\mathcal{P}\left(\mathcal{T}\right) = \bigsqcup_{p \in \mathbb{N}} \left\{ \text{surjective maps } f: X \to [p] \text{ such that every } c \in X \text{ and } d \in X \right\}$$

satisfying
$$c \leq_{\mathcal{T}} d$$
 satisfy $f(x) \leq f(d)$.

Thus, if X = [n] for some $n \in \mathbb{N}$, then all elements of $\mathcal{P}(\mathcal{T})$ are packed words of length n.

Next, we define a polyhedral cone for every $T \in T$:

Definition 2.1. Let $n \in \mathbb{N}$ and $\mathcal{T} \in \mathbf{T}_n$ (that is, let \mathcal{T} be a topology on the set $[n] = \{1, 2, ..., n\}$). Then, we define a polyhedral cone $K_{\mathcal{T}}$ in \mathbb{R}^n by

$$K_{\mathcal{T}} = \left\{ (x_1, x_2, \dots, x_n) \in \mathbb{R}^n \mid \sum_{i \in C} x_i \ge 0 \quad \text{for all closed sets } C \text{ of } \mathcal{T} \right\}.$$

The following follows from the definitions:

Remark 2.2. Let u be a packed word. Then, $K_u = K_{\mathcal{T}_u}$, where \mathcal{T}_u is as defined in [1, §2.1].

Let us define a few more things:

Definition 2.3. Let X be a finite totally ordered set, and let \mathcal{T} be a topology on X. We define $\mathcal{U}(\mathcal{T})$ to be the set of all $f \in \mathcal{P}(\mathcal{T})$ having the property that any two elements i and j of X satisfying $i <_{\mathcal{T}} j$ must satisfy f(i) < f(j). Notice that $\mathcal{U}(\mathcal{T}) \subseteq \mathcal{P}(\mathcal{T})$. (We can call the elements of $\mathcal{U}(\mathcal{T})$ "strictly increasing packed words" for \mathcal{T} .) (It can also be shown that $\mathcal{L}(\mathcal{T}) \subseteq \mathcal{U}(\mathcal{T})$, where $\mathcal{L}(\mathcal{T})$ is as defined in [1, Definition 15].)

Definition 2.4. We define a \mathbb{K} -linear map $U: \mathbf{H_T} \to \mathbf{WQSym}$ by

$$U\left(\mathcal{T}\right) = \sum_{f \in \mathcal{U}\left(\mathcal{T}\right)} f$$
 for every $\mathcal{T} \in \mathbf{T}$.

Remark 2.5. This map U is easily seen to be the map $\Gamma_{(0,0,1)}$ in the notation of [1, Proposition 14]. Thus, U is a surjective Hopf algebra homomorphism.

Now, here is a rather trivial fact:

Proposition 2.6. The map

$$eta: \mathbf{H_T} o \mathfrak{M}, \ \mathcal{T} \mapsto (-1)^{|[n]/\sim_{\mathcal{T}}|} \, \underline{\mathbf{1}}_{K_{\mathcal{T}}}$$

is a K-algebra homomorphism from $H_T = (H_T, .)$ to \mathfrak{M} .

Proof of Proposition 2.6 (sketched). The proof boils down to the observation that if $n \in \mathbb{N}$, $m \in \mathbb{N}$, $\mathcal{T} \in \mathbf{T}_n$ and $\mathcal{S} \in \mathbf{T}_m$, then

$$K_{\mathcal{T}.\mathcal{S}} = \{(x_1, x_2, \dots, x_{n+m}) \in \mathbb{R}^{n+m} \mid (x_1, x_2, \dots, x_n) \in K_{\mathcal{T}}$$

and $(x_{n+1}, x_{n+2}, \dots, x_{n+m}) \in K_{\mathcal{S}}\}.$

Now, we claim:

Theorem 2.7. The diagram

commutes. That is, we have $\beta = \alpha \circ U$.

Before we prove this, we introduce some more notations.

Definition 2.8. We define a \mathbb{K} -linear map $Z: \mathbf{H_T} \to \mathbf{H_T}$ by

$$Z(\mathcal{T}) = (-1)^{|[n]/\sim_{\mathcal{T}}|} \mathcal{T}$$
 for every $n \in \mathbb{N}$ and $\mathcal{T} \in \mathbf{T}_n$.

It is easy to see that *Z* is an involutive Hopf algebra isomorphism.

Definition 2.9. Let X be a finite totally ordered set, and let \mathcal{T} be a topology on X. Let a and b be two elements of X. We define three new topologies $\mathcal{T} \leftrightarrow (a \leq b)$, $\mathcal{T} \leftrightarrow (a \geq b)$ and $\mathcal{T} \leftrightarrow (a \sim b)$ on X as follows:

$$\mathcal{T} \leftrightarrow (a \le b) = \{O \in \mathcal{T} \mid (a \in O \implies b \in O)\};$$

$$\mathcal{T} \leftrightarrow (a \ge b) = \{O \in \mathcal{T} \mid (b \in O \implies a \in O)\};$$

$$\mathcal{T} \leftrightarrow (a \sim b) = \{O \in \mathcal{T} \mid (a \in O \iff b \in O)\}.$$

(It is easy to check that these are actually topologies. Of course, $\mathcal{T} \leftrightarrow (a \geq b) = \mathcal{T} \leftrightarrow (b \leq a)$.)

Here comes a collection of simple properties of these three new topologies:

Lemma 2.10. Let X be a finite totally ordered set, and let \mathcal{T} be a topology on X. Let a and b be two elements of X.

(a) We have

$$(\mathcal{T} \leftrightarrow (a \le b)) \cap (\mathcal{T} \leftrightarrow (a \ge b)) = \mathcal{T} \leftrightarrow (a \sim b) \qquad \text{and} \qquad (1)$$

$$(\mathcal{T} \leftrightarrow (a \le b)) \cup (\mathcal{T} \leftrightarrow (a \ge b)) = \mathcal{T}. \tag{2}$$

(b) We have

$$\mathcal{T} \leftrightarrow (a \sim b) = (\mathcal{T} \leftrightarrow (a \leq b)) \leftrightarrow (a \geq b) = (\mathcal{T} \leftrightarrow (a \geq b)) \leftrightarrow (a \leq b).$$

- (c) If $a \leq_{\mathcal{T}} b$, then $\mathcal{T} \leftrightarrow (a \leq b) = \mathcal{T}$ and $\mathcal{T} \leftrightarrow (a \sim b) = \mathcal{T} \leftrightarrow (a \geq b)$.
- **(d)** If $b \leq_{\mathcal{T}} a$, then $\mathcal{T} \leftrightarrow (a \geq b) = \mathcal{T}$ and $\mathcal{T} \leftrightarrow (a \sim b) = \mathcal{T} \leftrightarrow (a \leq b)$.
- **(e)** If c and d are two elements of X, then $c \leq_{\mathcal{T} \leftrightarrow (a \leq b)} d$ holds if and only if $(c \leq_{\mathcal{T}} d \text{ or } (c \leq_{\mathcal{T}} a \text{ and } b \leq_{\mathcal{T}} d))$.
- **(f)** If c and d are two elements of X, then $c \leq_{\mathcal{T} \leftrightarrow (a \geq b)} d$ holds if and only if $(c \leq_{\mathcal{T}} d \text{ or } (c \leq_{\mathcal{T}} b \text{ and } a \leq_{\mathcal{T}} d))$.
- **(g)** If c and d are two elements of X, then $c \leq_{\mathcal{T} \leftrightarrow (a \sim b)} d$ holds if and only if $(c \leq_{\mathcal{T}} d \text{ or } (c \leq_{\mathcal{T}} a \text{ and } b \leq_{\mathcal{T}} d) \text{ or } (c \leq_{\mathcal{T}} b \text{ and } a \leq_{\mathcal{T}} d))$.
- **(h)** If c and d are two elements of X, then $c \leq_{\mathcal{T} \leftrightarrow (a \sim b)} d$ holds if and only if

$$\left(c \leq_{\mathcal{T} \leftrightarrow \mathcal{P}(a \leq b)} d \text{ or } c \leq_{\mathcal{T} \leftrightarrow \mathcal{P}(a \geq b)} d\right).$$

(i) If *c* and *d* are two elements of *X*, then $c \leq_{\mathcal{T}} d$ holds if and only if

$$\left(c \leq_{\mathcal{T} \leftrightarrow (a \leq b)} d \text{ and } c \leq_{\mathcal{T} \leftrightarrow (a \geq b)} d\right).$$

- (j) If c and d are two elements of X, then $c \sim_{\mathcal{T} \leftrightarrow (a \leq b)} d$ holds if and only if $(c \sim_{\mathcal{T}} d \text{ or } (b \leq_{\mathcal{T}} c \leq_{\mathcal{T}} a \text{ and } b \leq_{\mathcal{T}} d \leq_{\mathcal{T}} a))$.
- **(k)** If c and d are two elements of X, and if we have neither $a \leq_{\mathcal{T}} b$ nor $b \leq_{\mathcal{T}} a$, then $c \sim_{\mathcal{T} \leftrightarrow (a \sim b)} d$ holds if and only if

$$(c \sim_{\mathcal{T}} d \text{ or } (c \sim_{\mathcal{T}} a \text{ and } d \sim_{\mathcal{T}} b) \text{ or } (c \sim_{\mathcal{T}} b \text{ and } d \sim_{\mathcal{T}} a)).$$

(I) We have

$$\mathcal{P}\left(\mathcal{T} \leftrightarrow (a \leq b)\right) \cap \mathcal{P}\left(\mathcal{T} \leftrightarrow (a \geq b)\right) = \mathcal{P}\left(\mathcal{T} \leftrightarrow (a \sim b)\right) \quad \text{and} \quad \mathcal{P}\left(\mathcal{T} \leftrightarrow (a \leq b)\right) \cup \mathcal{P}\left(\mathcal{T} \leftrightarrow (a \geq b)\right) = \mathcal{P}\left(\mathcal{T}\right).$$

- **(m)** Assume that neither $a \leq_{\mathcal{T}} b$ nor $b \leq_{\mathcal{T}} a$. Then, the three sets $\mathcal{U}(\mathcal{T} \leftrightarrow (a \leq b))$, $\mathcal{U}(\mathcal{T} \leftrightarrow (a \geq b))$ and $\mathcal{U}(\mathcal{T} \leftrightarrow (a \sim b))$ are disjoint, and their union is $\mathcal{U}(\mathcal{T})$.
 - (n) Assume that neither $a \leq_{\mathcal{T}} b$ nor $b \leq_{\mathcal{T}} a$. Then,

$$\begin{vmatrix} X/ \sim_{\mathcal{T} \leftrightarrow (a \le b)} \end{vmatrix} = \begin{vmatrix} X/ \sim_{\mathcal{T} \leftrightarrow (a \ge b)} \end{vmatrix} = |X/ \sim_{\mathcal{T}}| \quad \text{and} \quad |X/ \sim_{\mathcal{T} \leftrightarrow (a \sim b)} \end{vmatrix} = |X/ \sim_{\mathcal{T}}| - 1.$$

Proof of Lemma 2.10 (sketched). Parts (a) and (b) are straightforward to check.

