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1. The main theorem

The purpose of this little note is to prove [2, Theorem 5.2] using the machinery
of [1]].

I shall use the notations of [1]] (except that I write WQSym instead of WQSym).
Here is a brief overview of these notations:

e We fix a field K.
e Welet N ={0,1,2,...} and N5o ={1,2,3,...}.
e Foreachn € IN, we let [n] denote the set {1,2,...,n}. In particular, [0] = @.

* A word means a n-tuple of positive integers for some n € IN. In this case,
the n is called the length of the word. A word w = (wq,wy,...,w,) is
identified with the map [n] — N, i — w;.

e Awordw = (w1, ws, ..., wy) is said to be packed if and only if {wq, wy,..., w,} =
[k] for some k € IN. In this case, the k is denoted by maxw. (Note that k is
the largest entry of w if w is nonempty.)
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For example, the word (3,1,2,1,3) is packed (with max(3,1,2,1,3) = 3),
and so is the empty word () (with max () = 0); but the word (3,1, 3) is not
packed.

e If w is any word, then the packing of w is the packed word Packw ob-
tained by replacing the smallest number that appears in w by 1 (as often
as it appears), replacing the second-smallest number that appears in w by
2 (as often as it appears), and so on. More formally, it can be defined
as follows: Write w as w = (wq,wo,...,wy). Let W = {wy,wy,..., wy}
be the set of all entries of w, and let m = |W|. Let ¢ be the unique in-
creasing bijection from W to [m]. Then, Packw is defined to be the word

(@ (w1), ¢ (w2),..., ¢ (wn))-

For example,
Pack (4,1,7,2,4,1) = (3,1,4,2,3,1) and Pack (4,2) = (2,1).
Also, Pack w = w for any packed word w.

* Welet WQSym denote the free K-vector space with basis (@), i a packed word-
We define a K-bilinear operation . (you're reading right: our symbol for
this operation is a period) on this vector space WQSym by setting

f8= ) h

h=(hy,hy,....hu+m) is a packed word of length n+m;
Pack(hy,hy,...hn)=f and Pack(h,1,hy42, Pintm)=8

for any two packed words f and g, where n and m are the lengths of f and
g. Equipping WQSym with this operation . as multiplication, we obtain a
K-algebra with unity () (the empty word). When we refer to the K-algebra
WQSym below, we shall always understand it to be equipped with this
K-algebra structure.

For example, in WQSym, we have

(1,1).(2,1) =(1,1,2,1) +(2,2,2,1) +(1,1,3,2) + (2,2,3,1) + (3,3,2,1) .

The K-algebra WQSym has various further structures — such as a Hopf al-
gebra structure, and an embedding into the ring of noncommutative formal
power series (see [2, §4.3.2], where WQSym is constructed via this embed-
ding, and where the image of a packed word u under this embedding is
denoted by M,;). We won’t need this extra structure.

Let me add a few more definitions!T]

LA set composition of a set X means a tuple (Xq, Xy, ..., X;) of disjoint nonempty subsets of X
such that XU X U--- U X = X.
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Definition 1.1. Let n € IN. Let u be a packed word of length n. Let r =
maxu. Define B; = u~! ({i}) for every i € [r]. (Thus, (By,By,...,B,) is a set
composition of [n]; it is what is called the “set composition of [n] encoded by
u” in [2].) Now, we define a polyhedral cone K, in R" by

k
Ky=<¢ (x1,x0,...,x0) €R" | Y ) x>0 forallk =1,2,...,r

Definition 1.2. For any two sets X and Y, let Map (X, Y) denote the set of
all maps from X to Y. Define a K-vector space 9t by M = @ Map (R", K)
n>0

(where each Map (R", K) becomes a K-vector space by pointwise addition
and multiplication with scalars). We make 9t into a K-algebra, whose
multiplication is defined as follows: For any n € IN, any m € IN, any
f € Map(R",K) and ¢ € Map (R" K), we define fg to be the ele-
ment of Map (R"™",K) which sends every (x1,x2,...,Xp4m) € R"™™ to

f (xll X2, ey x?l) g (xn—HI Xn42,+0 4y anrm)-

Definition 1.3. For every n € IN and any subset S of R", we define a map
15 € Map (R",K) C 9t as the indicator function of S (that is, the map which
sends every s € S to 1 and every s € R" \ S to 0).

Our goal is to show:
Theorem 1.4. The map

a : WQSym — 9,
U — (_1)maxu l[(u

is a IK-algebra homomorphism.

This is a stronger version of [2, Theorem 5.2]@ and a particular case of [2,
Theorem 8.1

2Notice that [2, Theorem 5.2] talks not about our map « : WQSym — 9, but rather about a
map P — WQSym where P is a certain subquotient of 9t (namely, the subalgebra of 9t
generated by 1y , taken modulo functions with measure-zero support). These two maps are
“in some sense” inverse (allowing us to derive [2, Theorem 5.2] from Theorem . I find
Theorem [1.4| the more natural statement.

Notice that [2] denotes by (Mu), s, packed wora the basis of WQSym that we call

(u)u is a packed word*
3At least, I suspect so — I have not checked all the details. I also suspect that the whole [2,
Theorem 8.1] can be obtained in a similar way as we prove Theorem below.
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2. The proof

We shall prove Theorem using a detour via the algebra Ht defined in [1}
Chapter 2]. We shall use the following notations from [1, Chapter 2]:

e If X is a set, then a topology on X is defined to be a family 7 of subsets of
X that satisfies the following three properties:

- Wehave g € T and X € T.
— The union of any number of sets in 7 is again a set in 7.

— The intersection of any finite number of sets in 7 is again a set in 7.

We will only use this concept in the case when X is finite; in this case, the
difference between “any number of sets in 7” and “any finite number of
sets in 7 is immaterial (since 7 itself must be finite), and therefore unions
and intersections play symmetric roles in the notion of a topology on X.

- If T is a topology on X, then the sets belonging to 7 are called the
open sets of T. The complements of these open sets (inside X) are
called the closed sets of T

e If X is a set, then a preorder on X is defined to be a binary relation < on
X that is reflexive and transitive (but, unlike a partial order, doesn’t need
to be antisymmetric). Both partial orders and equivalence relations are
preorders.

e If X is a set, and if < is a preorder on X, then an ideal of (X, <) means a
subset I of X that has the following property:

—Ificlandjc Xsatisfyi<j, thenje Il

e If X is a finite set, then there is a canonical bijection between {topologies on X}
and {preorders on X}. This bijection (sometimes called the Alexandrov cor-
respondence) proceeds as follows:

- If < is a preorder on X, then we can define a topology 7% on X by
T< = {ideals of (X,<)}.

We shall denote this topology 7~ as the topology corresponding to <.

