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Errata and remarks (by Darij Grinberg)

The following are remarks I have made while reading the above-cited paper by
Frédéric Patras. I think it is an interesting and rather readable text (despite some
minor typos and tersely written proofs).

Some of the below remarks are just quick corrections of minor mistakes (at
least as far as I can tell; I can neither guarantee that these “mistakes” really
are mistakes, nor that my “corrections” are correct!). Some others are detailed
expositions of certain proofs which have been only vaguely sketched in Patras’s
paper. Finally, some others give alternative proofs for results in Patras’s paper
(sometimes inserting additional results into Patras’s paper, to be used as lemmata
later on).

Different remarks are separated by horizontal lines, like this:

Page 1068: I think “aux endomorphismes /*” should be “aux endomorphismes
Uk here.

Page 1069, Definition 1.1: There is nothing wrong here, but I think it would
be helpful to notice that what Patras calls “algebre de Hopf” is not the same as
what modern-day algebraists call a Hopf algebra. What Patras calls “algebre de
Hopf” is a kind of super-version of a graded bialgebra (not necessarily having an
antipode!); in constrast, what modern-day algebraists call a Hopf algebra is just a
bialgebra with antipode. (Nevertheless, I am going to use the words “Hopf algebra”
for what Patras calls “algebre de Hopf” in the following.)

Page 1070, fifth line of this page: Here, Patras write:

“Une bigebre graduée ou une algebre de Hopf est connexe si Hy = K.”

This definition is good when K is a field, but in the general case when K is a
commutative ring, it is not a reasonable definition of “connected”. Since Patras,
in his paper, always works over a field K, this is not a problem for him, but I still
prefer the following (in my opinion, better) definition of “connected”: A graded
bialgebra or Hopf algebra H is connected if and only if the map € |p,: Hy — K is
an isomorphism.
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Note that, when K is a field, this definition is equivalent to Patras’s definition,
because we have the following equivalence of assertions:

(Hy =2 K as K-vector spaces)
< (dim(Hy) =1)

(where dim V' denotes the dimension of any K-vector space V)
<= (dim (Ker (¢ |g,)) = 0)

since we know that the map € |g,: Hy — K is surjective (because
(€ |m,) (1) = €(1) =1 (by the axioms of a bialgebra, since H is a bialgebra)),
and thus (by the isomorphism theorem) K = Hy, Ker (€ |g,) , so that
dim K = dim (Hy,/ Ker (¢ |g,)) = dim Hy — dim (Ker (€ |g,)) ,
so that dim Hy = dim K + dim (Ker (€ |g,)) = 1 + dim (Ker (¢ |g,))

=1
and therefore the equation dim (Hy) = 1 is equivalent to dim (Ker (¢ |g,)) =0

< (Ker(¢|p,) =0) < (€ |n, isinjective) <= (€ |g, is bijective)
since we know that the map € |p,: Hy — K is surjective (because
(€ |u,) (1) =€ (1) =1 (by the axioms of a bialgebra, since H is a bialgebra)),
and thus this map € |y, is injective if and only if it is bijective

<= (€ |p, is an isomorphism).

Page 1070, two lines above Definition 1.2: Here, Patras writes:

“[...] ensemble £ (H) des endomorphismes linéaires de H |...]".

I don’t think that £ (H) denotes the set of all linear endomorphisms of H
throughout the text. It seems to me that £ (H) indeed denotes the set of all
linear endomorphisms of H when H is just a bialgebra (not graded); however,
when H is a graded bialgebra or an “algebre de Hopf” (I would translate this by
“Hopf algebra”, but as I said, this does not mean what people nowadays mean by
a “Hopf algebra”), £ (H) denotes the set of all gmdedE] linear endomorphisms of
H.

Note that I might be wrong about this, and £ (H) might indeed mean the set
of all linear endomorphisms of H throughout the text. In this case, however,
the homomorphism p, defined on page 1074 (“Notons p, ’homomorphisme de
restriction de £ (H) dans £ (H),.”) is not a simple restriction homomorphism (i.
e., it is not just given by p, (f) = f |é . for every f € L (H)), but instead requires

a more subtle definition: It must thiezrtl) be defined by

(pn(f):Zpiofopz' fOYallfeﬁ(H))7
i=0

LA linear map f : V — W between graded vector spaces V and W is said to be graded (or
compatible with the grading) if, for every n € N| it satisfies f (V},) C W,,.




where p; : H — H denotes the map which sends every element of H to its i-th
graded component (seen again as an element of H).

Page 1071, proof of Proposition 1.4: Here, Patras writes: “La deuxieme
partie de la proposition se ramene a établir ’égalité :

Al o Tl = H[(l]l) o (A[k})@ ,

qui est une conséquence a peu pres immédiate des axiomes de structure des bigebres
commutatives.” This is not totally precise. The identity A¥ oITH = H[(l]l) o (A[k])@
is true in any bialgebra, not only in commutative ones (it follows from the axioms of
a bialgebra by a double induction over k and [). However, deriving the “deuxiéme
partie de la proposition” from this identity requires the bialgebra to be commu-
tative. Here are the details of this derivation: We have (A[k])@ o Al = AllK
(this holds for any coalgebra, and can be proven by induction using the coasso-
ciativity and counity axioms of a coalgebr and II" o HEIIL = I (this holds
for any commutative algebra, and is easy to see - but doesn’t generally hold for
noncommutative algebras!), so that

pk o !
~—~— —~—
=JI*k=TIlklo [®ko AlRI=TI[klo Alk] =T*=TT[UoI®lcAlll=IIlloAl

Mo AFoml oAl =1 o I o (AM)® o Al = %) o Al
S—— (k)
=gl o(at)™ gl N

_ H[lk] o I®lk o A[lk] _ [*lk _ \I/lk,

and this proves the second part of Proposition 1.4.

Page 1072: A typo: “Notons ®* the n-iéme endomorphisme” should be “Notons
®* the k-iéme endomorphisme”.

Page 1073, proof of Proposition 2.3: There is nothing wrong to be corrected
here, but I don’t find the proof of this proposition as obvious as Patras does, so let
me write down this proof here:

Proof of Proposition 2.3. We can prove that any commuting z € M and y € M
satisfy log, z + log,y = log, (zy) (this follows from the well-known fact that
log(1+X)+log(1+Y) =log((14+ X)(1+Y)) in the ring K [[X,Y]] of formal
power series, using the fact that the K-representation A is unipotent of rank k).
Using this fact, we can prove (by induction over n) that every z € M and n € N
satisfy nlog, x = log,, (z").

2This proof can be found in [P3] (Lemma I1.8 of [P3], to be precise).




However, for every x € M, we have

and

H

k-1 k-1 k— (log, z)'
(Z ni. Ei) (z) = N ne - gk

i=0 =0 =0
(logk x )
=
k—1 ;
1 K3
= M =exp; | nlog, x
P 7! ———

=log, (z™)

(by the definition of exp, (nlog x))
= expy, (logy, (¢")) = (expy, ology) (z") = p (z").
—_—

(by Lemma 2.1)

k-1
Hence, for every x € M, we have (po ®")(z) = p(z) = (Z n' - ei) (x). Thus,

po®" = >"n"-e" This proves Proposition 2.3. O]
i=0

Page 1074, proof of Lemma 3.1: Let me add that the same argument which
Patras used to prove Lemma 3.1 can be used to prove a more general statement:

Lemma 3.11. Let p/, : Homg (H, H) — Homg (@ HZ,H) be the

map Wthh takes every linear map g € Homg (H, H) to the restriction
of g to @ H;.

For every map f € Homyg (H, H) satisfying f (1) = 1, we have
(o (F = 1) =0
(where 1 denotes the unity of the K-algebra £ (H), i. e., the map noe).

Proof of Lemma 3.11. Copy the proof of Lemma 3.1, replacing every occurence of
U* by f, and replacing every occurence of p, by p/,. This gives a proof of Lemma
3.11. O




Note that we replaced p, by p/, in the statement of Lemma 3.11 because we
didn’t want to require f to be graded. If f € Homg (H, H) is a graded map, then
pn (f) is “more or less the same” as p!, (f) (the only difference between the maps

pn (f) and p!, (f) is that the codomain of p, (f) is @ H;, whereas the codomain

=0
of pl, (f) is the whole H). However, if f is not a graded map, p, (f) is either not
defined or not identic with p!, (f) (depending on how p,, is defined: see my remark
about “Page 1070, two lines above Definition 1.2” above).
Here is a very useful consequence of Lemma 3.11:

Lemma 3.12. Let f € Homg (H, H) be a map satisfying f (1) = 1.

0o _ 1 *Nn
Then, for every « € H, the infinite sum Y (—1)""" U=1" (x) has
n

n=1
only finitely many nonzero terms.

J
Proof of Lemma 3.12. Let v € H. Sincex € H = @ H;, = | (@ HZ»), there

iEN jeN \i=0

J
exists some j € N such that z € @@ H;. Consider this j.
i=0

J
Recall that p) : Homg (H,H) — Homg (@ Hi,H> is the map which takes
i=0

J

every linear map g € Homyg (H, H) to the restriction of g to @ H;. Hence, for
i=0

every n € N, the map pf ((f —1)™) is the restriction of the map (f —1)™ to

j j
H;. Since x € @ H;, this yields that (o ((f —1)™)) (z) = (f —1)"" (x) for
=0 i=0
every n € N. But we also have g} ((f —1)™) = (o (f — 1))™ for every n € N
(since p} is a K-algebra homomorphism).

But Lemma 3.11 (applied to j instead of n) yields (p; (f — 1))*(]+1) = 0. Hence,
every integer n > j + 1 satisfies

(p,‘ (f — 1))*71 — (10/ (f o 1)>*((J'+1)+(n7(]’+1)))
- \(p; (f - 1))*(#1)1* (/?; (f - 1))*(”—(j+1)) _o.

-~

=0




Thus, every integer n > j + 1 satisfies

n+1 (f — 1)*”
nt1 (f — 1n>*n (z) — (1™ (o5 ((f _nl)*n)) (z)

fsince (2 (F 1)) (@) = (F = 1) ()

e BT @ e (7= 1)) = (7 1))

(-1)
- (-1)

()

—(-1)

n
0 n .
= (-1)"" = (since (o (f —1))™ =0 (due ton > j +1))
n
=0.
This proves Lemma 3.12. O

Page 1074: Two lines above Proposition 3.2, Patras writes: “c! est donc un
morphisme de E dans £ (H),”. It would be helpful to emphasize that “morphisme”
means a morphism of sets here, not a morphism of monoids (unless I am missing
something!).

Page 1074: Four lines above Proposition 3.2, Patras writes: “Nous noterons
dans la suite €/, 1 < i < n, [...]”. T think that considering the £/ only for 1 <i <n
(but not for ¢ = 0) is a bad decision, since it leads to several minor mistakes
afterwards. For example, the first identity on page 1077,

Pn (\Ijﬁ) = Pn (i CZ : 6i> )

is not completely correct, since the sum on the right hand is missing an ¢ = 0
term, but as long as € is not defined, this does not make much sense. For another
example, Definition 3.7 does not uniquely define ¥¢, because H is not the direct
sum of all HY unless we allow i to be 0.

I think the simplest way to clean up this mess is to define the maps &, for all
0 < i < n in the same as way as they are defined for all 1 < ¢ < n in the text.

o 0 (log, ) 1
This yields that ) () = ————

ol =7= 1 (where 1 denotes the unity of £ (H);
this is the map o ¢ (not the map I)). Thus, in particular, €0 (I) = 1, so that

el =2 () |u, (by the definition of €))
1, ifn=0;
=1|u,= .
0, ifn#0




Hence, for n # 0, we have ¢ = 0. This is why we don’t have care about e when
n # 0. However, for n = 0, we have e = 1.

Now we have the following (in my opinion, slightly better) version of Proposition
3.2:

Proposition 3.2’. For every n € N (including the case n = 0), we
have Uk = Z ki-etl.

Proof of Proposition 3.2’. Let n € N. Then, by the definition of ¥*  we have

k _ k _ k _ k
U = 0" |y, = (‘I’ |éHi> = | I | |5,
—ok(1)

i=

N————
=pn ()

= 0 (O (D)) |1, = (pn 0 ®F) ( |H_<Zk;’ )

since p, o ®* = Z k' - &' by Proposition 2.3 (applied to
=0

E,L(H),, pn, n+1, k instead of M, A, p, k and n)

=> K- e () lu, =Y K-e
j =0

(because this is
how e, was defined)

This proves Proposition 3.2". O
Proposition 3.2 is merely an obvious consequence of Proposition 3.2”:

Proof of Proposition 3.2. For every n > 0, we have

n

U = Z k' el (by Proposition 3.2)
i=0
=K. eg + k- e = k- i
S Z Z
=0 (since n#£0)
This proves Proposition 3.2. O

Page 1075, Definition 3.3: It would not harm to add here that e’ is under-
stood to be 0 if 7 > n. (Otherwise, ¢!, would not be defined at all for i > n.)




Page 1075, proof of Proposition 3.4: Patras’ proof of Proposition 3.4 con-
fines itself to one sentence: “Les deux identités résultent respectivement de 1.4 et
3.2, et de la définition 2.2 des projecteurs de poids 7.”

I don’t think this enough, however indirectly “résultent” is meant. It is indeed
1+ ]
i

from 3.2 is rather difficult. Here is how I would prove Proposition 3.4:

First, a rather standard combinatorial identity which we won’t prove:

%

easy to conclude e’ e/ = -€"7 from 1.4; however, concluding e’ oe/ = 5} e

Theorem 0.1. Let N € N. Then, the equalities

Y N
g (—1)* (k)kez() for every ¢ € {0,1,...,.N —1} (1)
k=0

and
kz: (1) (]]D N = (1) N (2)

are satisfied in Z.

(This Theorem 0.1 is, for example, the result of applying Theorem 1 of [DG1] to
R=17.)

This has, as a consequence, a kind of “polynomials that are zero at all nonneg-
ative integers must be identically zero” result for torsionfree abelian groups:

Theorem 0.2. Let R be a torsionfree abelian group. Let n € N. Let
(g, 1, ..., ) and (Bo, P, .-, Bn) be two (n + 1)-tuples of elements of R

n

such that every k € N satisfies Y k"™a,, = Y. k™By,. Then, o, = G,

m=0 m=0

for every m € {0,1,...,n}.

Proof of Theorem 0.2. We are going to prove that for every ¢ € {0,1,...,n}, we
have

Op—p = ﬁnfé' (3)

Proof of (3). We will prove by strong induction over ¢. A strong induction
does not need an induction base, so let us start with the induction step:
Induction step: Let L € {0,1,...,n} be arbitrary. Assume that is already
proven for all £ € {0,1,...,n} satisfying ¢ < L. Now we must prove for ¢ = L.
We have

Qp—y = Bn_y for every ¢ € {0,1,...,n} satisfying £ < L (4)

(since is already proven for all ¢ € {0,1,...,n} satisfying ¢ < L).




Let k € N be arbitrary. Then,

n n—L n n—L L—-1
Z k"o, = Z k"o, + Z kK", = Z k"o, + Z k", (5)
m=0 m=0 m=n—L+1 m=0 =0

(here, we substituted n — ¢ for m in the second sum)
and similarly

n

n—L L—1
D K B =Y K B+ > K B
m=0 =0

m=0
Subtracting @ from , we get

n n n—L L-1 n—L L—1
Z kmam - Z kmﬂm Z km&m + Z knif Qg - <Z kmﬂm + Z knéﬁné)
m=0 m=0 m=0 £=0 =~ m=0 =0

:ﬁn—é
(by (@,
since ¢<L)
n—L L—1 n—L L-1
= (> Fram+> k"—‘ﬁn_g> - (Z K™ B+ k”—‘ﬁn_z>
m=0 £=0 m=0 £=0
n—L n—L
=) K" = Y K"
m=0 m=0

Hence,

n—L n n n n
D Ko =) k"B =D k"B =D k"Bn=0.
m=0

m=0 m=0 m=0
——

In other words,

n—L n—L
> k=Y k"B (7)
m=0 m=0

Now, forget that we fixed k. We thus have shown for every k € N.

Now, L € {0,1,...,n} yields n > L, so that n — L > 0. Denote the nonnegative
integer n — L by N. Then, every k € N satisfies

N N
> ke =Y k"B
m=0 m=0

(this is just the identity (7)), rewritten using N =n — L). Thus,
N

2 (—1)* (]Z) ;V:Okmam _ é(_”k (Z) i .

m=0




However, we have

mioamé(l)k (]ID k= iagé(—nk @f) Kt

N-1 N N N N
— k 1 k N
= ZagZ(—l) (k:)k —|—ozNZ(—1) (k)k
(=0 k=0 ) k=0 J
—0 _(_1\N
by (D) o )
N-1
= Z a0 +ay (=1)Y Nl = ay (=D)V Nl = (=1)" Nlay
=0
=0
and similarly
N N X N
k m .
> (=1 (k) > K" Bn = (=1)" N1By.
k=0 m=0
Using these two equalities, we find
N N X N N N
0 My =3 (0 () e =S 0 () e v ®)
k=0 m=0 k=0 m=0
= (=) N8y,

so that
0= (=1 Nay — (~1)" N1y = (=)™ Nl (a ~ fv).
Since (—1)" N!is a nonzero integer, this yields 0 = ay — Sy (since R is torsionfree),
so that any = fBy. Since N = n — L, this rewrites as «,,_1, = §,_r. In other words,
is proven for ¢ = L. This completes the induction step. Thus, the induction
proof of (3] is complete.
Now, for every m € {0,1,...,n}, we have

Om = O (n—m) = Bn—(n—m) (by , applied to £ =n —m)
= fm-
This proves Theorem 0.2. O

Proof of Proposition 3.4. We prove Proposition 3.4 in several steps.
a) For every n € N, every k € N and every | € N we have

(Z k- e;> o (Z I e{;> = (k)" - €l (9)

=0

10



Proof of (9). Let n € N, k € Nand I € N. Then, ¥* o ¥ = U* by Proposition
1.4. This yields Uk o Wl = W (since Wk W! and UM are just the restrictions of
Uk Wl and U* to H,,).

