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The purpose of this note is to prove Morris Orzech’s theorem on surjective ho-
momorphisms of modules [1, Theorem 1] within constructive mathematics. Our
main weapon will be the Cayley-Hamilton theorem.

The LaTeX sourcecode of this note contains additional details of proofs inside “ver-
long” environments (i. e., between “\begin{verlong}” and “\end{verlong}”). I doubt
they are of any use.

%%

Let us begin by stating the theorem:

generated A-module. Let N be an A-submodule of M, and let f : N — M be

Theorem 0.1. Let A be a commutative ring with unity. Let M be a finitely
a surjective A-module homomorphism. Then, f is an A-module isomorphism.

Morris Orzech discovered this result [1, Theorem 1] in 1971. It generalizes the
following fact, found formerly by Vasconcelos:

erated A-module. Let f : M — M be a surjective A-module endomorphism

Corollary 0.2. Let A be a commutative ring with unity. Let M be a finitely gen-
of A. Then, f is an A-module isomorphism.

Corollary (0.2 is a well-known fact (e.g., it appears in [12, Lemma A.3] and in
[3]), but most of its proofs in literature do not generalize to Theorem

Orzech’s original proof of Theorem (with the corrections provided in [2],
as the original version was shaky) proceeds by reducing the theorem to the case
when A is Noetherian, and then using this Noetherianness in an elegant and yet
mysterious way. The proof is not constructive and (to my knowledge) cannot
easily be made constructive. In this note, I will present a constructive way to
prove Theorem

Let us first make some preparations. We let N = {0, 1,2, ...}. We fix a commu-
tative ring A with unity. For every n € IN, let I, denote the identity n x n-matrix
in A"*"". We reserve a fresh symbol X as an indeterminate for polynomials. We
embed A into the polynomial ring A [X] canonically, and we use this to embed
the matrix ring A"*" into (A [X])""" canonically for every n € IN. For every
n € N and any square matrix M € A"*", we define the characteristic polynomial
Xxm of M as the polynomial det (X - I, — M). (This is one of the two common
ways to define a characteristic polynomial of a matrix M. The other way is
to define it as det (M — X - ;). These two definitions result in two polynomi-
als which differ only by multiplication by (—1)".) The famous Cayley-Hamilton
theorem states the following:
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Theorem 0.3. Let n € IN. Let A be a commutative ring with unity. Let M €
A" Then, xp (M) = 0. (In words: Substituting the matrix M for X in the
characteristic polynomial x s of M yields the zero matrix.)

In this exact form, Theorem is proven in [8], in [11, Theorem 3.4] and in
[5, Theorem 2.5]E| But there are lots of places where almost complete proofs of
Theorem [0.3|can be found. For example, Theorem[0.3]is proven in most standard
texts on linear algebra in the case when A is a field. Some of these proofs (e.g.,
the proof given in [4, Theorem 7.10], or the proof given in [10, Theorem 5.9], or
the proofs given in [9], or Straubing’s combinatorial proof given in [6E| and in
[7, 8§3]) can be straightforwardly generalized to the general case. Even if your
favorite proof of Theorem [0.3|in the case when A is a field does not generalize
to the general case, it is still easy to derive the general case from the case of A
being a field (this is what Conrad does in [11, Theorem 3.4]).

We can obtain the following consequence of Theorem

Corollary 0.4. Let n € IN. Let A be a commutative ring with unity. Let
M € A™"._ Then, there exists an (n + 1)-tuple (co,c1,...,cn) € A" such
that coM® + M + -+ - +¢,M" =0 and ¢, = 1.

Proof of Corollary 0.4, Tt is well-known that the characteristic polynomial xas of
M is a monic polynomial of degree n over A. In other words, there exists an
(n + 1)-tuple (co,c1,...,cn) € A" such that xp = coX? + 1 X+ -+ + ¢, X"
and ¢, = 1. Consider this (co,c1,...,cn). Evaluating both sides of the equality
am = coX0 4+ X+ -+, X" at X = M, we obtain yp (M) = cgM? + c; M +
-+ + uM". Thus, coM® + ;M + - - - + ¢uM" = xp1 (M) = 0 (by Theorem [0.3).
This proves Corollary O

We can now use Corollary [0.4] to prove the following lemma:

Lemma 0.5. Let n € IN. Let g : A" — A" be an A-linear map. Let V be an
A-submodule of A" such that g=! (V) C V. Then, g (V) C V.