- If 7 is a topology on X, then we can define five binary relations <7,
>7 and ~7 on X by setting

(a <7b) <= (each I € T satisfying a € I satisfies b € I);

(a >7b) <= (each I € T satisfying b € I satisfiesa € I);
(a ~7b) <= (each I € T satisfies the equivalence (a1 € I) <= (b€ I));
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(a<7b) < (a<ybbutnota >5b) <= (a <y bbutnota ~yb);
(a>7b) <= (a>7bbutnota <y b) <= (a>7bbutnota ~gb).

The three binary relations <7, >+ and ~7 are preorders on X, and
the relation ~7 is an equivalence relation (whence the quotient set
X/ ~7 is well-defined). The relations <7 and >7 are strict partial
orders. We shall refer to the relation <7 as the preorder corresponding

to 7.

These assignments of a topology to a preorder and vice versa are mutually
inverse: If < is a preorder on X, then <7 is precisely <. Conversely, if T
is a topology on X, then 7<_ is precisely T .

* For each n € IN, we let T, denote the set of all topologies on the set
n] ={1,2,...,n}.

e We let T denote the set || T,.
nelN

* If f is a packed word of length n € IN, then we define a preorder < on
the set [n] by setting

(a<pb) < (f(a) < (D).

Furthermore, if f is a packed word of length n € IN, then we let 7 be the
topology 7<, corresponding to this preorder <;. The closed sets of this

topology Ty are the sets f~1({1,2,...,i}) fori € {0,1,..., max f}.

e If P C N and n € N, then P (+n) shall denote the set {k+n | k € P}. (In
other words, P (+n) is the set P shifted right by n units on the number
line.)

e If T € T,and S € T), are two topologies (on the sets [n] and [m], respec-
tively) for some n € IN and m € IN, then we define a topology 7.5 € T,
on the set [n + m] by

TS={0OU(P(+n) | Oc Tand P € S}.

Thus, we have defined a binary operation . on T. This binary operation . is
associative (by [1, Proposition 3]), and the topology {@} € T is its neutral
element.

* We let Ht be the free K-vector space with basis T. We equip Ht with
a multiplication . that linearly extends the operation . on T (that is, the
restriction of the multiplication Ht to the basis T should be the operation
.on T). Thus, Ht becomes a K-algebra with unity {@} € T.
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The K-algebra Ht also has the structure of a Hopf algebra, but we shall not
need it, so we don’t define it here.
We shall also use the following notation from [1, Chapter 4]:

e If X is a set, and if 7 is a topology on X, then we set

P(T) = | | {surjective maps f : X — [p] such thatevery c € X and d € X
peN

satisfying ¢ < d satisfy f (x) < f (d)}.

Thus, if X = [n] for some n € IN, then all elements of P (7)) are packed
words of length n.

Next, we define a polyhedral cone for every 7 € T:

Definition 2.1. Let n € IN and 7 € T, (that is, let 7 be a topology on the set
[n] ={1,2,...,n}). Then, we define a polyhedral cone K7 in R" by

Kr = {(xl,xz,...,xn) e R" | Z x; >0 for all closed sets C of T} )
ieC

The following follows from the definitions:

| Remark 2.2. Let u be a packed word. Then, K;, = K., where 7, is as defined
in [1, §2.1].

Let us define a few more things:

Definition 2.3. Let X be a finite totally ordered set, and let 7 be a topology on
X. We define U (T') to be the set of all f € P (T) having the property that any
two elements i and j of X satisfying i < j must satisfy f (i) < f (j). Notice
that U (7)) C P (T). (We can call the elements of U (T) “strictly increasing
packed words” for 7.) (It can also be shown that £ (7) C U (T), where L (T)
is as defined in [1, Definition 15].)

Definition 2.4. We define a K-linear map U : Ht — WQSym by
um= Y f for every T € T.
)

feu(T

Remark 2.5. This map U is easily seen to be the map I'g 1) in the notation of
[1, Proposition 14]. Thus, U is a surjective Hopf algebra homomorphism.

Now, here is a rather trivial fact:
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Proposition 2.6. The map

‘3 :Hy — 90,
T s (-~

is a KK-algebra homomorphism from Ht = (Hr,.) to .

Proof of Proposition |2.6|(sketched). The proof boils down to the observation that if
nelN,meN,T €T,and S € T, then

Krs={(x1,x2, ..., Xngm) € R"™ | (x1,x2,...,%n) € K1
and (X401, Xn42, -+, Xntm) € Ks}.

Now, we claim:

Theorem 2.7. The diagram

Hr — WQSym

R

m

commutes. That is, we have p = a o U.
Before we prove this, we introduce some more notations.

Definition 2.8. We define a K-linear map Z : Hr — Hr by
Z(T) = (—1)l/~7l7 forevery n € Nand 7 € T,.
It is easy to see that Z is an involutive Hopf algebra isomorphism.

Definition 2.9. Let X be a finite totally ordered set, and let 7 be a topology
on X. Let a and b be two elements of X. We define three new topologies
T (a<bh), T (a>b)and T <P (a ~b) on X as follows:

T+@<b)y={0e€T | (aec0 = beO)};
T+@>b)={0€T | (hecO = ac0)};
T(a~b)={0€T | (a€0 <= be0)}.

(It is easy to check that these are actually topologies. Of course, 7 «f
(a>b)=T <, (b<a).)

Here comes a collection of simple properties of these three new topologies:
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Lemma 2.10. Let X be a finite totally ordered set, and let 7 be a topology on
X. Let a and b be two elements of X.
(a) We have

(T <P (a<b))N (T < (a=>D))

(T <P (a<b))U(T <P (a>D))
(b) We have
T+a~b)=(TP@<b)+(@a>b)=(T «P(a>b)) -, (a<bh).

@Ifa<rbthenT «P(a<b)=Tand T «P(a~b) =T < (a>D).
DIfb<7athenT «P(a>b)=TandT <P (a~b)=T < (a <b).
(e) If ¢ and d are two elements of X, then ¢ <7.,(,<p) 4 holds if and only if

(c<ydor (c<yaand b <7 d)).
(f) If c and d are two elements of X, then ¢ <7.5(,>p) d holds if and only if
(c<ydor (c<rbanda <7 d)).
(g) If c and d are two elements of X, then c ST@(aNb) d holds if and only if
(c<ydor (c<gjaand b <yd)or (c<ybanda <yd)).
(h) If ¢ and d are two elements of X, then ¢ <7.5(,.p) d holds if and only if

T <P (a~D) and (1)
T. (2)

(C <Tep(a<b) A OF € ST p(z>p) d) :

(i) If c and d are two elements of X, then ¢ <7 d holds if and only if

(C <Tep(a<p) @ and ¢ <7p(z>p) d) -
(j) If c and d are two elements of X, then ¢ ~7 ;<) d holds if and only if
(c~gpdor (b<yc<yaandb <yd<ya)).