Proposition 3.2" yields W% = >~ k?- ¢! . Proposition 3.2’ (applied to [ instead of
i=0

k) yields W!, = S"1"- el = 3" 17 ¢l (here we renamed the index 4 as j in the sum).
i=0 i=0

n

Proposition 3.2 (applied to kl instead of k) yields Wk = $° (kl)" - el Thus,

1=0
(Zki : e;> o (Zzi .eg) =Uho W, =Wk =" (ki) -,
i=0 §=0 i=0
%f_/ ﬁ_/
=0k =l

so that (9) is proven.
b) For every n € N, every [ € N and every i € {0, 1,...,n}, we have

el o (Z - e%) =1"-e. (10)
=0

Proof of (1()). Let n € N and | € N. For every k € N, we have

zn:km (ego (ilj-efl)> = < Y km.e§> o (izj-ez)
- f( i

since composition of K-linear maps is K-bilinear)

= ( Y ki-eﬁl>o(ilj~efl>
(

here, we renamed the index m as i in the first sum)

Z (kD) - e, (by @)

=) (k)" el
——

m=0 —pmm

(here, we renamed the index ¢ as m in the sum)

3

KT e,

[e=]

m=

Thus, Theorem 0.2 (applied to R = Endg (H,), am = €)' o (le-efl> and
j=0

B = 1™ - e™) yields that e™ o (Z 17 e%) = [™.e™ for every m € {0,1,...,n}.
i=0

11



. n . . . .
Renaming the index m as ¢ in this result, we obtain: e} o (Z - e%) =1['-e! for
j=0

every i € {0,1,...,n}. Thus, is proven.
c) For every n € N, every i € {0,1,...,n} and every j € {0, 1,...,n}, we have
e oel =0 -el (11)

n:

Proof of (11). Let n € N and i € {0,1,...,n}. For every k € N, we have

Zn:km(sjn: R A N e e N L
m=0

me{0,1,...,n} me{0,1,...,n}; me{0,1,....,n}; -0
L m=i P m#i (since m##i)
v .
=ki5!

=K 5+ > k"0=k.
-1 me{O,l;g:.,n};

=0

Now, for every k € N, we have

n

m 1 m __ 1 m m

E k enoen—eno<E k -en)
m=0

(since composition of K-linear maps is K-bilinear)

= e%o (ikﬂ -e%)
j=0

(here, we renamed the index m as j in the sum)

= kK e (by ([L0)), applied to k instead of 1)
= 5 kme,
m=0
= (Z k:m(an) el = Z k™ot el
m=0 m=0

Thus, Theorem 0.2 (applied to R = Endg (H,), a,, = €% oe™ and 3, = &, - ¢€)
yields that el oe™ = ¢! - ¢ for every m € {0,1,...,n}. Renaming the index m as
J in this result, we obtain: ¢ oel = 5} - et for every j € {0,1,...,n}. Thus, is
proven.

d) We have

ehoel =0 e for every i € N, j € Nand n € N. (12)

Proof of (19). Let i € N, j € N and n € N. We must have one of the following

three cases:

12



Case 1: We have i € {0,1,...,n} and j € {0,1,...,n}.

Case 2: We have i ¢ {0,1,...,n}.

Case 3: We have i € {0,1,....,.n} and j ¢ {0,1,...,n}.

In Case 1, we notice that follows directly from .

In Case 2, we find that €, is 0, and thus is trivially true.

In Case 3, both €/, and &} are 0 (in fact, 07 = 0 because i # j), and thus is
trivially true.

Hence, we have seen that holds in each of the three Cases 1, 2 and 3. This

proves ((12)).
e) For every i € N and j € N, we have ¢’ o ¢/ = §? - ¢'.
Proof. Let ©+ € N and j € N. The maps e’ and e’ are defined as graded endomor-
phisms of £ (H), whose n-th graded components are e!, and e/, (respectively) for
each n € N. Hence, in order to prove that e’ oe/ = 07 - ¢, it is enough to show that
e, o), = 0% - e, for every n € N. But this has already been shown in . Thus,

we are done proving that e’ o e’ = 47 - ¢".

f) For every i € N, we have

;i (log ])*i

where log I is to be understood as the result of applying the formal power series of
the logarithm to 7. (This result is well-defined, since for every = € H, only finitely
many terms of the formal power series (log I) (x) are nonzero.)

Proof. Let i € N. Also, let n € N be arbitrary.

13



By the definition of p,, every f € E such that f (1) = 1 satisfies

pn (log f)

m>1

— 1™
(since log f = Z (=)™t U= by the definition of the logarithm>
m
m>1
m>1 m
since p,, is a K-algebra homomorphism, and can
easily be seen to commute with reasonable infinite series

_ Z (_1)m+1 (pn — 1 + Z m+1 (pn (f) — 1)m

m>1; m>1; m
m<n+1 m2n+1 =0
(since Lemma 3.1 yields
> (pn(f)—1)"*1=0, so that
m=1 (pn(f)—1)"=0 (since m>n+1))
” — D" - (pu () = 1)"
_ _1 m+1 (pn (f) _1 m+1 _ o m—+1 n
(1) S =Y () )
m=1 m>1; m=1
m>n+1
= logn—i—l f

n " _ 1 m
(since log,. . f = Z (=1)"*! W by the definition of log, f) .

Applied to f = I, this yields p, (log I) = log, ., I.

However, every graded map ¢ : H — H satisfies g |y, = (g | .. > ra and
@D H;

=0

pn(g) =9 |, (because this is how p, was defined). Hence, every graded map
&
log I
g+ H — H satisfies g |u,= (g | ) |#,= Pn(9) |m,. Applied to g = <Og. " :
&8 i 2!
=pn(9)

3In fact, if we restrict the map g to H,, we get the same result as if we restrict the map g to
n

@ H; first and then restrict this restriction to H,,.
i=0

14



this yields

(log 1)
i

o ((loip“) . (enllog D)

|1,

il 1,

7! 7!

(log f>*i> _ (o (log f))“)

<since pn i1s a K-algebra homomorphism, so that p, <
(logn ny ) *
2!

Combined with

|u, (since p, (logI) =log, ., I) .

e |, =€, (by the definition of ei)
i log, 1 1 "
N =D My
—— 7!
(log, )"
- .
(by the deﬁzi'tion of €})
(log,, 1 1) i (log I)"

this yields € |z, = |-
il

il

Now forget that we fixed n € N. We thus have proven that every n € N satisfies

) 10 *7 ) 10 *7
e |u,= ( g' ) |i,,- Therefore, ' = ( g' ) . We have thus proven (13]).
! il ||

g) For every i € N and j € N, we have e x e/ = <Z ,j et

]

Proof. Let i € N and j € N. By |D we have e’ = (og' ) . By (13) (applied
, 1. L
. . -~ (logI)” . S .
to j instead of i), we have e/ = — By (13]) (applied to i + j instead of i),
7!
. (log )"t
we have e’/ = % Now,
(i 4 j)!
i § o _ (log[) (log.[)
~ ~ 7! ]!
(log1)™  (log I)"
Tl -l

iljl (i +j)!

i—l—j —eiti
a 1

15
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qed.
From the results of steps e) and g), we conclude that Proposition 3.4 holds. [

Page 1076, Corollary 3.6: Here is an alternative proof of Corollary 3.6 (with-
out using eigenspaces).

Before we even begin proving this corollary, let us record some lemmata that
could just as well have been stated (and proven) in Section 1:
a) First, an elementary lemma:

Lemma 1.5. For any two K-coalgebras C' and D, any two K-algebras

A and B, and any four K-linear mapsp: C — A,q: C - A,r: D — B
and s : D — B, we have

(p@r)+(ges)=(pxq) @ (r+s).

(Here, (p ® 7) * (¢ ® s) means the convolution of the two K-linear maps
pRr:CR®D - A Band¢®s:CD — A® B.)

This lemma is easy to prove (particularly if you are using Sweedler’s notation,
but even without it).

The following two lemmata are easy consequences of Lemma 1.5:

Lemma 1.6. For any two K-coalgebras C' and D, any two K-algebras

A and B, and any two K-linear maps f : C — A and g : D — B, we
have

(f @ Ltomg (0.8)) * (Ltomg (c,4) ® 9) = f®9 = (Litomg(c,4) @ 9)*(f © Litomy(D,5)) -

[ Here, both Homy (D, B) and Hompg (C, A) are made into K-algebras
by the convolution.

Lemma 1.7. For any two K-coalgebras C' and D, any two K-algebras

A and B, and any two K-linear maps f: C — Aand g : C — A, we
have

(f @ Ltomu(0,8)) * (9 ® Ltome(0.5)) = (f * 9) ® Lhomy (0,B)-
Here, Homg (D, B) is made into a K-algebra by the convolution.

By repeated application of Lemma 1.7, we get:

4Here and in the following, for any K-algebra U, we denote by 1y the unity of U.
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Lemma 1.8. (a) For any two K-coalgebras C' and D, any two K-
algebras A and B, any n € N and any K-linear map f : C' — A, we
have

(f & 1HomK(D,B)) "= f*n & ]-HomK(D,B)‘
Here, Homg (D, B) is made into a K-algebra by the convolution.

(b) For any two K-coalgebras C' and D, any two K-algebras A and B,
any n € N and any K-linear map g : D — B, we have

(1H0mK(C,A) ® g)*n = 1HornK(C,A) ® g*n
Here, Homg (C, A) is made into a K-algebra by the convolution.

Proof of Lemma 1.8. Lemma 1.8 (a) is proven by induction over n (and use of
Lemma 1.7 in the induction step). Lemma 1.8 (b) is completely analogous to
Lemma 1.8 (a) (the only difference is the order of the tensorands), so the proof is
analogous as well. The details of these proofs are left to the reader. O]

b) On the other hand, we recall that for every connected graded bialgebra A and
any K-linear map f: A — A satisfying f (1) = 1, the K-linear map log f : A — A
is well-defined. Namely, this map log f is defined by applying the formal power
series of the logarithm to f; in other words, log f is defined as the infinite sum

00 _ 1 *n

S (=) =0 (where 1 denotes the unity of the K-algebra £ (A), i. e., the
n=1 n

map noe). []

The following lemma is easy to check:

Lemma 1.9. For every connected graded bialgebra A and any two
K-linear maps f: A — Aand g: A — A satisfying f (1) = ¢g(1) =1
and fxg=gx* f, we have log (f * g) = log f +logg.

In fact, Lemma 1.9 follows from the identity log (1 + X) (1 +Y)) =log (1 + X )+
log (1 4+Y) in the ring K [[X, Y]] of formal power series.
c) Next, we have:

Lemma 1.10. For any two connected graded K-bialgebras A and
B and any K-linear map f : A — A satisfying f (1) = 1, we have

(f ®1gm) (1) =1 and

log (f ® 1z)) = (log f) ® Le(s).

5This sum is infinite, but it still gives us a well-defined map A — A, because for every = € A,

fo%e) _ 1 *N

the infinite sum > (—1)""" =1
n=1 n

3.12, applied to A instead of H) and thus has a well-defined value in A.

(z) has only finitely many nonzero terms (by Lemma

17



Proof of Lemma 1.10. Checking (f ® 15(3)) (1) = 1 is very easy and left to the
reader. Now let us prove that log (f ® 1z5)) = (log f) @ 15

Let n € N. Then, ((f—1z04) ® tome(s,p) = (f — 1L(A)) ™ ® Liomg (B,B)
(by Lemma 1.8 (a), applied to A, B and f — 1.4 instead of C', D and f) Since

1HomK(B,B) = 15(3), this rewrites as ((f — 15(,4)) ® 15( ) = (f — 15( )) ®1£(B)-
However,
J@lem) — leuaes =[f@lgm) — 1w @ los
———
=1r)®lz(p)
= (f = Lew) ® Legn)
and thus

(f @ 1lem) = leaen) = ((f = Llew) @ les) ™
(f = le) ™ @ 1o

Hence,

(f®lew —lepen)  (F—lew) ™" © los

n n

- %@15(3). (14)

*M

Forget that we fixed n. We thus have proved for each n € N.
By the definition of log (f ® 15(3)), we have

Z n+1 f & 1ll - 1/:(A®B))*n

log (f ® 1z())
n=1 N 11 s
(f = lew)
(by ()
=> =" #()) ® 1oy (15)
n=1

00 . 1 *70
On the other hand, by the definition of log f, we have log f = > (=1)""" (f—L(A)),

n=1 n
so that

(log f)®1zm) = (i (_1)n+1 M) ®1(m) = i (_1)n+1 M@HL(B)

n n

n=1 n=1

(here, we are using the fact that the tensor product commutes with convergent
infinite sums; this can be easily checked). Comparing this with , we find

log (f ® 1zm) = (log f) @ 1zm).
This proves Lemma 1.10. [
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We now have:

Lemma 1.11. For any two connected graded K-bialgebras A and B,
any K-linear map f : A — A satisfying f (1) = 1, and any K-linear
map ¢ : B — B satisfying g (1) = 1, we have (f ® g) (1) =1 and

log (f ® g) = (log f) ® 1z + 1) @ (logyg) .

Proof of Lemma 1.11. Again, checking that (f ® g)( ) = 1 is very easy. Let us

now prove that log (f ® g) = (log f) ® 1) + 1ea) ® (log g).
By Lemma 1.6 (applied to C = A and D = B), We get

(f @ Lhome(,8)) * (Liomx(4,4) @ 9) = @9 = (Ltome (4,4) ® 9) * (f @ Ltomy (B,5)) -

Since lgomg(a,4) = lzcay and lgom, (B,B) = lo(p), this rewrites as

(f@lep)*(ley®@g)=f@g=(lguy®g)* (f @1yp) -

By Lemma 1.10, we have (f ® 1z)) (1) = 1 and log (f® 15(3 ) = (log ) ®

B)- Similarly, (1[;(,4) ® g) (1) =1 and log (1[;( 4) ® g) =1z ® (log g).

Since (f @ 1em)) * (Lo @ 9) = (L) @ 9) * (f @ Len) )’ (f® Lem) (1) = 1
and (1£(A) ®g) (1) = 1, we can apply Lemma 1.9 to f® 1.p), lp4)®g and A® B
instead of f, gand A. Weobtam log ((f ® 1zm) ) (15 (4) ®g)) log (f ® 1, B))
log (15(,4) ® g). Hence,

log {29 =log ((f ® Lew) * (Lew) ©9))
=(f®lzm))*(1ea)®9)
= 108; (f® 11:(3))/—1-10% (1zea) ® 9)}
=(log f‘),®14<3> =15(A;@;(10g9)
= (log f) ® 1By + 1(a) @ (logg) .

This proves Lemma 1.11. ]
d) Now, finally, let us come to the alternative proof of Corollary 3.6:

Alternative proof of Corollary 3.6. Assume that H is a graded bialgebra. (The
case of H being a Hopf algebra is similar, in that the same argument works but we
have to interpret H ® H as a tensor product of graded superalgebras rather than
as a plain tensor product of graded algebras.)

For every 7 € N, let e}@ ; denote the i-th “projecteur de poids ¢” of the graded
bialgebra (or Hopf algebra) H ® H. Note that e’ still denotes the i-th “projecteur
de poids i” of the graded bialgebra (or Hopf algebra) H.

log 1) log [
By(appliedtoizl),wehaveelz(Og;“) = Of =log 1.
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Note also that every u € N satisfies

1 I *U
el — & (by (13]), applied to i = u)
u!
(el)*u

= (since log I = el),

so that
(e =ul-e" (16)
Denote by Iygy the identity map H ® H — H ® H. Then,

log | Inen | =log(I ® 1) = (log) @) + 1o @ (log 1)
=I®l —el —el
(by Lemma 1.11, appliedto A=H, B=H, f=1and g=1)
= ¢! & 1[;(1{) + 1£(H) (%9 el.
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Now, for every ¢ € N, we have

1 I *£
o = M (by (13), applied to ¢ and H @ H instead of i and H)
. *0
= tog (Tnen) = @t Lo @)
0 QL Hel) BN O R

= Lo Flean®e! . [l K (e=k)
==\ & (e'®lea) *(lecm®e)

(by the binomial formula)

1 (¢ . (=
> (k) (¢' @ Lean) ™ (Legn @ ¢')" ™

*
k:0 NS ~~ 7
*k *(l—k
:(61) ®1£(H) :1C(H)®(el> ( )
(by Lemma 1.8 (a), (by Lemma 1.8 (a),

applied to C=H, D=H, applied to C=H, D=H,
A=H, B=H, f=e' and n=k) A=H, B=H, g=e' and n=(—k)

(Ii) ((61)*k ® 1£(H)> * <1£(H) ® (61)*(€_k))

A3() (" i) (o )

-~

() e ()

(because Lemma 1.6 (applied to C=H, D=H, A=H, B=H, f:(el)*k and g:(el)*(eim)
yields ((61)*k®1HomK(H,H))*(1HomK(H,H)®<el)*(£_k))

:(el)*k®(e )*uz k) (1HomK(H 8 (e 1)*(@—@)*(<el>*k®1HomK(H’H)))

(since Loy = 1HomK(H,H))

() ) e (O

et =kl.ck = ((—Fk)l-etF
3 14 (by (T6), apphed tou=k) (by (16), applied to u=¢—k)
kKN —k)!
:lz@:L-(k:‘-ek)®((€—k:)'-ez_k) :i:e’f@eﬁ—k (17)
aspe—m | 2 |

Now, let us consider two cases:

Case 1: The bialgebra H is commutative.