(c) Assume that $a \leq_{\mathcal{T}} b$. Then, every $O \in \mathcal{T}$ satisfies $(a \in \mathcal{T} \Longrightarrow b \in \mathcal{T})$. Hence, $\mathcal{T} \leftrightarrow (a \leq b) = \mathcal{T}$ by the definition of $\mathcal{T} \leftrightarrow (a \leq b)$. From Lemma 2.10 (b), we have $\mathcal{T} \leftrightarrow (a \sim b) = \underbrace{(\mathcal{T} \leftrightarrow (a \leq b))}_{=\mathcal{T}} \leftrightarrow (a \geq b) = \mathcal{T} \leftrightarrow (a \geq b)$. Thus,

Lemma 2.10 (c) is proven.

- (d) The proof of part (d) is similar to that of (c).
- **(e)** \Leftarrow : Assume that $(c \leq_{\mathcal{T}} d \text{ or } (c \leq_{\mathcal{T}} a \text{ and } b \leq_{\mathcal{T}} d))$. We need to check that $c \leq_{\mathcal{T} \leftrightarrow (a \leq b)} d$ holds. In other words, we need to check that every $O \in \mathcal{T} \leftrightarrow (a \leq b)$ satisfying $c \in O$ satisfies $d \in O$. So let us fix an $O \in \mathcal{T} \leftrightarrow (a \leq b)$ satisfying $c \in O$. We must prove that $d \in O$.

We have $O \in \mathcal{T} \leftrightarrow (a \leq b) \subseteq \mathcal{T}$ (by the definition of $\mathcal{T} \leftrightarrow (a \leq b)$). Thus, if $c \leq_{\mathcal{T}} d$, then $d \in O$. Hence, for the rest of this proof, we WLOG assume that we don't have $c \leq_{\mathcal{T}} d$. Thus, by assumption, we have $c \leq_{\mathcal{T}} a$ and $b \leq_{\mathcal{T}} d$. Therefore, $a \in O$ (since $c \in O$ and $c \leq_{\mathcal{T}} a$). But $O \in \mathcal{T} \leftrightarrow (a \leq b)$, and therefore $(a \in O \implies b \in O)$ (by the definition of $\mathcal{T} \leftrightarrow (a \leq b)$), so that $b \in O$ (since $a \in O$), and thus $d \in O$ (since $b \leq_{\mathcal{T}} d$). This completes the proof of the \longleftarrow direction of Lemma 2.10 (e).

 \Longrightarrow : Assume that $c \leq_{\mathcal{T} \leftrightarrow (a \leq b)} d$ holds. We need to check that $(c \leq_{\mathcal{T}} d \text{ or } (c \leq_{\mathcal{T}} a \text{ and } b \leq_{\mathcal{T}} d))$. We can WLOG assume that we don't have $c \leq_{\mathcal{T}} d$. Then, we must prove that $(c \leq_{\mathcal{T}} a \text{ and } b \leq_{\mathcal{T}} d)$.

We don't have $c \leq_{\mathcal{T}} d$. Hence, there exists a $Q \in \mathcal{T}$ such that $c \in Q$ but $d \notin Q$. Consider this Q. If we had $(a \in Q \implies b \in Q)$, then Q would belong to $\mathcal{T} \leftrightarrow (a \leq b)$, which would yield $d \in Q$ (since $c \leq_{\mathcal{T} \leftrightarrow (a \leq b)} d$ and $c \in Q$), which would contradict $d \notin Q$. Hence, we cannot have $(a \in Q \implies b \in Q)$. Thus, $a \in Q$ and $b \notin Q$.

Let $O \in \mathcal{T}$ be such that $c \in O$. We shall prove that $a \in O$. Indeed, assume the contrary. Then, $a \notin O$. Thus, $a \notin Q \cap O$, so that $(a \in Q \cap O) \Longrightarrow b \in Q \cap O$. Since $Q \cap O \in \mathcal{T}$ (because $Q \in \mathcal{T}$ and $O \in \mathcal{T}$), this yields $Q \cap O \in \mathcal{T} \leftrightarrow (a \leq b)$. Since we also have $c \in Q \cap O$ (since $c \in Q$ and $c \in O$), this yields $d \in Q \cap O$ (since $c \in Q$ and $c \in O$), this yields $c \in Q \cap O$ (since $c \in Q$ and $c \in O$), this yields $c \in Q \cap O$ (since $c \in Q$), which contradicts $c \in Q \cap O$ (since $c \in Q$). This contradiction proves that our assumption was wrong. Hence, $c \in C$ is proven. Forget now that we fixed $c \in C$. In other words, $c \in C$ and $c \in C$ for every $c \in C$ which satisfies $c \in C$. In other words, $c \in C$ and $c \in C$ is proven.

Let $O \in \mathcal{T}$ be such that $b \in O$. We shall prove that $d \in O$. Indeed, assume the contrary. Then, $d \notin O$. Thus, $d \notin Q \cup O$ (since $d \notin Q$ and $d \notin O$). But $b \in O \subseteq Q \cup O$, so that $(a \in Q \cup O \implies b \in Q \cup O)$. Since $Q \cup O \in \mathcal{T}$ (because $Q \in \mathcal{T}$ and $O \in \mathcal{T}$), this yields $Q \cup O \in \mathcal{T} \leftrightarrow (a \leq b)$. Since we also have $c \in Q \cup O$ (since $c \in Q$), this yields $d \in Q \cup O$ (since $c \in \mathcal{T}_{C}(a \leq b)$), which contradicts $d \notin Q \cup O$. This contradiction proves that our assumption was wrong. Hence, $d \in O$ is proven. Forget now that we fixed O. Thus we have shown that $d \in O$ for every $O \in \mathcal{T}$ which satisfies $b \in O$. In other words, $b \leq_{\mathcal{T}} d$.

We thus have shown that $(c \le_{\mathcal{T}} a \text{ and } b \le_{\mathcal{T}} d)$. This completes the proof of the \Longrightarrow direction of Lemma 2.10 **(e)**.

- (f) The proof of part (f) is analogous to that of (e).
- (g) Let c and d be two elements of X. Then, we have the following logical equivalence:

This proves Lemma 2.10 (g).

- (h) This is just a rewriting of Lemma 2.10 (g) using parts (e) and (f).
- (i) \Longrightarrow : This is clear.

 \Leftarrow : Assume that $\left(c \leq_{\mathcal{T} \leftrightarrow (a \leq b)} d \text{ and } c \leq_{\mathcal{T} \leftrightarrow (a \geq b)} d\right)$. We need to show that $c \leq_{\mathcal{T}} d$. Indeed, assume the contrary.

We have $c \leq_{\mathcal{T} \leftrightarrow (a \leq b)} d$. Thus, Lemma 2.10 **(e)** yields that we must have $(c \leq_{\mathcal{T}} d \text{ or } (c \leq_{\mathcal{T}} a \text{ and } b \leq_{\mathcal{T}} d))$. Since we assumed that $c \leq_{\mathcal{T}} d$ does not hold, this yields $(c \leq_{\mathcal{T}} a \text{ and } b \leq_{\mathcal{T}} d)$. Similarly, $(c \leq_{\mathcal{T}} b \text{ and } a \leq_{\mathcal{T}} d)$. Thus, $c \leq_{\mathcal{T}} b \leq_{\mathcal{T}} d$, which contradicts our assumption that not $c \leq_{\mathcal{T}} d$. This contradiction completes the proof.

- (j) We have $c \sim_{\mathcal{T} \leftrightarrow (a \leq b)} d$ if and only if $\left(c \leq_{\mathcal{T} \leftrightarrow (a \leq b)} d \text{ and } d \leq_{\mathcal{T} \leftrightarrow (a \leq b)} c\right)$. We can rewrite each of the two statements $c \leq_{\mathcal{T} \leftrightarrow (a \leq b)} d$ and $d \leq_{\mathcal{T} \leftrightarrow (a \leq b)} c$ using Lemma 2.10 (e), and then simplify the result; we end up with Lemma 2.10 (j).
- (k) Let c and d be two elements of X. Assume that we have neither $a \leq_{\mathcal{T}} b$ nor $b \leq_{\mathcal{T}} a$. We have $c \sim_{\mathcal{T} \hookrightarrow (a \sim b)} d$ if and only if $\left(c \leq_{\mathcal{T} \hookrightarrow (a \sim b)} d \text{ and } d \leq_{\mathcal{T} \hookrightarrow (a \sim b)} c\right)$. We can rewrite each of the two statements $c \leq_{\mathcal{T} \hookrightarrow (a \sim b)} d$ and $d \leq_{\mathcal{T} \hookrightarrow (a \sim b)} c$ using Lemma 2.10 (g), and then simplify the result (a disjunction with 9 cases, of which many can be ruled out due to the assumption that neither $a \leq_{\mathcal{T}} b$ nor $b \leq_{\mathcal{T}} a$); we end up with Lemma 2.10 (k).
- (1) *Proof of* $\mathcal{P}(\mathcal{T} \leftrightarrow (a \leq b)) \cap \mathcal{P}(\mathcal{T} \leftrightarrow (a \geq b)) = \mathcal{P}(\mathcal{T} \leftrightarrow (a \sim b))$: Whenever f is a surjective map $X \to [p]$ for some $p \in \mathbb{N}$, we have the following

logical equivalence:

$$(f \in \mathcal{P} \ (\mathcal{T} \leftrightarrow (a \leq b)) \cap \mathcal{P} \ (\mathcal{T} \leftrightarrow (a \geq b)))$$

$$\iff \left(\underbrace{f \in \mathcal{P} \ (\mathcal{T} \leftrightarrow (a \leq b)))}_{\text{\Leftrightarrow}} (\text{every } c \in X \text{ and } d \in X \text{ satisfying } c \leq_{\mathcal{T} \leftrightarrow (a \leq b)} d \text{ satisfy } f(c) \leq f(d))$$

$$\land \qquad \underbrace{(f \in \mathcal{P} \ (\mathcal{T} \leftrightarrow (b \leq a)))}_{\text{\Leftrightarrow}} (\text{every } c \in X \text{ and } d \in X \text{ satisfying } c \leq_{\mathcal{T} \leftrightarrow (b \leq a)} d \text{ satisfy } f(c) \leq f(d))$$

$$\Leftrightarrow \left(\left(\text{every } c \in X \text{ and } d \in X \text{ satisfying } c \leq_{\mathcal{T} \leftrightarrow (a \leq b)} d \text{ satisfy } f \ (c) \leq f \ (d)\right)\right)$$

$$\land \left(\text{every } c \in X \text{ and } d \in X \text{ satisfying } c \leq_{\mathcal{T} \leftrightarrow (a \leq b)} d \text{ or } c \leq_{\mathcal{T} \leftrightarrow (a \geq b)} d\right)$$

$$\Leftrightarrow \left(\text{every } c \in X \text{ and } d \in X \text{ satisfying } \underbrace{\left(c \leq_{\mathcal{T} \leftrightarrow (a \leq b)} d \text{ or } c \leq_{\mathcal{T} \leftrightarrow (a \geq b)} d\right)}_{\text{\Leftrightarrow}} d \text{ satisfy } f \ (c) \leq f \ (d)\right)$$

$$\Leftrightarrow \left(\text{every } c \in X \text{ and } d \in X \text{ satisfying } c \leq_{\mathcal{T} \leftrightarrow (a \sim b)} d \text{ satisfy } f \ (c) \leq f \ (d)\right)$$

$$\Leftrightarrow \left(\text{every } c \in X \text{ and } d \in X \text{ satisfying } c \leq_{\mathcal{T} \leftrightarrow (a \sim b)} d \text{ satisfy } f \ (c) \leq f \ (d)\right)$$

$$\Leftrightarrow \left(f \in \mathcal{P} \ (\mathcal{T} \leftrightarrow (a \sim b))\right).$$

Thus, $\mathcal{P}\left(\mathcal{T} \leftrightarrow (a \leq b)\right) \cap \mathcal{P}\left(\mathcal{T} \leftrightarrow (a \geq b)\right) = \mathcal{P}\left(\mathcal{T} \leftrightarrow (a \sim b)\right)$ is proven.