(k) If c and d are two elements of X, and if we have neither a <+ b nor
b <7 a, then ¢ ~7 o (4~p) d holds if and only if

(c~ydor (c~yaandd ~7b) or (c~rbandd ~7a)).
(I) We have
P(T <« (@a<b)NP(T «(a>b)=P(T «f(a~D)) and
P(T - @<b)UP(T «P(a=>b))=P(T).

(m) Assume that neither a <7 b nor b <7 a. Then, the three sets
U(T «p(a<b)), U(T <P (a>1b)) and U (T «p (a ~ b)) are disjoint, and
their union is U (7).

(n) Assume that neither a <7 b nor b <7 a. Then,

‘X/ NTeP(aSb)‘ = ’X/ ~Top(azb)| = X/ ~T] and

’X/ Nﬂp(awb)‘ = X/ ~r| =1
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Proof of Lemma (sketched). Parts (a) and (b) are straightforward to check.

(c) Assume that a <7 b. Then, every O € T satisfies (a1 €T = beT).
Hence, T <P (a <b) = T by the definition of 7 <P (a < b). From Lemma
(b), we have 7 «P (a ~b) = (T <P (a <b)) <« (a>b) =T «P (a > D). Thus,

(& /
-

=T

Lemma (c) is proven.

(d) The proof of part (d) is similar to that of (c).

(e) <=: Assume that (c <7 d or (¢ <7 aand b <y d)). We need to check that
¢ <T.p(a<p) d holds. In other words, we need to check that every O € T
(a < b) satisfying ¢ € O satisfies d € O. So let us fix an O € T «P (a <))
satisfying c € O. We must prove that d € O.

We have O € T «f (a <b) C T (by the definition of 7 < (a <b)). Thus,
if c <7 d, then d € O. Hence, for the rest of this proof, we WLOG assume
that we don’t have ¢ <7 d. Thus, by assumption, we have ¢ <7 a and b <7 d.
Therefore, a € O (since c € O and ¢ <7 a). But O € T <P (a < b), and therefore
(a €O = be€O) (by the definition of 7 «f (a < b)), so that b € O (since
a € 0), and thus d € O (since b <7 d). This completes the proof of the <=
direction of Lemma (e).

—: Assume that ¢ <7.,(,<p) 4 holds. We need to check that
(c<rdor (c<yaand b <7 d)). We can WLOG assume that we don’t have
¢ <7 d. Then, we must prove that (c <7 a and b <7 d).

We don’t have ¢ <7 d. Hence, there exists a Q € T such that ¢ € Q but
d ¢ Q. Consider this Q. If we had (2 € Q = b € Q), then Q would belong to
T «f (a <b), which would yield d € Q (since ¢ <7.o(,<p) d and ¢ € Q), which
would contradict d ¢ Q. Hence, we cannot have (¢ € Q = b € Q). Thus,
aceQandb ¢ Q.

Let O € T be such that c € O. We shall prove that a € O. Indeed, assume the
contrary. Then, a ¢ O. Thus,a ¢ QNO, so that (a1 e QNO = be QNO).
Since QN O € T (because Q € T and O € T), this yields QNO € T «r (a <b).
Since we also have c € QN O (since c € Q and ¢ € O), this yieldsd € QN O
(since ¢ <7 p(,<p) 4), so thatd € QN O C Q, which contradicts d ¢ Q. This
contradiction proves that our assumption was wrong. Hence, 2 € O is proven.
Forget now that we fixed O. Thus we have shown that a2 € O for every O € T
which satisfies ¢ € O. In other words, ¢ <7 a.

Let O € T be such that b € O. We shall prove that d € O. Indeed, assume the
contrary. Then, d ¢ O. Thus, d € QU O (sinced € Qand d ¢ O). Butb € O C
QUO, so that (@€ QUO = be QUO). Since QUO € T (because Q € T
and O € T), this yields QUO € T «P (a < b). Since we also have c € QUO
(since ¢ € Q), this yields d € QU O (since c <Tp(a<h) d), which contradicts
d ¢ QU O. This contradiction proves that our assumption was wrong. Hence,
d € O is proven. Forget now that we fixed O. Thus we have shown that d € O
for every O € T which satisfies b € O. In other words, b < d.

We thus have shown that (¢ <7 a and b < d). This completes the proof of
the = direction of Lemma (e).
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(f) The proof of part (f) is analogous to that of (e).
(g) Let c and d be two elements of X. Then, we have the following logical
equivalence:

(C <Tee(a~b) d)

— (C <(Tp(a<h))-p(a=b) d) (by Lemma 2.10] (b))
(C <Tep(asp) 4 OF (C <Tep(a<p) b and a < 7<) d))
(by Lemma 2.10] (f))

< ((c<ydor (c<raand b <y d)) or
((c<rbor (c<raand b <y b)) and (a <y dor (a <yfaand b <7 d))))
(by Lemma (e), applied to each of the three inequalities)

< (c<ydor (c<yaand b <yd) or (c <rbanda <y d))
(after simplifying using the transitivity and reflexivity of <7).

This proves Lemma (g).
(h) This is just a rewriting of Lemma (g) using parts (e) and (f).
(i) =: This is clear.
<=: Assume that (c <Tp(a<p) 4 and ¢ <7 o(g>p) d). We need to show that

¢ <7 d. Indeed, assume the contrary.

We have ¢ <7< d. Thus, Lemma (e) yields that we must have
(c<rdor (c<yaand b <y d)). Since we assumed that ¢ <7 d does not
hold, this yields (¢ <y aand b <y d). Similarly, (c <7 band a <7 d). Thus,
¢ <7 b <7 d, which contradicts our assumption that not ¢ < d. This contradic-
tion completes the proof.

(j) We have ¢ ~7(4<p) d if and only if (c <Tep(a<k) d and d <7 o(,<p) c). We
can rewrite each of the two statements ¢ <7.,,<p) d and d <7.,(,<p) ¢ using
Lemma (e), and then simplify the result; we end up with Lemma G).

(k) Let ¢ and d be two elements of X. Assume that we have neither a <7 b nor
b <7 a. We have ¢ ~7_,(,~p) d if and only if (c <Tp(a~b) d and d < o(gup) c).
We can rewrite each of the two statements ¢ <7_,(,p) d and d <7, (zp) C using
Lemma (g), and then simplify the result (a disjunction with 9 cases, of which
many can be ruled out due to the assumption that neither a <7 b nor b <7 a);
we end up with Lemma ).