Case 2: The bialgebra H is cocommutative.

Note that this is not really a case distinction, because in each of the two cases we
have to prove a different claim: In Case 1, we have to prove that the decomposition
of Theorem 3.5 endows H with a structure of a bigraded algebra, whereas in Case 2,

we have to prove that the decomposition of Theorem 3.5 endows H with a structure
of a bigraded coalgebra.
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First let us consider Case 1. In this case, H is commutative. Thus, the map
IT : H® H — H is an algebra homomorphism. Since II also is a coalgebra
homomorphism (by the axioms of a bialgebra) and a graded map (since H is a
graded bialgebra), this yields that II is a graded bialgebra homomorphism. Thus,
since the definition of e’ was functorial with respect to H, the diagram

HoH—"°" . goH

n| |n

H H

eu

is commutative for every v € N. In other words,
IMoefgy =e"oll for every u € N. (18)

Now, let 1 € N and 5 € N be arbitrary. By (applied to £ =i+ j), we have

+J
i+ k & piti—k
CHoH = E " ®e , so that

i+j i+j
i+j i J\ k i+j—k ] i+j— k i j
chopo (@) =) we (@) => ( e®e Jo (e ®e)
k=0 50 ~

:(ekoel)®(el+j*koej)

i+j
= E (ek o el) ® (elﬂ’]C o e])
——_—— —_——
k=0 L o
\ / :éicek :6;+J—kez+37k
= > (by Propgsition 3.4, gppliec'i to (by Proposition 3.4, applied to
k€{0,1,...,i+5} Kk and 7 instead of ¢ and j) i+j—k and j instead of i and j)
_ k k o siti—k iti—k
= E o;e"®a;, 7 e
ke{0,1,....i+j}
ke i ik i
— E Sfet @ 6 ek E ofet @ et
A
ke€{0,1,....i+5}; ke{0,1,....i+j}; -
N k=i _ ki (since ki so that 5+ =0)
TV ’ v
:5§ei®5;+j*iei+j—i
(since 1€{0,1,...,i+5})
= 0 T Y 0=e®e 40
] VJ —ed ke{0,1,....i+j};
:6j:1
—_———
=0
=e'®eé. (19)

Now, fix n € N and m € N. By the definitions of g and HT(,{), we have
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HY = ¢ (H,) and HY = ¢/ (H,,). Thus,
HY o HU = (H,) ® ¢’ (H,,) = (ei ®ej) (H, ® H,,)
——

n m
—
=ei(H,) =ei(Hm) :JJ@%HC£®@J')
(by [@9))

= (€ndn o (¢ ®e’)) (Ho @ Hy) = €y | (¢’ @ €') (Hy @ Hy)

(.

i (Ho)@ed (Hm)
= e ¢ (Hy) ® ¢/ (Hpn)
— ~——
(since €* is a graded map)  (since € is a graded map)
Hence,
I (HY @ HY)
Ny (oo ) = (Mocil,)  (Hao Hy)
ﬁ,._/
:el Jo
(by (T8), appliedlzo u=i+j)
= (e"V oll) (H, ® Hy,) = €™ (I (H, ® H,,))
ZHTL-FHm
(since II is the multiplication map)
= et (H, - H,,)
—_——
an+m
(since H is a graded algebra)
C e (Hpym) = HH) (since HH) was defined as ¢t (Hn+m)> .

Let us now forget that we fixed i, j, n and m. We have thus proved that
I1 (Hr(f) ®H,§,{)> C HD for every i € N, j € N, n € N and m € N. In other

n—+m

words, we have proved that the multiplication map II is bigraded. Due to this (and
to the trivial fact that 1y € Héo)), the decomposition of Theorem 3.5 endows H
with a structure of a bigraded algebra. Thus, we have proven our claim in Case 1.

Next, let us consider Case 2. In this case, H is cocommutative. Thus, the
map A : H — H ® H is a coalgebra homomorphism. Since A also is an algebra
homomorphism (by the axioms of a bialgebra) and a graded map (since H is a
graded bialgebra), this yields that A is a graded bialgebra homomorphism. Thus,
since the definition of e’ was functorial with respect to H, the diagram

H e H
N |
H®H——H®H
CHoH
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is commutative for every v € N. In other words,
Aoe" =efgp oA for every u € N. (20)

Now, fix n € N and ¢ € N. Since H is a graded coalgebra, we have A (H,,) C
P H,.®H, )= >, Hy,® H,_,, (since direct sums are sums).

m<n m<n
Let us notice that the direct sum &9 <H£{) ® ff;{?) is Well—deﬁnedﬂ More-
m<n, <1
over, it satisfies
D (H,(,{) ® Hffj}) = > HY ® HY)
men IS mam IS =e (Hm) :e:(im)

(by the definition of H,(,JL>) (by the definition of HT(LZ:TJR) )

(since direct sums are sums)

= > ¢ (Hn) @ (Hym).

m<n, j<i

(m.,j)EN? (m,j)eN?
&b (Hé{) ®H ) (because tensor products commute with direct sums). Thus, the di-
(m,j)EN?

rect sum P (H,(ﬁ) ®H ) is well-defined (because it is a partial sum of the well-defined
m<n, j<i

SProof. We know that H = @ HY, so that H ® H = < &P Hr(ﬂb)> ® H =

direct sum € (Hﬁﬁ) ® H)) Hence,
(m,j)EN?

whenever (z, ;) is a family of elements of H ® H such

m<n, j<i

that Y>> &m, = 0 and such that every m < n and j <1 satisfy
m<n, j<i

T € HY @ H, then (m)0cn i = (0)pen. j<i
As a consequence of this,

whenever (Zm,;),,<, j<; 18 a family of elements of H @ H such

that Y ,,; = 0 and such that every m < n and j < i satisfy
m<n, j<i

Tm,j € Hr(,{) ® H,(Lz__fn), then (xm»j)mgn, j<i = (O)mgn, j<i

is a family of elements of H ® H such that >> z,; =0

m<n, j<i

(because if (x"ij)mSn, j<i

and such that every m < n and j < 7 satisfy x,,,; € H,(,{) ® H,(f:g;% then every m < n
and j < 4 satisfy @, ; € Hfﬂb) ® H=D) C Hf,jl) ® H, and thus we can apply (21f) to obtain

n—m
~——
CH
(Tmg)men, j<i = (0)m<p, j<i)- In other words, the direct sum P (Hy(,{) ® Hr(f__fn)) is

m<n, j<i

well-defined, qged.
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However, by the definition of Hﬁf), we have H,(f) = €' (H,), so that

A (H(i)) =A (e (H,)) = (Aoe) (Hn) = (Eyen © A) (Hy)

n

:e7"H®HoA
(by (20), applied to u=i)

= eg{@H (A(Hy,)) C 63’{®H (Z H, ® Hn—m>

<
c Z Hm®@Hp—m mn

m<n

_ ( Fo k) (Z Hy Hn_m>
k=0 m<n

(since (applied to £ = i) yields €}yqy = Z e’ ® eik>

k=0

C Z > \(dc ® e h) (Hn ® Hym) = > (Hy) @ (Hy)

k=0 m<n v m<n, k<i
N—_—— =ek(Hm)®e'~*(Hp—m)
= X
m<n, k<i
. i
= g el (Hy) @ e ™ (Hy_m)
m<n, j<i

(here, we renamed the index k as j in the sum).

AMED) S N e H) @ (Hey) = @ (HY @)

m<n, j<i m<n, j<i

Now forget that we fixed n and i. We have shown that every n € N and 1 € N
satisfy A <H7(f)> C & <H,(,{) ® Hff:ﬁ). In other words, the comultiplication

m<n, j<i
map A is bigraded. Due to this (and to the easily checked fact that the map e is
0 on HY for all (n,i) # (0,0)), the decomposition of Theorem 3.5 endows H with
a structure of a bigraded coalgebra. Thus, we have proven our claim in Case 2.
The proof of Corollary 3.6 is now complete (since the claim of Corollary 3.6 has
been proven in each of the Cases 1 and 2). O

Page 1076, Definition 3.7: As explained above, this definition is only correct
if 7 is allowed to be 0.

Page 1077, Proof of Proposition 3.8: The formulas in this proof are slightly
wrong: Replace the > sign by > . Also, replace each of the > signs by > .
i=0

=1 i.j=1 i.j=0

25



Page 1077, Proposition 3.9: Let me give some hints for the proof of this
proposition.

First, in order to prove that “Les opérations caractéristiques, les opérations car-
actéristiques généralisées et les projecteurs de poids ¢ sur H et H*® sont alors
deux & deux adjoints”, the main step to make is to show that f* x g* = (f *g)"
for any two graded K-linear maps f : H — H and g : H — H. This is easy to
show (using the definition of the convolution: f* g =1IIo (f ® g) o A). Once this
is shown, it yields that (f*)" = (f*)* for every graded K-linear map f : H — H
and every ¢ € N, and that (log f)* = log (f*) whenever both sides of this equation
are well-defined, etc. - and ultimately the adjointness part of Proposition 3.9.

Now to the proof that (H(i))l =@ H*&W):

For every n € N, let ¢™ denote tlfg “projecteur de poids ¢ associé a H*&™”. We
know that e™* is adjoint to e™ for every n € N.

For every f € H*®" we have the following equivalence of assertions:

<f€@H*gr(J)> — (GZ*(f):O) — (foezzo)
J#i
(since e™ is adjoint to €', so that ™ (f) = f o ei)

= (Fe () =0) <= (F(HD)=0) «= (fe(HY)").

Hence, @ H*#'0) = (H (i))L, thus completing our proof of Proposition 3.9.
JF#

Section 3: Let me add a lemma into this section which I am going to use further
below:

Lemma 3.10. Let n € N and i € {0,1,...,n}. There exists some
N € N and some elements «g, aq, ..., ay of K such that every graded
bialgebra or Hopf algebra H satisfies

N
el = Zaklllfl. (22)
k=0

(Note that we are using the notations of Section 3 here, i. e., the e’
and ¥* in Lemma 3.10 are the endomorphisms of H,, defined on page

1074.)
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Proof of Lemma 3.10. By the definition of ¢!, we have

(logn+1 (I)) K

€n = en (1) |, = s

_— 7!
_ (1Ogn+1 ([))*Z
1l
(by the deﬁr%i'tion of €})
1 L[ (b (D =1)™\"
= - 1 I == s
! owy ) | (mz< ) - n,
— i (_1)m+1w
m=1

m
(by the definition of log,, ;1)

(1 (E )

m=1

(because p,, is a K-algebra homomorphism)

o (Z (-1t W) 5

m=1

because any f € L (H) satisfies p, (f) |g,= f |u,

n
(since py, (f) is the restriction of f to @ H;, and restricting this restriction
i=0
further to H,, gives the same result as just restricting f itself to H,)

1 n I —1 *1mL N\ K1
in every graded bialgebra or Hopf algebra H. But = (z (_1)m+1 ( )
7!

m=1
can be seen as a polynomial (whose coefficients lie in K" and don’t depend on H) ap-

plied to I. In other words, there exists some N € N and some appropriate elements

1/ I—1)"\"
o, a1, ..., oy of K (which don’t depend on H) such that — < S (=)™t ;) =
i m

m=1

N
S g I**. Consider this N and these elements ag, oy, ..., ay of K. Then, in every
k=0
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graded bialgebra or Hopf algebra H, we have

i — 1, (Z (—1ym*! %) b1, = (Z aﬂ*’“) .

m=1 | k=0
NV
= apl*k
k=0
N N N
k k k
Zijgz(lk ]* |LM :Zjiz(lk(qy Hﬁ) ::jgz(leLw
k=0 — Uk k=0 T k=0
thus proving Lemma 3.10. ]

Page 1078: One line above Lemma 4.1, Patras writes: “éléments de H”. This
should be “éléments x de H”.

Page 1078, proof of Lemma 4.1: I wouldn’t agree that “L’inclusion Prim H C
H®W est immédiate.”

Here is how I would prove that Prim H ¢ HW:

a) First, a lemma:

For any K-algebra A and any two K-linear maps f: H - Aand g: H — A

( satisfying f (1) = g (1) =0, we have (f*g)(1)=0and (f*g)(PrimH) =0 > '
(23)

Proof of (25). Let A be a K-algebra, and let f: H — A and g : H — A be two

K-linear maps satisfying f (1) = g (1) = 0. Let z € Prim H. Then, z is primitive

(by the definition of Prim H), so that A (z) = x® 1+ 1®z. Now, by the definition

of convolution, f*xg=1Tlo (f ® g) o A, so that

(f*g) (@) =To(feg)eA)(z)=1T|(feg) (Az))

=rR1+1Qx

=l (fogel+lx)

— [ (@)®g(1)+f(1)g(x)

28



Now forget that we fixed x. We thus have shown that (f * g) (z) = 0 for every
x € Prim H. Thus, (f *g) (Prim H) = 0. Besides,

(fxg) ()=o(f@gocA)()=I|(f®g) (A1) ] =1T](f®g) (1®1)
—— —— —_——
=Ilo(f®g)oA =1®1 =f(1)®g(1)

—1 | f(Weg) | =100 =0
=~

=0 =0

Thus, is proven. O

b) As a consequence of the previous lemma, we can prove the next lemma:

For any K-algebra A, any integer ¢ > 2 and any K-linear map f: H — A
satisfying f (1) = 0, we have f* (1) =0 and f* (PrimH) =0 '
(24)

Proof of . We will prove by induction over ¢ (where the induction base is
the case i = 2):

Induction base: For any K-algebra A and any K-linear map f : H — A satisfying
f (1) =0, we have

2 =(f=f1)=0 (by (23), applied to g = f)

N~
=f*f
and
2 (PrimH) = (f* f) (Prim H) = 0 (by (23), applied to g = f).

=fxf

In other words, holds for i = 2. This completes the induction base.

Induction step: Let n be an integer > 2. Assume that holds for ¢ = n. We
must prove that also holds for i =n + 1.

Let A be a K-algebra, and f : H — A be a K-linear map satisfying f (1) = 0.
We assumed that holds for i = n. Hence, by (applied to i = n), we
get f**(1) = 0 and f* (Prim H) = 0. Since f (1) = f*" (1) = 0, we can apply
to g = f*", and conclude that (f * f**) (1) = 0 and (f * f*") (Prim H) = 0.
Since f * f* = f*+1 this rewrites as follows: We have f*™*Y (1) = 0 and
¥+ (Prim H) = 0.

Forget that we fixed A and f. We thus have showed that for any K-algebra A
and any K-linear map f : H — A satisfying f (1) = 0, we have f*™+1) (1) =0
and f*™+1) (Prim H) = 0. In other words, we have proven that holds for
1 =n + 1. This completes the induction step. Thus, the induction proof of is
complete. O]
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c) Now, we will prove:

For any K-algebra A and any K-linear map f : H — A satisfying (25)
f (1> = 17 we have (log f) ’PrimH: f |PrimH .

Note that, in this assertion, log f is defined by applying the formal power se-
ries of the logarithm to f; in other words, log f is defined as the infinite sum
0o _ 1 *7

S (=) U=0= (where 1 denotes the unity of the K-algebra Homy (H, A)
n=1 n

|Z| i. e., the map noe¢). This sum is infinite, but it still gives us a well-defined map

1 *n
H — A, because for every x € H, the infinite sum Z (—1)"*! y=0" () has
n

only finitely many nonzero termsﬂ and thus has a Well deﬁned value in A.

Proof of (25). Let A be a K-algebra, and let f : H — A be a K-linear map
satisfying f (1) = 1. Then, (f —1)(1) = f(1)—1(1) =1 —1 = 0. Hence, for any
—~ —~~

=1 =1
integer ¢ > 2, we have

(f—1D" (1) =0and (f—1)"(PrimH) =0 (26)

(by (24), applied to f — 1 instead of f).
Now let x € Prim H. Then,

for any integer i > 2, we have (f —1)* (z) =0 (27)

(since for any integer i > 2, we have (f — 1) (PrimH) = 0 (by ), but
(f — 1)*1 () € (f—1)" (Prim H) (since € Prim H), so that (f — ¥ (z) €
(f = 1)™ (Prim H) = 0 and thus (f — 1) (z) = 0).

On the other hand, x € Prim H, so that z is primitive, and thus e(z) = 0
(indeed, there is a well-known fact that every primitive element £ of any bialgebra
satisfies € (§) = 0).

Recall that (by the definition of log f) we have

[e.9]

i (f =1 i (f =17

logf Z +l—):Z(_1)+l%
i=1

(here, we renamed the index n as ¢ in the sum),

"This K-algebra Homy (H, A) is the K-vector space of all K-linear maps H — A, with convo-
lution as multiplication.