It remains to prove $\mathcal{P}(\mathcal{T} \leftrightarrow (a \leq b)) \cup \mathcal{P}(\mathcal{T} \leftrightarrow (a \geq b)) = \mathcal{P}(\mathcal{T})$. We shall achieve this by proving both inclusions separately:

Proof of $\mathcal{P}(\mathcal{T}) \subseteq \mathcal{P}(\mathcal{T} \leftrightarrow (a \leq b)) \cup \mathcal{P}(\mathcal{T} \leftrightarrow (a \geq b))$: Let $f \in \mathcal{P}(\mathcal{T})$. We must prove that $f \in \mathcal{P}(\mathcal{T} \leftrightarrow (a \leq b)) \cup \mathcal{P}(\mathcal{T} \leftrightarrow (a \geq b))$.

We WLOG assume that $f(a) \leq f(b)$. We shall now show that $f \in \mathcal{P}(\mathcal{T} \leftrightarrow (a \leq b))$. This will yield that $f \in \mathcal{P}(\mathcal{T} \leftrightarrow (a \leq b)) \cup \mathcal{P}(\mathcal{T} \leftrightarrow (a \geq b))$, and thus complete this proof of $\mathcal{P}(\mathcal{T}) \subseteq \mathcal{P}(\mathcal{T} \leftrightarrow (a \leq b)) \cup \mathcal{P}(\mathcal{T} \leftrightarrow (a \geq b))$.

Let $c \in X$ and $d \in X$ be such that $c \leq_{\mathcal{T} \leftrightarrow (a \leq b)} d$. In order to prove that $f \in \mathcal{P} (\mathcal{T} \leftrightarrow (a \leq b))$, we must now show that $f(c) \leq f(d)$.

We have $c \leq_{\mathcal{T} \leftrightarrow (a \leq b)} d$. Due to Lemma 2.10 **(e)**, this yields that $(c \leq_{\mathcal{T}} d \text{ or } (c \leq_{\mathcal{T}} a \text{ and } b \leq_{\mathcal{T}} d))$. In the first of these cases, $f(c) \leq f(d)$ follows immediately from $f \in \mathcal{P}(\mathcal{T})$; thus, let us assume that we are in the second case. Thus, $c \leq_{\mathcal{T}} a$ and $b \leq_{\mathcal{T}} d$. From $f \in \mathcal{P}(\mathcal{T})$, we thus obtain $f(c) \leq f(a)$ and $f(b) \leq f(d)$. Hence, $f(c) \leq f(a) \leq f(b) \leq f(d)$, qed.

Proof of $\mathcal{P}(\mathcal{T} \leftrightarrow (a \leq b)) \cup \mathcal{P}(\mathcal{T} \leftrightarrow (a \geq b)) \subseteq \mathcal{P}(\mathcal{T})$: We now need to show that $\mathcal{P}(\mathcal{T} \leftrightarrow (a \leq b)) \cup \mathcal{P}(\mathcal{T} \leftrightarrow (a \geq b)) \subseteq \mathcal{P}(\mathcal{T})$. To do so, it is clearly enough to prove $\mathcal{P}(\mathcal{T} \leftrightarrow (a \leq b)) \subseteq \mathcal{P}(\mathcal{T})$ and $\mathcal{P}(\mathcal{T} \leftrightarrow (a \geq b)) \subseteq \mathcal{P}(\mathcal{T})$. We shall

only show the first of these two relations, as the second is analogous. Let $f \in \mathcal{P}(\mathcal{T} \leftrightarrow (a \leq b))$. Then, every $c \in X$ and $d \in X$ satisfying $c \leq_{\mathcal{T} \leftrightarrow (a \leq b)} d$ satisfy $f(c) \leq f(d)$. Hence, every $c \in X$ and $d \in X$ satisfying $c \leq_{\mathcal{T}} d$ satisfy $f(c) \leq f(d)$ (since every $c \in X$ and $d \in X$ satisfying $c \leq_{\mathcal{T}} d$ satisfy $c \leq_{\mathcal{T} \leftrightarrow (a \leq b)} d$ (due to Lemma 2.10 **(e)**)). In other words, $f \in \mathcal{P}(\mathcal{T})$. Since this is proven for every $f \in \mathcal{P}(\mathcal{T} \leftrightarrow (a \leq b))$, we thus conclude that $\mathcal{P}(\mathcal{T} \leftrightarrow (a \leq b)) \subseteq \mathcal{P}(\mathcal{T})$.

The proof of Lemma 2.10 (1) is thus complete.

(m) It is clearly enough to prove the three equalities

$$\mathcal{U}\left(\mathcal{T} \leftrightarrow (a \le b)\right) = \left\{ f \in \mathcal{U}\left(\mathcal{T}\right) \mid f\left(a\right) < f\left(b\right) \right\};\tag{3}$$

$$\mathcal{U}\left(\mathcal{T} \leftrightarrow (a \sim b)\right) = \left\{ f \in \mathcal{U}\left(\mathcal{T}\right) \mid f\left(a\right) = f\left(b\right) \right\};\tag{4}$$

$$\mathcal{U}\left(\mathcal{T} \leftrightarrow (a \ge b)\right) = \left\{ f \in \mathcal{U}\left(\mathcal{T}\right) \mid f\left(a\right) > f\left(b\right) \right\}. \tag{5}$$

We shall only check the first two of these three equalities (since the third one is analogous to the first).

Let us first check that $a<_{\mathcal{T} \leftrightarrow (a\leq b)}b$. Indeed, it is clear from the definition of $\mathcal{T} \leftrightarrow (a\leq b)$ that $a\leq_{\mathcal{T} \leftrightarrow (a\leq b)}b$. Thus, in order to prove that $a<_{\mathcal{T} \leftrightarrow (a\leq b)}b$, we must only show that we don't have $b\leq_{\mathcal{T} \leftrightarrow (a\leq b)}a$. To achieve this, we assume the contrary. Lemma 2.10 **(e)** (applied to c=b and d=a) thus yields that $(b\leq_{\mathcal{T}}a \text{ or } (b\leq_{\mathcal{T}}a \text{ and } b\leq_{\mathcal{T}}a))$. In either of these cases, we must have $b\leq_{\mathcal{T}}a$, which contradicts the assumption that neither $a\leq_{\mathcal{T}}b$ nor $b\leq_{\mathcal{T}}a$. So $a<_{\mathcal{T} \leftrightarrow (a\leq b)}b$ is proven.

Next, we are going to prove (3) by showing its two inclusions separately:

Proof of $\mathcal{U}\left(\mathcal{T} \leftrightarrow (a \leq b)\right) \subseteq \{f \in \mathcal{U}\left(\mathcal{T}\right) \mid f\left(a\right) < f\left(b\right)\}$: Let $g \in \mathcal{U}\left(\mathcal{T} \leftrightarrow (a \leq b)\right)$. Thus, $g \in \mathcal{P}\left(\mathcal{T} \leftrightarrow (a \leq b)\right)$, and every two elements i and j of X satisfying $i <_{\mathcal{T} \leftrightarrow (a \leq b)} j$ must satisfy $g\left(i\right) < g\left(j\right)$. Applying the latter fact to i = a and j = b, we obtain $g\left(a\right) < g\left(b\right)$ (since $a <_{\mathcal{T} \leftrightarrow (a \leq b)} b$).

Moreover, $g \in \mathcal{P}(\mathcal{T} \leftrightarrow (a \leq b)) \subseteq \mathcal{P}(\mathcal{T} \leftrightarrow (a \leq b)) \cup \mathcal{P}(\mathcal{T} \leftrightarrow (a \geq b)) = \mathcal{P}(\mathcal{T})$ (by Lemma 2.10 (1)).

Let now *i* and *j* be any two elements of *X* satisfying $i <_{\mathcal{T}} j$. We shall show that g(i) < g(j).

Indeed, $i <_{\mathcal{T}} j$, thus $i \leq_{\mathcal{T}} j$ and therefore $i \leq_{\mathcal{T} \leftrightarrow (a \leq b)} j$ (due to Lemma 2.10 **(e)**). Assume (for the sake of contradiction) that $j \leq_{\mathcal{T} \leftrightarrow (a \leq b)} i$. Then, $i \sim_{\mathcal{T} \leftrightarrow (a \leq b)} j$, and thus (by Lemma 2.10 **(j)**, applied to c = i and d = j) we have $(i \sim_{\mathcal{T}} j \text{ or } (b \leq_{\mathcal{T}} i \leq_{\mathcal{T}} a \text{ and } b \leq_{\mathcal{T}} j \leq_{\mathcal{T}} a))$. But neither of these two cases can occur (since $i <_{\mathcal{T}} j$ precludes $i \sim_{\mathcal{T}} j$, and since $b \leq_{\mathcal{T}} i \leq_{\mathcal{T}} a$ contradicts our assumption that not $b \leq_{\mathcal{T}} a$). Hence, we have our contradiction. Thus, our assumption (that $j \leq_{\mathcal{T} \leftrightarrow (a \leq b)} i$) was false. We therefore have $i \leq_{\mathcal{T} \leftrightarrow (a \leq b)} j$ but not $j \leq_{\mathcal{T} \leftrightarrow (a \leq b)} i$. In other words, $i <_{\mathcal{T} \leftrightarrow (a \leq b)} j$. Thus, g(i) < g(j) (since $g \in \mathcal{U} (\mathcal{T} \leftrightarrow (a < b))$).

Now, let us forget that we fixed i and j. We thus have shown that any two elements i and j of X satisfying $i <_{\mathcal{T}} j$ satisfy g(i) < g(j). In other words, $g \in \mathcal{U}(\mathcal{T})$ (since we already know that $g \in \mathcal{P}(\mathcal{T})$). Thus, g is an element of $\mathcal{U}(\mathcal{T})$ and satisfies g(a) < g(b). In other words, $g \in \{f \in \mathcal{U}(\mathcal{T}) \mid f(a) < f(b)\}$.

Since this is proven for every $g \in \mathcal{U}(\mathcal{T} \leftrightarrow (a \leq b))$, we thus conclude that $\mathcal{U}(\mathcal{T} \leftrightarrow (a \leq b)) \subseteq \{f \in \mathcal{U}(\mathcal{T}) \mid f(a) < f(b)\}.$

Proof of $\{f \in \mathcal{U}(\mathcal{T}) \mid f(a) < f(b)\} \subseteq \mathcal{U}(\mathcal{T} \leftrightarrow (a \leq b))$: Let $g \in \{f \in \mathcal{U}(\mathcal{T}) \mid f(a) < f(b)\}$. Then, $g \in \mathcal{U}(\mathcal{T})$ and g(a) < g(b). From $g \in \mathcal{U}(\mathcal{T})$, we obtain $g \in \mathcal{P}(\mathcal{T})$.

Let now $c \in X$ and $d \in X$ be such that $c \leq_{\mathcal{T} \leftrightarrow (a \leq b)} d$. We now aim to show that $g(c) \leq g(d)$.