(1) Proof of P(T <P (a <b))NP(T «P(a>b)) = P(T «¢ (a~Db)): When-
ever f is a surjective map X — [p] for some p € IN, we have the following

10
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logical equivalence:

(feP(T+@<b)NP(T < (a>0)))

= (f €P(T ¢ (a <))

<=>(every c€X and deX satisfying c<7 o (,<p)d satisfy f(c)gf(d))

A (fEP(T ¢ (b <a)))

<:>(every ceX and deX satisfying c<7p(p<,)d satisfy f(c)gf(d))

= ((every ¢ € X and d € X satisfying ¢ <7.,(,<p) d satisfy f (c) < f (d ))
A <every c € X and d € X satisfying ¢ <7.,(5<4) d satisfy f (c) < f (d)))

<= | everyc € X and d € X satisfying <c <Tp(a<b) 4 OF ¢ STp(a>b) d)

J

e (CST«P(gwh)d)
(by Lemma 2.10] (h))

satisfy f (c) < £ (d))
= (every ¢ € X and d € X satisfying ¢ <7.(,p) d satisfy f (c) < f (d))
< (feP(T < (a~D))).

Thus, P (T < (a <b))NP(T <P (a > b)) =P (T <P (a ~ b)) is proven.

It remains to prove P (T «f (a < b)) UP (T «¢ (a>Db)) = P(T). We shall
achieve this by proving both inclusions separately:

Proof of P(T) C P(T < (a<b))UP(T «P(a>Db)): Let f € P(T). We
must prove that f € P (T <2 (a <b))UP (T <P (a >b)).

We WLOG assume that f (a) < f (b). We shall now show that f € P (T < (a <b)).
This will yield that f € P (T «f (a <b))UP (T «f (a > b)), and thus complete
this proof of P (T) C P (T «f (a <b))UP(T <P (a>b)).

Let c € X and d € X be such that ¢ <7.5,<p) d. In order to prove that
feP(T <, (a<b)), we must now show that f (¢) < f (d).

We have ¢ <75 (,<p) d. Due to Lemma (e), this yields that
(c <ydor (c <raand b <7 d)). In the first of these cases, f (c) < f (d) follows
immediately from f € P (T); thus, let us assume that we are in the second case.
Thus, ¢ <y aand b <y d. From f € P (T), we thus obtain f (c) < f(a) and
£ (b) < f (d). Hence,  (¢) < f (a) <  (b) < f (d), qed.

Proof of P (T <P (a <b))UP (T <P (a> )) C P (T): We now need to show
that P (7T < (a <b))UP (T «(a>b)) CP(T ) To do so, it is clearly enough
to prove P(T <« (a<b)) C P(T) and P(T «f (a>b)) C P(T). We shall

11
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only show the first of these two relations, as the second is analogous. Let f €
P (T <P (a<Db)). Then, every c € X and d € X satisfying ¢ <7.o(,<p) d satisfy
f(c) < f(d). Hence, every c € X and d € X satisfying ¢ <7 d satisfy f (c) <
f (d) (since every ¢ € X and d € X satisfying ¢ <t d satisty ¢ <7.,(,<p) d (due
to Lemma (e))). In other words, f € P (T). Since this is proven for every
f e P(T «r (a <D)), we thus conclude that P (T «p (a < b)) CP(T).

The proof of Lemma (1) is thus complete.

(m) It is clearly enough to prove the three equalities

U(T +(a<b)) ={feU(T) | fla) <f(b)}; 3)
U(T e (a~b)) ={feU(T) | fa)=f(b)}; (4)
U(T e (azb)) ={feU(T) | f(a)>f(b)}. (5)

We shall only check the first two of these three equalities (since the third one is
analogous to the first).

Let us first check that 4 <7.,,<p) b. Indeed, it is clear from the definition of
T <P (a <) that a <7.p(,<p) b. Thus, in order to prove that a <7_(,<p) b, we
must only show that we don’t have b <7_o(,<p) a. To achieve this, we assume
the contrary. Lemma (e) (applied to ¢ = b and d = a) thus yields that
(b<7aor (b <raandb < a)). In either of these cases, we must have b <7 g,
which contradicts the assumption that neither a <7 bnor b <7 a. Soa <7_(,<p)
b is proven.

Next, we are going to prove (3) by showing its two inclusions separately:

Proofof U (T < (a < b)) C{feclU(T) | f(a)<f(b)}:LetgcU(T P (a<bh)).
Thus, g € P (T <P (a <b)), and every two elements i and j of X satisfying
I <7T.p(a<p) J must satisfy g (i) < g(j). Applying the latter fact to i = a and
j = b, we obtain g (a) < g (b) (since a <7.o(,<p) b)-

Moreover, g € P(T - (a<b)) C P(T ¢ (a<b)UP(T «P(a>D)) =
P (T) (by Lemma ).

Let now i and j be any two elements of X satisfying i <7 j. We shall show
that g (i) < g (j)-

Indeed, i <7 j, thus i <7 j and therefore i gT@(agb) j (due to Lemma
(e)). Assume (for the sake of contradiction) that j <7 .,<p) i. Then,
I ~T.p(a<p) j, and thus (by Lemma (), applied to ¢ = i and d = j) we
have (i ~7jor (b <yi<yaandb <7 j <y a)). But neither of these two cases
can occur (since i <7 j precludes i ~7 j, and since b <7 i <7 a contradicts
our assumption that not b <7 a). Hence, we have our contradiction. Thus,
our assumption (that j <7._o,<p) 1) was false. We therefore have i <7 ,<p) j
but not j <7.o,<p) i- In other words, i <7.o,<p) j. Thus, g (i) < g(j) (since
geU(T <P (a<b))).

Now, let us forget that we fixed i and j. We thus have shown that any two
elements i and j of X satisfying i <7 j satisfy g (i) < g (j). In other words, g €
U (T) (since we already know that g € P (7)). Thus, g is an element of U (7)
and satisfies g (a) < g(b). In other words, ¢ € {f e U(T) | f(a) < f(b)}.

12
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Since this is proven for every ¢ € U (T <P (a < b)), we thus conclude that
U(T P (a<b)) C{feU(T) | fa)<f(b)}
Proofof {f €U (T) | f(a) < f(b)} CU(T «r (a<b)): Let
}. g € U(T) and g(a) < g(b). From

g € {fcU(T) | f(a)<f(b)}. Then,
g €U(T), weobtaing € P (7).

Let now ¢ € X and d € X be such that ¢ <7.,,<;) d. We now aim to show
that ¢ (c) < g (d).

Indeed, from ¢ <7.,(,<p) d, we obtain (¢ <y dor (c <yaandb <7d)) (by
Lemma (e)). In the first of these two cases, we obtain g (¢) < g (d) immedi-
ately (since g € P (7)), while in the second case we obtain

g(c) < g(a) (sincec <7aand g€ P(T))
<g(b) <g(d) (sinceb <rdand g€ P(T)).

Thus, g (c) < g (d) is proven in either case.

Now, let us forget that we fixed ¢ and d. We thus have proven that g (c) <
g(d) for any ¢ € X and d € X satisfying ¢ <7.,,<p) d. In other words, g €
P (T «p (a<b)).

Now, let ¢ € X and d € X be such that ¢ <7.5(,<) d. We now aim to show
that g (c) < g(d).