Proof of Lemma If n = 0, then Lemma [0.5 is obviously true (because in this
case, V C A" = A" = 0 and thus V = 0). Hence, for the rest of this proof,

LOf course, the notations in these sources don’t exactly match the notations we are using here.
For example, the A, the X and the M in our Theorem correspond to the K, the ¢ and the
A in [5 Theorem 2.5].

2We notice that the two displayed equations right before the Lemma in [6, p. 275] should be
corrected to

PZ(A)U': Y, u(o)u(n), pa(A);= Y, u(o)pu(n).

(0’,7T)€Ti]+- (Uf”)ETi;

(To be fair, I do not know if they are wrong in the original printed version of [6] or only in
Elsevier’s dismal scan of the paper.)
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we can WLOG assume that n > 1. Assume this, and notice that this yields
n—1€{0,1,...,n}.
Let (e1, e, ...,e,) be the standard basis of the A-module A”. (Thus, for every
i €{1,2,...,n}, the vector e; is the vector in A" whose i-th coordinate is 1 and
whose other coordinates are all 0.) Let M € A" " be the n x n-matrix which
represents the A-linear map g : A" — A" with respect to this basis (e1, e, ..., ex)
of A". Then,
Mw = g (w) for every w € A". (1)
Corollary (0.4 shows that there exists an (n + 1)-tuple (co,cq,...,cn) € A"H
such that cgM°? +c;M! + - - - + ¢, M" = 0 and ¢, = 1. Consider this (cg, c1,...,cp).

n
We have Y gMK = cgM® + ;M + - - - 4+ ¢,M" = 0.
k=0
We shall now show that every u € {0,1,...,n} satisfies

(”cu+kM") v)cv. ©
k=

0

Proof of (2): We will prove (2) by induction over u:
Induction base: We have

n—0 n
copx ME | (V) = (Z ckMk> (V)=0(V)=0CV.
k=0 k=0
~~—~ ~C% N————’
n =0
=y
k=0

In other words, (2) holds for u = 0. This completes the induction base.
Induction step: Let p € {0,1,...,n} be such that p > 0. Assume that (2) holds
for u = p — 1. We now must show that (2) holds for u = p.
We have assumed that (2)) holds for u = p — 1. In other words,

n—(p—1) ’
( Y. cp-nuM ) (V)cv. (3)

k=0
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n—(p—1) § n—p+1 L 0 n—p+1 L
L oM = L oMt =cponoMi+ ), cponuM

(here, we have split off the addend for k = 0 from the sum)

—

=7, k=0~ _ i
o =h o =MM

(here, we have substituted k + 1 for k in the sum)

n—p n—p
= Cp—lll’l + kZ: Cp+kMMk = Cp—llﬂ + M (kZ: CP-I—kMk) .
=0 =0

N————
n—p
—M( r cp+kMk>
k=0
(4)

Now, let v € V. Then, applying both sides of the equality (4) to v, we obtain

n—=(p=1) n—p
( Z c(p_1)+kMk> (v) = <cp_11n +M (Z Cp+kMk>) v
k=0 k=0

h—p
k
=cp-1 Ihv +M ( E CprkM ) v
M k=0

=0

n—p
_ 0 ki1
=140 M+ ) o) M
(P—1)+0 Z (p=1)+(k+1)

n—p
=cp10+ M (Z cp+kMk) v
k=0

Subtracting ¢, 1v from this equality, we obtain

n—(p—1) n—p n—p
( ). C(pl)+kMk> (v) —cp1v = (Z Cp+kM ) =8 ((Z Cp+kMk> U)
k=0 k=0

(by , applied to w = ( i CpkM ) v). Hence,

n—p n— ( —1)
((Eo))-( £ w‘) )
k=0 =0 ev ev

n—(p—1)
( M > (V) —cpiVCV—c, VOV
k:

J/

o

(by )
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n—p
(since V is an A-module). Hence, <k§0 cp+kMk) veg L(V)CV.
n—p
Now, let us forget that we fixed v. We thus have shown that ( Y cp+kMk) vE
k=0

n—p
V for every v € V. In other words, ( )3 cp+kMk> (V) C V. In other words, (2)
k=0

holds for u = p. This completes the induction step. The induction proof of (2) is
thus complete.