Indeed, from $c \leq_{\mathcal{T} \leftrightarrow (a \leq b)} d$, we obtain $(c \leq_{\mathcal{T}} d \text{ or } (c \leq_{\mathcal{T}} a \text{ and } b \leq_{\mathcal{T}} d))$ (by Lemma 2.10 **(e)**). In the first of these two cases, we obtain $g(c) \leq g(d)$ immediately (since $g \in \mathcal{P}(\mathcal{T})$), while in the second case we obtain

$$g(c) \le g(a)$$
 (since $c \le_{\mathcal{T}} a$ and $g \in \mathcal{P}(\mathcal{T})$)
 $< g(b) \le g(d)$ (since $b \le_{\mathcal{T}} d$ and $g \in \mathcal{P}(\mathcal{T})$).

Thus, $g(c) \le g(d)$ is proven in either case.

Now, let us forget that we fixed c and d. We thus have proven that $g(c) \le g(d)$ for any $c \in X$ and $d \in X$ satisfying $c \le_{\mathcal{T} \leftrightarrow (a \le b)} d$. In other words, $g \in \mathcal{P}(\mathcal{T} \leftrightarrow (a \le b))$.

Now, let $c \in X$ and $d \in X$ be such that $c <_{\mathcal{T} \leftarrow (a \le b)} d$. We now aim to show that g(c) < g(d).

Indeed, from $c <_{\mathcal{T} \leftrightarrow (a \le b)} d$, we obtain $c \le_{\mathcal{T} \leftrightarrow (a \le b)} d$, and thus $(c \le_{\mathcal{T}} d \text{ or } (c \le_{\mathcal{T}} a \text{ and } b \le_{\mathcal{T}} d))$ (by Lemma 2.10 **(e)**). In the second of these two cases, we have

$$g(c) \le g(a)$$
 (since $c \le_{\mathcal{T}} a$ and $g \in \mathcal{P}(\mathcal{T})$) $< g(b) \le g(d)$ (since $b \le_{\mathcal{T}} d$ and $g \in \mathcal{P}(\mathcal{T})$).

Thus, g(c) < g(d) is proven in the second case. We thus WLOG assume that we are in the first case. That is, we have $c \leq_{\mathcal{T}} d$. If $c <_{\mathcal{T}} d$, then we can immediately conclude that g(c) < g(d) (since $g \in \mathcal{U}(\mathcal{T})$). Hence, we WLOG assume that we don't have $c <_{\mathcal{T}} d$. Thus, $c \sim_{\mathcal{T}} d$ (since $c \leq_{\mathcal{T}} d$), so that $d \leq_{\mathcal{T}} c$. Hence, $(d \leq_{\mathcal{T}} c \text{ or } (d \leq_{\mathcal{T}} a \text{ and } b \leq_{\mathcal{T}} c))$, so that Lemma 2.10 (e) (applied to d and c instead of c and d) yields $d \leq_{\mathcal{T} \leftrightarrow (a \leq b)} c$. But this contradicts $c <_{\mathcal{T} \leftrightarrow (a \leq b)} d$. Thus, we have obtained a contradiction, and our proof of g(c) < g(d) is complete.

Now, let us forget that we fixed c and d. We thus have proven that g(c) < g(d) for any $c \in X$ and $d \in X$ satisfying $c <_{\mathcal{T} \leftrightarrow (a \le b)} d$. In other words, $g \in \mathcal{U}(\mathcal{T} \leftrightarrow (a \le b))$ (since $g \in \mathcal{P}(\mathcal{T} \leftrightarrow (a \le b))$). Since this is proven for every $g \in \{f \in \mathcal{U}(\mathcal{T}) \mid f(a) < f(b)\}$, we thus conclude that $\{f \in \mathcal{U}(\mathcal{T}) \mid f(a) < f(b)\} \subseteq \mathcal{U}(\mathcal{T} \leftrightarrow (a \le b))$.

Combining $\mathcal{U}(\mathcal{T} \leftrightarrow (a \leq b)) \subseteq \{f \in \mathcal{U}(\mathcal{T}) \mid f(a) < f(b)\}$ with $\{f \in \mathcal{U}(\mathcal{T}) \mid f(a) < f(b)\} \subseteq \mathcal{U}(\mathcal{T} \leftrightarrow (a \leq b))$, we obtain (3).

Let us next check that $a \sim_{\mathcal{T} \leftrightarrow (a \leq b)} b$. Indeed, it is clear from the definition of $\mathcal{T} \leftrightarrow (a \sim b)$ that $a \leq_{\mathcal{T} \leftrightarrow (a \sim b)} b$ and that $b \leq_{\mathcal{T} \leftrightarrow (a \sim b)} a$. Combining these, we obtain $a \sim_{\mathcal{T} \leftrightarrow (a \sim b)} b$.

Next, we are going to prove (4) by showing its two inclusions separately: $Proof of \ \mathcal{U} \ (\mathcal{T} \leftrightarrow (a \sim b)) \subseteq \{f \in \mathcal{U} \ (\mathcal{T}) \mid f(a) = f(b)\}: \text{Let } g \in \mathcal{U} \ (\mathcal{T} \leftrightarrow (a \sim b)).$ Thus, $g \in \mathcal{P} \ (\mathcal{T} \leftrightarrow (a \sim b))$, and every two elements i and j of X satisfying $i <_{\mathcal{T} \leftrightarrow (a \sim b)} j$ must satisfy g(i) < g(j). We have $a \sim_{\mathcal{T} \leftrightarrow (a \sim b)} b$ and $g \in \mathcal{P} \ (\mathcal{T} \leftrightarrow (a \sim b))$; thus, g(a) = g(b).

$$g \in \mathcal{P}\left(\mathcal{T} \leftrightarrow (a \sim b)\right) = \mathcal{P}\left(\mathcal{T} \leftrightarrow (a \leq b)\right) \cap \mathcal{P}\left(\mathcal{T} \leftrightarrow (a \geq b)\right)$$
(by Lemma 2.10 (1))
$$\subseteq \mathcal{P}\left(\mathcal{T} \leftrightarrow (a \leq b)\right) \subseteq \mathcal{P}\left(\mathcal{T} \leftrightarrow (a \leq b)\right) \cup \mathcal{P}\left(\mathcal{T} \leftrightarrow (a \geq b)\right) = \mathcal{P}\left(\mathcal{T}\right)$$

(by Lemma 2.10 (1)).

Moreover,

Now, let *i* and *j* be any two elements of *X* satisfying $i <_{\mathcal{T}} j$. We shall show that g(i) < g(j).

Indeed, $i <_{\mathcal{T}} j$, thus $i \leq_{\mathcal{T}} j$ and therefore $i \leq_{\mathcal{T} \leftrightarrow (a \sim b)} j$ (due to Lemma 2.10 **(g)**). Assume (for the sake of contradiction) that $j \leq_{\mathcal{T} \leftrightarrow (a \sim b)} i$. Then, $i \sim_{\mathcal{T} \leftrightarrow (a \sim b)} j$, and thus (by Lemma 2.10 **(k)**, applied to c = i and d = j) we have $(i \sim_{\mathcal{T}} j$ or $(i \sim_{\mathcal{T}} a$ and $j \sim_{\mathcal{T}} b)$ or $(i \sim_{\mathcal{T}} b$ and $j \sim_{\mathcal{T}} a)$). But neither of these three cases can occur⁴. Hence, we have our contradiction. Thus, our assumption (that $j \leq_{\mathcal{T} \leftrightarrow (a \sim b)} i$) was false. We therefore have $i \leq_{\mathcal{T} \leftrightarrow (a \sim b)} j$ but not $j \leq_{\mathcal{T} \leftrightarrow (a \sim b)} i$. In other words, $i <_{\mathcal{T} \leftrightarrow (a \sim b)} j$. Thus, g(i) < g(j) (since $g \in \mathcal{U}$ ($\mathcal{T} \leftrightarrow (a \sim b)$)).

Now, let us forget that we fixed i and j. We thus have shown that any two elements i and j of X satisfying $i <_{\mathcal{T}} j$ satisfy g(i) < g(j). In other words, $g \in \mathcal{U}(\mathcal{T})$ (since we already know that $g \in \mathcal{P}(\mathcal{T})$). Thus, g is an element of $\mathcal{U}(\mathcal{T})$ and satisfies g(a) = g(b). In other words, $g \in \{f \in \mathcal{U}(\mathcal{T}) \mid f(a) = f(b)\}$. Since this is proven for every $g \in \mathcal{U}(\mathcal{T} \leftrightarrow (a \sim b))$, we thus conclude that $\mathcal{U}(\mathcal{T} \leftrightarrow (a \sim b)) \subseteq \{f \in \mathcal{U}(\mathcal{T}) \mid f(a) = f(b)\}$.

Proof of $\{f \in \mathcal{U}(\mathcal{T}) \mid f(a) = f(b)\} \subseteq \mathcal{U}(\mathcal{T} \leftrightarrow (a \sim b))$: Let $g \in \{f \in \mathcal{U}(\mathcal{T}) \mid f(a) = f(b)\}$. Then, $g \in \mathcal{U}(\mathcal{T})$ and g(a) = g(b). From $g \in \mathcal{U}(\mathcal{T})$, we obtain $g \in \mathcal{P}(\mathcal{T})$.

Let now $c \in X$ and $d \in X$ be such that $c \leq_{\mathcal{T} \leftrightarrow (a \sim b)} d$. We now aim to show that $g(c) \leq g(d)$.

Indeed, from $c \leq_{\mathcal{T} \leftrightarrow (a \sim b)} d$, we obtain

 $(c \leq_{\mathcal{T}} d \text{ or } (c \leq_{\mathcal{T}} a \text{ and } b \leq_{\mathcal{T}} d) \text{ or } (c \leq_{\mathcal{T}} b \text{ and } a \leq_{\mathcal{T}} d))$ (by Lemma 2.10 **(g)**). In the first of these three cases, we obtain $g(c) \leq g(d)$ immediately (since $g \in \mathcal{P}(\mathcal{T})$). In the second case, we obtain

$$g(c) \le g(a)$$
 (since $c \le_{\mathcal{T}} a$ and $g \in \mathcal{P}(\mathcal{T})$)
= $g(b) \le g(d)$ (since $b \le_{\mathcal{T}} d$ and $g \in \mathcal{P}(\mathcal{T})$).

⁴Indeed, the first case $(i \sim_{\mathcal{T}} j)$ is precluded by the fact that $i <_{\mathcal{T}} j$. The second case $(i \sim_{\mathcal{T}} a)$ and $j \sim_{\mathcal{T}} b$ cannot occur since it would lead to $a \sim_{\mathcal{T}} i \leq_{\mathcal{T}} j \sim_{\mathcal{T}} b$, which would contradict the assumption that we have neither $a \leq_{\mathcal{T}} b$ nor $b \leq_{\mathcal{T}} a$. The third case $(i \sim_{\mathcal{T}} b)$ and $(i \sim_{\mathcal{T}} a)$ cannot occur for a similar reason.

In the third case, we obtain

$$g(c) \le g(b)$$
 (since $c \le_{\mathcal{T}} b$ and $g \in \mathcal{P}(\mathcal{T})$)
= $g(a) \le g(d)$ (since $a \le_{\mathcal{T}} d$ and $g \in \mathcal{P}(\mathcal{T})$).