Indeed, from ¢ <7.p(,<p) d, we obtain ¢ <7_o(,<p) d, and thus
(c<ydor (c<raand b <7 d)) (by Lemma [2.10| (¢)). In the second of these
two cases, we have

g(c) <gl(a) (sincec <jaand g€ P (7))
<g(b) <g(d) (sinceb <rdand g€ P(T)).

Thus, g (c) < g (d) is proven in the second case. We thus WLOG assume that we
are in the first case. That is, we have ¢ <7 d. If c <7 d, then we can immediately
conclude that g (c) < g(d) (since g € U (T)). Hence, we WLOG assume that
we don’t have ¢ <7 d. Thus, ¢ ~7 d (since ¢ <7 d), so that d <7 c¢. Hence,
(d<ycor (d<yaand b <7 c)), so that Lemma (e) (applied to d and ¢
instead of ¢ and d) yields d <7_,(,<;) ¢. But this contradicts ¢ <7.(,<p) 4. Thus,
we have obtained a contradiction, and our proof of g (¢) < g(d) is complete.

Now, let us forget that we fixed c and d. We thus have proven that g (c) < g (d)
for any ¢ € X and d € X satisfying ¢ <7,<p) d. In other words, ¢ €
U(T <P (a<b)) (since g € P(T <P (a <b))). Since this is proven for every g €
{f eU(T) | f(a) < f(b)}, wethusconcludethat {f e U (T) | f(a) < f(b)} C

U(T <P (a<b)).

Combining U (T <P (a < b)) C{f €U (T) | f(a) < f(b)} with
{F€UT) | fla) < f(b)} CUCT = (a < b)), we obtain @)

Let us next check that 4 ~7_,<p) b. Indeed, it is clear from the definition of
T <P (a~Db) that a <Tep(a~b) b and that b <Teo(a~b) O- Combining these, we
obtain a NT«—P(aNb) b

13
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Next, we are going to prove (4) by showing its two inclusions separately:
Proof of U(T <P (a~b)) C{fcU(T) | f(a)=f(b)}: Letg €U (T P (a~Db)).
Thus, g € P (T <P (a~ b)), and every two elements i and j of X satisfying
I <T.p(a~p) j Must satisfy g (i) < g (j). Wehavea ~7 o,y band g € P (T «P (a ~ b));
thus, g (a) = g (D).

Moreover,

QEP(T «,(a~b)=P(T P (a<b)NP(T «(a>Dh))

(by Lemma [2.10] (1))
CP(T ¢ (a<b) SP(T ¢ (a<b)UP(T ¢ (a>b))=P(T)

(by Lemma m).

Now, let i and j be any two elements of X satisfying i <7 j. We shall show
that g (i) < g (j)-

Indeed, i <7 j, thus i <7 j and therefore i <Tep(a~b) j (due to Lemma
(g)). Assume (for the sake of contradiction) that j <7.o,~p) i Then,
i ~Tp(a~b) J, and thus (by Lemma (k), applied to ¢ = i and d = j)
we have (i ~yjor (i~yaandj~gb) or (i ~ybandj~7 a)). But neither of
these three cases can occur’l Hence, we have our contradiction. Thus, our as-
sumption (that j <7.,,.p) i) was false. We therefore have i <75 j but
not j <rog~p) i In other words, i <7.o,~p) j. Thus, g(i) < g(j) (since
g§EU(T < (a~D))).

Now, let us forget that we fixed i and j. We thus have shown that any two
elements 7 and j of X satisfying i <7 j satisfy ¢ (i) < ¢ (j). In other words, g €
U (T) (since we already know that g € P (7)). Thus, g is an element of U (7)
and satisfies g (a) = ¢ (b). In other words, ¢ € {f e U(T) | f(a)=f(b)}.
Since this is proven for every ¢ € U (T «f (a ~ b)), we thus conclude that
U(T ¢ (a~b)) C {f€UT) | f(a)=f (b))

Proof of {f € U(T) | f(a) = f(B)} CU(T ¢ (a~b)): Let
ge{feld(T) | f(a)=f(b)}. Then, g € U(T) and ¢ (a) = g(b). From
g €U (T), weobtain g € P (7).

Let now ¢ € X and d € X be such that ¢ <7, d. We now aim to show
that ¢ (c) < g (d).

Indeed, from ¢ STeP(awb) d, we obtain
(c<ydor (c<yaand b<yd) or (c<ybanda<yd)) (by Lemma (g).
In the first of these three cases, we obtain g (¢) < g (d) immediately (since g €
P (T)). In the second case, we obtain

g(c) <gl(a) (sincec <jaand g € P (7))
=g¢(b) < g(d) (sinceb <y dand g€ P (T)).

“Indeed, the first case (i ~7 j) is precluded by the fact that i <7 j. The second case (i ~7 a
and j ~7 b) cannot occur since it would lead to a ~7 i <7 j ~7 b, which would contradict
the assumption that we have neither a <7 b nor b <7 a. The third case (i ~7 b and j ~7 a)
cannot occur for a similar reason.

14
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In the third case, we obtain

g(c) <g(b) (sincec <y band g€ P (7))
=g(a) <g(d) (sincea <y dand g€ P (T)).

Thus, g (¢) < g (d) is proven in either case.

Now, let us forget that we fixed ¢ and d. We thus have proven that g (c) <
g(d) for any ¢ € X and d € X satisfying ¢ <7.5(,p) d. In other words, g €
P (T «p (a~Db)).

Now, let ¢ € X and d € X be such that ¢ <7.5(4~p) 4. We now aim to show
that g (c) < g(d).

Indeed, from ¢ <7 p(;p) d, we obtain ¢ <7 o(,.p) d, and thus
(c<rdor (c<yaand b<7d) or (c<ybanda<yd)) (by Lemma (g).
We study these three cases separately:

e Assume that we are in the first case, i.e., we have ¢ <7 d. Then, ¢ <7 d
(since otherwise, we would have d <7 ¢, and therefore d <Tp(a~b) € (by
Lemma (), which would contradict ¢ <7.(,4) d). Hence, g(c) <
g (d) (since g € U (T)).

e Assume that we are in the second case, i.e., we have (¢ <7 aand b <y d).
Then,

g(c) <gl(a) (sincec <jaand g€ P (7))
=g(b) <g(d) (sinceb <y dand g€ P (T)).

If at least one of the strict inequalities ¢ <7 a or b <7 d holds, then we
can strengthen this to a strict inequality g (¢) < g (d) (because g € U (T)),
and thus be done. Hence, we WLOG assume that none of the inequalities
¢ <y aorb <y dholds. Thus, ¢c ~7 aand b ~7 d. Hence, ¢ ~7(,~p) 4
and b T p(a~b) d (by Lemma (k)), so that ¢ T p(a~b) a T p(a~b)
b ~7 o(a~p) d, which contradicts ¢ <7 (;~p) d. Hence, we are done in the
second case as well.

e The third case is similar to the second case.