Now, let us recall that n —1 € {0,1,...,n}. Hence, we can apply (2) to u =
n — 1. As a result, we obtain

n—(n—1)
< Y C(n1)+kMk> (V)cv.
k=0

1
Y C(n—1)+kMk =) C(n—1)+kMk = C(n—1)+0\MO,+ C(n—l)—&—l\Ml, =cp1ln+ M,

k=0 k=0 — _] ~— _um
SN—— =Cn-1 " =cp=1
1
=Y
k=0

this rewrites as (c,—1I, + M) (V) C V. Now, let w € V. Then,

(chn1ln+M) | w | € (ch1ln+M) (V) CV.

ev
Since (cy—1ln + M) (w) = ¢y Liw + Mw = c,_qw + g (w), this rewrites as
=w  =g(w)
(by (@)
cn—1w + g (w) € V. Hence,
g(w)eV—-cpq w CV—c, 1VCV (since V is an A-module).

2%

Now, let us forget that we fixed w. We thus have shown that ¢ (w) € V for
every w € V. In other words, g (V) C V. This proves Lemma O

Our next step is a proof of Theorem [0.3|in the case when N (rather than M) is
finitely generated:

Lemma 0.6. Let A be a commutative ring with unity. Let M be an A-module.
Let N be an A-submodule of M such that N is finitely generated as an A-
module. Let f : N — M be a surjective A-module homomorphism. Then, f is
an A-module isomorphism.
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Proof of Lemma We know that N is finitely generated. In other words, there
exist finitely many elements ay,4ay,...,a, of N such that N is generated by
aj,ap,...,a, as an A-module. Consider these aq,4a»,...,4a;,.

Let (eq,€2,...,e,) be the standard basis of the A-module A”. (Thus, for every
i €{1,2,...,n}, the vector e; is the vector in A" whose i-th coordinate is 1 and
whose other coordinates are all 0.) Clearly, in order to define an A-linear map
from A" to an A-module, it is enough to specify the images of this map at the
basis vectors ¢; (and these images can be chosen arbitrarily). Thus, we can define
an A-linear map p : A" — N by

(p(e;) = a; foreveryic {1,2,...,n}).

Consider this p.

The generators ay, 4y, ..., a, of the A-module N are in the image of the map p
(since a; = p (e;) for every i € {1,2,...,n}). Thus, the A-linear map p: A" = N
is surjective. Hence, the map fop : A" — M is also surjective (being the
composition of the surjective maps f and p). Hence, M = (f o p) (A").

Let us now define n elements hy,hy, ..., h, of A" as follows: For every i €
{1,2,...,n}, there exists a vector h € A" such that p(e;) = (fop)(h) (since
p(ej) € NC M = (fop)(A")). Pick such an h and denote it by h;. Thus, for
every i € {1,2,...,n}, we have defined a vector /1; € A" such that

p(e) = (fop)(hi). (5)

We have thus constructed n elements hy, hy, ..., h, of A".

Recall that, in order to define an A-linear map from A" to an A-module, it is
enough to specify the images of this map at the basis vectors ¢; (and these images
can be chosen arbitrarily). Hence, we can define an A-linear map g : A" — A"
by

(g (e;) = hy forevery i€ {1,2,...,n}).

Consider this g. Then, fopog=7p
Let V be the A-submodule Ker (f o p) of A". It is straightforward to prove
that g1 (V) €V [] Lemma[0.5 thus shows that g (V) C V.