Thus, $g(c) \le g(d)$ is proven in either case.

Now, let us forget that we fixed c and d. We thus have proven that $g(c) \le g(d)$ for any $c \in X$ and $d \in X$ satisfying $c \le_{\mathcal{T} \leftrightarrow (a \sim b)} d$. In other words, $g \in \mathcal{P}(\mathcal{T} \leftrightarrow (a \sim b))$.

Now, let $c \in X$ and $d \in X$ be such that $c <_{\mathcal{T} \leftrightarrow (a \sim b)} d$. We now aim to show that g(c) < g(d).

Indeed, from $c <_{\mathcal{T} \leftrightarrow (a \sim b)} d$, we obtain $c \leq_{\mathcal{T} \leftrightarrow (a \sim b)} d$, and thus $(c \leq_{\mathcal{T}} d \text{ or } (c \leq_{\mathcal{T}} a \text{ and } b \leq_{\mathcal{T}} d) \text{ or } (c \leq_{\mathcal{T}} b \text{ and } a \leq_{\mathcal{T}} d))$ (by Lemma 2.10 **(g)**). We study these three cases separately:

- Assume that we are in the first case, i.e., we have $c \leq_{\mathcal{T}} d$. Then, $c <_{\mathcal{T}} d$ (since otherwise, we would have $d \leq_{\mathcal{T}} c$, and therefore $d \leq_{\mathcal{T} \leftrightarrow (a \sim b)} c$ (by Lemma 2.10 **(g)**), which would contradict $c <_{\mathcal{T} \leftrightarrow (a \sim b)} d$). Hence, g(c) < g(d) (since $g \in \mathcal{U}(\mathcal{T})$).
- Assume that we are in the second case, i.e., we have $(c \leq_{\mathcal{T}} a \text{ and } b \leq_{\mathcal{T}} d)$. Then,

$$g(c) \le g(a)$$
 (since $c \le_{\mathcal{T}} a$ and $g \in \mathcal{P}(\mathcal{T})$)
= $g(b) \le g(d)$ (since $b \le_{\mathcal{T}} d$ and $g \in \mathcal{P}(\mathcal{T})$).

If at least one of the strict inequalities $c <_{\mathcal{T}} a$ or $b <_{\mathcal{T}} d$ holds, then we can strengthen this to a strict inequality g(c) < g(d) (because $g \in \mathcal{U}(\mathcal{T})$), and thus be done. Hence, we WLOG assume that none of the inequalities $c <_{\mathcal{T}} a$ or $b <_{\mathcal{T}} d$ holds. Thus, $c \sim_{\mathcal{T}} a$ and $b \sim_{\mathcal{T}} d$. Hence, $c \sim_{\mathcal{T} \leftrightarrow (a \sim b)} a$ and $b \sim_{\mathcal{T} \leftrightarrow (a \sim b)} d$ (by Lemma 2.10 **(k)**), so that $c \sim_{\mathcal{T} \leftrightarrow (a \sim b)} a \sim_{\mathcal{T} \leftrightarrow (a \sim b)} b \sim_{\mathcal{T} \leftrightarrow (a \sim b)} d$, which contradicts $c <_{\mathcal{T} \leftrightarrow (a \sim b)} d$. Hence, we are done in the second case as well.

• The third case is similar to the second case.

Thus, our proof of g(c) < g(d) is complete in each case.

Now, let us forget that we fixed c and d. We thus have proven that g(c) < g(d) for any $c \in X$ and $d \in X$ satisfying $c <_{\mathcal{T} \leftrightarrow (a \sim b)} d$. In other words, $g \in \mathcal{U}(\mathcal{T} \leftrightarrow (a \sim b))$ (since $g \in \mathcal{P}(\mathcal{T} \leftrightarrow (a \sim b))$). Since this is proven for every $g \in \{f \in \mathcal{U}(\mathcal{T}) \mid f(a) = f(b)\}$, we thus conclude that $\{f \in \mathcal{U}(\mathcal{T}) \mid f(a) = f(b)\} \subseteq \mathcal{U}(\mathcal{T} \leftrightarrow (a \sim b))$.

Combining $\mathcal{U}(\mathcal{T} \leftrightarrow (a \sim b)) \subseteq \{f \in \mathcal{U}(\mathcal{T}) \mid f(a) = f(b)\}$ with $\{f \in \mathcal{U}(\mathcal{T}) \mid f(a) = f(b)\} \subseteq \mathcal{U}(\mathcal{T} \leftrightarrow (a \sim b))$, we obtain (4).

Now, our proof of Lemma 2.10 (m) is complete.

(n) If c and d are two elements of X, then $c \sim_{\mathcal{T} \mapsto (a < b)} d$ holds if and only if

$$(c \sim_{\mathcal{T}} d \text{ or } (b \leq_{\mathcal{T}} c \leq_{\mathcal{T}} a \text{ and } b \leq_{\mathcal{T}} d \leq_{\mathcal{T}} a))$$

(according to Lemma 2.10 (j)). Since $(b \leq_{\mathcal{T}} c \leq_{\mathcal{T}} a \text{ and } b \leq_{\mathcal{T}} d \leq_{\mathcal{T}} a)$ cannot hold (because of our assumption that not $b \leq_{\mathcal{T}} a$), this simplifies as follows: If c and d are two elements of X, then $c \sim_{\mathcal{T} \leftrightarrow (a \leq b)} d$ holds if and only if $c \sim_{\mathcal{T}} d$. Thus, the equivalence relation $\sim_{\mathcal{T} \leftrightarrow (a \leq b)}$ is identical to $\sim_{\mathcal{T}}$. Hence, $\left| X / \sim_{\mathcal{T} \leftrightarrow (a \leq b)} \right| = \left| X / \sim_{\mathcal{T}} |$. Similarly, $\left| X / \sim_{\mathcal{T} \leftrightarrow (a \geq b)} \right| = \left| X / \sim_{\mathcal{T}} |$. Thus, $\left| X / \sim_{\mathcal{T} \leftrightarrow (a \leq b)} \right| = \left| X / \sim_{\mathcal{T}} |$ is proven. It remains to show $\left| X / \sim_{\mathcal{T} \leftrightarrow (a \sim b)} \right| = \left| X / \sim_{\mathcal{T}} | -1$.

Lemma 2.10 (k) yields the following: If c and d are two elements of X, then $c \sim_{T \leftrightarrow (a \sim b)} d$ holds if and only if

$$(c \sim_{\mathcal{T}} d \text{ or } (c \sim_{\mathcal{T}} a \text{ and } d \sim_{\mathcal{T}} b) \text{ or } (c \sim_{\mathcal{T}} b \text{ and } d \sim_{\mathcal{T}} a)).$$

In other words, two elements of X are equivalent under the equivalence relation $\sim_{\mathcal{T} \leftrightarrow (a \sim b)}$ if and only if either they are equivalent under $\sim_{\mathcal{T}}$, or one of them is in the $\sim_{\mathcal{T}}$ -class of a while the other is in the $\sim_{\mathcal{T}}$ -class of b. Thus, when passing from the equivalence relation $\sim_{\mathcal{T}}$ to $\sim_{\mathcal{T} \leftrightarrow (a \sim b)}$, the equivalence classes of a and b get merged (and these two classes used to be separate for $\sim_{\mathcal{T}}$, because of our assumption that neither $a \leq_{\mathcal{T}} b$ nor $b \leq_{\mathcal{T}} a$), while all other equivalence classes stay as they were. Thus, the total number of equivalence classes decreases by 1. In other words, $\left|X/\sim_{\mathcal{T} \leftrightarrow (a \sim b)}\right| = \left|X/\sim_{\mathcal{T}}\right| - 1$. This completes the proof of Lemma 2.10 (n).

Lemma 2.11. Let $n \in \mathbb{N}$ and $\mathcal{T} \in \mathbf{T}_n$. Let a and b be two elements of [n]. Then,

$$\underline{1}_{K_{\mathcal{T}}} = \underline{1}_{K_{\mathcal{T} \leftrightarrow P(a \leq b)}} + \underline{1}_{K_{\mathcal{T} \leftrightarrow P(a \geq b)}} - \underline{1}_{K_{\mathcal{T} \leftrightarrow P(a \sim b)}}.$$

Proof of Lemma 2.11. It is clearly enough to prove that

$$K_{\mathcal{T}} = K_{\mathcal{T} \leftrightarrow (a \le b)} \cap K_{\mathcal{T} \leftrightarrow (a \ge b)}$$

$$\tag{6}$$

and

$$K_{\mathcal{T} \leftrightarrow (a \sim b)} = K_{\mathcal{T} \leftrightarrow (a \leq b)} \cup K_{\mathcal{T} \leftrightarrow (a \geq b)}. \tag{7}$$

Before we start proving these statements, let us rewrite the definition of K_S for any topology S on [n]. Namely, if O is a subset of [n], then we define a subset K_O of \mathbb{R}^n by

$$K_O = \left\{ (x_1, x_2, \dots, x_n) \in \mathbb{R}^n \mid \sum_{i \in [n] \setminus O} x_i \ge 0 \right\}.$$

It is now clear that any topology S on [n] satisfies

$$K_{\mathcal{S}} = \bigcap_{O \in \mathcal{S}} K_O. \tag{8}$$

(Indeed, this is just a restatement of the definition of K_S , since the closed sets of S are the sets of the form $[n] \setminus O$ with O being an open set of S.)

Proof of (6): From (8), we obtain $K_{\mathcal{T}} = \bigcap_{O \in \mathcal{T}} K_O$ and $K_{\mathcal{T} \leftrightarrow (a \leq b)} = \bigcap_{O \in \mathcal{T} \leftrightarrow (a \leq b)} K_O$ and $K_{\mathcal{T} \leftrightarrow (a \geq b)} = \bigcap_{O \in \mathcal{T} \leftrightarrow (a \geq b)} K_O$. Thus,

$$\underbrace{K_{\mathcal{T} \leftrightarrow (a \leq b)}}_{O \in \mathcal{T} \leftrightarrow (a \leq b)} \cap \underbrace{K_{\mathcal{T} \leftrightarrow (a \geq b)}}_{O \in \mathcal{T} \leftrightarrow (a \geq b)} K_{O} = \left(\bigcap_{O \in \mathcal{T} \leftrightarrow (a \leq b)} K_{O}\right) \cap \left(\bigcap_{O \in \mathcal{T} \leftrightarrow (a \geq b)} K_{O}\right) \\
= \bigcap_{O \in (\mathcal{T} \leftrightarrow (a \leq b)) \cup (\mathcal{T} \leftrightarrow (a \geq b))} K_{O}$$

$$= \bigcap_{O \in (\mathcal{T} \leftrightarrow (a \leq b)) \cup (\mathcal{T} \leftrightarrow (a \geq b))} K_{O}$$

$$= \bigcap_{O \in \mathcal{T}} K_{O} \quad \text{(by (2))}$$

$$= K_{\mathcal{T}}.$$

This proves (6).

Proof of (7): It is easy to see that $K_{\mathcal{T} \leftrightarrow (a \leq b)} \subseteq K_{\mathcal{T} \leftrightarrow (a \sim b)}$ ⁵, and similarly $K_{\mathcal{T} \leftrightarrow (a \geq b)} \subseteq K_{\mathcal{T} \leftrightarrow (a \sim b)}$. Combining these two relations, we obtain $K_{\mathcal{T} \leftrightarrow (a \leq b)} \cup K_{\mathcal{T} \leftrightarrow (a \sim b)}$. Hence, in order to prove (7), it remains to show that $K_{\mathcal{T} \leftrightarrow (a \sim b)} \subseteq K_{\mathcal{T} \leftrightarrow (a \leq b)} \cup K_{\mathcal{T} \leftrightarrow (a \geq b)}$. So let us do this now.