8This follows from Lemma 3.12 if A = H, and is proven exactly in the same way in the general
case.
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so that

(108 f) (2 (i i1 (= 1) ) :i —1>“<>
_ (_1)1+1 (f - )* +Z 2+1 12*2 (z)
=1 \—f—’ ~——

_ *1 =0 )
(f=1)" (2)=(f-1)(x) (since (f—1)**(x)=0

(by [27), since i>2))

+§; DHO=(f = 1) (@) = £ (1)~ 1)

=noe

=f(@)=(moe)(x)=f(x)—n|el@) | =f(z)—n(0)=f(z).
R jnry >

Now forget that we fixed x. We thus have shown that every x € Prim H satisfies
(log f) (z) = f (). In other words, (1og f) |prim #= f |prim - This proves . O

d) Now to the proof of Prim H ¢ HW:

Proof of Prim H ¢ H". First, we notice that every i € N satisfies ¢’ (H) = H®,
This is because, for every ¢ € N, we have

¢ (H) = Pe, (Hy)
neN
(because the n-th graded component of ¢ is e’ (by Definition 3.3))
=D ()
n>z 7H< )

here, we removed the addends with n < ¢ from our direct sum;
this did not change the sum (since e, = 0 when n < 1)

=P HD =HY.

n>t

Applied to i = 1, this yields e' (H) = HW.

log 1) log [
On the other hand, by (applied to i = 1), we have e! ( Og1 ) Of

logI. Thus, €' |prima= (log) |prima= I |prima by ., applied to f = I and
A = H). Hence, for every x € Prim H, we have e' (z) = I (z). Thus, for every
x € PrimH, We have z = [ (z) = ! () € e (H) = HY. In other words,
Prim H ¢ HW, qed. O
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Page 1079, line 7: Typo in this line: “sructure” should be “structure”.

Page 1079, the equation after line 7: This equation is
Va € An? vy S Am7 [xay] =r®Y— (_1)nmy® Z.
This should instead be

Vo e A,, Yy € Ay, [,y =2y — (—1)"" ya.

Page 1079, Proposition 4.3: A proof of Proposition 4.3 is sketched in [C]
(more precisely, in the proof of Theorem 3.8.3 in [C]).

Page 1080, Section 5: Here, Patras claims that

Afziy ®...®15) = Z ngn (8) <xiﬂ(1) ®..8 xiﬁ(p)>®<xiﬁ(p+l) ®..8 xiﬁ(pm) ’

p+q=k
(28)
where the ) sum is over all “opérateurs d’interclassement d’indices p et ¢” Jj He
B
defines an “opérateur d’interclassement d’indices p et ¢” as an element o of S,
satisfying
o' <..<o ' (p) and ctp+)<..<alt(ptq). (29)

This is wrong. There are two ways to correct this mistake: Either replace the

formula by

Alw, ®..@x)= D, > sen(f) (0%,1(1) @ ®xi6*1(p))®(xi6*1(p+l) @ ®x%*1(p+q>) ’

ptg=k B
(30)
where the ) sum is still over all “opérateurs d’interclassement d’indices p et ¢”.

B
Or replace the formula (in the definition of an “opérateur d’interclassement
d’indices p et ¢”) by

o(l)<..<o(p) and cp+1l)<..<o(p+q).

In the following, I am going to assume that the mistake has been corrected in
the first way (i. e., that the formula has been replaced by (30)).

91 think that the proper English translation of the notion “opérateur d’interclassement d’indices
p et ¢” is “(p,q)-shuffle”; but I am not sure about this. Anyway there seem to exist at least
three non-equivalent definitions of “(p, ¢)-shuffle” in literature, so one should be careful when
using this notion.
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Page 1080, Section 5: Just a remark on 7' (X). Patras gave the formula
for the comultiplication of Th (X), and we corrected it to (30). There is an
analogous formula for the comultiplication of 7' (X), namely:

Afzy ®.. ® ;) = Z Z (miﬂ_l(l) ®..® xiﬂ_1<p)>®<xiﬂ_1<p+1) B8 xiﬁ_l(p+q)> '

pre=k 8
(31)

Here, the > sum is still over all “opérateurs d’interclassement d’indices p et ¢”.
B

Page 1081, Proof of Proposition 5.1: Here, Patras writes:
“En explicitant les formules pour le produit et le coproduit dans 7' (X) (resp.
Th (X)) en termes d’opérateurs d’interclassement, on vérifie facilement que :

Ur ¢ K1[S,] < End (T, (X))

(resp. :
! U* ¢ K[S,] < End (Th, (X)) ).”

Let me detail this argument:
First, let us work in 7' (X). By repeated application of (31), we see that any
(€N, any k € N and any (i1, s, ...,45) € {1,2,...,n}" satisfy

= 2 2

p1+pe+...+pp=~ TESy;
o(1)<o(2)<...<o(p1);
o(p1+1)<o(p1+2)<...<o(p1+p2);
o(p1+p2+1)<o(p1+p2+2)<...<o(p1+p2-+ps);

o(p1+p2+...+pp—1+1)<o(p1+p2+..+pp—1+2)<...<o(p1+p2+...+Pp—1+Dk)

® <xid(p1+p2+l) Q.. xia(m-ﬁ-pg-ﬁ?g))

® ® (xio(P1+P2+.,.+pk,1+1) ® ® in(P1+p2+...+Pk—1+Pk)> ’ (32)
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Hence, any k € N and any (i1, 42, ..., 4,) € {1,2,...,n}" satisfy

= V4 (xy ®..Qx;) = (H[k] OAW) (), ® ... Q@ ;)
=J*k=TI[klo AlK]

= 2 2.

p1+p2+...+pr=n 0€Sn;
o(1)<o(2)<...<o(p1);
a(p1+1)<o(p1+2)<...<o(p1+p2);
o(p1+p2+1)<o(p1+p2+2)<..<o(p1+p2+ps3);

o(p1+p2+..4+pr—1+1)<o(pr+pa+..+pr—1+2)<..<o(p1+p2+...+Pk—1+Dk)

lo(1) < lo(py) ) T\ Tlo(py+1) < o (p1+p2)
Ti oy Q... @ Ty T; X ... ® x;

) 8.8 xio<p1+p2+p3>>
' (xio(p1+p2+..»+pk,1+l) ®..0 xia(p1+p2+u-+pk,1+pk)>
(by and since II is the multiplication map)

= 2 2.

p1+p2+...+p=n oESh;
o(l)<o(2)<...<o(p1);
o(p1+1)<o(p1+2)<...<o(p1+p2);
o(p1+p2+1)<o(pi+p2+2)<..<o(p1+p2+p3);

o(p1+p2+.. . Apr—1+1)<o(pr+p2+..+pp_1+2)<...<o(p1+p2+...+pr—_1+Dk)
o(2) X ... xX;

-~

| (xiff(m +pa+1

.TZ'U(D & x;

a(n)J

=1 <x11®®xln)

= 2 2.

p1+p2+...+pr=n 0€Sn;
o(1)<o(2)<...<a(p1);
a(p1+1)<o(p1+2)<...<o(p1+p2);
o(p1+p2+1)<o(pr+p2+2)<...<o(p1+p2+p3);

o(p1+p2+..+pr—1+1)<o(pr+pa+..+pr—1+2)<..<o(p1+p2+...+Pk—1+Dk)
—1
o (1, ®...Qx;) .

Thus, for every k € N, the map V¥ € End (T, (X)) is the image of the element

Z Z ol e K[S,]

p1+p2+...+pg=n 0ESn;
o(1)<o(2)<...<o(p1);
a(p1+1)<o(p1+2)<..<o(p1+p2);
o(p1+p2+1)<o(pi+p2+2)<...<o(p1+p2-+ps);

o(p1+p2+...+pr—1+1)<o(pr+p2+..4pp—1+2)<...<o(p1+p2+...4Pr—1+Dk)

under the map K [S,] < End (7, (X)). Similarly, we can show the analogous
result for Th,, (X) instead of T}, (X): Namely, for every k € N, the map ¥* €
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End (Th, (X)) is the image of the element

Z Z sgn (0)-0' € K[S,)]

p1+p2+...4+ppg=n 0ESR;
o(1)<o(2)<...<o(p1);
o(p1+1)<o(p1+2)<...<o(p1+p2);
o(p1+p2+1)<o(pr+p2+2)<...<o(p1+p2-+p3);

o(p1+p2+..+pp—1+1)<o(p1+p2+..4+pr—1+2)<...<o(p1+p2+..+Pk—1+pk)

under the map K [S,] — End (T'h,, (X)).

Page 1082, Proof of Proposition 5.1: Here, Patras writes:

“Le reste de la proposition ne présente pas de difficultés.”

Let me try to make this part of the proof a bit more precise. Namely, let me
show that the idempotents ¢! and f! of the algebra K [S,] are obtained from each
other by the involution

K [S,] = K [S,]
orrsgn(o)-o

of the K-algebra K [S,,].
In fact, let inv denote the K-vector space homomorphism

K [S,] = K [S,)]
orrsgn(o)-o (for every o € S,) .

It is easy to see that inv is a K-algebra homomorphism (this is more or less because
sgn : S, — {—1,1} is a group homomorphism) and an involution (since (sgn (0))* =
1 for every o € S,,). We must now prove that inv (f) = e,. We will do this in two
steps:

a) For every k € N, let ¥}, denote the element of K [S,] whose image under
the map K [S,] < End (T, (X)) is the W of T'(X) (where by “Uk of T'(X)”, we
mean the map WF defined with respect to the graded bialgebra T (X)). Then, for
every k € N, we have

\I’]%JL = Z Z 0_1.

p1+p2+...+pr=n oESn;
o(l)<o(2)<...<o(p1);
o(p1+1)<o(p1+2)<...<o(p1+p2);
o(p1+p2+1)<o(pi+p2+2)<...<o(p1+p2+p3);

0 (P14t APk 1+ <O(P1+P2 AP 1H+2) <o <O(Pr+P2F PR 1+ PE)
(33)
™
Similarly, for every k € N, let W4, = denote the element of K [S,] whose image
under the map K [S,] < End (Th, (X)) is the U% of Th(X) (where by “UF of

19T his is because we showed above that for every k € N, the map ¥* € End (T, (X)) is the image
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Th(X)”, we mean the map W¥ defined with respect to the Hopf algebra Th (X)).
Then, for every k£ € N, we have

Ui = Z Z sgn (0)-07 "

p1+p2+...+pp=n ocESy;
o(1)<o(2)<...<o(p1);
o(p1+1)<o(p1+2)<...<o(p1+p2);
o(p1+p2+1)<o(p1+p2+2)<...<o(p1+p2+p3);

o (p1+pa-t ot pe—1+1) <o (p14+pa-t . tpr—1+2) <. <o (Pr+P2-+- A Pi—1+PE)
(34)
[

Comparing with , we immediately see that inv (0%, ) = ¥k, .

b) Fix some n € N and some i € {0,1,...,n}. Consider the N and the elements
g, 1, ..., @y Whose existence is guaranteed by Lemma 3.10.

(Note that the equality is a concretization of Patras’ claim that “Ce mor-
phisme peut, d’apres 1.3 et 3.1, se réécrire comme une combinaison linéaire finie
d’endomorphismes caractéristiques” on page 1081. Patras’ assertion doesn’t make
it clear that the coefficients of this “combinaison linéaire” don’t depend on H, but
our Lemma 3.10 does, and we are going to use this now.)

N
Applying to H=T(X), we get fi = Y ak\I!’%m. Applying to H =
k=0

of the element

> 3 ol e K[S,]

p1+p2+...+pr=n ocESy,;
o(1)<o(2)<...<o(p1);
o(p1+1)<o(p1+2)<...<o(pi+p2);
o(p1+p2+1)<o(p1+p2+2)<...<o(p1+p2+p3);

o(pr+p2+...+pr—1+1)<o(p1+p2+...+pr—1+2)<...<o(p1+p2+...+Pr—1+DPk)

under the map K [S,,] < End (T, (X)).

UThis is because we showed above that for every k € N, the map ¥* € End (Th, (X)) is the
image of the element

Z Z sgn (0)-0~ " € K[S,]

pit+p2+...+pr=n oESn;
o(1)<o(2)<...<o(p1);
o(p1+1)<o(p1+2)<...<o(p1+p2);
o(p1+p2+1)<o(p1+p2+2)<...<o(p1+p2+ps3);

o(p1+p2+..+pr—1+1)<o(pr+p2+...+pr—1+2)<...<o(p1+p2+...+Pr—1+Dk)

under the map K [S,] < End (Th, (X)).
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k=0
N N
: AN k : i _ k
inv (f1) = inv E Ve, since f, = E VU,
k=0 k=0
N
= g ayinv (VF,) (since inv is K-linear)
k=0 YT
:\Ill%h,n
N
— E k i
- ak\IjTh,n =Cn
k=0

qed.

Page 1082, three lines above Lemma 5.2: Patras writes: “Par définition,
'algebre de Lie libre (resp. graduée) est la plus petite sous-algebre de Lie (resp.
graduée) de T' (X)) (resp. de Th (X)) contenant X.” T don’t think this really follows
from the definition (but it follows from the Poincaré-Birkhoff-Witt theorem)H.

Page 1082: On this page, it should be said somewhere that Th* (X) is just an
abbreviation for Th*#" (X) (and not the dual of Th (X) as an ungraded K-vector
space).

Page 1082: On the penultimate line of page 1082, Patras writes: “lI’algebre
graduée T7. This is inaccurate, since T is not a graded algebra but the completion
of a graded algebra (with respect to the canonical topology induced by the grading).
Fortunately this does not prevent the conclusion (that the logarithm of S is well-
defined) from being valid (it actually would not be valid if T was just a graded
algebral).

Page 1083, proof of Proposition 5.3: On the second line of this page, there
is a typo: T'g (X) should be Th (X).

Page 1083, proof of Proposition 5.3: Here, I don’t understand why Patras
claims that

Q™ =T o (I—noe)® oA (2, @... @),

(AR

12The paper [BF] gives a different proof of the fact that the free Lie algebra over X is the
smallest Lie subalgebra of T (X) containing X. This proof doesn’t use the Poincaré-Birkhoff-
Witt theorem but still is far from being trivial.
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But I think there is an alternative proof of Proposition 5.3 anyway. It is rather
simple, but it uses a lot of notation and commonplace facts from linear algebra. So
let us begin with some definitions that could just as well stand in a linear algebra
text:

Definition 0.3. Whenever V and W are two K-vector spaces, then we
denote by pyw the K-linear map

V*® W — Homg (V, W),
f ®&— (the map V' — W which sends every x € V to f (z)¢)

(where V* denotes the dual of V). This map pyw is injective (this can
be proven by standard linear algebra, i. e., working with bases). In
general, it is not surjective (but it is surjective if dim V' < 00).

Next, a similarly elementary definition related to graded vector spaces:

Definition 0.4. (a) Whenever V and W are two graded K-vector

spaces, we let dirsumy, - denote the canonical injection [[ Homyg (V;, W;) —
€N
Hompg (V, W) which takes every family (f;),cn € H Homy (V;, W;) of

maps to the direct sum @ f; : PV, - P W, (thls direct sum is, of
1EN 1€EN 1€EN
course, amap V — W since PV, =V and @ W, =W).
ieN ieN

(b) Whenever V is a graded K-vector space and W is a K-vector
space, let us define a topology on the K-vector space Homg (V, W) as
followsEr]: Let N_ denote the set {—1,0,1,2,...}. For every i € N_| let
V@ denote the Subspace Vo+Vi+...4+V;of V. For any + € N_ and
any g € Hompg (V( W) let Homy ;4 (V, W) denote the subset

{f € Homg (V. W) | f|yvo= g} of Homy (V,W).

Then, we define the topology on the K-vector space Homg (V, W) to
be the topology generated by the sets Homy ; , (V, W) with ¢ € N_ and
g € Homg (V@ W) (as open sets). (Note that Homg 10 (V,W) =
Homy (V,;W).) This topology will be called the right degree topology
on Homg (V,W). (I am pretty sure that this topology has a different,
more standard name, but I don’t know it.)

Let us summarize a few (easy-to-prove) properties of this right degree
topology:

Let V be a graded K-vector space and W a K-vector space. First of all,
the right degree topology makes Homyg (V, W) into a Hausdorff topo-
logical space, so it makes sense to speak of “the limit” of a convergent

13Keep in mind that Homg (V, W) is the space of all K-linear maps (not only the graded ones)
from V to W.

38



sequence. Second, the right degree topology makes Homyg (V, W) into
a complete space, as can be easily seen. Furthermore, it is easy to see
that a sequence (f;),.y of K-linear maps f; : V' — W converges to a
K-linear map f : V — W (with respect to the right degree topology on
Homy (V,W)) if and only if for every i € N, there exists some N € N
such that every n > N satisfies f, |y&= f |y@®. Thus, an infinite

sum Y g; of K-linear maps g; : V. — W converges to a K-linear map
ieN

g:V — W if and only if for every i € N, there exists some N € N such
that
N (VD) =gni (V) = gnge (V) = .. =0
and Z g | vo=glve .
1€EN;
i<N-1

Consequently, it is easy to see that an infinite sum »_ g; of K-linear
ieN

maps g; : V. — W converges if and only if for every ¢ € N, there exists

some N € N such that

gv (V) = gvr (V) = gy (V) = . =0

(In this case, the value of this infinite sum is the function ¢ that sends
every x € V to Y g; (z); here, the infinite sum > g; (x) has a well-
ieN ieN

defined value since all but finitely many of its terms are zero.)
It is easy to see that if V and W are two graded K-vector spaces,
then the map dirsumy - is continuous, where the topology on the space

[ [ Homg (V;, W;) is the canonical one obtained by seeing [[ Homg (V;, W)

i€eN 1€N

as the completion of the graded vector space @ Hompg (V;, W;), whereas
ieN

the topology on Homy (V, W) is the right degree topology.