Thus, our proof of g (¢) < g (d) is complete in each case.

Now, let us forget that we fixed ¢ and d. We thus have proven that g (c) < g (d)
for any ¢ € X and d € X satisfying ¢ <7.,;~p) d. In other words, g €
U(T «p (a~Db)) (since g € P(T <P (a~b))). Since this is proven for every g €
{felU(T) | f(a)=f(b)}, wethusconcludethat {f €U (T) | f(a)=f(b)} C
U(T <P (a~Db)).

Combining U (T P (a~ b)) C{f€U(T) | f(a)=f(b)} with
{feU(T) | f(a)=f(b)} CU(T «r (a~Db)), we obtain ().

Now, our proof of Lemma (m) is complete.

15
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(n) If ¢ and d are two elements of X, then ¢ ~75(,<p) 4 holds if and only if
(c~rdor (b<yc<yaandb <yd<ya))

(according to Lemma (§)). Since (b <7c<yaandb <7d <7 a) cannot
hold (because of our assumption that not b <7 a), this simplifies as follows: If c
and d are two elements of X, then ¢ ~7_5(,<p) d holds if and only if ¢ ~7 d. Thus,

the equivalence relation ~7_o(,<p) is identical to ~7. Hence, | X/ ~7pu<p)| =

| X/ ~|. Similarly,

X/ NTeP(aZb)} = |X/ ~7|. Thus,
‘X/ ~Tep(a<b)| = ‘X/ NTw(azb)‘ = |X/ ~7| is proven. It remains to show
’X/ ~Tep(anb)| = X/ ~7] =1

Lemma [2.10] (k) yields the following: If ¢ and d are two elements of X, then
¢ ~Tp(a~b) 4 holds if and only if

(c~rdor (c~yaandd ~7b) or (c~rbandd~7a)).

In other words, two elements of X are equivalent under the equivalence relation
~T(a~p) if and only if either they are equivalent under ~, or one of them is
in the ~7-class of a while the other is in the ~7-class of b. Thus, when passing
from the equivalence relation ~7 to ~7.o(4p), the equivalence classes of 4 and
b get merged (and these two classes used to be separate for ~, because of our
assumption that neither 2 <; b nor b <7 a), while all other equivalence classes
stay as they were. Thus, the total number of equivalence classes decreases by

1. In other words, | X/ ~Tp(anb)| = | X/ ~7| —1. This completes the proof of
Lemma (n). O

Lemma 2.11. Let n € N and 7 € T,. Let a and b be two elements of [n].
Then,

lKT = lKTeP(agb) T lKTeP(ﬂZb) B lKT“P(“Nb).

Proof of Lemma It is clearly enough to prove that

K7 = K7 pa<h) VKT p(azp) (6)

and
K7 ptamb) = KTp(a<t)y Y KT (a>p)- (7)
Before we start proving these statements, let us rewrite the definition of Ks for

any topology S on [n]. Namely, if O is a subset of [n], then we define a subset
KO of R" by

KO:{(xl,xz,...,xn)ElR” | Z XiZO}.

ie[n\o

16
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It is now clear that any topology S on [n] satisfies

Ks = () Ko. (8)
Oes

(Indeed, this is just a restatement of the definition of Ks, since the closed sets of
S are the sets of the form [n] \ O with O being an open set of S.)

Proof of (6): From (8), we obtain K = (| Ko and K7pa<p) = N Ko
OeT N O€eT p(a<b)
and K7 p(z>p) = N Ko. Thus,
B O€eT «r(a>b)
Krooa<o)y N Kropazpy = N Kol|n N Ko
O€T «P(a<b) O€T p(a>b)
= ﬂ KO - ﬂ Ko
O€T (a<b) O€T «p(a>b)

— ﬂ Ko
O€(T«p(a<b))U(T <p(a>Db))

= ) Ko (by @)

OeT
= K.

This proves (6).

Proof of : It is easy to see that Ky o(u<p) € Kyop(am) ﬂ and similarly
Kroo(a>b) & Krep(amp)- Combining these two relations, we obtain Ky o;<p) U
Kro(a>p) © K7p(a~r)- Hence, in order to prove @), it remains to show that
K7 o(amp) © K7rp(a<n) Y K7 cp(ap)- So let us do this now.

Let y € Ky p(gp)- Our goal is to show that y € Ky p(,<p) U K7p(a>p)- In fact,
assume the contrary. Then, y € K7p,<p) and y € Kyoo(z>p)-

We have y & Krooa<p) = 5 Tﬂ( i Ko (by ). Hence, there exists a P €
e «P(as

T «P (a <b) such that y ¢ Kp. Similarly, using y ¢ K1.o(,>5), we can see that
there exists a Q € T « (a > b) such that y ¢ K. Consider these P and Q.
Wehave P € T <« (a<b)={0€T | (1€0 = beO)}. Thus, P € T

SProof. Indeed, yields (T «P (a<b))N(T «P(a>b)) = T <« (a~b), so that T «P

(a~b) € T «f (a<b). Now, from (8), we obtain Ky p,<p) = N Ko and
B O€T «pP(a<b)

K’T<—P(a~b) = ﬂ Ko. Thus,

O€eT«P(a~b)

Kreps = (1 KoS (1 Ko (since T <P (a ~b) C T <P (a < b))
O€T «P(a<h) O€T «P(a~b)

= K7 p(amb)s

ged.

17
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and (1€ P = b€ P). But we donothave (€ P => acP) [| Hence,
a¢ Pandb e P (since (ae P = be P)butnot (be P = a € P)).

We have thus shown that P € 7, a ¢ P and b € P. Similarly, we find that
QeT,b¢ Qanda € Q. Now, it is easy to see that PN Q € T « (a ~ b) E|
and PUQ €T «P (a~D)

Let us write y € R" in the form vy = (y1,¥2,...,yn). We have (y1,12,...,yn) =

y¢& Kp =4 (x,x2,...,00) €ER" | ¥ x;,>0,. Hence, Y y; < 0. Simi-

ie[n)\P i€n]\P
larly, from y ¢ Ko, we obtain ). y; <0.
i€[n\Q
We have
W1,y2 - ¥n) =y €Ky = [ Ko (by (@)
OeT «r(a~b)
C Kpng (since PNQ €T «r (a~D))
=< (x,x0,...,x) ER" | Z x; >0y,
i€[n]\(PNQ)
so that Y.,  y; > 0. The same argument can be applied to P U Q instead of
i€[n]\(PNQ)
PN Q, and leads to Yy y; > 0.
i€[n]\(PUQ)
But any two subsets A and B of [n] satisfy Lyitryi= L yvit L Vi

icA i€B i€ AUB i€ANB

®Proof. Assume the contrary. Then, (beP = a€P). Combining this with
(1€ P = beP),weobtain (1€ P <= becP). Hence, P € T <P (a ~ b) (by the defini-
tion of 7" <P (a ~ b)). Now, y € Ky p(gup) = N Ko (by 1?} But N Ko C Kp

O€eT «p(a~b) O€eT «pP(a~b)
(since P € T «f (a~ D)), so thaty € N Ko C Kp, which contradicts y ¢ Kp. This
O€eT «r(a~b)
contradiction proves that our assumption was wrong, ged.