Let $y \in K_{\mathcal{T} \leftrightarrow (a \geq b)}$. Our goal is to show that $y \in K_{\mathcal{T} \leftrightarrow (a \leq b)} \cup K_{\mathcal{T} \leftrightarrow (a \geq b)}$. In fact, assume the contrary. Then, $y \notin K_{\mathcal{T} \leftrightarrow (a \leq b)}$ and $y \notin K_{\mathcal{T} \leftrightarrow (a \geq b)}$.

We have $y \notin K_{\mathcal{T} \leftrightarrow (a \le b)} = \bigcap_{O \in \mathcal{T} \leftrightarrow (a \le b)} K_O$ (by (8)). Hence, there exists a $P \in \mathcal{T} \leftrightarrow (a \le b)$

 $\mathcal{T} \leftrightarrow (a \leq b)$ such that $y \notin K_P$. Similarly, using $y \notin K_{\mathcal{T} \leftrightarrow (a \geq b)}$, we can see that there exists a $Q \in \mathcal{T} \leftrightarrow (a \geq b)$ such that $y \notin K_Q$. Consider these P and Q.

We have $P \in \mathcal{T} \leftrightarrow (a \leq b) = \{O \in \mathcal{T} \mid (a \in O \implies b \in O)\}$. Thus, $P \in \mathcal{T}$

$$K_{\mathcal{T} \leftrightarrow (a \le b)} = \bigcap_{O \in \mathcal{T} \leftrightarrow (a \le b)} K_O \subseteq \bigcap_{O \in \mathcal{T} \leftrightarrow (a \sim b)} K_O \qquad \text{(since } \mathcal{T} \leftrightarrow (a \sim b) \subseteq \mathcal{T} \leftrightarrow (a \le b))$$

$$= K_{\mathcal{T} \leftrightarrow (a \sim b)},$$

qed.

⁵Proof. Indeed, (1) yields $(\mathcal{T} \leftrightarrow (a \leq b)) \cap (\mathcal{T} \leftrightarrow (a \geq b)) = \mathcal{T} \leftrightarrow (a \sim b)$, so that $\mathcal{T} \leftrightarrow (a \sim b) \subseteq \mathcal{T} \leftrightarrow (a \leq b)$. Now, from (8), we obtain $K_{\mathcal{T} \leftrightarrow (a \leq b)} = \bigcap_{O \in \mathcal{T} \leftrightarrow (a \leq b)} K_O$ and $K_{\mathcal{T} \leftrightarrow (a \sim b)} = \bigcap_{O \in \mathcal{T} \leftrightarrow (a \sim b)} K_O$. Thus,

and $(a \in P \implies b \in P)$. But we do not have $(b \in P \implies a \in P)$ ⁶. Hence, $a \notin P$ and $b \in P$ (since $(a \in P \implies b \in P)$ but not $(b \in P \implies a \in P)$).

We have thus shown that $P \in \mathcal{T}$, $a \notin P$ and $b \in P$. Similarly, we find that $Q \in \mathcal{T}$, $b \notin Q$ and $a \in Q$. Now, it is easy to see that $P \cap Q \in \mathcal{T} \leftrightarrow (a \sim b)$ and $P \cup Q \in \mathcal{T} \leftrightarrow (a \sim b)$ 8.

Let us write $y \in \mathbb{R}^n$ in the form $y = (y_1, y_2, \dots, y_n)$. We have $(y_1, y_2, \dots, y_n) = y \notin K_P = \left\{ (x_1, x_2, \dots, x_n) \in \mathbb{R}^n \mid \sum_{i \in [n] \setminus P} x_i \ge 0 \right\}$. Hence, $\sum_{i \in [n] \setminus P} y_i < 0$. Similarly, from $y \notin K_Q$, we obtain $\sum_{i \in [n] \setminus Q} y_i < 0$.

We have

$$(y_{1}, y_{2}, ..., y_{n}) = y \in K_{\mathcal{T} \leftrightarrow (a \sim b)} = \bigcap_{O \in \mathcal{T} \leftrightarrow (a \sim b)} K_{O} \quad \text{(by (8))}$$

$$\subseteq K_{P \cap Q} \quad \text{(since } P \cap Q \in \mathcal{T} \leftrightarrow (a \sim b))$$

$$= \left\{ (x_{1}, x_{2}, ..., x_{n}) \in \mathbb{R}^{n} \mid \sum_{i \in [n] \setminus (P \cap Q)} x_{i} \geq 0 \right\},$$

so that $\sum_{i \in [n] \setminus (P \cap Q)} y_i \ge 0$. The same argument can be applied to $P \cup Q$ instead of $P \cap Q$, and leads to $\sum_{i \in [n] \setminus (P \cup Q)} y_i \ge 0$.

But any two subsets A and B of [n] satisfy $\sum_{i \in A} y_i + \sum_{i \in B} y_i = \sum_{i \in A \cup B} y_i + \sum_{i \in A \cap B} y_i$.

⁶*Proof.* Assume the contrary. Then, $(b \in P \implies a \in P)$. Combining this with $(a \in P \implies b \in P)$, we obtain $(a \in P \iff b \in P)$. Hence, $P \in \mathcal{T} \leftrightarrow (a \sim b)$ (by the definition of $\mathcal{T} \leftrightarrow (a \sim b)$). Now, $y \in K_{\mathcal{T} \leftrightarrow (a \sim b)} = \bigcap_{O \in \mathcal{T} \leftrightarrow (a \sim b)} K_O$ (by (8)). But $\bigcap_{O \in \mathcal{T} \leftrightarrow (a \sim b)} K_O \subseteq K_P$ (since $P \in \mathcal{T} \leftrightarrow (a \sim b)$), so that $y \in \bigcap_{O \in \mathcal{T} \leftrightarrow (a \sim b)} K_O \subseteq K_P$, which contradicts $y \notin K_P$. This contradiction proves that our assumption was wrong, qed.

⁷*Proof.* From $P \in \mathcal{T}$ and $Q \in \mathcal{T}$, we infer that $P \cap Q \in \mathcal{T}$. Also, $a \notin P \cap Q$ (since $a \notin P$), so that $(a \in P \cap Q \Longrightarrow b \in P \cap Q)$. Moreover, $b \notin P \cap Q$ (since $b \notin Q$), and thus $(b \in P \cap Q \Longrightarrow a \in P \cap Q)$. Combined with $(a \in P \cap Q \Longrightarrow b \in P \cap Q)$, this yields $(a \in P \cap Q \iff b \in P \cap Q)$. Thus, $P \cap Q$ is an element of \mathcal{T} satisfying $(a \in P \cap Q \iff b \in P \cap Q)$. Hence, $P \cap Q \in \{O \in \mathcal{T} \mid (a \in O \iff b \in O)\} = \mathcal{T} \Leftrightarrow (a \sim b)$, qed.

⁸*Proof.* From $P \in \mathcal{T}$ and $Q \in \mathcal{T}$, we infer that $P \cup Q \in \mathcal{T}$. Also, $b \in P \cup Q$ (since $b \in P$), so that $(a \in P \cup Q \Longrightarrow b \in P \cup Q)$. Moreover, $a \in P \cup Q$ (since $a \in Q$), and thus $(b \in P \cup Q \Longrightarrow a \in P \cup Q)$. Combined with $(a \in P \cup Q \Longrightarrow b \in P \cup Q)$, this yields $(a \in P \cup Q \Longleftrightarrow b \in P \cup Q)$. Thus, $P \cup Q$ is an element of \mathcal{T} satisfying $(a \in P \cup Q \Longleftrightarrow b \in P \cup Q)$. Hence, $P \cup Q \in \{O \in \mathcal{T} \mid (a \in O \Longleftrightarrow b \in O)\} = \mathcal{T} \leftrightarrow (a \sim b)$, qed.

Applying this to $A = [n] \setminus P$ and $B = [n] \setminus Q$, we obtain

$$\sum_{i \in [n] \setminus P} y_i + \sum_{i \in [n] \setminus Q} y_i = \sum_{i \in ([n] \setminus P) \cup ([n] \setminus Q)} y_i + \sum_{i \in ([n] \setminus P) \cap ([n] \setminus Q)} y_i$$

$$= \sum_{i \in [n] \setminus (P \cap Q)} y_i + \sum_{i \in [n] \setminus (P \cup Q)} y_i$$

(since $([n] \setminus P) \cup ([n] \setminus Q) = [n] \setminus (P \cap Q)$ and $([n] \setminus P) \cap ([n] \setminus Q) = [n] \setminus (P \cup Q)$). Thus,

$$\sum_{i \in [n] \setminus (P \cap Q)} y_i + \sum_{i \in [n] \setminus (P \cup Q)} y_i = \underbrace{\sum_{i \in [n] \setminus P} y_i}_{<0} + \underbrace{\sum_{i \in [n] \setminus Q} y_i}_{<0} < 0.$$

This contradicts

$$\underbrace{\sum_{i \in [n] \setminus (P \cap Q)} y_i}_{>0} + \underbrace{\sum_{i \in [n] \setminus (P \cup Q)} y_i}_{>0} \ge 0.$$

This contradiction proves that our assumption was wrong. Hence, $y \in K_{\mathcal{T} \leftrightarrow (a \leq b)} \cup K_{\mathcal{T} \leftrightarrow (a \geq b)}$. Since we have proven this for every $y \in K_{\mathcal{T} \leftrightarrow (a \sim b)}$, we thus conclude that $K_{\mathcal{T} \leftrightarrow (a \sim b)} \subseteq K_{\mathcal{T} \leftrightarrow (a < b)} \cup K_{\mathcal{T} \leftrightarrow (a > b)}$. This finishes the proof of (7).

Now that both (6) and (7) are proven, Lemma 2.11 easily follows. \Box

Definition 2.12. Let V be a \mathbb{K} -vector space. A \mathbb{K} -linear map $f: \mathbf{H_T} \to V$ is said to be \mathbf{T} -additive if and only if every $n \in \mathbb{N}$, every $\mathcal{T} \in \mathbf{T}_n$ and every two distinct elements a and b of [n] satisfy

$$f(\mathcal{T}) = f(\mathcal{T} \leftrightarrow (a \le b)) + f(\mathcal{T} \leftrightarrow (a \ge b)) - f(\mathcal{T} \leftrightarrow (a \sim b)). \tag{9}$$

Proposition 2.13. Let V be a \mathbb{K} -vector space. Let f and g be two \mathbb{T} -additive \mathbb{K} -linear maps $\mathbf{H_T} \to V$. Assume that $f(\mathcal{T}_u) = g(\mathcal{T}_u)$ for every packed word u. Then, f = g.