Next, let us introduce a certain subspace of the tensor product of two graded
spaces:

Definition 0.5. Let V and W be two graded K-vector spaces. Let
V ® W denote the K-vector subspace Y. V; @ W; of V@ W. (Here, for

€N
every ¢ € N, we consider V; ® W; as a subspace of V ® W, because V; is

a subspace of V' and Wj is a subspace of W.)
Here is an alternative definition of V' ® W: Since V=@V, and W =

i€EN
P W;, we have

- V®W:<@W>®<@Wj> Z@ (Vi @ W)

ieN JjEN .J)EN2
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(since tensor products commute with direct sums). Now, let V@ W de-
note the subspace @ (V; ® W;) of this direct sum @ (V; @ W;).

(i,)EN?; (i,5) EN2
=7

From this alternative description of V@W as thespace @ (V; ® Wj),
- (i,9) EN?;
i=j
it is clear that V@ W = @ (V; ® W;). More precisely, the map
= ieN

Pview)-vew,

€N
(ai)ieN — Z a;

€N

is a well-defined canonical isomorphism of graded K-vector spaces. We

denote this isomorphism by combiney;yy .

The completion of the graded K-vector space @ (V; @ W) is [ (V; @ W;).
ieN ieN

We denote the completion of the graded K-vector space V & W by

VRW. Let also congin\ev,w denote the completion of the isomorphism
combineyw : @ (V; @ W;) = V @ W. Since combiney y is an isomor-
ieN =
phism of graded K-vector spaces, its completion combiney y is an iso-
morphism [] (V; ® W;) — VW of topological K-vector spaces. This
ieN =
isomorphism combiney  is the map

[[view) —vew,
ieN
(@i)ien = Z @
ieN

(where the sum » a; is automatically convergent by the completeness
of VRW). ZGN
The completion of the canonical inclusion V@ W — V @ W is an
injective continuous map VW — VW of k—vector spaces. This
injective map allows us to c;nsider V@W as a K-vector subspace of

V@W. We are going to do so.

These three definitions were purely linear-algebraical (and topological to the
extent they involved completions). It is time to tie in some algebras and coalgebras
into this. First, the purely algebraic part:
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Proposition 1.12. Let A and B be two graded K-algebras. Then,
A® B is a graded K-subalgebra of A® B, and ARB is a K-subalgebra

of ABB.

The proof of Proposition 1.12 is a completely straightforward check (it boils down
to showing that 1455 € Ag ® By and that (4, ® B;) - (A; ® Bj) € A;+; ® By for
all € N and j € N, where we consider A, ® B, as a K-vector subspace of A ® B
for all u € N and v € N).

Now here is something more interesting:

Proposition 1.13. Let C be a locally-ﬁnite@ graded K-coalgebra,
and let A be a graded K-algebra. Since C' is a locally-finite graded
K-coalgebra, the graded dual C*# becomes a graded K-algebra.

—

Consider the continuous K-vector space isomorphism combinecser 4 :

H (Ci*gr X A7,> — C*RA.

ieN =

For every i € N, we have an injective map pc, 4, : (Ci)" ® A; —

Homy (Cj, A;). Since (C;)" = C® for every i € N, this rewrites as

follows: For every i € N, we have an injective map p¢, 4, : C7% ®

A; — Hompg (Cy, A;). Thus, the product [] pe, .4, : [ (C7¥ @ 4;) —
ieN ieN

[] Homg (Cj, A;) of these maps is also injective.

ieN

Finally, consider the K-vector space injection dirsume 4 @ [[ Homg (C;, 4;) —

iEN
Hompg (C, A).

Denote by ¢c 4 the map

1 N
dirsume 4 0 <H PCZ',AZ) o combinecve 4 C*¥®A — Homg (C, A) .

€N

Clearly, this map ¢¢ 4 makes the diagram

l;lN pC;,A;
[1(Cr¥ @ A)—— [[ Homg (Ci, Aj)
€N 1€EN
comb@* gr’AJ/g 1dirsumc,,4
C*ESA Homy (C, A)
= dc,A

commute.

Here, a graded K-vector space V is said to be locally-finite if for every n € N, the n-th graded
component of V' is a finite-dimensional K-vector space. So our notion of “locally finite” is
exactly what Patras calls “de type fini”.
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(a) This map ¢c 4 is an injective and continuous K-algebra homo-
morphism. (Here, the K-algebra structure on C*#"®A is given by the

fact that C*$*'®A is a K-subalgebra of C*#®A, whereas the K-algebra
structure on Homyg (C, A) is defined to be the convolution.)

(b) For every n € N, every v € C*#" and every a € A,,, we have

bc.a (7 ® a) = (the map C' — A which sends every z € C to v (z)a) .

(35)

In other words, for every n € N, every v € C*&" and every a € A,,, we
have

(pea(y®a))(z)=7(z)a for every z € C. (36)

(c) Let f: C — A be a graded K-linear map. For every k € N, let
(¢k,e) e, be a basis of the K-vector space C, and let (¢ke),., be the

Lely
basis of C}#" dual to this basis (cx ) ter, E Then,

[=dca (Z d e f (Ck,e)) :

keN Lely,

Proof of Proposition 1.13. (b) Let n € N, v € C*# and a € A,, be arbitrary.

Define a family (¢;),cy € [] (C7* ® 4;) by
1€N

i
t; = e 12 " for every i e N | .
0, ifi#n

Then, t, = v ® a, whereas every i # n satisfies t; = 0.
Since we know that combinec«er 4 is the map

[Tc:= o a) - ceda,

€N
(ai)ieN — Zaia
ieN
we have
com@* & A leN Z a; (37)

ieEN

for every (a;);y € H (CT¥ @ A;).
€N

15 At this place, we are using the condition that C is locally-finite. (In fact, since C is locally-finite,
the space Cj, is finite-dimensional, so that every basis of Cj, has a dual basis of (Cy)* = Cy#".)
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Applied to (a;);cyy = (ti);cn this yields

comme\mgr, zeN Zt Z t; + Z t; =7Ra.

€N 1€N; 1€N;
i=n i#n

——
=tn=7Q®a =0

(since every i#n satisfies t;=0)

Thus,

— -1

(ti);eny = combinecser 4 (Y ®a).

On the other hand, by the definition of [] pc¢;.4,, we have (H Pci,Ai) ((t:)ien) =

1€EN 1€N
(pC' A; (t )>ZEN7 so that

dirsumc,A ((H PC;i A ) ng)) = dirsumc 4 ((PCZ-,A zGN EBpo A

i€N 1€EN
(by the definition of dirsume 4) .

In other words,

D reia, () = dirsume 4 (H /)Oi,Ai> ((£)icn)

iEN i€N et

:combinec* gr A ('y®a)

—_— —1
= dirsumc 4 (H PCZ-,AZ-> (combinec*grA (v® a)))

1€EN

_— —1
= (dirsumC,A o (H pChAi) o combinecxer 4 > (v®a)=¢ca(y®a).

1€EN

-~

=¢c,a

Recall that the map pc, 4, was defined as the K-linear map
(Cn)* ® An — HOIIlK (Cm An) )
f ® & — (the map C,, — A, which sends every z € C, to f (z)¢§).

Hence, pc, a, (7 ® a) = (the map C,, — A,, which sends every z € C, to v (z) a).
Hence,

(Pon.a, (Y@ a)) (y) =7 (y)a for every y € Ci. (38)

Now let x € C be arbitrary. For every i € N, let x; be the i-th graded component

of z. Since every nonnegative integer i # n satisfies t; = 0, it is clear that every

nonnegative integer ¢ # n satisfies (pc, 4, (t:)) (x:) = (pc; 4, (0)) (x;) = 0(z;) = 0.
—_——

=0

Thus,
> (oo, =Y o0=o0. (39)
1€EN; 1€N;
i;én i#n
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On the other hand, v € C*", so that every nonnegative integer i # n satisfies
v (C;) = 0 (by the definition of the graded dual C*#" and its grading) and therefore

v (i) =0 (40)

(since z; € C;). However, we have v = . x; (since each w; is the i-th graded
component of x), so that

x) =7 (Z xz> = Zy (z;) (since v is K-linear)

1€N 1€EN
S+ g =2+ 0
i€N; 1€N; 1€N;
i=n z;én (by ) i#n
=7(zn) =0
=7 (2n). (41)
Now,
(eatz20)0) - (B ) (0= X e () 2
_,_/ :
=@ pc;,a,(t:) el e
ieN
= Z (pcya; (t:)) (z; +Z pci A, () ()
i€N; 1€N;
& G )
:(pcn»An (tn))(xn) (by:)

= | pen.an (tn) | (@n) = (po,.a, (v @ @) (20)
~~

= v (x,) a (by ([B8)), applied to z,, instead of y)
o @)
=7 (x)a.

Now forget that we fixed x. We have just proven that every x € C satisfies
(¢c.a (v ®a)) (x) =7 (x)a. Hence,

b4 (7 ®a) = (the map C — A which sends every z € C' to vy (z) a).

This proves Proposition 1.13 (b).
1
(a) We know that the maps dirsume 4, [ pe,.4, and combinec«s 4 are injec-
ieN

— ~1
tiv Hence, their composition dirsume 4 o (H pc, Ai) o combinec«er 4 must
ieN

16 Proof. The map dirsume, 4 is injective by Definition 0.4 (a). The map [] pc, 4, is injective
i€EN
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-1
also be injective. Since this composition dirsume 4 o (H pc, Ai> o combinecxer 4
ieN
is the map ¢¢ 4, this yields that ¢¢ 4 is injective.
-1
We know that the maps dirsume 4, [] po,.4, and combinec«er 4 are contin-
ieN
-1
uou. Hence, their composition dirsume 40 <H pc, Ai) o combinecser 4 must
ieN
-1
also be continuous. Since this composition dirsume 40 | [] pc;, Az-) ocombinecxer 4
ieN
is the map ¢¢ 4, this yields that ¢¢ 4 is continuous.
So we now know that ¢¢ 4 is an injective and continuous K-vector space homo-
morphism. We still need to check that ¢¢ 4 is a K-algebra homomorphism.
Let us first show that

Pca (Y ®a)* ¢oa (0 ®b) = ¢ a((y*0) @ ab) (42)

foralne N, meN ae A, be A, yeC:¥ and ) € C}F.
Proof of (@ Let ne NN meN ae A, be A,, ve Cr# and § € Cr# be
arbitrary.
Let y € C. Since A(y) € C ® C, we can write the tensor A (y) in the form
L

Ay) = ;AgCg ® dp for some L € N, some elements A\;, \g, ..., Az of K, some

elements ¢y, co, ..., ¢, of C', and some elements dy, ds, ..., d;, of C. Consider this
L, these A1, Ao, ..., A, these c¢1, o, ..., ¢, and these dy, ds, ..., dr.
By the definition of the convolution,

dea(Y®a)*xpoa(d®@b)=pao(pca(y®a)® oca(d®Db))oAg,

because the product of injective maps is injective, and because the map pc; 4, is injective for
_ -1
each ¢ € N (by Definition 0.3). The map combinecse 4  is injective because it is the inverse

of an isomorphism.

17 Proof. The map dirsumc 4 is continuous by Definition 0.4 (b). The map [] pc; 4, is continuous
ieN
because it is the completion of a graded map (namely, of the graded map €D pc;,, 4,). The
ieN
_— -1

map combinec«er 4 is continuous because it is the inverse of an isomorphism of topological
K-vector spaces.
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so that

(Pca(y®a)*oca(d®b))(y)
= (pao(9pca(y®a)®pca (6 @0)) o Ac) (y)
(

= (pao (poa(Y®a)® pca(6@0))) (Ac(y))

M=

)\ch®di
4

B

= (pao (pca (Y ®a)® dca (6 @D))) ( Aece @ dz)

~
I

1

= A <(¢C,A('7® a) @ ¢c,a (0@ b)) (ZAK@E@CQ))

(.

= 2 Me($e,a(v®a)) (cr)@(bc,a(50D) ) (de)
(by the definition of ¢c, 4 (Y®a)®@dc, 4 (6RD))

= 1A (Z/\z pc,a (v @ a)) (ce) ® (Pc,a (5®b))(df)>

(=1

Mh

DY, £¢0,A (v®a)) (CQ‘ £¢C,A (d®0b)) (déz

4:1 v VvV
=y(ce)a =6(de)b
(by (36), applied to (by (36), applied to
¢ instead of ) dg, 6 and b instead of z, v and a)

(since p4 is the multiplication map)

Ay (co) ad (d)b=">" Ay (ce) 6 (dy) - ab.

1 (=1

Mh

~
I

Since

(7% 0) (y)
——

=pro(Y®8)oAc
(by the definition of convolution)

= (uxo(Y®d)oAc)(y) =pnx | (Y®6) (Ac(y)) | = (’Y®5 (Z)\fce@de>>
——
= Aece®dy h R
=t =3 Ar(eo@d(d)

(by the definition of y®4)

= K (Z)\W o) ® 6 ( d@) Z)\W )

(since pg is the multlphcatlon map) ,
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this becomes

(¢c.a(y®a)* ¢oa (0 D)) Zm c0) 8 (dy) -ab = (v % 8) (y) - ab.

-~

=(v*6)(y)

Compared with

(¢c.a ((v*0) ®ab)) (y) = (v 0) (y) - ab
(by (36), applied to y, v * § and ab instead of z, v and a),

this yields

(Pc.a (Y@ a)* ¢ca(0@D)) (y) = (¢c.a((y* ) ®ab)) (y).

Now forget that we fixed y. We thus have shown that every y € C sat-
isfies (¢pca(y®a)*xpca(0®@D))(y) = (¢ca((y*0)®ab))(y). In other words,

doa(Y®a)xpca(d®b) =¢ca((y*0d)®ab). This proves (42)).
Next let us show a slightly more general fact: Let us show that

bo,a () * po.a (8) = dca (ts) (43)

foralln e NN meN teCr#"® A, and s € C'5 ® A,,. Here, the product ts is
to be understood as a product in the K-algebra C*#"®A (which contains ¢ and s

because both C}&" ® A, and C}f" ® A, canonically inject into C’*gr®A).

Proof of (43). Letn e N,m e N, t € C}¥ ® A, and s € C;Lgr®Am_be arbitrary.
I

Since t is a tensor in C*& ® A, we can write ¢ in the form t = >~ A\;y; ® a; for
i=1

some I € N, some elements \j, A, ..., A\; of K, some elements 71, ya, ..., 7y of C}&",
and some elements aq, as, ..., a; of A,,. Consider this I, these A1, A9, ..., A, these
Y1, Y2, .., V1, and these aq, ao, ..., as.

J

Since s is a tensor in C}#" ® A,,, we can write s in the form s = ) v;0; ® b; for
j=1

some J € N, some elements vy, vy, ..., vy of K, some elements d1, dg, ..., 5 of CFE",

and some elements by, by, ..., by of A,,. Consider this J, these vy, vy, ..., v;, these

01, 09, ..., 07, and these by, by, ..., b;.
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Now,

I 7
bc,a \(t’)_/ *PC,A \(S/)/ = ¢c.a (; AiYi @ Gi) * Oc,A (JZl vjl; ® bj)

I NG D)

=3 Nivi®a; = E vj6;®b; ~ . ~~ - ~
) >
Z " =2 Mide.a(n@a) = 3= visc.ali0)
1= J:

(since ¢c, 4 is K-linear)

<

(since ¢c, 4 is K-linear)

I J
(Z Nide,a (7 ® a; ) * <Z Vipc,a (0; ® bj))
=1 =1

] J

>

=1

<
IIMK
A

Aij $o,a (7 ® a;) * pc,a (0; @ bj)l
=¢c,A((W::5j)®aibj)

(by , applied to v;, a;, §; and b;
instead of v, a, § and b)

I J
=33 Awvidoa (i = 6;) ® ady) . (44)

1 5=1

7

I J
Meanwhile, multiplying the equations t = Y Ay, ® a; and s = > v;0; ® b;, we

i=1 j=1
obtain
I J I
ts = (Z Aii @ ai) (Z vj0; & bj) = Z Z Aivj (7 ® a;) (6; ® by)
i=1 j=1 i=1 j=1 ~ T g
:(7Z~*6j)®aibj

(by the definition of the product in C* gr@A)

I I
b (ts) = dc.a (ZZ/\ZV] (i * 05) ®ab> ZZ)\VJQSCA((VZ*&)@@ ;)

i=1 j=1 i=1 j=1

(since ¢ 4 is K-linear). Compared to , this yields ¢ a (1) *xpc.a (s) = doa (ts).
This proves ([43)).