’Proof. From P € T and Q € 7, we infer that PNQ € T. Also, a ¢ PNQ
(since a ¢ P), so that (@ € PNQ = bePNQ). Moreover, b ¢ PNQ (since b ¢
Q), and thus (be PNQ = a€ PNQ). Combined with (1€ PNQ = be PNQ),
this yields (1€ PNQ <= bePNQ). Thus, PN Q is an element of 7T satisfying
(aePNQ <= bePnNQ). Hence, PNQ € {O€T | €0 <= be0O)} =T <
(a ~ D), qed.

8Proof. From P € T and Q € 7, we infer that PUQ € T. Also, b € PUQ
(since b € P), so that (a € PUQ = be PUQ). Moreover, a € PUQ (since a €
Q), and thus (b€ PUQ = a€ PUQ). Combined with (a€ PUQ = be PUQ),
this yields (1€ PUQ <= bePUQ). Thus, PUQ is an element of 7T satisfying
(aePUQ <= bePUQ). Hence, PUQ € {O€T | €0 <= beO)} =T <P
(a ~ D), qed.

18
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Applying this to A = [n] \ P and B = [n] \ Q, we obtain

Y vit ) yi= ) yi + Y i
iel\P iellh\Q  ie(m\PO(NQ)  ie(r\PN(H\Q)
= Z Yi + Z Yi

i€[n]\(PNQ) i€[n]\(PUQ)
(since ([n] \ P)U([n]\ Q) = [n]\ (PN Q) and ([]\ P) N ([n]\ Q) = [n]\ (PUQ)).

Thus,
Yoo ow+ Y vi= Y v+t Y vi<o
ien\(PNQ)  iel\(PUQ)  ie[m\P  ie[m\Q
— ~———
<0 <0

This contradicts

Y, wi+t )Y, wi>0

iel\(PnQ)  iel\(PuQ)

>0 >0

This contradiction proves that our assumption was wrong. Hence, y € Ky p(,<p) U
K7 o(a>p)- Since we have proven this for every y € Ky p(;p), we thus conclude
that K7 p(ab) € K7eo(a<t) U KT op(ap)- This finishes the proof of (7).

Now that both (6) and (7) are proven, Lemma easily follows. O

Definition 2.12. Let V be a K-vector space. A K-linear map f : Hr — V is
said to be T-additive if and only if every n € IN, every 7 € T, and every two
distinct elements a and b of [n] satisfy

f(T)=f(T(a<b)+f(T(@zb)-f(T+(a~b)). ()

Proposition 2.13. Let V be a K-vector space. Let f and ¢ be two T-additive
K-linear maps Hy — V. Assume that f (7,) = g (7x) for every packed word
u. Then, f = g.

Proof of Proposition It is clearly enough to show that

f(T)=g(T) for every T € T. (10)

ger 1{(x,y) € X* | neither x <7 y nory <7 x}. We shall prove (10) by strong
induction over 1 (7). So we fix some 7 € T, and we want to prove (10), assum-
ing that every S € T satisfying h (S) < h (T) satisfies

f(8)=¢g(S). (11)

Let n € IN be such that 7 € T,. If there exist no two elements a and b
of [n] satisfying neither 2 <7 b nor b <7 a, then we have 7 = T, for some

For any topology T on a finite set X, we let 1 (7") denote the nonneE ative inte-
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packed word u, and this u satisfies f (7,) = g (7.) (due to the assumption of
the proposition); thus, follows immediately (since 7 = 7). Hence, we
can WLOG assume that such two elements a and b exist. Consider these two
elements. Of course, a and b are distinct.

If S is any of the three posets 7 «P (a <b), T «P (a>b) and T < (a~Db),
then 11 (S) < h(T) [| Hence, we can apply to each of these three posets.
We obtain

f(T <« (a<b)=g¢(T <P (a<Dh));
f(Tp(azb)=g(T < (azDb));
f(T P (a~b))=g(T «f(a~Db)).

But since f is T-additive, we have

f) =f(T@<b)+f(T «+(a=D)

\\_/
|
—
B
1
=
¢
=

-~ -~ -~

—g(TP(a<h)) —g(T<p(a>h))
=8(T P (a<b)+g(T <+ (azb))-g(T < (a~0b))=g(T)

(since g is T-additive). Thus, is proven, and the induction step is complete.

]
Proof of Theorem [2.7] (sketched). We need to show that f = a o U.
We notice that every topology S on [n] satisfies
(Bo2)(S)=p Z(S) = (-t p(s)
=(-1)l/~sls :(71)|[”]/NS‘1KS
(by the definition of Z) (by the definition of B)
= (=Dl ~sh_pyliml/~sly
N TS
21
= 1k, (12)

9This is because {(x,y) € X*> | neitherx <gynory <gx} is a proper subset of
x,y) € X2 | neither x < nory <7 x}. (Proper because (a,b) or (b,a) belongs to
y TY y=1 P &
the latter but not to the former.)
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and

(aoUoZ)(S)=a|U Z(S)
——

=(-1)l/~sls
(by the definition of Z)

_ (_1)|[”]/~s|a u(s)

feu(s)
(by the definition of U)

= (=)t Y w (). (13)
feU(s)
We shall now show that both maps foZ : Hr — WQSym and aoUo Z :
Ht — WQSym are T-additive.
Proof that the map B o Z is T-additive: Let n € IN. Let 7 € T,. Let a and b be

two distinct elements of [n]. In order to show that o Z is T-additive, we must
prove that

(BoZ)(T)
= (BoZ)(T «P(a<b))+(BoZ)(T «P(a=b))—(BoZ)(T «f (a~ b))(i4)
This rewrites as follows:

T lKﬂp(aZb) N lKqu(uNb)

(because of (12)). But this is precisely the claim of Lemma Hence, is
proven. We thus have shown that the map p o Z is T-additive.

Proof that the map oo U o Z is T-additive: Let n € IN. Let T € T,,. Letaand b
be two distinct elements of [n]. In order to show that a o U o Z is T-additive, we
must prove that

(wolloZ) (T)
=(aoUoZ)(T «P(a<b))+(aoUoZ)(T <P (a>Db))
—(@oUoZ)(T <P (a~Db)). (15)

lKT = lK'YV—P(aSb)

This is rather obvious if a <7 b m Hence, for the rest of this proof, we

10proof. Assume that a <7 b. Then, Lemma[2.10|(c) yields 7 «P (a < b) = T and T «P (a ~ b) =
T «p (a > b). Hence, rewrites as

(woloZ)(T)
= (woUoZ)(T)+ (xolUoZ) (T <P (a>b))— (xoUoZ) (T < (a>b)).