Proof of Proposition 2.13. It is clearly enough to show that

$$f(\mathcal{T}) = g(\mathcal{T})$$
 for every $\mathcal{T} \in \mathbf{T}$. (10)

For any topology \mathcal{T} on a finite set X, we let $h\left(\mathcal{T}\right)$ denote the nonnegative integer $\sharp\left\{(x,y)\in X^2\mid \text{ neither }x\leq_{\mathcal{T}}y \text{ nor }y\leq_{\mathcal{T}}x\right\}$. We shall prove (10) by strong induction over $h\left(\mathcal{T}\right)$. So we fix some $\mathcal{T}\in\mathbf{T}$, and we want to prove (10), assuming that every $\mathcal{S}\in\mathbf{T}$ satisfying $h\left(\mathcal{S}\right)< h\left(\mathcal{T}\right)$ satisfies

$$f(\mathcal{S}) = g(\mathcal{S}). \tag{11}$$

Let $n \in \mathbb{N}$ be such that $\mathcal{T} \in \mathbf{T}_n$. If there exist no two elements a and b of [n] satisfying neither $a \leq_{\mathcal{T}} b$ nor $b \leq_{\mathcal{T}} a$, then we have $\mathcal{T} = \mathcal{T}_u$ for some

packed word u, and this u satisfies $f(\mathcal{T}_u) = g(\mathcal{T}_u)$ (due to the assumption of the proposition); thus, (10) follows immediately (since $\mathcal{T} = \mathcal{T}_u$). Hence, we can WLOG assume that such two elements a and b exist. Consider these two elements. Of course, a and b are distinct.

If S is any of the three posets $\mathcal{T} \leftrightarrow (a \leq b)$, $\mathcal{T} \leftrightarrow (a \geq b)$ and $\mathcal{T} \leftrightarrow (a \sim b)$, then $h(S) < h(\mathcal{T})$ ⁹. Hence, we can apply (11) to each of these three posets. We obtain

$$f(\mathcal{T} \leftrightarrow (a \le b)) = g(\mathcal{T} \leftrightarrow (a \le b));$$

$$f(\mathcal{T} \leftrightarrow (a \ge b)) = g(\mathcal{T} \leftrightarrow (a \ge b));$$

$$f(\mathcal{T} \leftrightarrow (a \sim b)) = g(\mathcal{T} \leftrightarrow (a \sim b)).$$

But since f is **T**-additive, we have

$$f(\mathcal{T}) = \underbrace{f\left(\mathcal{T} \leftrightarrow (a \leq b)\right)}_{=g(\mathcal{T} \leftrightarrow (a \leq b))} + \underbrace{f\left(\mathcal{T} \leftrightarrow (a \geq b)\right)}_{=g(\mathcal{T} \leftrightarrow (a \geq b))} - f\underbrace{\left(\mathcal{T} \leftrightarrow (a \sim b)\right)}_{=g(\mathcal{T} \leftrightarrow (a \sim b))}$$
$$= g\left(\mathcal{T} \leftrightarrow (a \leq b)\right) + g\left(\mathcal{T} \leftrightarrow (a \geq b)\right) - g\left(\mathcal{T} \leftrightarrow (a \sim b)\right) = g\left(\mathcal{T}\right)$$

(since g is T-additive). Thus, (10) is proven, and the induction step is complete.

Proof of Theorem 2.7 (sketched). We need to show that $\beta = \alpha \circ U$. We notice that every topology S on [n] satisfies

$$(\beta \circ Z) (\mathcal{S}) = \beta \left(\underbrace{Z(\mathcal{S})}_{=(-1)^{|[n]/\sim_{\mathcal{S}}|}\mathcal{S}} = (-1)^{|[n]/\sim_{\mathcal{S}}|} \underbrace{\beta(\mathcal{S})}_{=(-1)^{|[n]/\sim_{\mathcal{S}}|}\underline{1}_{K_{\mathcal{S}}}} \right) = (-1)^{|[n]/\sim_{\mathcal{S}}|} \underbrace{1}_{K_{\mathcal{S}}}$$

$$= \underbrace{(-1)^{|[n]/\sim_{\mathcal{S}}|} (-1)^{|[n]/\sim_{\mathcal{S}}|}}_{=1} \underline{1}_{K_{\mathcal{S}}}$$

$$= \underline{1}_{K_{\mathcal{S}}}$$

$$(12)$$

⁹This is because $\{(x,y) \in X^2 \mid \text{ neither } x \leq_S y \text{ nor } y \leq_S x\}$ is a proper subset of $\{(x,y) \in X^2 \mid \text{ neither } x \leq_T y \text{ nor } y \leq_T x\}$. (Proper because (a,b) or (b,a) belongs to the latter but not to the former.)

and

$$(\alpha \circ U \circ Z)(S) = \alpha \left(U \left(\underbrace{Z(S)}_{=(-1)^{|[n]/\sim_{S}|}S} \right) \right)$$

$$= (-1)^{|[n]/\sim_{S}|} \alpha \left(\underbrace{U(S)}_{=\sum\limits_{f \in \mathcal{U}(S)}f} \right)$$

$$= (-1)^{|[n]/\sim_{S}|} \sum\limits_{f \in \mathcal{U}(S)} \alpha (f). \tag{13}$$

We shall now show that both maps $\beta \circ Z: \mathbf{H_T} \to WQSym$ and $\alpha \circ U \circ Z: \mathbf{H_T} \to WQSym$ are **T**-additive.

Proof that the map $\beta \circ Z$ *is* **T**-additive: Let $n \in \mathbb{N}$. Let $T \in \mathbb{T}_n$. Let a and b be two distinct elements of [n]. In order to show that $\beta \circ Z$ is **T**-additive, we must prove that

$$(\beta \circ Z) (\mathcal{T})$$

$$= (\beta \circ Z) (\mathcal{T} \leftrightarrow (a \leq b)) + (\beta \circ Z) (\mathcal{T} \leftrightarrow (a \geq b)) - (\beta \circ Z) (\mathcal{T} \leftrightarrow (a \sim b)).$$
(14)

This rewrites as follows:

$$\underline{1}_{K_{\mathcal{T}}} = \underline{1}_{K_{\mathcal{T} \leftrightarrow \rho(a \le b)}} + \underline{1}_{K_{\mathcal{T} \leftrightarrow \rho(a \ge b)}} - \underline{1}_{K_{\mathcal{T} \leftrightarrow \rho(a \sim b)}}$$

(because of (12)). But this is precisely the claim of Lemma 2.11. Hence, (14) is proven. We thus have shown that the map $\beta \circ Z$ is **T**-additive.

Proof that the map $\alpha \circ U \circ Z$ *is* **T**-additive: Let $n \in \mathbb{N}$. Let $T \in \mathbb{T}_n$. Let a and b be two distinct elements of [n]. In order to show that $\alpha \circ U \circ Z$ is **T**-additive, we must prove that

$$(\alpha \circ U \circ Z) (\mathcal{T})$$

$$= (\alpha \circ U \circ Z) (\mathcal{T} \leftrightarrow (a \leq b)) + (\alpha \circ U \circ Z) (\mathcal{T} \leftrightarrow (a \geq b))$$

$$- (\alpha \circ U \circ Z) (\mathcal{T} \leftrightarrow (a \sim b)). \tag{15}$$

This is rather obvious if $a \leq_{\mathcal{T}} b$ 10. Hence, for the rest of this proof, we

$$\begin{array}{l} \left(\alpha \circ U \circ Z\right)\left(\mathcal{T}\right) \\ = \left(\alpha \circ U \circ Z\right)\left(\mathcal{T}\right) + \left(\alpha \circ U \circ Z\right)\left(\mathcal{T} \leftrightarrow \left(a \geq b\right)\right) - \left(\alpha \circ U \circ Z\right)\left(\mathcal{T} \leftrightarrow \left(a \geq b\right)\right). \end{array}$$

But this is obvious.

¹⁰*Proof.* Assume that $a \leq_{\mathcal{T}} b$. Then, Lemma 2.10 (c) yields $\mathcal{T} \leftrightarrow (a \leq b) = \mathcal{T}$ and $\mathcal{T} \leftrightarrow (a \sim b) = \mathcal{T} \leftrightarrow (a \geq b)$. Hence, (15) rewrites as

WLOG assume that we don't have $a \le_{\mathcal{T}} b$. Similarly, we WLOG assume that we don't have $b \le_{\mathcal{T}} a$. Now, using (13), we can rewrite the equality (15) as follows:

$$(-1)^{|[n]/\sim_{\mathcal{T}}|} \sum_{f \in \mathcal{U}(\mathcal{T})} \alpha(f)$$

$$= (-1)^{|[n]/\sim_{\mathcal{T} \leftrightarrow \rho(a \le b)}|} \sum_{f \in \mathcal{U}(\mathcal{T} \leftrightarrow \rho(a \le b))} \alpha(f) + (-1)^{|[n]/\sim_{\mathcal{T} \leftrightarrow \rho(a \ge b)}|} \sum_{f \in \mathcal{U}(\mathcal{T} \leftrightarrow \rho(a \ge b))} \alpha(f)$$

$$- (-1)^{|[n]/\sim_{\mathcal{T} \leftrightarrow \rho(a \sim b)}|} \sum_{f \in \mathcal{U}(\mathcal{T} \leftrightarrow \rho(a \sim b))} \alpha(f).$$

This can be rewritten further as

$$(-1)^{|[n]/\sim_{\mathcal{T}}|} \sum_{f \in \mathcal{U}(\mathcal{T})} \alpha(f)$$

$$= (-1)^{|[n]/\sim_{\mathcal{T}}|} \sum_{f \in \mathcal{U}(\mathcal{T} \leftrightarrow (a \le b))} \alpha(f) + (-1)^{|[n]/\sim_{\mathcal{T}}|} \sum_{f \in \mathcal{U}(\mathcal{T} \leftrightarrow (a \ge b))} \alpha(f)$$

$$- (-1)^{|[n]/\sim_{\mathcal{T}}|-1} \sum_{f \in \mathcal{U}(\mathcal{T} \leftrightarrow (a \sim b))} \alpha(f)$$

(because Lemma 2.10 (n) (applied to X = [n]) yields

$$\begin{vmatrix} [n] / \sim_{\mathcal{T} \leftrightarrow (a \le b)} | = |[n] / \sim_{\mathcal{T} \leftrightarrow (a \ge b)} | = |[n] / \sim_{\mathcal{T}} | \text{ and } \\ [n] / \sim_{\mathcal{T} \leftrightarrow (a \sim b)} | = |[n] / \sim_{\mathcal{T}} | -1). \text{ Upon cancelling } (-1)^{|[n]/\sim_{\mathcal{T}}|}, \text{ this simplifies } \\ \text{to } \end{vmatrix}$$

$$\sum_{f \in \mathcal{U}(\mathcal{T})} \alpha\left(f\right) = \sum_{f \in \mathcal{U}(\mathcal{T} \leftrightarrow (a \leq b))} \alpha\left(f\right) + \sum_{f \in \mathcal{U}(\mathcal{T} \leftrightarrow (a \geq b))} \alpha\left(f\right) + \sum_{f \in \mathcal{U}(\mathcal{T} \leftrightarrow (a \sim b))} \alpha\left(f\right).$$

But this follows immediately from Lemma 2.10 (m) (applied to X = [n]). Thus, (15) is proven. We have thus shown that $\alpha \circ U \circ Z$ is **T**-additive.