Next we are going to show that

Poa (t) * do.a (8) = dc,a (ts) (45)

for any t € C*#*®A and s € C*&RA.
Proof of . Let t € C**®A and s € C*¥®A be arbitrary.
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Write the family combﬂla*gr#; (t) € T (C7# @ A;) in the form (t;),.. Then,
€N
t= comale\c*gr Dien) Zt (by (B7), applied to (a;),cy = (ti);en)
€N
= Z tn (here, we renamed the index i as n),

neN

so that ¢ca(t) = ¢c.a (Z tn) = > ¢cal(ty) (since ¢c 4 is a continuous K-

neN neN
vector space homomorphism).

Write the family Comﬁle\(ygr7 (s) € T] (C7* ® A;) in the form (s;),.y. Then,

€N
s = com@*gr leN Z S; (by , applied to (a;);cy = <Si)ieN)
€N
= Z Sm (here, we renamed the index i as m),

meN

so that ¢c.a (s) = ¢c.a (Z sm) = Y ¢c.a(sm) (since ¢c 4 is a continuous K-

meN meN
vector space homomorphism).

Now it is time to notice that Homg (C, A) is a topological K-algebra, i. e., the
convolution is a continuous map Hompg (C, A) x Homy (C, A) — Homg (C, A). [
Furthermore, C*#®A is a topological K-algebra (in fact, for any two K-algebras

20 and B, the K —alge{)ra ARB is a topological K -algebra).
Multiplying the equalities ¢ca (t) = > dca(tn) and ¢ca(s) = > dc.a (Sm),

neN meN
we obtain
¢c.a (t) * dc,a (s (Z ¢c.a (i > * (Z $c,A (Sm)>
neN meN
=33 (bea(tn)* (0.4 (sm))
neN meN ~

:¢C,A(tn3m)
(by , applied to tn, and sy, instead of ¢ and s)

since Homg (C, A) is a topological K-algebra, so that
there is a “distributive law” for
convergent infinite sums in Homyg (C, A)

= Z Z bc.a (tnsSm) - (46)

neN meN

18This fact does not even require all conditions of Proposition 1.13. As long as C is a graded
K-coalgebra (not necessarily locally-finite) and A is a K-algebra (not necessarily graded), the
convolution algebra Homg (C, A) (with the right degree topology) is a topological K-algebra.
This follows from Lemma 1.14 further below.
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On the other hand, multiplying the equalities t = > ¢, and s = > s,,, we obtain
neN meN

ts (Ztn> : (Zsm) S Y ks

neN meN neN meN
since C*8'®A is a topological K-algebra, so that

)

there is a “distributive law” for convergent infinite sums in C*$'® A

so that

bc,a (ts) = dc,a (Z Z tn3m> = Z Z do.a (tnsm)

neN meN neN meN
(since ¢¢ 4 is a continuous K-linear map)

= ¢ca(t) % dca(s) (by (46)).

Thus, is proven.
Finally, let us recall that we denote the unity of a K-algebra U by 1y. Then,

1C*gr®A = 1C*gr ® 1A7 SO that

¢c,A <1c*gr§,4) = ¢ca (lover ® 14)

= | the map C' — A which sends every € C' to lgve (z) 14
~

(by (35)), applied to n =0, v = 1gwer and a = 14)

= | the map C' — A which sends every z € C'to  €(z) 14
——
=n(e(x))=(noe)(z)
= (the map C' — A which sends every z € C to (noe) (z))

=noe= 1HomK(C’,A)-

Combined with the fact that holds for any t € C*¥*®A and s € C*RA,

this yields that ¢¢ 4 is a K-algebra homomorphism. This completes the proo_f of
Proposition 1.13 (b).

(c) First of all, applying to (a;);cny = <Z CGe®f (C@g)) , we obtain
lel; iEN

comﬁle\c*grv,q (Z i@ f (Q,z)) = Z Z Cre®f (cip) = Z Z @[ (che)
ieN

KEL; 1€N ZEI-L' keN EEI)c
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(here, we renamed the index i as k in the first sum). Thus,

(Z CGe®f (C@g)) = combinec- er A (Z Z Cro @ f (Cry )

tel; ieN keN tely,

Now let x € C be arbitrary. For every ¢ € N, let x; be the i-th graded component

of x. Then, z = ) ;.
ieN

. . ——— 1
Since ¢po.a = dirsume g0 | [] pe;.a; | © combinecssr 4, we have
ieN

bc,a (Z Y G f (%f))

kEN Lcly,

(dlrsumCA o (H PC; A ) o comblnec* er A ) (Z Z i L ® f(cre >

ieN keN ey,

= dirsume 4 <H PCZ-,Az) (comblnec*gr <Z Z Cro @ f (Cre >)

€N keN ¢ely,

-

<Z§ “ e®f(61 £)>ieN

= dirsume 4 <H pci,AZ) <Z C,Zg ® f (Cz‘,e>>
ieN

€N KEI,L'

N J/

= (PCi,Ai < > c;g®f(cz',4)>>
el iEN

(by the definition of [] pci,A,L-)
1eN

= dirsume 4 (pc“Ai (Z ce®f (CM))) = @ (PCZ-,Ai (Z cie®f (ng)>>
Lel; iEN €N R lel;

-~ S
:zgi PC;,A; (C;g®f(ci,é>)

(since pc;,a, is K-linear)

J/

(by the definition of dirsume 4)

= @ (Z PC; A, (Czé ® f (Q’,Z))) )

Lel;

o1



so that

<¢C,A (Z def (%é))) (z)

keN Lely,

_ (@ (Z pon (¢ f <ci,e>)>) (@)

€N Lel;

= Z (Z PC;,A; (CZZ ® f (Qe))) ()

ieN \/lel;
= (pcoa (¢ ® f(ein)) (1) (47)
ieN (el
Recall that, for every ¢« € N, the map pc¢, 4, was defined as the K-linear map
(Ci)" ® A; — Homg (Ci, A;),
f ® &+ (the map C; — A; which sends every x € C; to f (x)¢).
Hence, for every 7 € N and every ¢ € I;, we have
pcia, (6o ® f(cie)) = (the map C; — A; which sends every x € C; to ¢, (z) f (ciy)) -
Hence, for every i € N and every ¢ € I;, we have
(Pesa; (e ® fleir))) (i) = iy (20) f (cip) (48)

(because z; € C;). On the other hand, for every i € N, every y € C; satisfies

> ¢ (y) ciw = y (because (sz)zg- is the basis of C7®" dual to the basis (c; )
lel; ¢
of C;). Applied to y = z;, this yields

Z cio (i) cip = 3 (49)

Lel;

Lel;

for every ¢ € N.
The equality now becomes

<¢C,A (Z Z Che® f (%0)) (z)

keN Lely
= Z Z (poia: (e ® f(cin))) (xz)/ = Z Z Cio () f (i)
1eN Lel; ~ 1€N Lel;
:czz(wicha N —~ _
(by (48)) . o
=f (ZEZIZ Ciyg(xl)ch)

(since f is K-linear)

= Z / (Z cio () Ci,Z) = Z flz)=f <Z :L'l) (since f is K-linear)

1€N lel; i€N 1€EN

[\

=T

(by:)
= f().
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Now forget that we fixed x. We have thus proven that every x € C' satisfies

(dJC,A (Z D@ f (CH)>> (x) = f (). In other words,

kEN (€T,

Poal 2 DG f (CM)) = f. This proves Proposition 1.13 (c). O
keN Lely,

This completes the proof of Proposition 1.13, but we still need to show the
following fact that we used:

Lemma 1.14. Let C be a graded K-coalgebra, and let A be a K-
algebra. Consider the convolution K-algebra Hompg (C, A), endowed
with the right degree topology. Then, Homg (C, A) is a topological

K-algebra, i. e., the convolution is a continuous map Homyg (C, A) X
Hompg (C, A) — Homg (C, A).

Before we prove Lemma 1.14, two very trivial facts:

Lemma 1.15. Let C' be a graded K-coalgebra. Let N_ denote the
set {—1,0,1,2,..}. For every i € N_, let C” denote the subspace
Cy+ Ci + ...+ C; of C. Then, for every i € N_, the subset C is a
subcoalgebra of C'.

Lemma 1.16. Let C' be a K-coalgebra. Let D be a subcoalgebra of C'.
Let A be a K-algebra. Let f:C — A and g : C — A be two K-linear

maps. Then, (f +g) [p=(f [p) * (g |p).
Proof of Lemma 1.15. Let i € N_. We have
Cy € CY for every k € {0,1,...,i} . (50)

™
Since C'is a graded coalgebra, we have A (C},) C > Cy ® C,,_, for every n € N.
=0

9 Proof. Let k € {0,1,...,i}. Then, C} is an addend of the sum Cy + C; + ... + C;. Hence,
Cr CCo+Cy+ ...+ C; = CWD_ and thus is proven.
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Now, C = Cy+ Cy + ... + C; = Y Oy, so that

n=0
A (C(i)) =A Cn| = A(Cy) (since A is K-linear)
c z CZ®Cn7€
£=0
C Cy ® Cns
n=0 £=0 G —~
cc® co®
(by (applied to k=), (by (applied to k=n—¢),
because £<n<i and thus £€{0,1,...,i})  because n—¢<n<i and thus n—¢c{0,1,...,i})
- cWgccclgo®
n=0 (=0
(Since C% @ C% is a K-vector space) .
Hence, C® is a subcoalgebra of C'. This proves Lemma 1.15. m

Proof of Lemma 1.16. Let ¢ denote the canonical inclusion map D — C. Then, ¢
is a K-coalgebra homomorphism, so that Ag ot = (¢t ® () o Ap. However, by the
definition of convolution, we have the two equalities f* g = a0 (f ® g) o Ac and
(flp)*(g|p)=pac((f|p)®(g]|p))oAp. Besides, f |p= f ot (because ¢ is the
inclusion map D — C') and g |p= g o ¢ (for the same reason). Now,

(f*9) b= (f*xg) o (since ¢ is the inclusion map D — C)
~——
=pao(f®g)eAc
=pao(f®g)o Acor ZMAO£f®g)£(L®LzoAD
=(®1)oAp =(for)®(got)

=pao | (for)®(gor) | oAp=pac((fIp)®(g]p))oAp
=flp =glp

= (flp)*(gIp)-
This proves Lemma 1.16. O

Proof of Lemma 1.14. Let N_ denote the set {—1,0,1,2,...}. For every i € N_,
let C® denote the subspace Cy 4+ C; + ... + C; of C. For any i € N_ and any
g € Homg (C(i), A), let Hompg ; , (C, A) denote the subset

{f € Homy (C, A) ‘ f |C(i): g} of Homg (C, A) .

By the definition of the right degree topology (in Definition 0.4 (b)), the right de-
gree topology on Homyg (C, A) is the topology generated by the sets Homy ; , (C, A)
with ¢ € N_ and g € Homy (C¥, A) (as open sets). In other words, the set

{Homy,, (C,A) | i € N_; g € Homg (C’(i),A)}
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is a basis of the right degree topology on Homg (C, A).
We recall a very easy fact from general topology:

If 2 and B are two topological spaces, and S is a basis of the topology on B,
and if T : A — B is a map such that (the set T~ (U) is open for every U € S),
then T is continuous
(51)
(In brief, this fact means that the continuity of a map needs not be checked on
every open set - it is enough to check it on the open sets of a basis.)

Let 2 be the topological space Homg (C, A) x Homyg (C, A). Let B be the topo-
logical space Homg (C, A). Let T : Homg (C, A) x Homg (C, A) — Homg (C, A)
be the product map of the K-algebra Homg (C, A). (In other words, T" is the map
which takes any (f, g) € Homg (C, A) x Homg (C, A) to the convolution fxg.) We
are going to prove that 7' is continuous.

Note that B = Homy (C, A), so that B xB = Homg (C, A) x Homg (C, A) = .

Denote by S the set {Homy ;,(C,A) | i € N_; g € Homg (C¥, 4)}.

We know that {Homyg ;4 (C,A) | i € N_; g € Homg (C¥, A)} is a basis of the
topology on Homy (C, A). Since {Homy ;,(C,A) | i € N_; g € Homg (CW, A)} =
S and Homyg (C, A) = B, this rewrites as follows: The set S is a basis of the topol-
ogy on ‘B.

Now we will prove that

the set 7! (U) is open for every U € S. (52)

In order to prove this, we will show that every ¢ € N_ and every g € Homg (C’(i), A)
satisfy

Til (HOI’HK’LQ (C, A))
= U Homy ; 4, (C, A) x Homg ; 4, (C,A).  (53)

(91,92)€Homg (Cm ,A) xHom g (C(i)VA);
g1*g2=g

Proof of . Let i € N_ and g € Homg (C’(i),A).

a) Let s be an element of 77! (Homg,, (C,A)). Then, s € Homg (C, A) x
Homy (C, A), so we can write s in the form s = (sy, s2) for some s; € Homg (C, A)
and ss € Homg (C, A). Consider these s; and sy. Let t1 = $1 |ow and to = $o |a)-

By Lemma 1.15, we know that C® is a subcoalgebra of C. Thus, Lemma 1.16
(applied to C®| s; and s, instead of D, f and g) yields

(81 * 82) |C(¢): (Sl ’C(i)) * (52 |C(i)> = tl * t2. (54)
—_—
=t1 =t

Since s = (s1, s9), we have T (s) = T (s1, $2) = s1 * 2 (because T' is the product
map of the K-algebra Homg (C, A)). Thus,

s1% sy =T (s) € Homg,; , (C, A) (Since s € T~ (Homg,, (C, A)))
= {f € Homg (C,A4) | flcw=g},
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so that (s; * s3) |cy= g. Comparing this with , we find t; * £, = ¢g. On the
other hand, the definition of Homg ;¢, (C, A) says that

HomK,i,tl (Oy A) - {f S HOIIlK (07 A) | f |C(i): tl} .

Hence, from s1 |o@=t1, weget s1 € {f € Homg (C,A) | f|cow=1t1} =Homg,,, (C,A).
Similarly, s € Homg 4, (C, A).

Since s; € Hompg ;4, (C, A) and sy € Homg 4, (C, A), we have
(s1,82) € Homp ¢+, (C, A) x Hompg ;+, (C, A). Hence,

s = (81,52) € Hompg 4, (C, A) x Homp 4, (C, A)
C U HOIIlK’i,g1 (C, A) X Hovaim (C, A)

(91,92)€Hom (€D, A) xHom (C9),A);
g1*92=9

(since t; xty = g) .

Now forget that we fixed s. We have proven that every s € T~ (Homg ; , (C, A))
satisfies s € U Homg ;4 (C, A) x Homg ; 4, (C, A). In

(91.92)€Hompc (C,A) xHom (C1,A);
g1%92=9
other words,

71! (Homg ;4 (C, A))

- U Homg ;4 (C,A) x Homg 4, (C,A).  (55)
(g1,g2)€HomK(C(i),A)XHomK(C(i),A>;
g192=9
b) Now let z be an element of U Homy ; 4, (C, A) X
(91792)6H0mK(C(i>,A)XHomK(C(i),A);
g1*g2=g

Homy ; g, (C, A). Then, there exists some (y1,72) € Homg (C?, A) xHomg (C?, A)
such that v; * 75 = g and z € Homg; ., (C, A) x Homg, -, (C, A). Consider this
(715 72)-

Since z € Homg ; , (C, A) x Homg -, (C, A), we can write z in the form z =
(21, 22) for some z; € Homg ,, (C, A) and 2z, € Homg, -, (C, A). Consider these
z1 and zs.

Since

2 € Homg ,; , (C,A) = {f € Homg (C,A) | flco=n}

(by the definition of Homy ; -, (C, A)), we have 21 |ow= 7. Similarly, 25 |co= 2.
Recall that C® is a subcoalgebra of C. Hence, Lemma 1.16 (applied to C®, 2,
and zy instead of D, f and g) yields

(21 % 22) low= (21 [cw) * (22 |cr) =M1 =g (56)
—_—— Y—
=71 =72

Now, z = (21, 22) yields T (2) = T (21, 22) = 21 * 23 (since T is the product map
of the K-algebra Hom (C, A)), so that

(T (2)) lcw= (21 % 22) |cr=g (by (B6)),
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so that T'(2) € {f € Homg (C,A) | f|cw=g9} = Homg,,(C,A) and thus z €
T~ (Homg,, (C, A)).

Now forget that we fixed z. We have thus shown that every
z € U Homy ; 4, (C, A) x Homg ; 4, (C, A) satisfies z €

(g91,92)€Hom g (C(i),A) x Hom g (C(i),A);
gi1*g2=g

T (Homg, 4 (C, A)). In other words,

U Homy,; ,, (C, A) x Homg 4, (C, A)

(91,92)€Hom g (C’“) ,A) x Hom g (C“) ,A);
gi1*g2=g

C T (Homg,, (C, A)).

Combining this relation with 7 we obtain . This proves .
Proof of . We have S = {Homy;,(C,A) | i € N_; g € Homg (C®, A)}

Hence,
Homg,, (C,A) €S for every i € N_ and h € Homg (C?, A).

57)
Nowlet U € S. Then, U € § = {HomK,ivg (C,A) | ieN_; g € Homg (C(i),A)}.
Hence, there exists some 7 € N_ and some g € Homg (C’(i),A) such that U =
Homy ;4 (C, A). Consider these ¢ and g.