3Proof. Every i € {1,2,...,n} satisfies

—~

(fopog)le) = (fop) (g(e@) = (fop)(h) =p(a) (by @))-

=h;
In other words, the A-linear maps f o po g and p are equal to each other on each element
of the basis (e1, ey, ...,e,) of A". Consequently, these maps f o p o g and p must be identical
(because if two A-linear maps from some A-module P are equal to each other on each element
of a given basis of P, then these two maps must be identical). In other words, fopog = p,
ged.

4Proof. Let w € ¢7' (V). Then, g¢(w) € V = Ker(fop), so that (fop)(g(w)) = 0. Thus,
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Let now w € Ker f be arbitrary. Then, w € N satisfies f (w) = 0 (since w €
Ker f). But the map p is surjective; thus, N = p (A"). Hence, w € N = p (A").
In other words, there exists some v € A" such that w = p (v). Consider this v.

We have (fop)(v) = f (@) = f(w) =0,so0 thatv € Ker(fop) =V and

=w

thus g [ v | € ¢(V) CV =Ker(fop) and thus (fop)(g(v)) = 0. Thus,
ev

(fopog)(v)=(fop)(g(v)) =0.Since fopog = p, this rewrites as p (v) = 0.

Thus, w = p (v) = 0.

Now, let us forget that we fixed w. We thus have proven that w = 0 for
every w € Ker f. In other words, Ker f = 0. Hence, the map f is injective.
Since f is also surjective, this yields that f is bijective. Thus, f is an A-module
isomorphism (since f is an A-module homomorphism). This proves Lemma

0.6l O
Now, we can finally step to the proof of Theorem

Proof of Theorem We know that M is finitely generated. In other words, there
exist finitely many elements ay,ay,...,a, of M such that M is generated by
ai,az,...,a, as an A-module. Consider these aq,ay,...,a,.

Notice that M = f (N) (since the map f is surjective).

For every i € {1,2,...,n}, we define an element g; of N as follows: There
exists some ¢ € N such thata; = f (g) (since a; € M = f (N)). Pick such a g and
denote it by g;. Thus, for every i € {1,2,...,n}, we have defined some g; € N

satisfying
a; = f(gi)- 6)

Hence, we have defined n elements g1, g2, ...,1 of N.

Let v € Ker f. We shall prove that v = 0.

Let N’ be the A-submodule Av + (Ag1 + Agy + -+ - + Agn) of N. Then, the
A-module N’ is finitely generated (in fact, it is generated by the n + 1 elements
v,81,$2,---,4n) and satisfies N’ C N C M. Also, the A-linear map f |y: N/ —
M is surjective, because its image contains the generators ay,4a,...,a, of M (in
fact, foreveryi € {1,2,...,n},wehave g; € Ag; C Av+ (Ag1 +Ag+ -+ Agn) C

0= (fep)(g(w)) = (fopog)(w) = p(w), so that p(w) = 0 and thus (fop)(w) =

f (p (w)) = f(0) = 0 (since f is A-linear). Consequently, w € Ker (fop) = V.
——
=0

Let us now forget that we fixed w. We thus have shown that w € V for every w € g1 (V).
In other words, g~! (V) C V, ged.
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N'and thusa; = f | & | = (f |n) (gi), which shows that the image of f |y
N

EN'

contains 4;). Hence, Lemma (applied to N’ and f |y instead of N and f)
yields that f |nv is an A-module isomorphism. In particular, f |y is injective.
Thus, Ker (f |y/) = 0.

Butve Av C Av+ (Ag1 + Ago+ -+ Agn) = N and (f |y/) (v) = f(v) =0
(since v € Ker f). Hence, v € Ker (f |n/) = 0. In other words, v = 0.

Now, let us forget that we fixed v. We thus have shown that v = 0 for every v €
Ker f. In other words, Ker f = 0. Hence, the map f is injective. Since f is also
surjective, this yields that f is bijective. Thus, f is an A-module isomorphism

(since f is an A-module homomorphism). This proves Theorem O
Proof of Corollary Corollary [0.2] follows immediately from Theorem [0.] (ap-
plied to N = M). O
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