But this is obvious.
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WLOG assume that we don’t have a <7 b. Similarly, we WLOG assume that we
don’t have b <7 a. Now, using (I3), we can rewrite the equality as follows:

(_1)\["}/~T| Z a (f)

feu(T)
_ (_1)|[n}/~m:(agb)| Z a (f) + (_1)|[n]/~ﬂp(uzb)| Z o (f)
feU(Tr(a<b)) feU(Tr(a>b))
— (=nlrewnl Y ().
feU(Tr(a~b))

This can be rewritten further as

(_1)|["]/~T\ Z a (f)

feu(T)
=y ey a)
feU(Tr(a<lbh)) feU(Tr(a>D))
_(_1)\[”]/NT|—1 Y a (f)
feU(Tp(a~b))

(because Lemma (n) (applied to X = [n]) yields

1]/ ~revtazty| = 1] / ~7estazy| = 1] / ~7| and

‘[n] / NTHP(aNb)‘ = |[n] / ~7| —1). Upon cancelling (—1)‘[”]/NT|, this simplifies

to

L «f)= ), e+ ¥ wl)+ ), alf).
feu(T) feU(T «r(a<b)) feU(TrP(a>b)) feU(Tr(a~b))
But this follows immediately from Lemma (m) (applied to X = [n]). Thus,
is proven. We have thus shown that a o U o Z is T-additive.

Now, it is easy to see that (o Z) (7,) = (xoUoZ)(T,) for every packed
word u E Hence, Proposition (applied to V.= M, f = BoZ and
g =aolUoZ)yields poZ = aoUo Z. Since Z is an isomorphism, we can
cancel Z from this equality, and obtain f = a o U. This proves Theorem O

Proof. Let u be a packed word. Applying to § = Ty, we obtain (B0 Z) (T) = 1k, = Ik,
(since Remark 2.2)yields K7, = K,). But applying to S = 7, leads to

(@oUoZ)(T)= (=)~ Y a(f)
T fel(Tw)

:(7l)maxu

(since | (n]/~T, |:max 1) =a

u)
(since U(Ty)={u})
= (_1)maxu 14 (1,[) — (_1)maxu (_1)maxu lKu — lKu

:(71)maxulKu =1
(by the definition of &)

=(Bo2)(Tu),
ged.
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Proof of Theorem 1.4, Theorem 2.7 yields B = a o U. Since both  and U are K-
algebra homomorphisms, and since U is surjective, this easily yields that « is a
K-algebra homomorphism. (Indeed, let p € WQSym and 4 € WQSym. Then,
thanks to the surjectivity of U, there exist P € Ht and Q € Hry satisfying
p=U(P)and g = U(Q). Consider these P and Q. Since U is a K-algebra
homomorphism, we have U (P.Q) = U (P) U (Q) = pg. Now,

—— N —

.

=p =g
u p x q
N N
=U(P) =U(Q)
=a(U(P))-a(U(Q)) = (xol)(P)-(aol)(Q)
~— ~— —— ——
=(aol)(P) =(acl)(Q) =p =p
=B(P)-B(Q)= B (P.Q) (since B is a K-algebra homomorphism)
N
=aol

=(aol)(P.Q)=a|U(P.Q) | =a(pg),
——

.

=pq

and this shows that « is a K-algebra homomorphism.) Theorem [1.4]is proven.
O

3. Application: an alternating sum identity

As an application of Theorem we can prove the following fact, which is
analogous to [3, Corollary 4.8]:

Corollary 3.1. Let n € IN. Let A = (A1, Ay, ..., Ay) € R™ Then,

Y (e {(—1)”, if A1, Az, An > 0;
u is a packed word 0, otherwise.
of length n;

AEKy

This will rely on the following equality in WQSym:

Proposition 3.2. Let { be the packed word (1) of length 1. Then, in WQSym,

we have
"= Z u.

u is a packed word
of length n
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Proof sketch. Induction on n (details are left to the reader). O

Proof of Corollary 3.1} Let R denote the set of all nonnegative reals. Let { €
WQSym be the packed word (1) of length 1.
Consider the map « from Theorem The definition of this map « yields

a(f) = (=)™ 1x =—lg, = —1g,

=—1
(since max {=1)

(since the definition of K; yields K; = R). Hence,
(@(@)" = (-1g,)" = (-1)" (1r,)
——

=1Rn
(this follows easily from the
definition of multiplication on 90t)

n
=

But Proposition [3.2] yields

"= ) u.

u is a packed word
of length n

Applying the map « to both sides of this equality, we obtain

a (M) =u Y ul| = ) o (1)
u is a packed word u is a packed word N

of length n of length n :(*1)maxull<u

(by the definition of w)
max u
= Y ()™,

u is a packed word
of length n

Applying both sides of this equality to A, we obtain

(@@= 3 DT Lk ()
u is a packed word ~
of length n B 1, if A €Ky
|0, ifA¢K,
(by the definition of 1g,,)

_ y (pymai [ A EK;
0, ifA¢K,

u is a packed word
of length n

— Z ( -1 )max u
u is a packed word

of length n;
A€EKy,
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Hence,

()™= @(@) M= (@) A

u is a packed word h\’_n/ H’n_/
of length n; ) :‘(“(C)) =(-1) l]Rij_
€K, (since & is a K-algebra
homomorphism)
1, if A €eRY;
=" Igg (V) = (=D U
— 0, otherwise

1, if A eR%;
0, otherwise
(—1)", if A eR%;

{ 0, otherwise

(—1)” P if )\1,)\2,. . .,/\n Z O;
0, otherwise

(since the condition “A € R’.” is equivalent to “Ay, Ay, ..., Ay > 07). This proves
Corollary O

From Corollary 3.1, we can in turn derive the precise statement of [3| Corollary
4.8]:

Corollary 3.3. Let n € IN. Let A = (A1, Ay, ..., Ay) € R™ Then,

n .
Z (_1)maxu _ {(_1) ’ if A11A2r---1/\1’l > O/
u is a packed word 0, otherwise.
of length n;
AEK,

Here, for any packed word u of length 1, we define the subset K;, of R" in the
same way as we defined K, but with the “>" sign replaced by “>".

Proof sketch. Pick a small e > 0, and let A" := (A —¢,Ap —¢,..., Ay —€). If € has
been chosen small enough (say,

1 . o
0<e< Emm{ZAi | IC [n] satisfying ) _A; > O}

icl icl

), then any packed word u of length n will satisfy A € Kj, if and only if it satisfies
A € Ky, and we will have A1, Ay,..., A, > 0ifand only if Ay —¢,Ap —¢,..., Ay —
e > 0. Hence, Corollary [3.3| follows from Corollary [3.1| (applied to A’ and A; — ¢
instead of A and A;). O
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