For every (g1, g2) € Homg %@, A)xHomyg (C®, A), the subset Homy ; ¢, (C, A)x
Hompg ; 4, (C, A) of A is open[”| Thus, the set

U Homy ; 4, (C, A) x Homg; 4, (C, A)

(91,92) €Hom ¢ (C(),A) xHom (C(),A);
g1*92=9

is a union of open sets, and therefore open itself. Since

T (U) =T (Homg,, (C, A)) (because U = Homg ; , (C, A))
= U Hompg ;4 (C, A) x Homg 4, (C, A)
(g1,g2)€H0mK<C(i),A)XHomK(C(i),A);
91929

(by (53)), this rewrites as follows: The set 7~ (U) is open. This proves (52).
Now that is proven, we can apply and conclude that T is continuous.
Since T' : Homg (C, A) x Homg (C,A) — Homg (C, A) is the product map of
the K-algebra Homg (C, A), this shows that the product map of the K-algebra
Homy (C, A) is continuous. Thus, Homg (C; A) is a topological K-algebra (since
we already know that Homy (C, A) is a topological K-vector space). This proves
Lemma 1.14. O
20 Proof. Let (g1,g92) € Homp (C(i),A) x Hom g (C(i)7A). Then, Homg ; 4, (C,A) € S (by ,
applied to h = g1) and Hompg ; 4, (C, A) € S (by , applied to h = g2).
Since S is a basis of the topology on B, every element of S is an open subset of B. Thus,
both Homg ; ¢4, (C, A) and Homg ; 4, (C, A) are open subsets of B (since Homg ; 4, (C,A) € S
and Homg ; 4, (C, A) € S). Hence (by the definition of the product topology), their cartesian
product Homg ; 4, (C, A) x Homp ; g, (C, A) is an open subset of B x B = A, qed.
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Now, finally, the reason why were doing all of this:

Alternative proof of Proposition 5.3. First of all, let C'=Th (X) and A = Th (X).
For every graded K-linear map f : C — A, let Sy denote the element

> > (2} ®. @)@ f(1,®..0x,)€T.

KEN (i1 ig,... ik) €{1,2,...,n}"

Consider the elements T" € 7 and S € T defined on page 1082 of Patras’s paper.
These elements were defined by

T= Z Z (le®'”®I:k)®($i1®”'®xik)

REN™ (i1 ia,... i) €{1,2,...,n}*

and S=1®1+1T.
Recall that I denotes the identity map idppx) of Th (X). Thus, I is a graded
K-linear map C' — A (since C' = Th(X) and A =Th (X)), and we have

SI:Z Z (2}, ® ... @ a}) ® (1 ® ... ® 25,)

- . . v
KEN (i1 ig,....ix)€{1,2,...,n}* =<$i1 ®~~-®1'ik)

(by the definition of Sy)
REN (41 ia,..ip) €{1,2,...m} "

— > (2} @..0z)) ® (v, ® ... ® T,)

(i1,i2,..vi0)€{1,2,...,n}°

[\ J/

~
=(empty tensor product)®(empty tensor product)
(since there exists only one (i1,ia,...,io)€{1,2,...,n}°, and this
(1,42,...,i0) is the empty O-tuple)

+ ) > (2}, ®..02}) ® (T, ® ... ® T;,)

REN® (i1 ig, .. ig)E{1,2,....n}"

J/

-

—T
= (empty tensor product) ® (empty tensor product) +7 =1® 1+ T = S.
=1 =1

Now let us show that

( for every graded K-linear map f : C'— A, the element )

S lies in C*#*®A and satisfies ¢4 (S7) = f (58)

Proof of @ Let f: C — A be a graded K-linear map. For every k € N, we
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have

> (¢ @) of (@ .. @)
(il7i2:--~77f'k)€{1727-'~7n}k ECEgr E‘Zk

(since Tip ®...0Ti, eCly,
and since f is graded)

€ > Cr& @ A, C Cr¥ @ Ay

(il7i2y~"7ik)e{l727"'7n}k

(since C;® @ Ay is a K-vector space). Hence,
(1152, i) €{1,2,...,n}F BEN keN
Now, recall (from Definition 0.5) that com%e\c*gr, 4 is the map

[T e a) - c=da,

1€N
(@i)jeny — Zai'

ieN
Renaming the indices ¢ as k in this formula, we see that combinecser 4 is the map

[T (¥ ® Ap) = Cr&®A,

keN
(an)pen — Z“k-
keN
Thus,
T * *
combinecser 4 (2} ®@..0x) @ f(z;, ® ... ®x;,)
(i1,i2,ik)E{1,2,...,n 3" kEN

:Z Z (2] @ ..@a ) ® f (25, ® .. ® x;,) = Sy,
keN

(i1,i2esi ) €{1,2,..,n}*

so that
S = combinecxear 4 Z (27, @ .0z )& f(z;, ® ... @ x3,)
(4152, )€{1,2,... 0 }F kEN

€ com@*grﬁ <H (C]:gr ® Ak)) - C*gr@A.

keN
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Thus, we have proven the first part of the claim of .

Now to the second part: For every k € N, notice that (z;;, ® ... ® :cik)(ihw 77777 (1.2, )
is a basis of the K-vector space Cj, (since C' = Th (X)), and (2}, ® ... ® a7, )
is the basis of the K-vector space C* dual to this basis (z;, ® ... ® 2;,),
Hence, Proposition 1.13 (c) (applied to (cke),c;, = (%1 ® ... @ 3,),

and (¢} ) 75 ®..® x;fk)(iw.2 ..... el n}k) yields that

k

(i1,i2,yi6)E{1,2,...,n}"

i1,02,i)€{1,2,...m}F

i1,02,0i5)€{1,2,...,n}F

ven, (

f=dca Z Z (2, ® .. ®27) @ f (x5, ® ... ®3,) | = bc,a (Sy)-

KEN (i1 in,..ig)€{1,2,...,n}"
h TV J

:Sf

Thus we have shown that S; € C*#*®A and that ¢o 4 (Sf) = f. Hence, is
proven. N
Applying 1} to f = I, we conclude that S; lies in C**®A and satisfies

bca(Sr) = 1.

Since ¢ 4 commutes with taking the logarithm (because ¢¢ 4 is a continuous K-
algebra homomorphism, and because every continuous K-algebra homomorphism
commutes with taking the logarithm), we have log (¢c.a (Sr)) = ¢c.a (log (Sr)).
Thus,

log \[,_/ =log (¢c.a (S1)) = ¢pc.a | log (S1) | = ¢c.a (logS).
=¢c,a(Sr1) =5

However, applying to f =log I (this is allowed since log I is graded), we con-
clude that Sy 1 lies in C* &' A and satisfies dc,a (Siogr) =log I. Thus, ¢c 4 (Siog1) =

log I = ¢¢ 4 (logS). SinceigzﬁC,A is injective (by Proposition 1.13 (a)), this yields
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Siog1 = log S. Hence,

logS:S]og[:Z Z (2] @ ...@x; ) @ (log]) (v, ® ... ® ;)

KEN (i i, i) €{1,2,...n}*
(by the definition of Sig1)

— Z (27, ®@..@x}) ® (logI) (z;; @ ... ® ;)

(91,62 ,-yi0) €{1,2,...,n}°

~
=(empty tensor product)®(log I')(empty tensor product)
(since there exists only one (i1,i2;...,io)€{1,2,...,n}°, and this
(41,i2,...,i0) is the empty O-tuple)

+2 ) (23, © .. ®2,) ® (log ) (21, © ... ® 3,
KEN* (i) ia,...ip)€{1,2,...n}*

= (empty tensor product) ® (log I') (empty tensor product)

+2 2 (¢}, ® .. ®},) @ (logI) (z;, ® ... ® x3,)
@(il7i2,-~-7ik)€{1,2,...7n}k
=2

E>1
= 1®(logl)(1)
—_———
=0 (since (logI)(1)=0)

+) > (v}, @ .. @a}) @ (log 1) (24, ® ... @ ;)

k21 (31dg,... i) €{1,2,...,n}"

=> > (2}, @ ..@a}) @ (log]) (2, ® ... ® x5, . (59)

k21 (i1,i2,0i)€{1,2,,n} "

Now let us remember that Patras (on page 1082-1083) defines the elements
Qiy...i,, (for all & € N* and all (i1, do, ..., %) € {1,2, ,n}k) by decomposing log S
into the form

log S = Z Z ($:1 ®..Q .1';) ® Qil,...,ik-

k21 (i g, i) €41,2,...n )

Due to (59), this decomposition is clearly given by

logS:Z Z (27 @ ... )@ (logl) (2, ® .0 x;,) -

k21 (Z'lai2>"'9ik)€{1727"'9n}k

Hence, Q;y. 4, = (log]) (x;, @ ... ® x;,) for every k € N* and every (i1, 4o, ..., i) €
{1,2,...,n}".
Now, denote the connected cocommutative graded Hopf algebra Th (X) by H.

log )" logI
By (applied to 7 = 1), we have e! = (Ogll) = Of = logI. Now, every
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k € N* and every (iy, g, ...,1) € {1, 2, ,n}k satisfy

Qiy..iip, = (log 1) (24, ® ... @ xy,) = et (), @...Qx;,) = e,lC (), @ ... @ x;,)
—el

(since z;; ® ... ® x;, € Hy)

€e(H) = ngl) (since H,gl) was defined as e}, (H))
since HV) was defined as @ HS), and thus contains H. ,(:)
c HO n=l
- (since H, ,El) is an addend of the sum €D Hy(Ll))
n>1
= Prim H (by Lemma 4.1, since H is connected cocommutative graded)
= Prim (Th (X)) (since H =Th(X)).
This proves both parts of Proposition 5.3. O

Page 1085, proof of Lemma 6.3: This proof is an induction proof, but the
induction base (i. e., the case n = 1) is missing. Fortunately, this is not much of
a problem since the induction base can be done by a slight simplification of the
argument from the induction step.

The proof itself is nice, but let me rewrite it for more clarity. We start with a
lemma:

Lemma 6.5. Let K be a field of characteristic p, where p is a prime.
Let C' be a K-vector space, and let D be a K-vector subspace of C.
Let a: C' — C be a K-linear map such that

(a(zx) == for every x € D) (60)
and
(a(x) = xmod D for every x € C). (61)

Then, o = idc.
Proof of Lemma 6.5. We claim that for every ¢ € N, we have
o () =2+ 0 (a(z) —x) for every z € C. (62)

Proof of (@ We are going to prove by induction over ¢:
Induction base: We have o’ (x) = id(z) = 2 = v + 0(a(x) — z) for every
=id
x € C. In other words, holds for ¢ = 0. This completes the induction base.
Induction step: Let L € N. Assume that holds for ¢ = L. We now must

prove for ¢ = L + 1.
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Since holds for ¢ = L, we have o’ (x) = 2 + L (a (z) — z) for every z € C.
On the other hand, every z € C satisfies o (z) = zmod D (by (61))) and thus
a(z)—z e D.

Thus, for every x € C', we have

ot (z) =a o (z) =a(z+ L(a(x)—1))
—
=z+L(a(z)—1x)
= «afr) +L ala(x) —x) (since a is K-linear)
——
=z+(a(z)—1) =a(z)—z

(by (applied to a(x)—z instead of z),
because a(z)—z€D)

=z + (o) —z)+L(a(r) —z)=a+ (L+1)(a(r) —2).

/

:(LJrl)(:z(m) —x)

In other words, is proven for £ = L + 1. This completes the induction step.
Thus, the induction proof of is complete.

Now, applying to £ = p, we obtain of () = z + p(a(x) — x) for every
x € C. Thus, every x € (' satisfies

af (r) =x+ p(a(zr) — ) =z =id¢ ().
%_,—/

(since K has characteristic D)

In other words, o = ids. This proves Lemma 6.5. O]

Lemma 6.6. Let K be a field of characteristic p, where p is a prime.
Let k be an integer not divisible by p. Let C' be a K-vector space, and
let D be a K-vector subspace of C'. Let 8 : C' — C be a K-linear map
such that

(B (z) =2 for every z € D) (63)

and
(B (z) = kxmod D for every x € C). (64)

Then, (8771 = idc.
Proof of Lemma 6.6. We claim that for every ¢ € N, we have
B (z) = k*rmod D for every x € C. (65)

Proof of @ We are going to prove by induction over ¢:
Induction base: We have (° (z) =id(z) =z and k° z = x for every x € C.
~—~ ~

=id =1
Thus, 3° (z) = 2 = k%2 for every x € C. In other words, holds for ¢ = 0. This

completes the induction base.
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Induction step: Let L € N. Assume that holds for ¢ = L. We now must

prove for ¢ =L+ 1.
Since holds for ¢ = L, we have

B (z) = k¥ mod D for every x € C. (66)

Thus, for every z € C, we have

B (z) = gL (B (2) = k- @ (by (66), applied to 8 (z) instead of x)
)
= @ z = k" 'z mod D.
—fL+1

In other words, is proven for ¢ = L + 1. This completes the induction step.
Thus, the induction proof of is complete.

Now notice that, by Fermat’s Little Theorem, we have k*~* = 1mod p (since p
is a prime, and k is an integer not divisible by p). Hence, kP~! — 1 is divisible by
p, so that (kP~' — 1)z = 0 for every z € C (since K has characteristic p). On the
other hand, applying to £ = p—1, we obtain P~! () = kP~lz mod D for every
x € C. Thus, every z € C satisfies

Bt () =k e =2+ (K 'z — 2) = rmod D.

————
=(kP—1-1)z=0

Combined with , this yields that we can apply Lemma 6.5 to v = 3P~!. This
yields (P~1)” = id¢, and thus Lemma 6.6 is proven. O

The next lemma we need is a basic property of connected graded bialgebras:

Lemma 1.17. Let H be a connected graded bialgebra over a field K
(not necessarily of characteristic p). Let n be a positive integer. Let
x € H,. Then,

n—1

Alw)er@1+1®@z+ Y Hp® Hyy
k=1

Note that this Lemma 1.17 is a slight rewriting of Proposition II1.1.1 of [M], but

let us give a proof for the sake of completeness.

Proof of Lemma 1.17. In the following, id will always denote the identity map idy
of H.
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We have z € H,, and thus

A(z)e A(H,) C Z Hy ® H, & (since H is a graded coalgebra)
k=0
n—1
=Ho® Ho o+ Y Hy® Hy o+ Hy @ Hyyy
M k=1 Y
=H, - =Hy
n—1
=Hy® H,+ Y _ Hy® H,_,+ H, ® H,.
k=1
n—1
Hence, there exist some u € Hy® Hy,, v € >, H, ® H,_y and w € H, ® Hy such
k=1

that A (z) = u + v + w. Consider these u, v and w.

We now will prove the two equalities u = x ® 1 and w = 1 ® x. The proofs of
these equalities are analogous (they only differ in the order of the tensorands), so
it will be enough to prove w =1 ® x only.

According to my definition of a connected graded bialgebra (see my remark about
“Page 1070, fifth line of this page”), the map € |y,: Hy — K is an isomorphism
(since H is connected). Thus, the map id® (e |g,) : H® Hy - H ® K is an
isomorphism.

n—1
Adding the relations u € Hy ® H, and v € > Hy ® H,_, we obtain
k=1

n—1 n—1
uU+vE HO®Hn+ZHk®Hn—k :ZHk‘®Hn—k7
k=1 k=0
so that
n—1 n—1
(id @€) (u 4 v) € (id ®e) (Z H,® Hn_k) =Y (id ®e) (Hy @ Hy_y,)

>
k=0 k=0 . b
=id(Hp)®€e(Hp—k)

(since id ®e is K-linear)

n—1 n—1
= id(H)® ¢ (H,_) = id (H) ® 0 =0.
k=0 ’ k=0

(since n—k>1 (becajs% k<n—1), and since
H is a graded coalgebra)
In other words, (id ®¢) (u+ v) = 0.
Let kan; be the canonical isomorphism H — H ® K which sends every x € H to
x ® 1. By the axioms of a coalgebra, (id ®¢) o A = kan; (since H is a coalgebra).
Hence,

((id®e€) o A) (x) = kan (z) = ® 1 (by the definition of kan;)

..CU N v
:ld($) :E(l):(E|H0)(1)
(since 1€Hyp)

= id () @ (€ [m) (1) = (I @ (€ [m,)) (z @ 1).
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Compared with

((id ®€) o A) (z) = (id ®e) w = (id ®e) (u + v + w)
= (id ®e) (ui—i- v) + (id ®e) (w) = (id ®e) (w)
—_—

=0

= (([d ®¢) |peon,) (W) sincew € H, ®Hy C H® H,y
N g 4 -~
=id ®(elng ) CH

= ([d® (€ m,)) (w),

this yields (id® (¢ |n,)) (w) = (iId® (€ |n,)) (x ® 1). Since id ® (€ |g,) is injective
(because id ® (€ |y, ) is an isomorphism), this yields w = x ® 1. As we have said,
the proof of u = 1 ® z is similar to the proof of w = ® 1 that we just did (except
we have to switch the order of the tensorands). Thus, we now have

n—1

Alx)=ut+v+w=_w_ + u_+ v cr@l+1®z+ Y Hp® Hyy
=x®1 =1Qx n—1 k=1
S Z Hk®Hn7k
k=1
This proves Lemma 1.17. O

Corollary 1.18. Let H be a connected graded bialgebra over a field
K (not necessarily of characteristic p). Let £ € N.

(a) We have U* (1) =1 and (¥* — 1) (Ho) = 0.

(b) Let n be a positive integer. Let x € H,,. Then,

! (2) = ¢z mod (nz HiHn_i) NH,. (67)

=1

Proof of Corollary 1.18. (a) There is a fact that every K-linear map f : H — H
satisfying f (1) = 1 must also satisfy f* (1) = 1 for every v € N.