Now, it is easy to see that $(\beta \circ Z)(\mathcal{T}_u) = (\alpha \circ U \circ Z)(\mathcal{T}_u)$ for every packed word u^{-11} . Hence, Proposition 2.13 (applied to $V = \mathfrak{M}$, $f = \beta \circ Z$ and $g = \alpha \circ U \circ Z$) yields $\beta \circ Z = \alpha \circ U \circ Z$. Since Z is an isomorphism, we can cancel Z from this equality, and obtain $\beta = \alpha \circ U$. This proves Theorem 2.7. \square

$$(\alpha \circ U \circ Z) (\mathcal{T}_{u}) = \underbrace{(-1)^{|[n]/\sim_{\mathcal{T}_{u}}|}}_{=(-1)^{\max u}} \underbrace{\sum_{\substack{f \in \mathcal{U}(\mathcal{T}_{u})\\\text{(since } |[n]/\sim_{\mathcal{T}_{u}}|=\max u)\\\text{(since } \mathcal{U}(\mathcal{T}_{u})=\{u\})}}_{=\alpha(u)} \underbrace{\sum_{\substack{f \in \mathcal{U}(\mathcal{T}_{u})\\\text{(since } \mathcal{U}(\mathcal{T}_{u})=\{u\})\\\text{(since } \mathcal{U}(\mathcal{T}_{u})=\{u\})}}_{=(-1)^{\max u}} \underline{1}_{K_{u}} = \underline{1}_{K_{u}}$$

$$= (-1)^{\max u} \underline{1}_{K_{u}}$$

$$= (\beta \circ Z) (\mathcal{T}_{u}),$$

qed.

¹¹ *Proof.* Let u be a packed word. Applying (12) to $S = T_u$, we obtain $(\beta \circ Z)(T_u) = \underline{1}_{K_{T_u}} = \underline{1}_{K_u}$ (since Remark 2.2 yields $K_{T_u} = K_u$). But applying (13) to $S = T_u$ leads to

Proof of Theorem 1.4. Theorem 2.7 yields $\beta = \alpha \circ U$. Since both β and U are \mathbb{K} -algebra homomorphisms, and since U is surjective, this easily yields that α is a \mathbb{K} -algebra homomorphism. (Indeed, let $p \in WQSym$ and $q \in WQSym$. Then, thanks to the surjectivity of U, there exist $\mathcal{P} \in \mathbf{H}_T$ and $\mathcal{Q} \in \mathbf{H}_T$ satisfying $p = U(\mathcal{P})$ and $q = U(\mathcal{Q})$. Consider these \mathcal{P} and \mathcal{Q} . Since U is a \mathbb{K} -algebra homomorphism, we have $U(\mathcal{P},\mathcal{Q}) = \underbrace{U(\mathcal{P})}_{=n}\underbrace{U(\mathcal{Q})}_{=q} = pq$. Now,

$$\alpha \left(\underbrace{p}_{=U(\mathcal{P})} \right) \cdot \alpha \left(\underbrace{q}_{=U(\mathcal{Q})} \right)$$

$$= \underbrace{\alpha \left(U\left(\mathcal{P}\right) \right)}_{=(\alpha \circ U)(\mathcal{P})} \cdot \underbrace{\alpha \left(U\left(\mathcal{Q}\right) \right)}_{=(\alpha \circ U)(\mathcal{Q})} = \underbrace{(\alpha \circ U)}_{=\beta} \left(\mathcal{P} \right) \cdot \underbrace{(\alpha \circ U)}_{=\beta} \left(\mathcal{Q} \right)$$

$$= \beta \left(\mathcal{P} \right) \cdot \beta \left(\mathcal{Q} \right) = \underbrace{\beta}_{=\alpha \circ U} \left(\mathcal{P} \cdot \mathcal{Q} \right) \qquad \text{(since } \beta \text{ is a } \mathbb{K}\text{-algebra homomorphism)}$$

$$= (\alpha \circ U) \left(\mathcal{P} \cdot \mathcal{Q} \right) = \alpha \left(\underbrace{U\left(\mathcal{P} \cdot \mathcal{Q}\right)}_{=pq} \right) = \alpha \left(pq\right),$$

and this shows that α is a \mathbb{K} -algebra homomorphism.) Theorem 1.4 is proven.

Application: an alternating sum identity

As an application of Theorem 1.4 we can prove the following fact, which is analogous to [3, Corollary 4.8]:

Corollary 3.1. Let
$$n \in \mathbb{N}$$
. Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{R}^n$. Then,

$$\sum_{\substack{u \text{ is a packed word} \\ \text{of length } n; \\ \lambda \in K_u}} (-1)^{\max u} = \begin{cases} (-1)^n, & \text{if } \lambda_1, \lambda_2, \dots, \lambda_n \ge 0; \\ 0, & \text{otherwise.} \end{cases}$$

This will rely on the following equality in WQSym:

Proposition 3.2. Let ζ be the packed word (1) of length 1. Then, in WQSym, we have

$$\zeta^n = \sum_{\substack{u \text{ is a packed word} \\ \text{of length } n}} u.$$

Proof sketch. Induction on *n* (details are left to the reader).

Proof of Corollary 3.1. Let \mathbb{R}_+ denote the set of all nonnegative reals. Let $\zeta \in$ WQSym be the packed word (1) of length 1.

Consider the map α from Theorem 1.4. The definition of this map α yields

$$\alpha\left(\zeta\right) = \underbrace{\left(-1\right)^{\max\zeta}}_{=-1} \ \underline{1}_{K_{\zeta}} = -\underline{1}_{K_{\zeta}} = -\underline{1}_{\mathbb{R}_{+}}$$
(since $\max \zeta = 1$)

(since the definition of K_{ζ} yields $K_{\zeta} = \mathbb{R}_{+}$). Hence,

$$\left(\alpha\left(\zeta\right)\right)^{n} = \left(-\underline{1}_{\mathbb{R}_{+}}\right)^{n} = \left(-1\right)^{n} \underbrace{\left(\underline{1}_{\mathbb{R}_{+}}\right)^{n}}_{=\underline{1}_{\mathbb{R}_{+}^{n}}} = \left(-1\right)^{n} \underline{1}_{\mathbb{R}_{+}^{n}}.$$

(this follows easily from the definition of multiplication on M)

But Proposition 3.2 yields

$$\zeta^n = \sum_{\substack{u \text{ is a packed word} \\ \text{of length } n}} u.$$

Applying the map α to both sides of this equality, we obtain

$$\alpha\left(\zeta^{n}\right) = \alpha\left(\sum_{\substack{u \text{ is a packed word} \\ \text{of length } n}} u\right) = \sum_{\substack{u \text{ is a packed word} \\ \text{of length } n}} \underbrace{\alpha\left(u\right)}_{=\left(-1\right)^{\max u} \underline{1}_{K_{u}}}$$

$$= \sum_{\substack{u \text{ is a packed word} \\ \text{of length } n}} \left(-1\right)^{\max u} \underline{1}_{K_{u}}.$$

Applying both sides of this equality to λ , we obtain

both sides of this equality to
$$\lambda$$
, we obtain
$$(\alpha (\zeta^n)) (\lambda) = \sum_{\substack{u \text{ is a packed word of length } n}} (-1)^{\max u} \underbrace{\frac{1}{K_u}(\lambda)}_{=\begin{cases} 1, & \text{if } \lambda \in K_u; \\ 0, & \text{if } \lambda \notin K_u \end{cases}}_{=\begin{cases} 1, & \text{if } \lambda \in K_u; \\ 0, & \text{if } \lambda \notin K_u \end{cases} }$$

$$= \sum_{\substack{u \text{ is a packed word of length } n}} (-1)^{\max u} \begin{cases} 1, & \text{if } \lambda \in K_u; \\ 0, & \text{if } \lambda \notin K_u \end{cases}$$

$$= \sum_{\substack{u \text{ is a packed word of length } n; \\ \lambda \in K_u}} (-1)^{\max u} .$$

Hence,

$$\sum_{\substack{u \text{ is a packed word} \\ \text{ of length } n; \\ \lambda \in K_u}} (-1)^{\max u} = \underbrace{(\alpha \left(\zeta^n\right))}_{=(\alpha(\zeta))^n} (\lambda) = \underbrace{(\alpha \left(\zeta\right))^n}_{=(-1)^n \underline{1}_{\mathbb{R}^n_+}} (\lambda) \\ = (-1)^n \underbrace{\underline{1}_{\mathbb{R}^n_+}}_{\text{ (since } \alpha \text{ is a } \mathbb{K}-algebra \\ \text{ homomorphism})}} = (-1)^n \begin{cases} 1, & \text{if } \lambda \in \mathbb{R}^n_+; \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} 1, & \text{if } \lambda \in \mathbb{R}^n_+; \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} (-1)^n, & \text{if } \lambda \in \mathbb{R}^n_+; \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} (-1)^n, & \text{if } \lambda_1, \lambda_2, \dots, \lambda_n \geq 0; \\ 0, & \text{otherwise} \end{cases}$$

(since the condition " $\lambda \in \mathbb{R}^n_+$ " is equivalent to " $\lambda_1, \lambda_2, \ldots, \lambda_n \geq 0$ "). This proves Corollary 3.1.

From Corollary 3.1, we can in turn derive the precise statement of [3, Corollary 4.8]:

Corollary 3.3. Let $n \in \mathbb{N}$. Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{R}^n$. Then,

y 3.3. Let
$$n \in \mathbb{N}$$
. Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{N}$. Then,
$$\sum_{\substack{u \text{ is a packed word of length } n;\\ \lambda \in K_u^{\circ}}} (-1)^{\max u} = \begin{cases} (-1)^n, & \text{if } \lambda_1, \lambda_2, \dots, \lambda_n > 0;\\ 0, & \text{otherwise.} \end{cases}$$

Here, for any packed word u of length n, we define the subset K_u° of \mathbb{R}^n in the same way as we defined K_u , but with the " \geq " sign replaced by ">".

Proof sketch. Pick a small $\varepsilon > 0$, and let $\lambda' := (\lambda_1 - \varepsilon, \lambda_2 - \varepsilon, \dots, \lambda_n - \varepsilon)$. If ε has been chosen small enough (say,

$$0 < \varepsilon < \frac{1}{n} \min \left\{ \sum_{i \in I} \lambda_i \mid I \subseteq [n] \text{ satisfying } \sum_{i \in I} \lambda_i > 0 \right\}$$

), then any packed word u of length n will satisfy $\lambda \in K_u^{\circ}$ if and only if it satisfies $\lambda' \in K_u$, and we will have $\lambda_1, \lambda_2, \ldots, \lambda_n > 0$ if and only if $\lambda_1 - \varepsilon, \lambda_2 - \varepsilon, \ldots, \lambda_n - \varepsilon \geq 0$. Hence, Corollary 3.3 follows from Corollary 3.1 (applied to λ' and $\lambda_i - \varepsilon$ instead of λ and λ_i).

References

[1] Loic Foissy and Claudia Malvenuto, *The Hopf algebra of finite topologies and T-partitions*, arXiv preprint arXiv:1407.0476v2.

http://arxiv.org/abs/1407.0476v2

See https://darijgrinberg.gitlab.io/algebra/topologies-errata.pdf for unofficial errata.

[2] Frédéric Menous, Jean-Christophe Novelli, Jean-Yves Thibon, *Mould calculus*, polyhedral cones, and characters of combinatorial Hopf algebras, arXiv preprint arXiv:1109.1634v2.

http://arxiv.org/abs/1109.1634v2

[3] Richard Ehrenborg, Sophie Morel, Margaret Readdy, Some combinatorial identities appearing in the calculation of the cohomology of Siegel modular varieties, Algebraic Combinatorics 2, issue 5 (2019), pp. 863–878.

http://alco.centre-mersenne.org/item/ALCO_2019__2_5_863_0