This fact is very easy to prove by induction over ¢ (the details are left to the
reader). Applying this fact to f = I and v = ¢, we conclude that I**(1) = 1.

Since U¢ was defined by W¢ = I*¢, we have W¢ (1) = [**(1) = 1.

On the other hand, since H is connected, the map € |g,: Hy — K is an isomor-
phism.

Consider the family (1) of vectors in the K-vector space Hy. The image of this

family under the isomorphism € |g, is | (e |g,) (1) | = (1), and this is a basis
—_——

=e(1)=1
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of the K-vector space K. Hence, the family (1) is a basis of the K-vector space
Hy (because every family of vectors in a vector space whose image under some
isomorphism is a basis must itself be a basis). Hence, Hy = K -1 (where 1 denotes
the unity of the K-algebra H). Thus,

(W= 1) (Ho) = (W' = 1) (I - 1) = K- (@ = 1) (1)
=Wt(1)—1(1)

(since U—Tis K —linear)

=K- (U1 -11)|=K-(1-1)=0.
~——

=1 =1 =0

This proves Corollary 1.18 (a).

(b) Note first that © € H, yields e¢(z) € €(H,) = 0 (since H is a graded
coalgebra and n > 0), so that € (z) = 0.

We are going to prove @ by induction over ¢:

Induction base: We have

n—1
0 _ _ _ - H
U° (x)=(noe)(x)=n(e(x)) =n(0) =0= 0xrmod <Zl Han_Z> N H,.
=o€ =0 1=

Thus, ([67) holds for ¢ = 0. This completes the induction base.

Induction step: Let L € N be arbitrary. Assume that holds for ¢ = L. We
now must show that holds for £ = L + 1.

Since ¥ and ULt are graded maps, we have W' (H,) C H,, and VX! (H,) C
H,.

By the definition of WX, we have UL = [*L. Also, Corollary 1.18 (a) (applied to
(= L) yields U* (1) = 1 and (¥* —I) (Hy) = 0.

By the definition of W+ we have

\I/L+1:I*(L+1):I* [*L :[*‘IJL:,LLO(I(@\IJL)OA

—yL
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(by the definition of convolution). Thus,

U (z) = (po (I@ V") o A) (z) = p | (I @ TF)

n—1

k=1

cx@1+1®z+ > Hr®Hp_i
k=1

(A (2))

(by Lemma 1.17)

eu(([@‘IJL) (a:@l—i—l@x—i—ZHk@an))

-

=(Iewl) (x®1)+(1®\I/L)(l®x)+Z§i(I®\I/L)(Hk®Hn_k.)

(since IT®WL is K-linear)

(I ®wh) (:B®1)+([®\IJL) 1®z)+

:1(1)®‘1’L(ﬂ?)

— [(2)®UE(1)

3
H

([ ® V") (Hy ® Hy—y)
1

=
Il

:I(Hk)®‘I’L(ank)

=p|l(x)@V" (1) +1(1)e V" (z)+ nif (Hy) @ OF (Hn—k)>
k=1
= I (z)- 0" (1) + 4—%2] vl (H,_;)
:;/ -1 -1 i —H, CH, &

(since UL is a graded map)

(since p is the multiplication map)
Z HH Z HiH.-,

(here we renamed the index k as ¢ in the sum), so that U1 (z) — 2z — UF (2) €
Z H;H, ;. Combined with ! (z) — 2 — Ul (z) € H,, (this is because = € H,
and thus V* () € WL (H,) C H, and VX! (z) € U+ (H,) C H,), this yields

1)@

n—1

=x+ Lz =(L+1)zmod (Z HiHn_i> NH,.

=1

Cx+Vl(z nek =+ W (z

n—1
Ut (g) — 2 — Uh (2) € < H;H,_
=1
In other words,

Pl U (1)

——
n—1
=Lz mod( S H;iHp—
i=1
(because holds for ¢=L)

=xr+

7,) NHy
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In other words, holds for £ = L 4+ 1. Thus, the induction step is done. The
induction proof of is therefore complete.

So now we know that holds for every ¢. In other words, Corollary 1.18 (b)
is proven. ]

Finally, a consequence of Proposition 1.4:

Corollary 1.19. Let H be a bialgebra, a graded bialgebra or a Hopf
algebra. Assume that H is commutative or cocommutative. Then the
characteristic operations (defined in Definition 1.2) satisfy (U*)° = U**
(where (¥*)" means ¥* o ¥ o ..o U*) for all k € N and s € N.

s times

Proof of Corollary 1.19. Fix some k € N. We will prove (¥*)° = U** by induction
over s:

Induction base: We have (\Ifk)o =1 = 1" =¥ (because U! was defined as I*!)
and U = ¥ Thus, (\I/k)o = U! = U In other words, (T*)* = ¥* holds for
s = 0. This completes the induction base.

Induction step: Let S € N. Assume that (\IJ’“)S = U* holds for s = S. We must

then prove that (\Ifk)s = U** also holds for s = S + 1.

Since (U*)® = U* holds for s = S, we have (\Ilk)s — U*° . Applying Proposition
14 to [ = k5, we get UF o UK = W+ — O+ (gince k- k5 = k51). Hence,
(\I/k) S gho (\Ifk)s = Uk o Uk = U™ I other words, (\Ilk)s = U* is proven

——

=gk
to hold for s = S + 1. This completes the induction step. Thus, the induction
proof of (\I/k)s = U* is complete. In other words, Corollary 1.19 is proven. O]

Now to the actual proof of Lemma 6.3:

Proof of Lemma 6.3. We WLOG assume that H is a graded bialgebra. (The case
when H is a Hopf algebra is analogous.)

We WLOG assume that H is commutative. (The case when H is cocommuta-
tive can be obtained from the case when H is commutative by dualization using
Proposition 3.9.)

Fix some k € Z such that k£ £ O0mod p. Thus, k is not divisible by p. Thus, by
Fermat’s Little Theorem, p | kP~* — 1 (since p is prime), so that

(k"' —=1)(z)=0 for every x € H (68)

(since K has characteristic p).
We must prove that every positive integer n satisfies

p (7)) =) (69)

In fact, we will prove by induction over n:
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Induction base: We have p'~! = p® = 1, so that L L Uk so that
-1\ p—1 — -1 .
<\I/kp1 1) = (\I/k)p b g (by Corollary 1.19, applied to s = p — 1).
Every x € H; satisfies

i=1

1-1
U (2) = kP 'z mod <Z HiH”> N H,

1-1
(by Corollary 1.18 (b), applied to £ = k»~* and n = 1). Since (Z HZ-Hl_z) NH, =

i=1
- 7
-~

=(empty sum)=0
0N Hy = 0, this becomes U*" (z) = k*~'zmod 0. Hence, every z € H, satisfies
U () = kP12 mod 0, so that

U () =k e =1+ (k" 'z —2) =z
—_————

= (kpflax:o
(by (68))

Thus, every x € H; satisfies (ﬁfkp_l —[> () = U¥ " (2)—T(x) =2 —2 =0
—_ =~

and thus z € Ker <\Ifkp71 — I). Hence, H; C Ker (Qlkpfl — I). In other words,
(\Iﬂc‘” . 1) (H,) = 0.
On the other hand, Corollary 1.18 (a) (applied to £ = kP~') yields U¥" " (1) = 1
and (xlfk’” - I) (Hy) = 0.
1
Now, since p; (qlkp_l - ]) is the restriction of the map U¥ ' — I to & H;, we

i=0
have

(o (3 0) = (7 0) () - ()

=Ho®H1=Ho+H1
(since direct sums are sums)

_ (xp’f‘ - 1) (Ho) + (\Ilk - f) (Hy)

J/ N J/

=0 -0
(since U Tis K —linear)
=04+0=0,
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so that p; (‘llkp*l — I) = 0. Thus,

0=p <\I/kp71 - I> = <\ka71> —p1 (1) (since p; is K-linear)
——
:(\I}kp171>p71

B \Ijkpl_l p—1 B [
= pP1 P1 ( ) )
1-1\ p—1
so that p; ((lllkp )p > = p; (I). In other words, holds for n = 1. This

completes the induction base.

Induction step: Let N be a positive integer. Assume that holds for n = N.
We must then prove that also holds for n = N + 1.

Since holds for n = N, we have

o ((w)) o (1),

N pN-1\P—1 pN-1\P—1
Every x € @ H; satisfies <\Ilk ) () = (pN ((ka ) )) (x) (since
i=0
pN-1\ P—1 pN-1\ P—1 N
PN ((‘I/k > ) is the restriction of the map <\Ilk ) to@ H;) and I (z) =
i=0

N
(pn (1)) (z) (since py () is the restriction of the map I to @ H;). Thus,

=0
N
every x € @ H; satisfies
=0
N p—1 w1 p—1
(v )@= (o (W) ) ) @) = (ox (1) (@) = T (@) = =
=px(1)
(70)
N
Let E be the K-vector subspace @ H; of H. Then, 1} rewrites as follows:
=0
pN-1\P—1
Every x € E satisfies <\Ifk ) () = x. (71)
On the other hand,
every j € {0,1,..., N} satisfies H; C E (72)

(because for every j € {0,1,..., N}, the space H; is an addend of the direct sum
N N
@ H;, and thus is contained in @ H; = F).

=0 1=0
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We are now going to show that
N (p_
(W v 1) (H,) =0 for every n € {0,1,., N +1}.  (73)

Proof of . Let n € {0,1,..., N + 1} be arbitrary. Then, n < N + 1, so that
n—1<N.

Corollary 1.18 (a) (applied to £ = k?" ®=1) yields gh ey (1) =1 and
<\I/kpN(p71) — I) (Ho) = 0. Hence, is already proven when n = 0. Thus, for
the rest of the proof, we can WLOG
a positive integer.

Since U¥" isa graded map, it satisfies g (H,) C H,. Hence, it restricts to
a K-linear map 3 : H, — H, which satisfies (5 () = g (z) for every x € Hn>.
Consider this 5. Then,

assume that n # 0. Assume this. Then, n is

N—1\ ¢
B (z) = <\I/kp ) (x) for every £ € N and z € H,,. (74)

1

n—1
Let C be the K-vector space H,,. Let D be the K-vector subspace | HiHn_i) N
=1

H, of C. Since C' = H,,, the map (3 is a map C — C' (since (3 is a map H,, — H,).
Our goal is to apply Lemma 6.6. In order to do so, we must show that the
conditions (63)) and of Lemma 6.6 are satisfied. Let us first prove that the
condition is satisfied:
Since k is not divisible by p, and since p is prime, we have k»~! = 1modp
(by Fermat’s Little Theorem). Thus, (kp_1)1+p+p2+"'+pN72 — V2

Imodp. Since (kp_l)lerﬂ’QJ"“J”DN_2 N G B ¥ (because

(p—1) (1 +p+p*+.. +pN_2) = pV~! — 1), this becomes kP =1 = 1mod p, so

21 Proof of . We will prove by induction over /:

~1\ 0
Induction base: We have B° (z) = idg, (z) = 2 = id (x) = (\IfkpN 1) (x).
~— ' ~—

=idm,, :(‘IjkpN—l)O

Thus, holds for £ = 0. The induction base is now complete.
Induction step: Let L € N. Assume that holds for £ = L. Now we must show that
also holds for ¢ = L + 1.

Let x € H,,. We can apply to L and B (x) instead of £ and x (since we assumed that
N
1' holds for ¢ = L). This gives us 8% (3 (z)) = (\If’“pN 1) (8 (x)). Thus,

ﬁL“(x):ﬁL(B(ﬂc)):(\I’”N1)L (8 (2)) =(\1ﬂ“)(w <x>)=(\1ﬂ€p”1)m<x>.

——
=wkr™ T ()

N-1\ L+1
Thus, we have proven that fX*! (z) = (\I/kp ) (z) for every x € H,. In other words,

holds for £ = L + 1. This completes the induction step. Thus, the induction proof of
is complete.
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that k" = k%"~ = kmodp. Hence, p | k" — k. Thus, (kpN . k) z =0 for
d
=1modp
every x € C (since K has characteristic p).
Now, every x € C' satisfies

1

B(z) =0 (x)

=" <by Corollary 1.18 (b) (applied to ¢ = k*" ), since z € C' = Hn>
n—1
=kx + (kprlx — k::l:) = kz mod <Z HiHn_Z) N H,.
~ ~ - i=1
=(krY —k)2=0

n—1
Since ( HiHni> N H,, = D, this rewrites as follows:
1

Every z € C satisfies 8 (z) = kx mod D. (75)

Now to checking the condition (63)).

By Proposition 1.4, the characteristic operations of H are algebra homomor-

“lp-1)

N
phisms (since H is commutative); in particular, ¥** is an algebra homomor-

. i eVt p—1 _ N L1 . N_
phism. Since (W = (by Corollary 1.19, applied to k?

1
and

p — 1 instead of k£ and s), this yields that (\I/kpNA)p is a K-algebra homomor-
phism.

Now, let # € D be arbitrary. (Note that we are requiring x € D now, not only
x € C.) Then,

n—1 n—1
r€D= (Z HiHn_i> NH,C Z \H/ H, .

=1 i=1
1= 1= gE‘ gE
(since i<n—1<N, (since i>1, thus n—i<n—1<N,
so that 1€{0,1,...,N}, so that n—i€{0,1,...,N},
so that HigE o so that H,,_;,CFE
(by (72), applied to j=i)) (by (72), applied to j=n—i))
n—1
C E EFE CFEE (since EE is a K-vector space)

=1

= (the set of all K-linear combinations of elements of the form ee’ with e € E and ¢’ € E).

Hence, z is a K-linear combination of elements of the form ee¢’ with e € E and
I

¢’ € E. In other words, we can write z in the form x = > \;e;el for some I € N,
i=1

some elements A, Ao, ..., A\; of K, some elements ey, ey, ..., e; of E, and some

elements €/, €}, ..., €, of E. Consider this I, these A\j, g, ..., Ar, these ey, e, ...,
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er, and these €}, €5, ..., €7. Then,
p—1 o Nl p—1 . o . .
gt (x) = (¥ (7) (by (applied to £ =p —1), sincex € D C F = H,,)
pN-1\ P—1 ! !
= <\I/k ) Z Aieie, since x = Z Aieic;
i—1 i—1
! pN-1\ Pl SN-1\ P—1
=S () (e (v ) (e

i=1 ~ ~ —~

!

=e; —e!
. R k2
(by (71), applied to e; instead of z) (by (71), applied to e} instead of x)

N-1\ p—1
(since <\Ifkp ) is a K-algebra homomorphism>

I
/
= E Ni€i€; = .
i=1

Now forget that we fixed z. We have thus shown that every x € D satisfies
B~ (z) = x. Combined with (75)), this shows that all conditions of Lemma 6.6
are satisfied. Hence, we can apply Lemma 6.6, and obtain (37~!)” = idc. Thus,
ide = (BP~1)F = BP=VP. Hence, every = € C satisfies

~ id _ o () = (w ) by (7), applied to ¢ = (p — 1
= ldg () (z) (x) (by (74), applied to £ = (p — 1) p)
=p(=1)p
since Corollary 1.19
_ \I,kprl(p—np (z) (applied to k" and (p — 1) p instead of k and s)
. pN-1\ (P—Dp PN p-1)p
yields (\IJ’€ ) = yh
N
—‘Iikp (»-1) . N-1 1 _ ,N-1 —1) = N -1
(z) since p" ' (p =D p=p" p(p—1)=p" (p—1)
:pN
and thus

g™ (p=1) g™ (p-1)
so that € Ker (\IJ — I). In other words, C' C Ker ( W — I ). Hence,
(\IfkpN(pfl) — I) (C) = 0. Since C' = H,, this becomes <\I/kpN(P71> — I> (H,) = 0.
This proves (73).
N+1

N, _ N (p,_
Now, pni1 <\Ifkp Y [) is the restriction of the map WU+ R P H,.
=0
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_ (kIjkPN(Pfl) [> (5}1) _ (wkpN@fl) I) NZHH
= i = i
=0 =0
N+1
— &
(since direct sums are sums)
N+1 N N
= Z (lllkp Y I> (H;) <since VAR K-linear)
i=0 — -
=0 (by , applied to n=t1)
N+1
=) 0=0,
=0

so that pni1 <\IfkpN(p_l) — I) = 0. Since pn41 (lllkpN(p_l) - I) = PN+1 (Q/kpN(p_l)>—
pn+1 (I) (because py i is K-linear), this becomes py 1 <\I!kPN<Fl>) —pny1 (1) =0,
so that pyi1 (\IfkpN(Pfl)) = pni1 ().

Since (\IlkpN+l_1>p_1 = <\IlkpN>p_1 — gk (by Corollary 1.19, applied to k2"
and p—1 instead of k and s), we have py 1 ((ﬁlkpNH_l)p_l) = PN41 (\IJkpN(p*l)> =

pn+1 (I). Thus, holds for n = N +1. This completes the induction step. Thus,
the induction proof of is completed, and with it the proof of Lemma 6.3. [

Page 1086, Proposition 6.4: I think the condition that “k £ 0 [p], k #Z 1 [p]”
has to be replaced by the (stronger) condition that k be a primitive root modulo p.
Otherwise, the sum HM @ ... ® H®~Y won’t be a well-defined direct sum anymore
(since some of the addends will be equal).
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